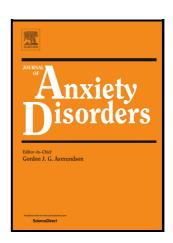
Journal Pre-proof

Using machine learning methods to predict the outcome of psychological therapies for post-traumatic stress disorder: A systematic review

James Tait, Stephen Kellett, Jaime Delgadillo



PII: S0887-6185(25)00039-8

DOI: https://doi.org/10.1016/j.janxdis.2025.103003

Reference: ANXDIS103003

To appear in: Journal of Anxiety Disorders

Received date: 17 May 2024 Revised date: 26 February 2025 Accepted date: 7 March 2025

Please cite this article as: James Tait, Stephen Kellett and Jaime Delgadillo, Using machine learning methods to predict the outcome of psychological therapies for post-traumatic stress disorder: A systematic review, *Journal of Anxiety Disorders*, (2025) doi:https://doi.org/10.1016/j.janxdis.2025.103003

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

Using machine learning methods to predict the outcome of psychological therapies for post-

traumatic stress disorder: A systematic review

James Tait ^{a,b,*}, Stephen Kellett ^c, Jaime Delgadillo ^d

^a School of Psychology, University of Sheffield, ICOSS Building, 219 Portobello, Sheffield, S1 4DP,

United Kingdom

^b Department of Health Sciences, University of York, Seebohm Rowntree Building, Heslington, York,

YO10 5DD, United Kingdom

^c Grounded Research, RDaSH NHS Foundation trust, 2 St Catherine's Close, Tickhill Road Hospital,

Balby, Doncaster, DN4 8QN, United Kingdom

^d Clinical and Applied Psychology Unit, School of Psychology, University of Sheffield, Cathedral Court

Floor F, 1 Vicar Lane, Sheffield, S1 2LT, United Kingdom

* Corresponding author.

Email address: james.tait@york.ac.uk

Telephone: +44 01904 321321

Abstract

Background:

A number of treatments are available for post-traumatic stress disorder (PTSD), however, there is

currently a lack of data-driven treatment selection and adaptation methods for this condition.

Machine learning (ML) could potentially help to improve the prediction of treatment outcomes and

enable precision mental healthcare in practice.

Objectives:

To systematically review studies that applied ML methods to predict outcomes of psychological

therapy for PTSD in adults (e.g., change in symptoms, dropout rate), and evaluate their

methodological rigour.

Methods:

1

Journal Pre-proof

This was a pre-registered systematic review (CRD42022325021), which synthesised eligible clinical

prediction studies found across four research databases. Risk of bias was assessed using the

PROBAST tool. Study methods and findings were narratively synthesized, and adherence to ML best

practice evaluated.

Results:

Seventeen studies met the inclusion criteria, including samples derived from experimental and

observational study designs. All studies were assessed as having a high risk of bias, notably due to

inadequately powered samples and a lack of sample size calculations. Training sample size ranged

from N < 36 - 397. The studies applied a diverse range of ML methods such as decision trees,

ensembling and boosting techniques. Five studies used unsupervised ML methods, while others used

supervised ML. There was an inconsistency in the reporting of hyperparameter tuning and cross-

validation methods. Only one study performed external validation.

Conclusions:

ML has the potential to advance precision psychotherapy for PTSD, but to enable this, ML methods

must be applied with greater adherence to best practice guidelines.

Key words:

Systematic Review; Posttraumatic Stress Disorder; Psychotherapy; Machine Learning.

1. Introduction

Post-traumatic stress disorder (PTSD) is a severe and often chronic mental health problem that can

develop following exposure to one or more traumatic events, and is associated with significantly

impaired quality of life, increased incidence of physical health problems, co-occurring mental health

2

problems, and suicide (Karatzias et al., 2019; Pacella et al., 2013; Shalev et al., 2017; Yehuda et al., 2015). PTSD affects around 4% of adults worldwide, with higher prevalence rates associated with low income and social deprivation (Fear et al., 2016; Koenen et al., 2017; Ravi et al., 2023). Clinical practice guidelines (CPG) recommend trauma-focussed psychological therapies such as cognitive processing therapy (CPT), prolonged exposure (PE), and eye movement desensitisation and reprocessing (EMDR), as first-line treatments for PTSD (APA, 2017; VA/DoD, 2023; NICE, 2018). Meta-analyses of randomised controlled trials (RCTs) have evidenced that these are currently the most effective forms of psychological therapy for PTSD, and when compared to waitlist controls, pooled effect sizes were large (Jericho et al., 2021; Lewis, Roberts, Andrew, et al., 2020; Mavranezouli et al., 2020). Further, a network meta-analysis (Merz et al., 2019) found that trauma-focussed psychological therapies were equivalent to pharmacological therapy in the short-term and were more effective long-term (Merz et al., 2019), and there is evidence that a majority of patients prefer psychological therapy (including trauma-focussed therapy) to pharmacological therapy (Simiola et al., 2015; Swift et al., 2017).

Despite the availability of efficacious psychological therapies for PTSD, many patients do not respond well to treatment. In a systematic review of RCTs, Schottenbauer et al. (2008) found that non-response rates ranged from 20%-67% for PE, 3.6%-48% for CPT, and 7.3%-92% for EMDR. In a smaller but more recent review of treatment for combat-related PTSD, Steenkamp et al. (2015) found that 60%-72% of patients still met diagnostic criteria for PTSD after receiving CPT or PE. Response rates may be even lower in routine clinical practice; an analysis of 2,493 patient records from the English National Health Service (NHS) *Talking Therapies* programme found that only 32% of patients accessing trauma-focussed cognitive behavioural therapy (Tf-CBT) achieved reliable and clinically significant improvement in symptoms (Robinson et al., 2020). A contributing factor to nonresponse is poor acceptability of the psychological therapy and associated dropout. Lewis et al. (2020) systematically reviewed dropout from RCTs of psychological therapies for PTSD and found that the pooled dropout rate was 16% (95% CI [14, 18%]), suggesting that around one in six patients dropout.

Furthermore, dropout rates were higher for trauma-focussed therapies. The pooled dropout rate for EMDR was 18% (95% CI [12, 24%]), for PE was 22% (95% CI [16%, 28%]), and for CPT was 30% (95% CI [22%, 39%]). This highlights a dilemma, which is that patients with PTSD appear most likely to drop out from the treatments that are the most efficacious. As with treatment response, dropout rates may be even higher in routine clinical practice than in RCTs (Najavits, 2015).

One way that PTSD treatment outcomes might be improved is through personalised mental healthcare. This entails identifying the optimal treatment approach, length, or intensity, based on patients' individual characteristics (Cohen et al., 2021). There is evidence for heterogeneity in response to psychological therapy for PTSD (Herzog & Kaiser, 2022), and studies have found that patients with specific demographic and clinical characteristics may be more likely to respond to a specific trauma-focussed therapy (Deisenhofer et al., 2018; Keefe et al., 2018). For example, Deisenhofer et al. (2018) developed a statistical algorithm to identify patients who were more likely to respond to Tf-CBT than EMDR, and vice versa, based on pre-treatment demographic and clinical data. Implementing a treatment selection algorithm such as this in clinical practice has the potential to improve treatment outcomes by allocating individual patients to the treatment that is most likely to benefit them. Further, PTSD is a complex and heterogeneous condition (Galatzer-Levy & Bryant, 2013), and a number of studies have found evidence for subtypes of PTSD. For example, a "threat reactivity" subtype, high in intrusions, hyperarousal and avoidance, and a "dysphoric" subtype, high in anhedonia and negative affect (Campbell et al., 2020; Campbell-Sills et al., 2022; Horn et al., 2016; Pietrzak et al., 2014). Recent studies have found that patients with certain subtypes of depression respond differentially to CBT (Catarino et al., 2022; Simmonds-Buckley et al., 2021), and it is possible that this is also the case for PTSD (Forbes et al., 2003).

In psychotherapy outcome research, a large number of variables each explain a small proportion of variance in treatment outcome (Barawi et al., 2020; Dewar et al., 2020; Malejko et al., 2017), and it is likely that many of these variables covary, interact, or are non-linear. To account for

this, researchers have begun to utilize machine learning (ML) methods (Aafjes-van Doorn et al., 2021), which are particularly well suited to analyse data of this nature (Chekroud et al., 2021). For example, penalised regression methods such as elastic net (Zou & Hastie, 2005) can perform predictor selection by shrinking coefficients for variables with little predictive value or high multicollinearity. Decision tree methods such as random forest (Breiman, 2001) can also implicitly handle complex non-linear relationships and interactions by sequentially dividing the data at the most informative threshold on important predictor variables.

ML is a data-driven approach that uses algorithms to detect patterns in data, with the goal of making accurate predictions in new data (Delgadillo, 2021). In this way ML methods are distinct from classical statistical methods, which predominantly aim to test hypotheses, make inferences, and explain variance within a particular sample (Bi et al., 2019; Yarkoni & Westfall, 2017). When applied optimally, the ML approach follows a sequence of six steps referred to as the *ML pipeline* (Delgadillo & Atzil-Slonim, 2022). These are [1] sample size calculation, [2] data pre-processing, [3] hyperparameter selection, [4] training the model, [5] testing the model with internal cross-validation, and [6] external validation of the model in independent data. Neglecting or inadequately performing any of the first five steps leads to *overfitting* (i.e., capitalising on the idiosyncrasies of the training data to the detriment of generalisability). Without step six, the extent of overfitting is unknown. The strength of evidence provided by ML studies can be categorised into three levels of increasing robustness: In *level 1* evidence, model performance is only evaluated within the training dataset without internal-cross validation; In *level 2*, internal cross-validation is applied; In *level 3*, the model is externally validated by applying the predictors and parameters selected during internal cross-validation to predict outcomes in independent data (Delgadillo & Atzil-Slonim, 2022).

Thus far, much of the research applying ML methods to predict psychological therapy outcomes has focussed on the treatment of depression and anxiety, and relatively little has focussed on treatment for PTSD (Aafjes-van Doorn et al., 2021; Lee et al., 2018; Sajjadian et al., 2021; Vieira et

al., 2022). Ramos-Lima et al. (2020) systematically reviewed the use of ML methods in PTSD research but focussed primarily on studies that sought to predict the presence or onset of PTSD and did not include any studies that sought to predict the outcome of CPG recommended psychological therapies. Vieira et al. (2022) systematically reviewed studies that applied ML methods to predict outcomes for CBT, but this review excluded studies that predicted continuous outcomes (e.g., Deisenhofer et al., 2018), excluded other trauma-focussed psychological therapies (e.g., PE, EMDR), and only included one study that sought to predict outcomes in adults with PTSD (Zhutovsky et al., 2019). Further, the above reviews noted frequent methodological issues such as inadequate sample size and validation methods. If ML methods are not applied robustly then prediction models will not generalise and will be of little clinical utility. None of the previous reviews used a quality benchmark of the stages of a ML study provided by the *ML pipeline*.

Therefore, the present study aimed to conduct the first systematic review of studies that used ML methods to predict psychological therapy outcomes for PTSD. For the reasons outlined above, the focus of this review is on the application and reporting of each study's methods, benchmarked against the ML pipeline. The review question was framed following the recommendations of Moons et al. (2014) and Palazón-Bru et al. (2020) for framing systematic reviews of prognostic modelling studies and was reported following PRISMA guidelines (Page et al., 2021). After assessing risk of bias, study methods and results were synthesised, and the adherence to each step of the ML pipeline was evaluated.

2. Method

2.1. Pre-registration

The systematic review protocol was pre-registered with the PROSPERO database prior to conducting searches (Reference: CRD42022325021). The pre-registration can be accessed here: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022325021

2.2. Eligibility Criteria

applied ML methods to pretreatment data to predict the outcome of a psychological therapy recommended by clinical practice guidelines (CPG) as a first line treatment for PTSD in adults. CPG are intended to bridge the gap between evidence and practice by recommending treatments based on systematic reviews of empirical evidence and/or consensus in expert opinion (Hamblen et al., 2019). The inclusion criteria for this systematic review were guided by CPGs grounded in well conducted systematic reviews, which had been appraised to meet an acceptable quality standard using a standardised measure (Martin et al., 2021), and were published in the previous 5-years to ensure that they were contemporaneous (Shekelle et al., 2001). This included the following CPGs:

American Psychological Association (2017), International Society for Traumatic Stress Studies (2018), National Institute for Health and Care Excellence (2018), Phoenix Australia Centre for Posttraumatic Mental Health (2021), and Veterans Affairs/Department of Defence (2017). The psychological therapies recommended in these CPGs (see Supplementary Table 1) were predominantly trauma-focussed cognitive behavioural therapies, exposure-based therapies, and EMDR.

2.3. Information Sources, Searching, and Screening

Pre-defined search terms were used to search four databases: APA PsycInfo (via Ovid),
PTSDpubs (via ProQuest), PubMed, and Scopus. The search terms were designed to return any
studies that mentioned any form of psychological therapy, PTSD or trauma, and any form of machine
learning in the title, abstract or key words. The full search strategy is presented in Supplementary
Materials. No limits, restrictions, or filters were applied. Databases were searched on 27th April
2022. The following review articles were checked for potentially eligible studies: Aafjes van-Doorn et
al. (2021), Chekroud et al. (2021), Chen et al. (2022), Dewar et al. (2020), Dwyer et al. (2018), Hahn
et al. (2017), Glaz et al. (2021), Malgaroli and Schultebraucks (2021), Manchia et al. (2020), Meehan
et al. (2022), Ramos-Lima et al. (2020). Forward and backward citation searches for all eligible studies
were performed using the R package *citationchaser* (Haddaway, 2021). The authors of all eligible

studies were contacted to request further studies. Article metadata and abstracts for all search results were imported into EndNote 20 (https://endnote.com/). Duplicates automatically identified by EndNote 20 were screened and removed manually. Further duplicates were identified manually and removed during title and abstract screening. All titles and abstracts were manually screened against the inclusion and exclusion criteria in EndNote 20 by the first author, and full text files of potentially eligible studies were retrieved and screened.

2.4. Data Extraction and Synthesis

Relevant data from all eligible studies was extracted by the first author using a standardised data extraction table in Microsoft Excel, based on the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS; Moons et al., 2014), and the ML pipeline domains described by Delgadillo and Atzil-Slonim (2022). This included sample characteristics; treatment details; measures (including outcome and candidate predictor variables); ML methods and their purpose (e.g., predictor selection, prediction, clustering); pre-processing details; hyperparameter setting methods, validation methods, model evaluation metrics including accuracy (e.g., R², balanced accuracy), error (e.g., root mean squared error, mean absolute error), calibration, and discrimination (e.g., sensitivity, specificity, area under the receiver operating characteristic curve); predictors included in final model; relevant findings; and authors' interpretation of findings. When necessary, study authors were contacted via email to clarify methods and results. Study characteristics, methods, and findings were tabulated and summarised using a narrative synthesis. The pre-registered intention was to quantitatively synthesize prediction model performance metrics using random effects meta-analysis, but this was not possible due to heterogeneity of study methods. Studies adherence to the ML pipeline and corresponding level of evidence (apparent validation, internal cross-validation, external validation) was evaluated.

2.5. Risk of Bias Assessments

Risk of bias was assessed using the Prediction model study Risk Of Bias Assessment Tool (PROBAST; Moons et al., 2019). A second researcher independently conducted risk of bias assessments for 50% of the included studies. Cohen's kappa was calculated as a measure of agreement, discrepancies were discussed, and a third researcher was consulted where necessary. After consulting with a third researcher a unanimous decision was reached on all ratings.

3. Results

3.1. Study Selection

The study selection process is presented in the PRISMA diagram (see Figure 1). In total, 1,570 titles and abstracts were screened, 48 potentially eligible full texts were screened, and 17 studies met the inclusion criteria for the review. Full texts that were screened and excluded are presented in Supplementary Table 2 with reasons for exclusion. Frequent reasons for exclusion included: No ML methods used (k = 15), did not predict treatment outcome (k = 6), no CPG recommended therapy for PTSD (k = 6).

3.2. Study Characteristics

Study characteristics are presented in Table 2. Most studies conducted a retrospective analysis of data (k = 12), either from clinical trials (k = 5), cohort studies (k = 1), or routine clinical practice (k = 6). Five studies prospectively collected data for analysis, either as a clinical trial (k = 1) or cohort study (k = 4). Five studies sampled any adults seeking treatment for PTSD; six sampled from military populations; five specified PTSD related to interpersonal-, childhood-, or sexual-abuse; and two sampled patients with co-occurring mental health problems (substance use disorder and depression, respectively). Three studies included only female participants, and one study included only male participants. Participants received a range of CPG recommended psychotherapies for PTSD, most frequently PE (k = 10 studies), CPT (k = 6 studies), EMDR (k = 4 studies), or Tf-CBT (k = 3). Total sample size ranged from N = 57-612. All but one of the studies were published between 2018

and 2022. Nine studies were conducted in the USA, three in Germany, three in the Netherlands, one in Australia, and one was an analysis of data from England by a team of researchers in Germany and the UK.

3.3. Risk of Bias Assessments with PROBAST

Detailed risk of bias assessments are presented in Supplementary Table 3. The first and second rater initially agreed on seven out of nine studies, corresponding to a Cohen's kappa = 0.4, indicating *fair* agreement. Following consultation with a third researcher consensus was reached on all nine studies. All seventeen studies were rated at high risk of bias overall, primarily as all studies were high risk of bias in the *Analysis* domain. None of the studies had a reasonable number of participants with the outcome, and for some studies the number of predictor parameters estimated was unclear (studies often reported the number of candidate variables but did not report dummy coding of categorical variables or whether psychometric measures were entered as total scores, factors, or items). Although nine studies reported metrics of prediction accuracy, error, and/or discrimination, none of the studies reported calibration and therefore relevant model performance metrics were not evaluated appropriately. Thirteen studies did not include all enrolled participants in the analysis. Three studies inappropriately handled missing data and six studies did not provide information on the handling of missing data. Seven studies were rated at risk of bias due to selection of participants for using routinely collected clinical data or retrospective cohort study data.

3.4. Study Methods and Results

Study methods are presented in Table 3 and results are presented in Supplementary Table 4.

3.4.1 Outcome variable

Fourteen studies sought to predict treatment response but operationalised response in a variety of different ways. Eight studies sought to predict treatment response as a continuous outcome, five of which predicted change in PTSD score, two predicted post-treatment PTSD score,

and one predicted post-treatment depression score as a proxy outcome (Deisenhofer et al., 2018). Six studies sought to predict treatment response as a categorical outcome, two of which predicted percentage change in PTSD score (50% and 30% respectively) as a binary outcome, one predicted reliable change in PTSD score as a binary outcome, two predicted latent trajectory class membership as a polytomous outcome (Hendriks et al., 2018; Nixon et al., 2021), and one predicted latent trajectory class membership as two binary outcomes (Held et al., 2022). The remaining three studies sought to predict treatment retention, two of which predicted a count of the number of sessions attended, and one predicted dropout as a binary outcome (Keefe et al., 2018).

3.4.2 Candidate Predictor Variables

Thirteen studies employed psychometric data (e.g., self-report or clinician-report measures of PTSD, depression, anxiety) as candidate predictor variables, eleven of these also used demographic data (e.g., gender, age, employment status), and eleven also used clinical data (e.g., diagnoses, medication use). Eleven studies tested baseline PTSD symptoms and PTSD-related cognitions as candidate predictors, and seven of these also tested trauma characteristics such as type of trauma and time since trauma. Four studies explored the relationship between neuroimaging data (MRI and EEG) and PTSD treatment outcomes. Number of candidate predictor variables ranged from approximately 5 to 104. Studies that used neuroimaging data did not specify the number of candidate predictors. See Supplementary Table 4 for details of candidate predictor variables.

3.4.3 Predictors Included in the Final Model

Among the fourteen studies sought to predict treatment response, all but one (Nixon et al., 2021) reported at least one significant pre-treatment predictor. Five studies included PTSD severity as a predictor in the final model, three of these also included trauma related variables; six studies included co-occurring mental health problems such as depression (k = 5) and emotion regulation difficulties (k = 2); and five included demographic variables such as age (k = 3) and gender (k = 3). Three studies using MRI data identified regions of the brain associated with treatment response, but

there was no consensus (Etkin et al., 2019; Zhutovsky et al., 2019; Zilcha-Mano et al., 2020). Studies found that PTSD, trauma, and mental health related variables were stronger predictors of treatment response than demographic variables (Held et al., 2022; Herzog et al., 2021; Hoeboer et al., 2021; Stirman et al., 2021; Stuke et al., 2021). Three studies sought to predict treatment retention or dropout but there was no consensus among the predictors selected in the final model (Fleming et al., 2018; Keefe et al., 2018; López-Castro et al., 2021).

3.4.4. Machine Learning Methods

Studies used a range of different ML methods for various purposes. Fourteen studies used supervised ML methods. Eight studies used decision tree-based methods, and all but two of these used ensemble tree methods such as random forest and boosting algorithms (ADAboost, gradient boosted models). Three studies used a penalized regression method called *elastic net* (Held et al., 2022; Herzog et al., 2021; Stirman et al., 2021). Three studies used kernel methods (support vector machine, Gaussian process classifier) to analyse MRI data (Etkin et al., 2019; Zhutovsky et al., 2019; Zilcha-Mano et al., 2020). Five studies used unsupervised clustering (*k*-means) or dimension reduction methods (principal component analysis, independent component analysis). None of the studies used Bayesian ML methods or neural networks.

Five studies used the same ML method to perform feature selection, parameter estimation, and outcome prediction (Fleming et al., 2018; Held et al., 2022; Herzog et al., 2021; Kratzer et al., 2019; Nixon et al., 2021). Two studies used an unsupervised ML method for feature reduction and then used a supervised ML method for prediction (Stuke et al., 2021; Zhutovsky et al., 2019). Five studies used supervised ML methods to select predictors, and then used simpler statistical methods (e.g., linear regression, correlation) to test the relationship between the selected predictors and outcome (Hoeboer et al., 2021; Keefe et al., 2018; López-Castro et al., 2021; Stirman et al., 2021; Zilcha-Mano et al., 2020). One study used a genetic algorithm to select predictors for a linear

regression model (Deisenhofer et al., 2018). One study used generalized linear modelling to select predictors and then used a supervised ML method to predict outcomes (Etkin et al., 2019).

Three studies used *k*-means cluster analysis: Zhang et al. (2021) used k-means to identify PTSD subtypes and then linear mixed models to test the relationship between subtypes and treatment outcome. Hendriks et al. (2018) used k-means to identify treatment response trajectory classes, and then used stepwise logistic regression to select predictors and predict trajectory class membership. Forbes et al. (2003) used *k*-means to test the reliability of PTSD subtypes identified by Ward's hierarchical cluster analysis, and then used generalized linear modelling to test differences in treatment response between subtypes.

Two studies compared the performance of more than one ML method (Etkin et al., 2019; Held et al., 2022), and two studies compared the performance of ML methods against that of traditional statistical methods (Held et al., 2022; Stuke et al., 2021).

3.4.5. Adherence to the ML Pipeline

The number of studies that reported each section of the ML pipeline is presented in Figure 2.

3.4.5.1. Sample Size Calculation

None of the studies reported a sample size calculation. The number of participants with the outcome in a model development sample ranged from < 36 (Etkin et al., 2019) to 397 (Herzog et al., 2021).

3.4.5.2. Data pre-processing

Nine studies reported handling of missing data, six of which reported multiple imputation. Three studies performed multiple imputation via random forest, but only one reported out-of-bag error estimates (Stirman et al., 2021). One study reported listwise exclusion of participants with missing data (Held et al., 2022); one excluded participants missing follow-up data (Zhutovsky et al., 2019); one excluded participants missing a whole scale and imputed mean values where <20% of a

scale was missing (Stuke et al., 2021). Three studies reported reduction of categorical variables, one reported transformation of variables, one reported handling of class imbalance, and one reported case-control matching. Three of four studies that used neuroimaging data reported preprocessing of neuroimaging data. Four studies did not report any pre-processing of data.

3.4.5.3. Hyperparameter selection

Six studies reported using internal-cross validation to optimise hyperparameter settings, one of which also reported using default settings for some hyperparameters. Two studies only reported using default hyperparameter settings (López-Castro et al., 2021; Nixon et al., 2021). Two studies reported using statistical criteria (goodness of fit, gap statistic) to decide the number of k-means clusters (Hendriks et al., 2018; Zhang et al., 2021). Some studies reported setting for some but not all hyperparameters, and seven studies did not report hyperparameter setting. Most studies did not report the hyperparameters tested during optimisation, and none reported the optimal hyperparameter settings selected for the final model.

3.4.5.4. Cross validation and level of evidence

Eleven studies performed internal cross-validation: four performed *k*-fold, four performed leave-one-out, and two performed bootstrapping. One study also performed external validation in a randomly partitioned hold-out dataset (Herzog et al., 2021). As such, ten studies provided level 2 evidence and one study provided level 3 evidence.

Six studies did not perform internal cross-validation or external validation and therefore provided level 1 evidence. One of these studies (López-Castro et al., 2021) used the predictors selected in one dataset to make predictions in a second dataset, but repeated parameter estimation (model fitting) in the second dataset, and therefore performed replication rather than external validation. Another study (Zhang et al., 2021) divided the dataset into two cohorts and repeated *k*-

means clustering and linear mixed modelling in the second cohort, again performing replication rather than external validation.

3.4.6. Evaluation metrics

Nine studies reported metrics of model prediction accuracy or error. These studies all applied internal cross-validation procedures, but it is important to note that only Herzog et al. (2021) performed external validation, and none had a reasonable number of participants with the outcome. Therefore, model performance metrics were estimated within a training sample of insufficient size, limiting the likelihood that they will generalize to independent samples. None of the studies that sought to predict treatment retention reported evaluation metrics. None of the studies reported calibration.

Among the eight studies that sought to predict a continuous outcome, three reported model prediction accuracy in the form of R^2 or R, and four reported prediction error in the form of root mean squared error (RMSE), mean absolute error (MAE), and true error. Two of these studies reported both accuracy and error, and four studies did not report either. Herzog et al. (2021) used elastic net and reported $R^2 = 0.17$ (MAE = 0.69, RMSE = 0.91) in the training set (with bootstrap internal-cross validation) and $R^2 = 0.16$ (MAE = 0.77, RMSE = 0.95) in the hold-out external validation. Stirman et al. (2021) used elastic net to select predictors and reported $R^2 = 0.39$ (RMSE = 20.28) for prediction with linear regression mean averaged over 1000 repetitions of 10-fold internal cross-validation. Stuke et al. (2021) used principal component analysis to select predictors and reported R = 0.162 for prediction with ADAboost regressor and R = 0.214 for linear regression (when squared, ADAboost $R^2 = 0.03$ and linear regression $R^2 = 0.05$). Hoeboer et al. (2021) reported RMSE ranging from 4.06 to 7.24 when predicting change on two PTSD measures in two treatment groups (RMSE is referred to as *average error* in the publication and was clarified through correspondence with the author). Deisenhofer et al. (2018) reported *true error* (MAE of factual predictions) of 4.92 in one treatment group and 5.37 in the other.

Among the six studies that sought to predict a categorical outcome, two reported accuracy as raw accuracy or balanced accuracy, and three reported discrimination as area under the receiver operating characteristic curve (AUC-ROC), area under the precision-recall curve (AUC-PR), and/or sensitivity and specificity. Nixon et al. (2021) visually examined AUC-ROC but did not report statistics, and a further two studies did not report evaluation metrics for prediction of categorical outcomes. Held et al. (2022) tested six methods of developing a classification model and found that gradient boosted models produced the best predictions of fast response (AUC-PR = 0.466, AUC-ROC = 0.765) and elastic net produced the best predictions of minimal response (AUC-PR = 0.628, AUC-ROC = 0.826). Zhutovsky et al. (2019) used Gaussian process classifier to predict ≥ 30% reduction in PTSD score from MRI data and reported AUC-ROC = 0.929, balanced accuracy = 81.4%, sensitivity = 84.8%, specificity = 78%. Etkin et al. (2019) predicted ≥50% reduction in PTSD score from verbal memory delayed recall impairment and low within Ventral Attention Network connectivity (MRI) and reported accuracy = 85%, sensitivity = 80%, and specificity = 87% for linear SVM, and accuracy = 90%, sensitivity = 80%, and specificity = 93% for radial basis function SVM, but the sample size was particularly small (n = 36), the number of participants with the outcome was not reported, and class imbalance was not addressed.

3.4.7. Predicting Differential Treatment Outcome

Five studies explored interactions between pre-treatment variables and treatment type.

Three studies sought to retrospectively predict the optimal treatment for each participant by developing a personalized advantage index (Deisenhofer et al., 2018; Hoeboer et al., 2021; Keefe et al., 2018). Following a method suggested by Kessler et al. (2017), Deisenhofer et al. (2018) and Hoeboer et al. (2021) used ML methods to select predictors for a linear regression model for each treatment under investigation and identified each patients' optimal treatment by comparing the outcomes predicted by the two regression models. Both studies found a significantly greater improvement in symptoms among patients who had received their model indicated optimal

treatment. Keefe et al. (2018) used ML methods to select predictors and moderators (i.e., variables that interact with treatment type) for a logistic regression model and found a significantly lower rate of dropout among patients who received their model-indicated optimal treatment.

Stirman et al. (2021) sought to identify patients most likely to benefit from the most efficacious of two treatments, and those for whom treatment type was unlikely to make a difference, by developing a prognostic index (composite predictor) and testing its interaction with treatment type. The interaction explained 39% of the variance in post-treatment PTSD severity. All four of the above studies reported that using ML methods in this way could potentially guide personalized treatment selection for PTSD.

Zhang et al. (2021) investigated whether patients with latent subtypes of PTSD identified via *k*-means of EEG data, and not identifiable through clinical measures or demographic data, responded differentially to two treatments. There was a significant difference in post-treatment severity between the two subtypes, but no interaction with treatment type. Patients in this study were not randomly allocated to treatment and this was not addressed, therefore there is potential confounding by indication (Kyriacou & Lewis, 2016).

4. Discussion

This review aimed to identify and synthesize studies that used ML methods to predict the outcome of psychological therapy for PTSD, and the degree to which these studies adhered to best practice via auditing the methods of the studies against the ML pipeline domains. Through searching four databases and eleven similar systematic reviews, conducting forward and backward citation searches, and contacting the authors of eligible papers, seventeen studies were identified that met the inclusion criteria. Sixteen were published within the previous four years, reflecting a recent surge of interest in ML methods in clinical psychology and psychiatry (Aafjes-van Doorn et al., 2021), driven partly by recent advances in technology and data collection (Jordan & Mitchell, 2015), and the potential applications of ML methods to psychological therapy data (Chekroud et al., 2021). The one

exception was published almost 20 years earlier, but this study made no reference to ML and simply used *k*-means to test the reliability of clusters identified via a different clustering method (Forbes et al., 2003).

4.1. Considerations Regarding Risk of Bias

Risk of bias assessments using PROBAST found all studies to be at high risk of bias. Specifically, all studies were rated high risk of bias in the analysis domain, primarily due to inadequate sample sizes for model training. Six studies were rated high risk of bias in the participants domain for using routinely collected practice data. Moons et al. (2019) suggest that routinely collected data is at higher risk of bias than RCT or prospectively collected data, as equivalent quality controls may not have been implemented. However, archival clinical practice data such as that of NHS Talking Therapies services is an available source of outcome data on a scale seldom seen in psychological therapy research, with treatments implemented with a high degree of standard training and supervision, and this may allow researchers to conveniently address the issue of sample size. More recently, mental health researchers have advocated the use of large electronic health records to optimise clinical prediction models, in view of the sample size limitations of typical clinical trials and the challenges related to data harmonization across clinical trial datasets, which often leads to sparse predictors (Delgadillo & Lutz, 2020; Kessler & Luedtke, 2021). Further, if the aim is to develop a prediction model for use in a particular mental health service, then using data from that same context may boost ecological validity and generalisability. Vieira et al. (2022) comment that using larger, more heterogeneous, naturalistic datasets may produce models with lower prediction accuracy but greater generalisability. Conversely, the finding that trauma related variables may be better predictors of outcome than demographic data presents a problem as many mental health services do not routinely collect this sort of data.

It is important to highlight that PROBAST was not developed to assess ML studies. Some argue that PROBAST may assess ML studies too harshly (Meehan et al., 2022), and others caution

that ML methods may be at greater risk of bias under some conditions (Moons et al., 2019; van der Ploeg et al., 2014). Some important features of ML are not assessed by PROBAST, such as hyperparameter selection, which was not reported by seven out of the seventeen studies in this review and can lead to overfitting if performed inappropriately (Delgadillo & Atzil-Slonim, 2022). The inconsistent reporting and application of ML methods identified by this review reiterates the call for specific guidelines and risk of bias assessment tools (Meehan et al., 2022; Vieira et al., 2022), which were under development at the time when this review was conducted (Collins et al., 2021).

4.2. Sample Size

The finding that none of the studies reported a sample size calculation is congruent with similar reviews of clinical prediction modelling with ML methods (Aafjes-van Doorn et al., 2021; Balki et al., 2019). Determining an appropriate sample size for a developing a clinical prediction model using ML methods is a complex task that depends on several factors. Riley et al. (2020) recently published guidelines for estimating the required sample size that go beyond EPV and other rules of thumb. However, the appropriate sample size also varies according to the particular ML method, with some methods requiring larger samples to develop stable models (Dalmaijer et al., 2022; Giesemann et al., 2023; Riley et al., 2021; van der Ploeg et al., 2014), and according to the internal cross-validation methods applied. In a simulation study, Vabalas et al. (2019) found that k-fold internal cross-validation yielded over-optimistic estimates of accuracy compared to nested k-fold and randomly partitioned hold-out validation, and the magnitude of the bias had an inverse relationship with sample size, increasing sharply with sample size N < 100. Additionally, Vabalas et al. (2019) found that the bias increased with the number of candidate predictor variables. A commonly applied rule of thumb is that a minimum of ten outcome events per variable (EPV) is required to train a prediction model. However, this is contentious as it is not empirically-based, and Moons et al. (2019) suggest that an EPV of 20 may be more robust. More precisely it is the number of variable parameters in the model that is of interest (i.e., dummy coded categories and interactions between

variables each require the estimation of additional parameters), and when the outcome is categorical the number of outcome events refers to the number of participants in the smallest category. Studies in this review did not consistently explicitly report the number of candidate predictor variables tested, and where they did it was unclear whether they were reporting the number of variables or number of parameters.

Notably, the four studies that used neuroimaging data did not report the number of candidate predictor parameters. Analysing neuroimaging data typically requires estimation of many parameters, and therefore a large number of participants with the outcome. However, Zhutovsky et al. (2019) and Etkin et al. (2019) had the two smallest samples, and Etkin et al., (2019) did not report the number of participants with the outcome. All four of these studies identified regions of the brain significantly associated with PTSD treatment response, but with little consensus, and none were externally validated. Etkin et al. (2019) and Zhutovsky et al. (2019) reported accuracies > 80% but this was likely due to overfitting. Similarly, Vieira et al. (2022) found that studies that used neuroimaging data to predict CBT outcomes reported higher accuracy but again had smaller sample sizes, suggesting that the higher estimates of accuracy were due to overfitting. Collecting neuroimaging data is more expensive, time-consuming, and imposes a higher degree of patient burden than collecting questionnaire or patient health record data. This makes the acquisition of an appropriate sample size to analyse high dimensional neuroimaging data even more challenging. Further, this raises doubts about the feasibility of implementing clinical prediction models that require this type of data at scale, particularly in large publicly funded health services.

4.3. External Validation

The finding that only one study (Herzog et al., 2021) employed external validation procedures is congruent with recent reviews of prediction modelling in clinical psychology (Aafjesvan Doorn, 2021; Chekroud et al., 2021; Meehan et al., 2022; Vieira et al., 2022). Moreover, this study only externally validated the model in a randomly split hold-out sample. Some argue that this

is not an optimal form of external validation, as the training set and validation set are subsamples of the same dataset, are likely to be highly correlated, and provide overestimates of model performance (Aafjes-van Doorn et al., 2021; Steyerberg, 2019). Splitting the data by time (temporal validation) or geographic location (geographic validation) is a more stringent test of external validity (Steyerberg, 2019). Further, some studies had the opportunity to externally validate a model in an independent sample but replicated model fitting and reported the statistical significance of predictors instead of evaluating model performance metrics (López-Castro et al., 2021; Zhang et al., 2021). This suggests a reluctance amongst researchers to shift from testing hypotheses and seeking to explain relationships between variables, to developing pragmatic prediction models (Yarkoni & Westfall, 2017). As such, the extent to which any of the prediction models reviewed here would generalise beyond the respective training sample is unclear. Further, the generalisability of a prediction model is limited by the make-up of the training sample, and a number of studies in this review included only male or only female participants, potentially limiting the generalisability of the model.

4.4. Evaluating Model Performance

Eight studies did not report model performance evaluation metrics, including two that applied internal cross-validation (Keefe et al., 2018; Nixon et al., 2021), and none of the studies examined calibration. Therefore, it is unclear how efficacious and reliable these models are at predicting therapy outcomes for patients with PTSD. Only two studies compared the performance of ML methods to traditional statistical methods: Held et al. (2022) found that five different ML models outperformed logistic regression, but Stuke et al. (2021) found that ordinary linear regression performed slightly better than ADABoost (an ensemble decision tree method). Therefore, it is unclear whether ML methods offer an advantage over traditional statistical methods, particularly as neither of these studies tested prediction models in an independent validation sample. In a systematic comparison of ML methods and logistic regression, Christodoulou et al. (2019) found that

ML methods were more accurate than logistic regression, but only when high risk of bias studies were included in the comparison, suggesting that any apparent advantage of ML methods over logistic regression are a product of study bias. However, this review included penalised logistic regressions in the non-ML logistic regression category, and some would consider these ML methods (Bi et al., 2019; Delgadillo & Atzil-Slonim, 2022; Webb et al., 2020). Further research is required to investigate whether the complexity added by ML methods improves clinical prediction accuracy to a meaningful degree and index the true extent of this advantage. Additionally, some ML methods may be better than others at predicting treatment outcomes, but only two studies compared the performance of more than one ML method (Etkin et al., 2019; Held et al., 2022).

Four studies applied supervised ML methods to develop a prediction model, but then entered the predictors into a simpler statistical model to estimate parameters and predict outcomes, thereby forgoing any potential advantages of the ML model. López-Castro et al., (2021) commented that variables selected by random forest were not all significant predictors in Poisson regression and suggest that this may be due to correlation with other variables (multicollinearity). However, Poisson regression also makes assumptions about the distribution of the data and the shape of the relationship between the predictor and outcome variables that random forest does not (Mushagalusa et al., 2022).

4.5. Predictors in Final Models

The finding that pre-treatment levels of PTSD, depression, and other mental health problems were among the most consistently selected predictors in a final model is congruent with previous systematic reviews and meta-analyses of predictors of PTSD treatment outcome, which found that these variables were associated with worse outcomes (Barawi et al., 2020; Dewar et al., 2020; Kline et al., 2021; Olatunji et al., 2010). Similarly, the finding that clinical variables were more important predictors than demographic variables is congruent with systematic reviews that found inconsistent

support for demographic variables as predictors of PTSD treatment outcome (Barawi et al., 2020; Haagen et al., 2015).

4.6. Recommendations for Future Studies

To achieve the potential for ML methods to improve individual prediction of psychological therapy outcomes for PTSD, it is recommended that future studies demonstrate full adherence to the ML pipeline domains described above. Specifically, this can achieved in the following ways: [1] perform a sample size calculation and acquire a suitably powered dataset; [2] perform multiple imputation of missing data (stratified by treatment group; Zhang et al., 2021) and report data preprocessing in detail; [3] report all hyperparameter setting (using automated grid search or values selected *a priori*); [4] apply internal cross-validation during model development and testing; [5] externally validate (don't repeat model fitting) in a temporally and/or geographically independent samples (Steyerberg, 2019), and evaluate and report accuracy, error, discrimination, and calibration. Additionally, it is recommended that studies compare the performance of multiple ML methods against one another and against the simplest comparable method (e.g., linear regression or logistic regression).

If ML methods are applied in samples that are too small, with no internal cross-validation, and manual hyperparameter tuning, then it is likely that the model will be overfitted to the training data and estimates of model performance will be over-optimistic. Without external validation and calibration, the extent of the optimism and whether the model will generalise is unknown. A recent meta-analysis of ML models found a negative association between study quality and estimates of prediction accuracy, suggesting that poorer quality studies overestimate accuracy (Sajjadian et al., 2021). It is worth noting that for a prediction model to be clinically useful, the model's prediction accuracy does not necessarily need to be high, only better than expert clinical judgement (Ægisdóttir et al., 2006; Cearns et al., 2019). This can be tested in a prospective randomised trial once the external validity of a prediction model has been established (e.g., Delgadillo et al., 2022). The

recently published TRIPOD+AI statement (Collins et al., 2024) guides transparent reporting of clinical prediction models, including those that used ML. This may also serve as an additional guide when designing studies.

4.7. Limitations

ML is an umbrella term that encompasses a broad range of methods, and studies do not always use the term "machine learning". Efforts were made to perform as wide a search as possible; nonetheless it is possible that some relevant studies were not found. Further, the distinction between ML and traditional methods is not clearly defined, and it is possible that some methods included in this review would not be considered ML by some, and vice versa (Bi et al., 2019). In line with the pre-registration, only studies published in peer reviewed journals were included. This is common practice in psychological therapy reviews, aids replicability of the search procedures, and reduces the likelihood of inclusion of poor-quality studies (Aafjes-van Doorn et al., 2021). However, some relevant studies may have been excluded for this reason (e.g., Cohen, 2018). This review focussed specifically on the prediction of outcome from pre-treatment or baseline data, in the interest of applying ML methods to predict the optimal treatment for individual patients. However, there are other ways that the application of ML methods could potentially improve PTSD treatment outcomes, for example by providing personalised outcome feedback and recommendations during treatment (Bone et al., 2021; Lutz et al., 2019). EndNote 20 reference management software was used to organise and screen search results, and citationchaser (Haddaway, 2021) used to conduct forward and backward citation searches. However, use of AI assisted systematic review tools, such as Rayyan (https://www.rayyan.ai/) and Covidence (https://www.covidence.org/), may have increased efficiency and accuracy of searching and screening.

4.8. Clinical Implications

This systematic review highlights the need for services to critically evaluate clinical prediction models developed using ML before adopting and applying the recommendations into routine

practice. In particular, services should consider the sample size, the level of evidence (indicated by the presence of internal and/or external cross-validation procedures), and assessments of calibration and discrimination (Delgadillo & Atzil-Slonim, 2022; Steyerberg, 2019).

4.9. Conclusion

Due to the methodological limitations and omissions of the studies identified by this systematic review, it is unclear whether ML methods offer any advantages over traditional statistical methods at predicting psychotherapy outcomes for PTSD. Studies neglected to recruit a sample of an appropriate size informed by a sample size calculation, report hyperparameter setting, perform internal and external cross-validation, and assess model calibration. Whilst ML methods may have the potential to improve the prediction of treatment outcomes for PTSD, in order to achieve this potential, ML methods need to be applied rigorously and be shown to offer an added benefit over traditional prediction methods.

References

Aafjes-van Doorn, K., Kamsteeg, C., Bate, J., & Aafjes, M. (2021). A scoping review of machine learning in psychotherapy research. *Psychotherapy Research*, *31*(1), 92–116. https://doi.org/10.1080/10503307.2020.1808729

Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S., Anderson, L. A., Cook, R. S., Nichols, C. N., Lampropoulos, G. K., Walker, B. S., Cohen, G., & Rush, J. D. (2006). The Meta-Analysis of Clinical Judgment Project: Fifty-Six Years of Accumulated Research on Clinical Versus Statistical Prediction. *The Counseling Psychologist*, *34*(3), 341–382. https://doi.org/10.1177/0011000005285875

American Psychological Association. (2017). Clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Author. https://www.apa.org/ptsd-guideline

Journal Pre-proof

- Balki, I., Amirabadi, A., Levman, J., Martel, A. L., Emersic, Z., Meden, B., Garcia-Pedrero, A., Ramirez, S. C., Kong, D., Moody, A. R., & Tyrrell, P. N. (2019). Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review.
 Canadian Association of Radiologists Journal, 70(4), 344–353.
 https://doi.org/10.1016/j.carj.2019.06.002
- Barawi, K. S., Lewis, C., Simon, N., & Bisson, J. I. (2020). A systematic review of factors associated with outcome of psychological treatments for post-traumatic stress disorder. *European Journal of Psychotraumatology*, *11*(1), 1774240. https://doi.org/10.1080/20008198.2020.1774240
- Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is Machine Learning? A Primer for the Epidemiologist. *American Journal of Epidemiology*, *188*(12), 2222–2239. https://doi.org/10.1093/aje/kwz189
- Bone, C., Simmonds-Buckley, M., Thwaites, R., Sandford, D., Merzhvynska, M., Rubel, J., Deisenhofer, A.-K., Lutz, W., & Delgadillo, J. (2021). Dynamic prediction of psychological treatment outcomes: Development and validation of a prediction model using routinely collected symptom data. *The Lancet Digital Health*, *3*(4), e231–e240. https://doi.org/10.1016/S2589-7500(21)00018-2
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
- Campbell, Sarah. B., Trachik, B., Goldberg, S., & Simpson, Tracy. L. (2020). Identifying PTSD symptom typologies: A latent class analysis. *Psychiatry Research*, *285*, 112779. https://doi.org/10.1016/j.psychres.2020.112779
- Campbell-Sills, L., Sun, X., Choi, K. W., He, F., Ursano, R. J., Kessler, R. C., Levey, D. F., Smoller, J. W., Gelernter, J., Jain, S., & Stein, M. B. (2022). Dissecting the heterogeneity of posttraumatic stress disorder: Differences in polygenic risk, stress exposures, and course of PTSD subtypes.

 *Psychological Medicine, 52(15), 3646–3654. https://doi.org/10.1017/S0033291721000428
- Catarino, A., Fawcett, J. M., Ewbank, M. P., Bateup, S., Cummins, R., Tablan, V., & Blackwell, A. D. (2022). Refining our understanding of depressive states and state transitions in response to

- cognitive behavioural therapy using latent Markov modelling. *Psychological Medicine*, *52*(2), 332–341. https://doi.org/10.1017/S0033291720002032
- Cearns, M., Hahn, T., & Baune, B. T. (2019). Recommendations and future directions for supervised machine learning in psychiatry. *Translational Psychiatry*, *9*(1), 1–12. https://doi.org/10.1038/s41398-019-0607-2
- Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., Cohen, Z., Belgrave, D., DeRubeis, R., Iniesta, R., Dwyer, D., & Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. *World Psychiatry*, *20*(2), 154–170. https://doi.org/10.1002/wps.20882
- Chen, Z. S., Kulkarni, P. (Param), Galatzer-Levy, I. R., Bigio, B., Nasca, C., & Zhang, Y. (2022). Modern views of machine learning for precision psychiatry. *Patterns*, *3*(11), 100602. https://doi.org/10.1016/j.patter.2022.100602
- Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., & Van Calster, B. (2019). A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. *Journal of Clinical Epidemiology*, *110*, 12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004
- Cohen, Z. D. (2018). *Treatment Selection: Understanding What Works for Whom in Mental Health*[Ph.D., University of Pennsylvania].

 https://www.proquest.com/docview/2117235776/abstract/3CA5132CE7244197PQ/1
- Cohen, Z. D., Delgadillo, J., & DeRubeis, R. J. (2021). Personalized treatment approaches. In M. Barkham, W. Lutz, & L. G. Castonguay (Eds.), *Bergin and Garfield's handbook of psychotherapy and behavior change* (7th ed., pp. 673–704). Wiley.
- Collins, G. S., Dhiman, P., Navarro, C. L. A., Ma, J., Hooft, L., Reitsma, J. B., Logullo, P., Beam, A. L., Peng, L., Calster, B. V., Smeden, M. van, Riley, R. D., & Moons, K. G. (2021). Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for

- diagnostic and prognostic prediction model studies based on artificial intelligence. *BMJ Open*, *11*(7), e048008. https://doi.org/10.1136/bmjopen-2020-048008
- Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Calster, B. V., Ghassemi, M., Liu, X., Reitsma, J. B., Smeden, M. van, Boulesteix, A.-L., Camaradou, J. C., Celi, L. A., Denaxas, S., Denniston, A. K., Glocker, B., Golub, R. M., Harvey, H., Heinze, G., ... Logullo, P. (2024).

 TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. *BMJ*, *385*, e078378. https://doi.org/10.1136/bmj-2023-078378
- Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. *BMC Bioinformatics*, 23(1), 205. https://doi.org/10.1186/s12859-022-04675-1
- Deisenhofer, A.-K., Delgadillo, J., Rubel, J. A., Bohnke, J. R., Zimmermann, D., Schwartz, B., & Lutz, W. (2018). Individual treatment selection for patients with posttraumatic stress disorder.

 *Depression and Anxiety, 35(6), 541–550. https://doi.org/10.1002/da.22755
- Delgadillo, J. (2021). Machine learning: A primer for psychotherapy researchers. *Psychotherapy***Research, 31(1), 1–4. https://doi.org/10.1080/10503307.2020.1859638
- Delgadillo, J., Ali, S., Fleck, K., Agnew, C., Southgate, A., Parkhouse, L., Cohen, Z. D., DeRubeis, R. J., & Barkham, M. (2022). Stratified Care vs Stepped Care for Depression: A Cluster Randomized Clinical Trial. *JAMA Psychiatry*, *79*(2), 101–108. https://doi.org/10.1001/jamapsychiatry.2021.3539
- Delgadillo, J., & Atzil-Slonim, D. (2022). Artificial intelligence, machine learning and mental health. In Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier. https://eprints.whiterose.ac.uk/197827/
- Delgadillo, J., & Lutz, W. (2020). A Development Pathway Towards Precision Mental Health Care. *JAMA Psychiatry*, 77(9), 889–890. https://doi.org/10.1001/jamapsychiatry.2020.1048
- Department of Veterans Affairs and Department of Defense (VA/DoD). (2017). VA/DoD clinical practice guideline for the management of posttraumatic stress disorder and acute stress

disorder. Author.

https://www.healthquality.va.gov/guidelines/MH/ptsd/VADoDPTSDCPGFinal 012418.pdf

- Department of Veterans Affairs and Department of Defense (VA/DoD). (2023). VA/DoD clinical practice guideline for the management of posttraumatic stress disorder and acute stress disorder (Version 4.0). Author.
 - https://www.healthquality.va.gov/guidelines/MH/ptsd/VADoDPTSDCPGFinal012418.pdf
- Dewar, M., Paradis, A., & Fortin, C. A. (2020). Identifying Trajectories and Predictors of Response to

 Psychotherapy for Post-Traumatic Stress Disorder in Adults: A Systematic Review of

 Literature. *The Canadian Journal of Psychiatry*, 65(2), 71–86.

 https://doi.org/10.1177/0706743719875602
- Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine Learning Approaches for Clinical Psychology and Psychiatry. *Annual Review of Clinical Psychology*, *14*, 91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037
- Etkin, A., Maron-Katz, A., Wu, W., Fonzo, G. A., Huemer, J., Vertes, P. E., Patenaude, B., Richiardi, J., Goodkind, M. S., Keller, C. J., Ramos-Cejudo, J., Zaiko, Y. V., Peng, K. K., Shpigel, E., Longwell, P., Toll, R. T., Thompson, A., Zack, S., Gonzalez, B., ... O'Hara, R. (2019). Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. *Science Translational Medicine*, *11*(486), 1. https://doi.org/10.1126/scitranslmed.aal3236
- Fear, N. T., Bridges, S., Hatch, S., Hawkins, V., & Wessely, S. (2016). Chapter 4: Posttraumatic stress disorder. In McManus S, Bebbington P, Jenkins R, & Brugha T (Eds.), *Mental health and wellbeing in England: Adult Psychiatric Morbidity Survey 2014*. NHS Digital.
- Fleming, C. E., Kholodkov, T., Dillon, K. H., Belvet, B., & Crawford, E. F. (2018). Actuarial prediction of psychotherapy retention among Iraq-Afghanistan veterans with posttraumatic stress disorder. *Psychol Serv*, *15*(2), 172–180. https://doi.org/10.1037/ser0000139
- Forbes, D., Creamer, M., Allen, N., Elliott, P., McHugh, T., Debenham, P., & Hopwood, M. (2003).

 MMPI-2 Based Subgroups of Veterans with Combat-related PTSD: Differential Patterns of

- Symptom Change After Treatment. *The Journal of Nervous and Mental Disease*, 191(8), 531–537. https://doi.org/10.1097/01.nmd.0000082181.79051.83
- Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 Ways to Have Posttraumatic Stress Disorder.

 *Perspectives on Psychological Science, 8(6), 651–662.

 https://doi.org/10.1177/1745691613504115
- Giesemann, J., Delgadillo, J., Schwartz, B., Bennemann, B., & Lutz, W. (2023). Predicting dropout from psychological treatment using different machine learning algorithms, resampling methods, and sample sizes. *Psychotherapy Research*, *33*(6), 683–695. https://doi.org/10.1080/10503307.2022.2161432
- Glaz, A. L., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. *Journal of Medical Internet Research*, *23*(5), e15708. https://doi.org/10.2196/15708
- Haagen, J. F., Smid, G. E., Knipscheer, J. W., & Kleber, R. J. (2015). The efficacy of recommended treatments for veterans with PTSD: A metaregression analysis. *Clinical Psychology Review*, 40, 184–194. https://dx.doi.org/10.1016/j.cpr.2015.06.008
- Haddaway, N. R. (2021). citationchaser: An R package and Shiny app for forward and backward citations chasing in academic searching. https://estech.shinyapps.io/citationchaser/
- Hahn, T., Nierenberg, A. A., & Whitfield-Gabrieli, S. (2017). Predictive analytics in mental health:

 Applications, guidelines, challenges and perspectives. *Molecular Psychiatry*, *22*(1), 37–43.

 https://doi.org/10.1038/mp.2016.201
- Hamblen, J. L., Norman, S. B., Sonis, J. H., Phelps, A. J., Bisson, J. I., Nunes, V. D., Megnin-Viggars, O., Forbes, D., Riggs, D. S., & Schnurr, P. P. (2019). A guide to guidelines for the treatment of posttraumatic stress disorder in adults: An update. *Psychotherapy*, *56*(3), 359–373. https://doi.org/10.1037/pst0000231

- Held, P., Schubert, R. A., Pridgen, S., Kovacevic, M., Montes, M., Christ, N. M., Banerjee, U., & Smith, D. L. (2022). Who will respond to intensive PTSD treatment? A machine learning approach to predicting response prior to starting treatment. *Journal of Psychiatric Research*, 151, 78–85.
- Hendriks, L., De Kleine, R. A., Broekman, T. G., Hendriks, G.-J., & Van Minnen, A. (2018). Intensive prolonged exposure therapy for chronic PTSD patients following multiple trauma and multiple treatment attempts. *European Journal of Psychotraumatology*, *9*(1). https://doi.org/10.1080/20008198.2018.1425574
- Herzog, P., & Kaiser, T. (2022). Is it worth it to personalize the treatment of PTSD? A variance-ratio meta-analysis and estimation of treatment effect heterogeneity in RCTs of PTSD. *Journal of Anxiety Disorders*, *91*, 102611. https://doi.org/10.1016/j.janxdis.2022.102611
- Herzog, P., Voderholzer, U., Gärtner, T., Osen, B., Svitak, M., Doerr, R., Rolvering-Dijkstra, M., Feldmann, M., Rief, W., & Brakemeier, E. L. (2021). Predictors of outcome during inpatient psychotherapy for posttraumatic stress disorder: A single-treatment, multi-site, practice-based study. *Psychother Res*, *31*(4), 468–482. https://doi.org/10.1080/10503307.2020.1802081
- Hoeboer, C. M., Oprel, D. A. C., De Kleine, R. A., Schwartz, B., Deisenhofer, A. K., Schoorl, M., Van Der Does, W. A. J., van Minnen, A., & Lutz, W. (2021). Personalization of treatment for patients with childhoodabuse-related posttraumatic stress disorder. *Journal of Clinical Medicine*, 10(19). https://doi.org/10.3390/jcm10194522
- Horn, S. R., Pietrzak, R. H., Schechter, C., Bromet, E. J., Katz, C. L., Reissman, D. B., Kotov, R., Crane, M., Harrison, D. J., Herbert, R., Luft, B. J., Moline, J. M., Stellman, J. M., Udasin, I. G.,
 Landrigan, P. J., Zvolensky, M. J., Southwick, S. M., & Feder, A. (2016). Latent typologies of posttraumatic stress disorder in World Trade Center responders. *Journal of Psychiatric Research*, 83, 151–159. https://doi.org/10.1016/j.jpsychires.2016.08.018
- International Society for Traumatic Stress Studies (ISTSS). (2018). *ISTSS PTSD prevention and treatment guidelines: Methodology and recommendations*.

- http://www.istss.org/getattachment/TreatingTrauma/New-ISTSS-Prevention-and-Treatment-Guidelines/ISTSS PreventionTreatmentGuidelines FNL-March-19-2019.pdf.aspx
- Jericho, B., Luo, A., & Berle, D. (2021). Trauma-focused psychotherapies for post-traumatic stress disorder: A systematic review and network meta-analysis. *Acta Psychiatrica Scandinavica*. https://doi.org/10.1111/acps.13366
- Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. *Science*, *349*(6245), 255-260. https://doi.org/10.1126/science.aaa8415
- Karatzias, T., Hyland, P., Bradley, A., Cloitre, M., Roberts, N. P., Bisson, J. I., & Shevlin, M. (2019). Risk factors and comorbidity of ICD-11 PTSD and complex PTSD: Findings from a trauma-exposed population based sample of adults in the United Kingdom. *Depression and Anxiety*, *36*(9), 887–894. https://doi.org/10.1002/da.22934
- Keefe, J. R., Stirman, S. W., Cohen, Z. D., DeRubeis, R. J., Smith, B. N., & Resick, P. A. (2018). In rape trauma PTSD, patient characteristics indicate which trauma-focused treatment they are most likely to complete. *Depression and Anxiety*, 35(4), 330–338.
 https://doi.org/10.1002/da.22731
- Kessler, R. C., Loo, H. M. van, Wardenaar, K. J., Bossarte, R. M., Brenner, L. A., Ebert, D. D., Jonge, P. de, Nierenberg, A. A., Rosellini, A. J., Sampson, N. A., Schoevers, R. A., Wilcox, M. A., & Zaslavsky, A. M. (2017). Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder. *Epidemiology and Psychiatric Sciences*, 26(1), 22–36. https://doi.org/10.1017/S2045796016000020
- Kessler, R. C., & Luedtke, A. (2021). Pragmatic Precision Psychiatry—A New Direction for Optimizing

 Treatment Selection. *JAMA Psychiatry*, 78(12), 1384–1390.

 https://doi.org/10.1001/jamapsychiatry.2021.2500
- Kline, A. C., Cooper, A. A., Rytwinski, N. K., & Feeny, N. C. (2021). The Effect of Concurrent Depression on PTSD Outcomes in Trauma-Focused Psychotherapy: A Meta-Analysis of Randomized

- Controlled Trials. *Behavior Therapy*, *52*(1), 250–266. https://doi.org/10.1016/j.beth.2020.04.015
- Koenen, K. C., Ratanatharathorn, A., Ng, L., McLaughlin, K. A., Bromet, E. J., Stein, D. J., Karam, E. G., Ruscio, A. M., Benjet, C., Scott, K., Atwoli, L., Petukhova, M., Lim, C. C. W., Aguilar-Gaxiola, S., Al-Hamzawi, A., Alonso, J., Bunting, B., Ciutan, M., Girolamo, G. de, ... Kessler, R. C. (2017).

 Posttraumatic stress disorder in the World Mental Health Surveys. *Psychological Medicine*, 47(13), 2260–2274. https://doi.org/10.1017/S0033291717000708
- Kratzer, L., Heinz, P., Schennach, R., Schiepek, G. K., Padberg, F., & Jobst, A. (2019). Inpatient

 Treatment of Complex PTSD Following Childhood Abuse: Effectiveness and Predictors of

 Treatment Outcome. *PPmP Psychotherapie Psychosomatik Medizinische Psychologie*, 69(3–4), 114–122. https://doi.org/10.1055/a-0591-3962
- Kyriacou, D. N., & Lewis, R. J. (2016). Confounding by Indication in Clinical Research. *JAMA*, *316*(17), 1818–1819. https://doi.org/10.1001/jama.2016.16435
- Lee, Y., Ragguett, R.-M., Mansur, R. B., Boutilier, J. J., Rosenblat, J. D., Trevizol, A., Brietzke, E., Lin, K., Pan, Z., Subramaniapillai, M., Chan, T. C. Y., Fus, D., Park, C., Musial, N., Zuckerman, H., Chen, V. C.-H., Ho, R., Rong, C., & McIntyre, R. S. (2018). Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. *Journal of Affective Disorders*, *241*, 519–532. https://doi.org/10.1016/j.jad.2018.08.073
- Lewis, C., Roberts, N. P., Andrew, M., Starling, E., & Bisson, J. I. (2020). Psychological therapies for post-traumatic stress disorder in adults: Systematic review and meta-analysis. *European Journal of Psychotraumatology*, *11*(1), 1729633.

 https://doi.org/10.1080/20008198.2020.1729633
- Lewis, C., Roberts, N. P., Gibson, S., & Bisson, J. I. (2020). Dropout from psychological therapies for post-traumatic stress disorder (PTSD) in adults: Systematic review and meta-analysis.

- European Journal of Psychotraumatology, 11(1), 1709709. https://doi.org/10.1080/20008198.2019.1709709
- López-Castro, T., Zhao, Y., Fitzpatrick, S., Ruglass, L. M., & Hien, D. A. (2021). Seeing the forest for the trees: Predicting attendance in trials for co-occurring PTSD and substance use disorders with a machine learning approach. *Journal of Consulting and Clinical Psychology*, 89(10), 869–884. https://doi.org/10.1037/ccp0000688
- Lutz, W., Rubel, J. A., Schwartz, B., Schilling, V., & Deisenhofer, A.-K. (2019). Towards integrating personalized feedback research into clinical practice: Development of the Trier Treatment Navigator (TTN). *Behaviour Research and Therapy*, *120*, 103438.

 https://doi.org/10.1016/j.brat.2019.103438
- Malejko, K., Abler, B., Plener, P. L., & Straub, J. (2017). Neural Correlates of Psychotherapeutic

 Treatment of Post-traumatic Stress Disorder: A Systematic Literature Review. *Frontiers in Psychiatry*, *8*, 85. https://doi.org/10.3389/fpsyt.2017.00085
- Malgaroli, M., & Schultebraucks, K. (2021). Artificial Intelligence and Posttraumatic Stress Disorder (PTSD). *European Psychologist*, *25*(4), 272–282. https://doi.org/10.1027/1016-9040/a000423
- Manchia, M., Pisanu, C., Squassina, A., & Carpiniello, B. (2020). Challenges and Future Prospects of Precision Medicine in Psychiatry. *Pharmacogenomics and Personalized Medicine*, *13*, 127–140.
- Martin, A., Naunton, M., Kosari, S., Peterson, G., Thomas, J., & Christenson, J. K. (2021). Treatment Guidelines for PTSD: A Systematic Review. *Journal of Clinical Medicine*, *10*(18), 4175. https://doi.org/10.3390/jcm10184175
- Mavranezouli, I., Megnin-Viggars, O., Daly, C., Dias, S., Welton, N. J., Stockton, S., Bhutani, G., Grey, N., Leach, J., Greenberg, N., Katona, C., El-Leithy, S., & Pilling, S. (2020). Psychological treatments for post-traumatic stress disorder in adults: A network meta-analysis.

 *Psychological Medicine, 50(4), 542–555. https://doi.org/10.1017/S0033291720000070

- Meehan, A. J., Lewis, S. J., Fazel, S., Fusar-Poli, P., Steyerberg, E. W., Stahl, D., & Danese, A. (2022).

 Clinical prediction models in psychiatry: A systematic review of two decades of progress and challenges. *Molecular Psychiatry*, 27(6), Article 6. https://doi.org/10.1038/s41380-022-01528-4
- Merz, J., Schwarzer, G., & Gerger, H. (2019). Comparative Efficacy and Acceptability of

 Pharmacological, Psychotherapeutic, and Combination Treatments in Adults with

 Posttraumatic Stress Disorder: A Network Meta-analysis. *JAMA Psychiatry*, 76(9), 904–913.

 https://doi.org/10.1001/jamapsychiatry.2019.0951
- Moons, K. G. M., de Groot, J. A. H., Bouwmeester, W., Vergouwe, Y., Mallett, S., Altman, D. G., Reitsma, J. B., & Collins, G. S. (2014). Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. *PLoS Medicine*, *11*(10), e1001744. https://doi.org/10.1371/journal.pmed.1001744
- Moons, K. G. M., Wolff, R. F., Riley, R. D., Whiting, P. F., Westwood, M., Collins, G. S., Reitsma, J. B., Kleijnen, J., & Mallett, S. (2019). PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. *Annals of Internal Medicine*, *170*(1), 1–33. https://doi.org/10.7326/M18-1377
- Mushagalusa, C. A., Fandohan, A. B., & Glèlè Kakaï, R. (2022). Random Forests in Count Data

 Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression

 Performance. *Journal of Probability and Statistics*, 2022, 1–21.

 https://doi.org/10.1155/2022/2833537
- Najavits, L. M. (2015). The problem of dropout from "gold standard" PTSD therapies. *F1000Prime**Reports, 7, 43. https://doi.org/10.12703/P7-43
- National Institute for Health and Care Excellence [NICE]. (2018). *Post-traumatic stress disorder (NICE guideline [NG116])*. NICE. https://www.nice.org.uk/guidance/ng116

- Nixon, R., King, M., Smith, B., Gradus, J., Resick, P., & Galovski, T. (2021). Predicting response to cognitive processing therapy for PTSD: a machine-learning approach. *Behaviour Research* and Therapy, 144. https://doi.org/10.1016/j.brat.2021.103920
- Olatunji, B. O., Cisler, J. M., & Tolin, D. F. (2010). A meta-analysis of the influence of comorbidity on treatment outcome in the anxiety disorders. *Clinical Psychology Review*, *30*(6), 642–654. https://dx.doi.org/10.1016/j.cpr.2010.04.008
- Pacella, M. L., Hruska, B., & Delahanty, D. L. (2013). The physical health consequences of PTSD and PTSD symptoms: A meta-analytic review. *Journal of Anxiety Disorders*, *27*(1), 33–46. https://doi.org/10.1016/j.janxdis.2012.08.004
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, *372*, n71. https://doi.org/10.1136/bmj.n71
- Palazón-Bru, A., Martín-Pérez, F., Mares-García, E., Beneyto-Ripoll, C., Gil-Guillén, V. F., Pérez-Sempere, Á., & Carbonell-Torregrosa, M. Á. (2020). A general presentation on how to carry out a CHARMS analysis for prognostic multivariate models. *Statistics in Medicine*, *39*(23), 3207–3225. https://doi.org/10.1002/sim.8660
- Phoenix Australia Centre for Posttraumatic Mental Health. (2021). Australian Guidelines for the

 Prevention and Treatment of Acute Stress Disorder, Posttraumatic Stress Disorder and

 Complex PTSD. Author. https://www.phoenixaustralia.org/australian-guidelines-for-ptsd/
- Pietrzak, R. H., el-Gabalawy, R., Tsai, J., Sareen, J., Neumeister, A., & Southwick, S. M. (2014).

 Typologies of posttraumatic stress disorder in the U.S. adult population. *Journal of Affective Disorders*, 162, 102–106. https://doi.org/10.1016/j.jad.2014.03.024

- Ramos-Lima, L. F., Waikamp, V., Antonelli-Salgado, T., Passos, I. C., & Freitas, L. H. M. (2020). The use of machine learning techniques in trauma-related disorders: A systematic review. *Journal of Psychiatric Research*, *121*, 159–172. https://doi.org/10.1016/j.jpsychires.2019.12.001
- Ravi, M., Powers, A., Rothbaum, B. O., Stevens, J. S., & Michopoulos, V. (2023). Neighborhood poverty prospectively predicts PTSD symptoms six-months following trauma exposure.

 Mental Health Science, 1(4), 213–221. https://doi.org/10.1002/mhs2.35
- Riley, R. D., Ensor, J., Snell, K. I. E., Harrell, F. E., Martin, G. P., Reitsma, J. B., Moons, K. G. M., Collins, G., & Smeden, M. van. (2020). Calculating the sample size required for developing a clinical prediction model. *BMJ*, *368*, m441. https://doi.org/10.1136/bmj.m441
- Riley, R. D., Snell, K. I. E., Martin, G. P., Whittle, R., Archer, L., Sperrin, M., & Collins, G. S. (2021).

 Penalization and shrinkage methods produced unreliable clinical prediction models
 especially when sample size was small. *Journal of Clinical Epidemiology*, *132*, 88–96.

 https://doi.org/10.1016/j.jclinepi.2020.12.005
- Robinson, L., Delgadillo, J., & Kellett, S. (2020). The dose-response effect in routinely delivered psychological therapies: A systematic review. *Psychotherapy Research*, *30*(1), 79–96. https://doi.org/10.1080/10503307.2019.1566676
- Sajjadian, M., Lam, R. W., Milev, R., Rotzinger, S., Frey, B. N., Soares, C. N., Parikh, S. V., Foster, J. A., Turecki, G., Müller, D. J., Strother, S. C., Farzan, F., Kennedy, S. H., & Uher, R. (2021). Machine learning in the prediction of depression treatment outcomes: A systematic review and meta-analysis. *Psychological Medicine*, *51*(16), 2742–2751. https://doi.org/10.1017/S0033291721003871
- Schottenbauer, M. A., Glass, C. R., Arnkoff, D. B., Tendick, V., & Gray, S. H. (2008). Nonresponse and Dropout Rates in Outcome Studies on PTSD: Review and Methodological Considerations.

 *Psychiatry: Interpersonal and Biological Processes, 71(2), 134–168.

 https://doi.org/10.1521/psyc.2008.71.2.134

- Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-Traumatic Stress Disorder. *New England Journal of Medicine*, *376*(25), 2459–2469. https://doi.org/10.1056/NEJMra1612499
- Shekelle, P. G., Ortiz, E., Rhodes, S., Morton, S. C., Eccles, M. P., Grimshaw, J. M., & Woolf, S. H. (2001). Validity of the Agency for Healthcare Research and Quality Clinical Practice GuidelinesHow Quickly Do Guidelines Become Outdated? *JAMA*, *286*(12), 1461–1467. https://doi.org/10.1001/jama.286.12.1461
- Simiola, V., Neilson, E. C., Thompson, R., & Cook, J. M. (2015). Preferences for trauma treatment: A systematic review of the empirical literature. *Psychological Trauma: Theory, Research, Practice, and Policy, 7*(6), 516–524. https://doi.org/10.1037/tra0000038
- Simmonds-Buckley, M., Catarino, A., & Delgadillo, J. (2021). Depression subtypes and their response to cognitive behavioral therapy: A latent transition analysis. *Depression and Anxiety*, *38*(9), 907–916. https://doi.org/10.1002/da.23161
- Steenkamp, M. M., Litz, B. T., Hoge, C. W., & Marmar, C. R. (2015). Psychotherapy for Military-Related PTSD: A Review of Randomized Clinical Trials. *JAMA*, *314*(5), 489–500. https://doi.org/10.1001/jama.2015.8370
- Steyerberg, E. W. (2019). *Clinical prediction models: A practical approach to development, validation,*and updating (2nd ed.). Springer Nature. https://link.springer.com/book/10.1007/978-3-03016399-0
- Stirman, S., Cohen, Z., Lunney, C., DeRubeis, R., Wiley, J., & Schnurr, P. (2021). A personalized index to inform selection of a trauma-focused or non-trauma-focused treatment for PTSD. *Behaviour Research and Therapy*, 142. https://doi.org/10.1016/j.brat.2021.103872
- Stuke, H., Schoofs, N., Johanssen, H., Bermpohl, F., Ülsmann, D., Schulte-Herbrüggen, O., & Priebe, K. (2021). Predicting outcome of daycare cognitive behavioural therapy in a naturalistic sample of patients with PTSD: a machine learning approach. *European Journal of Psychotraumatology*, *12*(1). https://doi.org/10.1080/20008198.2021.1958471

- Swift, J. K., Greenberg, R. P., Tompkins, K. A., & Parkin, S. R. (2017). Treatment refusal and premature termination in psychotherapy, pharmacotherapy, and their combination: A meta-analysis of head-to-head comparisons. *Psychotherapy*, *54*(1), 47–57. https://doi.org/10.1037/pst0000104
- Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. *PLOS ONE*, *14*(11), e0224365.

 https://doi.org/10.1371/journal.pone.0224365
- van der Ploeg, T., Austin, P. C., & Steyerberg, E. W. (2014). Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. *BMC Medical Research Methodology*, *14*(1), 137. https://doi.org/10.1186/1471-2288-14-137
- Vieira, S., Liang, X., Guiomar, R., & Mechelli, A. (2022). Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. *Clinical Psychology Review*, 102193.
- Webb, C. A., Cohen, Z. D., Beard, C., Forgeard, M., Peckham, A. D., & Björgvinsson, T. (2020).
 Personalized prognostic prediction of treatment outcome for depressed patients in a naturalistic psychiatric hospital setting: A comparison of machine learning approaches.
 Journal of Consulting and Clinical Psychology, 88(1), 25–38.
 https://doi.org/10.1037/ccp0000451
- Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. *Perspectives on Psychological Science*, *12*(6), 1100–1122.
- Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., Hobfoll, S. E., Koenen, K. C., Neylan, T. C., & Hyman, S. E. (2015). Post-traumatic stress disorder. *Nature Reviews Disease Primers*, 1(1), 1–22.
- Zhang, Y., Wu, W., Toll, R. T., Naparstek, S., Maron-Katz, A., Watts, M., Gordon, J., Jeong, J., Astolfi, L., Shpigel, E., Longwell, P., Sarhadi, K., El-Said, D., Li, Y., Cooper, C., Chin-Fatt, C., Arns, M., Goodkind, M. S., Trivedi, M. H., ... Etkin, A. (2021). Identification of psychiatric disorder

Journal Pre-proof

subtypes from functional connectivity patterns in resting-state electroencephalography.

Nature Biomedical Engineering, 5(4), 309–323. https://doi.org/10.1038/s41551-020-00614-8

Zhutovsky, P., Thomas, R., Olff, M., van Rooij, S., Kennis, M., van Wingen, G., & Geuze, E. (2019).

Individual prediction of psychotherapy outcome in posttraumatic stress disorder using neuroimaging data. *Translational Psychiatry*, *9*(1). https://doi.org/10.1038/s41398-019-0663-7

Zilcha-Mano, S., Zhu, X., Suarez-Jimenez, B., Pickover, A., Tal, S., Such, S., Marohasy, C.,
 Chrisanthopoulos, M., Salzman, C., Lazarov, A., Neria, Y., & Rutherford, B. R. (2020).
 Diagnostic and Predictive Neuroimaging Biomarkers for Posttraumatic Stress Disorder.
 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(7), 688–696.
 https://doi.org/10.1016/j.bpsc.2020.03.010

Zou, H., & Hastie, T. (2005). Regularization and Variable Selection Via the Elastic Net. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, *67*(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

Funding Source Declaration

The first author (JT) was funded by a University of Sheffield ESRC White Rose DTP Pathway Award Scholarship, awarded by the Economic and Social Research Council. The funding agency had no involvement in this study.

Acknowledgements

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

Declaration of interest

None.

Figure 1 PRISMA Flow Diagram

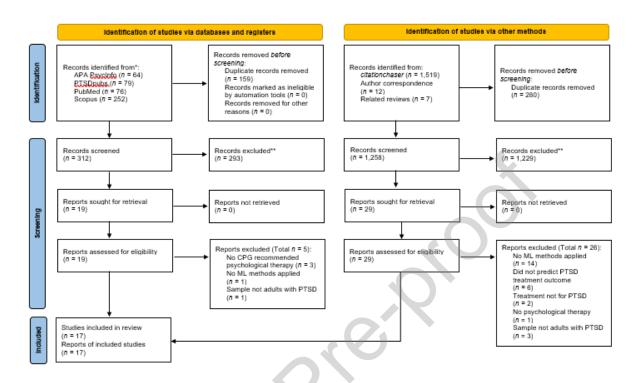
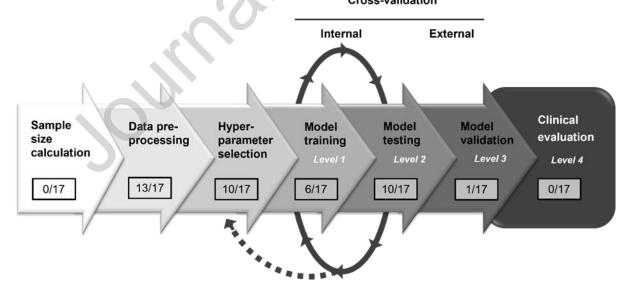


Figure 2 Proportion of Studies Reporting Each Step of the Machine Learning Pipeline

Cross-validation



Note. Figure adapted from Delgadillo and Atzil-Slonim (2022)

Table 1 Inclusion and Exclusion Criteria

	Inclusion Criteria	Exclusion Criteria
Population	Adults (aged 18 and over) who	Children and adolescents under the
	received clinical practice guideline	age of 18.
	recommended psychological therapy	Adults receiving treatment for a
	for current PTSD.	condition other than PTSD.
Intervention	Evidence-based psychological	Psychological therapy intended to
	therapies recommended for the	treat a different condition.
	treatment of current symptoms of	Psychological therapy intended to
	PTSD in	prevent the onset or relapse of
	adults by current clinical practice	PTSD.
	guidelines.	Pharmacological therapy.
		Non-psychological therapy (e.g.,
		acupuncture or yoga).
		Psychological therapy not
		recommended by clinical practice
		guidelines.
		(If any of the above were delivered
		alongside or in comparison to an
		intervention that met the inclusion
		criteria then that study would be
		included.)
Outcome to be	Continuous or categorical outcomes	Future onset or relapse of PTSD.
predicted	of psychotherapy for PTSD, including	Current presence (diagnosis) of

	remission, change in symptoms,	
	dropout, and retention.	
Time span of	From pre-treatment to post-	
prediction	treatment. The outcome timepoint	
	of interest is the end of treatment,	
	or the follow-up nearest to the end	
	of treatment.	
Intended moment	Initial patient assessment, prior to	During or after treatment.
of model use	the start of treatment.	
Modelling	Prognostic models that applied	Diagnostic models that predict the
approach	supervised or unsupervised machine	presence of PTSD.
	learning methods in the prediction	Prognostic models that predict onset
	of treatment outcomes from	of PTSD.
	patients' pre-treatment or baseline	Modelling approaches that did not
	features.	use any machine-learning methods.
Scope/intended	To guide clinical decision-making	
purpose of models	and treatment planning.	

Note. PTSD = Post-Traumatic Stress Disorder.

Table 2 Study Characteristics

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group <i>n</i>)	Duration
		Sample N)			
Deisenhofe	Routine clinical	Adults with	NHS primary	Tf-CBT (242)	≤ 20 weekly
r et al.	practice	PTSD (317)	care	EMDR (75)	sessions
(2018)	(Retrospective		outpatient		(Session
)		mental		duration not
			health		reported)
			service	×	
			(England)		
Etkin et al.	RCT	Adults with	University	PE (36)	9 or 12 weekly
(2019)	(Prospective)	PTSD (76)	(U.S.A.)	Wait-list control	or twice-
				(30)	weekly 90-
					minute
			.01		sessions
Fleming et	Routine clinical	Military	Veterans	PE (49)	Mean (SD) n
al. (2018)	practice	veterans	Affairs	CPT (53)	sessions
	(Retrospective	with PTSD	speciality	Opted out of	attended =
)	(124)	outpatient	psychological	6.78 (7.03)
		(0)	clinic (U.S.A.)	therapy	(Session
				following	duration not
				introductory	reported)
				psychoeducation	
				session (22)	
Forbes et	Routine clinical	Military	Veterans	Group and	16 sessions of
al. (2003)	practice	veterans	PTSD	individual	individual
	(Retrospective	with PTSD	treatment	therapy,	therapy over
)	(166)	programme	primarily	12 weeks (4
			(Australia)	cognitive-	weeks
				behavioural in	inpatient, 8
				orientation, with	weeks
				trauma-focussed	outpatient)
				sessions (166)	

Study	Data Source	Population (Total Sample N)	Setting (Country)	Treatment (Group <i>n</i>)	Treatment Duration
					(Session
					duration not
					reported)
Held et al.	Cohort study	Military	University	CPT based	14 once-daily
(2022)	(Prospective)	veterans	Medical	intensive PTSD	50-minute
		with PTSD	Centre	treatment	sessions of
		(502)	Intensive	program (502)	individual CPT
			Outpatient		over 3 weeks
			Treatment	40	
			Program		
			(U.S.A.)		
Hendriks et	Cohort study	Adults with	Outpatient	Intensive PE (73)	12 sessions
al. (2018)	(Prospective)	PTSD and	mental		over 4 days
		history of	health clinic		within 1 week
		multiple	(Netherlands		(4.5 hours per-
		interpersona)		day), followed
		l traumas			by 4 weekly
		(73)			90-minute
					booster
					sessions with
	O				homework
Herzog et	Routine clinical	Adults with	Five	Individual	8 to 10 weeks,
al. (2021)	practice	PTSD (612)	specialized	exposure	1 hour per
	(Retrospective		inpatient	therapy (PE,	week
)		clinics	IRRT, or EMDR),	individual
			(Germany)	plus group Tf-	exposure
				CBT and a range	therapy, 8
				of	hours per
				supplementary	week of group
				psychological	Tf-CBT, plus an

Study	Data Source	Population	Setting	Treatment	Treatment
Juay	24ta 304166	(Total	(Country)	(Group n)	Duration
		Sample N)	(Country)	(Group II)	Daracion
				and non-	average of 11
				psychological	hours per
				therapies (612)	week of
					multimodal
					and
				<u> </u>	transdiagnosti
					c interventions
					(total 152-200
				40	therapy hours)
					Sample mean
			.01		(SD, range)
					length of stay
					(days) = 54.3
					(15.5, 6 - 98)
Hoeboer et	RCT	Adults with	Two	PE (48)	PE: 16 weekly
al. (2021)	(Retrospective;	childhood-	specialist	Intensified PE	90-minute
	Oprel et al.,	abuse-	outpatient	(51)	sessions
	2021)	related PTSD	mental	STAIR+PE (50)	
		(149)	health		Intensified PE:
			services		Three PE
			(Netherlands		sessions per-
)		week for 4
					weeks,
					followed by
					booster PE
					sessions after
					1 month and 2
					months (total
					14 sessions)

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group <i>n</i>)	Duration
		Sample N)			
					STAIR+PE:
					Eight sessions
					of STAIR
					followed by
					eight sessions
				\$	of PE
Keefe et al.	RCT	Women with	(U.S.A.)	CPT (79)	Total 13 hours
(2018)	(Retrospective;	rape-trauma		PE (81)	for each
	Resick et al.,	PTSD (160)		40	treatment over
	2002)				6 weeks
			0		CPT: 12
					sessions of 50-
					60 minutes,
					with 30
					minutes added
		(0)			to each of the
					two writing
					exposure
					sessions
					(sessions 4 and
					5)
					PE: Nine
					sessions; one
					60-minute
					initial session
					followed by
					eight 90-
					minute
					sessions

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group <i>n</i>)	Duration
		Sample N)			
Kratzer et	Routine clinical	Inpatients	Specialist	Tf-CBT, often	≤ 20 individual
al. (2019)	practice	with	inpatient	with integrated	psychotherapy
	(Retrospective	complex	clinic	exposure and	sessions of 75-
)	PTSD	(Germany)	EMDR.	minutes each
		following		Patients also	
		childhood		offered group	
		physical and		psychotherapies	
		childhood			
		sexual abuse		(150)	
		(150)			
López-	RCT	Adults with	Community	Sample 1	Sample 1
Castro et al.	(Retrospective;	PTSD and	based	(Ruglass et al.,	(Ruglass et al.,
(2021)	Ruglass et al.,	SUD (130)	outpatient	2017):	2017):
	2017; Hien et		mental-	1. COPE (33)	All participants
	al., 2015)		health	2. RPT (37)	were offered
			treatment		12 weekly 90-
		10	programme	Sample 2 (Hien	min individual
			(U.S.A.)	et al., 2015):	sessions
				1. Seeking Safety	
				plus placebo	Sample 2 (Hien
				(29)	et al., 2015):
				2. Seeking Safety	All participants
				plus ADM (31)	were offered
					12 weekly 60-
					min individual
					psychotherapy
					sessions,
					and ADM
					(sertraline)
					dosage started
					on 50 mg/day

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group <i>n</i>)	Duration
		Sample N)			
					and increased
					up to 200
					mg/day over 2
					weeks
					throughout
				8	the active
					study period
Nixon et al.	RCT	Female	Community	CPT (216)	12 weekly or
(2021)	(Retrospective;	interpersona	(U.S.A.)	40	bi-weekly 60-
	Galovski et al.,	l trauma			min
	2012, Galovski,	survivors			sessions
	Harik, Blain,	(216)			
	Elwood, et al.,		(0)		
	2016; Resick				
	et al., 2002,				
	2008)				
Stirman et	RCT	Female	Nine VA	PE (135)	10 weekly 90-
al. (2021)	(Retrospective;	military	medical	Present-Centred	minute
	Schnurr et al.,	veterans and	centres, two	Therapy (132)	sessions
	2007)	active-duty	VA		
		service	readjustment		
		members	counselling		
		with PTSD	centres, and		
		(267)	a military		
			hospital		
			(U.S.A.)		
Stuke et al.	Routine clinical	Adults with	Specialist day	CBT based day-	Four sessions
(2021)	practice	PTSD (209)	clinic	care programme	per-week of
	(Retrospective		(Germany)	including	individual CPT,
)			individual CPT	plus group
				(209)	trauma-

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group n)	Duration
		Sample N)			
					focussed
					therapy 5 days
					per-week, for a
					mean of 8.59
					weeks (SD =
				8	1.4)
					(Session
					duration not
				40	reported)
Zhang et al.	Cohort study	Military	University;	PE or CPT (135)	Based on
(2021)	(Prospective);	veterans	Veterans		manualised
	non-	with PTSD	Affairs PSTD		protocols (Foa
	randomised	(241);	clinic (U.S.A.)		et al., 1999;
	clinical trial	trauma-			Resick, 2001)
	(Prospective)	exposed			(Number of
		controls (95)			sessions and
		(0)			session
	13				duration not
					reported)
Zhutovsky	Cohort study	Male military	Four military	Tf-CBT (8)	Mean (SD)
et al. (2019)	(Prospective)	veterans	mental-	EMDR (28)	number of
		with PTSD	healthcare	Tf-CBT+EMDR	treatment
		(57);	outpatient	(8)	sessions:
		combat-	clinics		Responders =
		exposed	(Netherlands		9.86 (6.29)
		controls (29))		Non-
					responders =
					10.05 (4.22)
					(Session
					duration not
					reported)

Journal Pre-proof

Study	Data Source	Population	Setting	Treatment	Treatment
		(Total	(Country)	(Group n)	Duration
		Sample N)			
Zilcha-	Cohort study	Adults with	State	PE (55)	10-week
Mano et al.	(Retrospective	PTSD (51);	Psychiatric		standard PE
(2020))	adults with	Institute		protocol
		PTSD and	(U.S.A.)		(Session
		depression			duration not
		(52); trauma-		8	reported)
		exposed			
		controls (76)			

Note. ADM = Anti-Depressant Medication; CBT = Cognitive Behavioural Therapy; COPE = Concurrent Treatment for Substance Use Disorder and Post-Traumatic Stress Disorder Combining Prolonged Exposure and Relapse Prevention Therapy; CPT = Cognitive Processing Therapy; EMDR = Eye Movement Desensitization And Reprocessing; IRRT = Imagery Rescripting and Reprocessing Therapy; NHS = National Health Service; PE = Prolonged Exposure; PTSD = Post-Traumatic Stress Disorder; RCT = Randomized Control Trial; RPT = Relapse Prevention Therapy (treatment for substance use disorder); Seeking Safety = skills-based intervention for concurrent post-traumatic stress disorder and substance use disorder; STAIR = Skills Training in Affective and Interpersonal Regulation; SUD = Substance Use Disorder; Tf-CBT = Trauma-focussed Cognitive Behavioural Therapy; VA = Veterans Affairs.

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
Study	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods		calcula	•	setting	methods	level
			-		(purpose,		g	setting	methous	ievei
	predicte	Point	of	(purpose,	n	tion				
	d		candidate	n	participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure			analysed,						
)			n with						
				categoric						
				al						
				outcome)						
Deisenh	Post-	Final	Clinical,	Genetic	Linear	NR	Multiple	Importance	Leave-	2
ofer et	treatme	treatm	demograp	algorithm	regression		imputatio	threshold	one-out	
al.	nt	ent	hic,	(predicto	(paramete		n via	set at 80%	cross-	
(2018)	sympto	session	psychome	r	r		random		validatio	
	m		tric (11)	selection,	estimation		forest (on	Other	n	
	severity			n = 150;	, calculate		whole	hyperpara		
	(continu			75)	PAI, n =		sample)	meter		
	ous,			,	150; 75)			settings not		
	PHQ-9				200,10,		Categoric	reported		
	as a				Chi-		al	reported		
	proxy				squared	,	predictors			
					test		reduced			
	measure									
	of PTSD)				(compare		to			
	0.41.44				rate of		dichotom			
	Optimal 				reliable		ous			
	treatme				improvem		variables ,			
	nt for				ent		(employm			
	each				between		ent,			
	patient				patients		medicatio			
					who		n)			
					received					
					model		Propensit			
					indicated		y score			
					optimal		matching			
					VS.					
					suboptima					
					1					
					treatment,					
					n = 225)					
Etkin et	≥50%	4	MRI, EEG,	Linear	Generalize	NR	Threshold	NR	Leave-	2
al.	reductio	weeks	neurocog	support	d linear		in delayed		one-out	
(2019)	n in	after	nitive	vector	modelling		recall		cross-	
,-025/	PTSD	final	tests	machine;	(neurocog		score		validatio	
	score	treatm	(unclear)	Non-	nitive		indicative		n	
	SCOIE	ucauli	(uniciedi)	linear	predictor		of		11	
				iiiedi	predictor		UI			

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
	(binary, CAPS)	ent session		radial basis function support vector machine (predict treatmen t outcome, n = 36, outcome frequenc y not reported)	selection, n = 92 including n = 36 controls; neuroimag ing predictor selection, n = 87 including n = 36 healthy controls) Generalize d linear mixed modelling (test interactio ns with treatment, n = 36, vs. control, n		impaired recall identified by discrimina nt analysis (n = 92) Preproces sing of neuroima ging data described in suppleme ntary materials			
Fleming et al. (2018)	Retentio n (count, n sessions complet ed)	Final treatm ent session	Clinical, demograp hic, psychome tric, military service characteri stics,	Exhaustiv e CHAID classificat ion tree (predicto r selection, paramete r	= 30)	NR	NR	NR	NR	1

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
			trauma characteri stics (51)	estimatio n, predictio n, n = 122)						
Forbes et al. (2003)	Change in sympto m score (continu ous, PCL)	months post- treatm ent; 9 months post- treatm ent (n = 136)	Psychome tric (16)	k-means cluster analysis (test reliability of subgroup s identified by Ward's cluster analysis, n = 158)	Ward's hierarchic al cluster analysis (identify subgroups of PTSD patients, n =158) Second order principal componen ts analysis (reduce MMPI-2 scale and aid interpretat ion of results, n = 158)	NR	NR	NR	NR	1
					Multivaria te generalize d linear modelling (explore					

a. I			- · · ·		A 1 11:11 1					
Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to be	me Time-	type (number	learning methods	methods (purpose,	size calcula	processin	meter setting	n methods	nce level
	predicte	Point	of	(purpose,	n	tion	g	setting	metrious	ievei
	d		candidate	n	,, participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure		·	analysed,						
)			n with						
				categoric						
				al						
				outcome)				8		
					difference					
					s in				•	
					outcome					
					and		1			
					independe					
					nt variables					
					between					
					clusters, n		•			
					= 158)					
					Repeated					
					measures					
					multivaria					
					te					
					generalize					
				~	d linear					
					modelling					
			•		(examine					
					difference					
					s in					
					treatment					
					response between					
					subgroups					
					, n = 158)					
Held et	Minimal	Intake,	Demogra	Elastic	Group-	NR	Listwise	Hyperpara	Five-fold	2
al.	response	treatm	phic,	Net	based		exclusion	meter	cross-	
(2022)	(binary,	ent	psychome	classificat	trajectory		of	optimisatio	validatio	
	PCL-5);	days 2,	tric,	ion;	modelling		participan	n via five-	n	
	Fast	3, 5, 6,	military	Gradient	(identify		ts with	fold cross-		
	response	8, 11,	service	Boosted	response		missing	validated		
	(binary,	and 13,	characteri	Models;	trajectory		data	grid search		
	PCL-5)	and	stics,	Random	class)			within		
		post-	trauma	Forest;				inner loop		

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
				outcome)						
		treatm ent	characteri stics (104)	Ridge classificat ion; Logistic Regressio	Logistic Regression (comparis on with ML		One-hot- encoding of categorica I variables	of nested five-fold cross validation		
				n with	methods)			Hyperpara		
				Max-Min			Performa	meter		
				Parent-			nce	tuning not		
				Child	- 4		assessed	required		
				variable			by area	for logistic		
				selection (predicto			under the precision-	regression or logistic		
				r			recall	regression		
				selection,			curve to	with max-		
				paramete			account	min parent-		
				r			for class	child		
				estimatio			imbalance	variable		
				n,				selection		
				predictio						
				n, <i>n</i> = 432				Hyperpara		
				including				meter		
				n = 73				settings not		
				with minimal				reported		
				response						
				outcome						
				and <i>n</i> =						
				61 with						
				fast						
				response						
				outcome)						
Hendrik	Respons	Baselin	Clinical,	k-means	Stepwise	NR	Multiple	Varied	NR	1
s et al.	е	e, 3	demograp	cluster	multinomi		imputatio	number of		
(2018)	trajector	month	hic,	analysis	nal logistic		n of	clusters		
	y class	follow		(identify	regression		missing	from 3 to 6		

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
	(polytom ous, CAPS)	up, 6 month follow up	psychome tric (14)	response trajectory class, n = 69)	(predictor selection and prediction, n = 69)	2,	data following a framewor k for multiple imputatio n in cluster analysis	and evaluated goodness of fit Other hyperpara meter settings not reported		
Herzog	Change	Firet	Clinical	Elactic		N/P	Participan ts missing baseline CAPS score were excluded (n = 4)	11 and 12	Rootstra	2
Herzog et al. (2021)	Change in sympto m score (continu ous, IES- R)	First and last day of treatm ent	Clinical, demograp hic, psychome tric (≥ 46)	elastic net (predicto r selection, paramete r estimatio n, predictio n, n = 397)		NR	Participan ts missing > 60% and variables missing > 40% were excluded Univariate outlier values removed Time- event	L1 and L2 penalty weighting alpha set to 0.5 Optimal lambda value estimated by k-fold cross- validation averaged across 10 runs	p internal cross-validatio n in training set (n = 397) External validatio n in randomly partition ed (35%) hold-out	3

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods	(purpose,	calcula	g	setting	methods	level
	predicte	Point	of	(purpose,	n	tion				
	d		candidate	n	participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure			analysed,						
)			n with						
				categoric						
				al						
				outcome)				8		
							data log-	(within	validatio	
							transform	training	n set (<i>n</i> =	
							ed	set)	215)	
							12			
							Categoric	Optimal		
							al	lambda		
							variables	value not		
							were	reported		
							reduced			
							to binary			
							or			
							continuou			
							S			
							variables			
							(details			
							not			
							reported),			
							ICD-10			
							medical			
							diagnoses			
	11						were			
	7						dummy			
							coded			
							Binary			
							variables			
							with class			
							imbalance			
							were			
							excluded			
							Multiple			
							imputatio			
							n via			
							random			

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods	(purpose,	calcula	g	setting	methods	level
	predicte	Point	of	(purpose,	n	tion	_	_		
	d		candidate	n	participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure		·	analysed,						
)			n with						
				categoric						
				al						
				outcome)				<u>C</u>		
							forest			
							(separatel			
							y on			
							training			
							and test			
							set)			
Hoeboe	Change	4	Clinical,	Boruta	Linear	NR	NR	NR	Bootstra	2
r et al.	in	weeks,	demograp	algorithm	mixed-				pping	
(2021)	sympto	8	hic,	random	effect				(predicto	
	m score	weeks,	psychome	forest	modelling				r	
	(continu	and 16	tric (24)	classifier	(estimate	>			selection)	
	ous,	weeks		(predicto	change in					
	CAPS-5;	after		r	symptoms				Leave-	
	PCL-5)	start of		selection,	over the				one-out	
		treatm		n = 99;	course of				cross-	
	Optimal	ent		50)	treatment				validatio	
	treatme			*	for each				n internal	
	nt for				participan				cross-	
	each		•		t, n = 149)				validatio	
	patient								n	
					Linear				(predictio	
					regression				n, PAI)	
					(paramete					
					r					
					estimation					
					,					
					prediction,					
WC :	5	F: 1	Cl: · ·	D	n = 99; 50)	NS	D	ALD.	e	_
Keefe et	Dropout	Final	Clinical,	Bootstrap	Logistic	NR	Participan	NR	Five-fold	2
al.	(binary,	treatm	demograp	ped,	regression		ts who		cross-	
(2018)	treatme	ent	hic,	random	(paramete		dropped		validatio	
	nt	session	psychome	forest	r 		out prior		n	
	completi		tric,	variant of	estimation		to			
	on)		trauma	model-	,		randomis			
				based			ation			

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
	Optimal treatme nt for each patient		characteri stics (20)	recursive partitioning (MoB), and bootstrap ped variant of an AIC-based backward selection model (predictor selection, n = 160 including n = 49 with dropout outcome)	prediction, n = 160)	3	excluded from analyses (n = 11) Single-dataset random forest imputatio n strategy using all available pretreatment and outcome data			
Kratzer et al. (2019)	Reliable change (binary, IES-R)	Before dischar ge	Clinical, psychome tric (5)	Condition al inference tree (predicto r selection and predictio n, n = 150 including n = 78		NR	Bayesian multiple imputatio n	NR	NR	1

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
				with reliable change outcome)			4	30		
López- Castro et al. (2021)	Treatme nt attendan ce (count, n sessions attended)	Final treatm ent session	Clinical, demograp hic, psychome tric, trauma characteri stics (28)	Iterative Random Forest (predicto r selection, n = 70)	Poisson regression (paramete r estimation , prediction, n = 70; 60)	NR	NR	Default hyperpara meter settings used, values not reported	Paramete r estimatio n repeated in independ ent dataset (training set n = 70; replicatio n set n = 60)	1
Nixon et al. (2021)	Respons e trajector y class (polytom ous, PDS/PSS)	Post- treatm ent, follow up 3 to 9 months after final session	Clinical, demograp hic, psychome tric, trauma characteri stics (38)	Random forests of condition al inference trees (predicto r selection and predictio n, n = 179)		NR	Classified response trajectori es identified based on symptom scores at session 1, session 6, posttreat ment and follow-up	Default hyperpara meter settings used, values not reported	Internal validatio n as part of random forest (bagging)	2

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
Stirman	Post-	Post-	Clinical,	Elastic	Linear	NR	Binary	Elastic net	10-fold	2
et al.	treatme	treatm	demograp	net, five	regression		variables	alpha	cross-	
(2021)	nt sympto	ent	hic, psychome	iterations	with 10- fold cross-		effect- coded	parameter set to .75,	validatio n	
	m		tric,	, predictor	validation,		coded	lambda	"	
	severity		trauma	S	coefficient		Continuo	optimized		
	(continu		characteri	retained	s mean		us	via 10-fold		
	ous,		stics (29)	if	averaged		predictors	cross-		
	CAPS)			selected	across		standardis	validation		
				on all five	1000 runs		ed			
				iterations	(paramete		م استخدام	Optimal		
				. Then stepwise	r estimation		Multiple imputatio	lambda not reported		
				AIC-	, generate		n via	reported		
				penalized	PI, <i>n</i> =		random			
				bootstrap	267)		forest			
				ped			(OOB			
				variable	Linear		error			
				selection	regression		estimates			
				with 10,000	(test associatio		reported)			
				bootstrap	n between					
				ped	PI and					
				samples,	outcome,					
				predictor	and					
				S	interactio					
				retained	n between					
				if	PI and					
				selected in >60%	treatment type, <i>n</i> =					
				samples	267)					
				(predicto	/					
				r						
				selection,						
				n = 267)						

Study	Outcom e(s) to be predicte d (variable type, measure)	Outco me Time- Point	Predictor type (number of candidate predictor variables)	Machine learning methods (purpose, n participa nts analysed, n with categoric al outcome)	Additional methods (purpose, n participan ts analysed)	Sample size calcula tion	Data pre- processin g	Hyperpara meter setting	Validatio n methods	Evide nce level
Stuke et al. (2021)	Change in sympto m score (continu ous, DTS)	Dischar	Clinical, demograp hic, psychome tric, trauma characteri stics (12)	Principal compone nt analysis (predicto r reduction , n = 115) ADAboos t regressor (paramet er estimatio n, predictio n, n = 115)	regression (comparis on with ADAboost regressor, n = 115)	NR	Participan ts missing responses to a whole scale excluded; scale mean imputed where participan ts were missing <20% responses to scale (n = 10)	optimal number of component s for each participant estimated via hyperpara meter optimisatio n with 10- fold cross- validation in (N - 1) training set, varying number of component s from 1-10 and comparing squared error ADAboost: n estimators optimized with 10- fold cross- validation in training set (candidates	Leave- one-out cross- validatio n	2

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods	(purpose,	calcula	g	setting	methods	level
	predicte	Point	of	(purpose,	n	tion	Ü			
	d		candidate	n	 participan					
	(variable		predictor	,, participa	ts					
	-		variables)							
	type,		variables)	nts	analysed)					
	measure			analysed,						
)			n with						
				categoric						
				al				6 .		
				outcome)						
								20, 40);		
								default		
								settings		
								used for		
								other		
								hyperpara		
								meters		
								Hyperpara		
								meter		
								settings not		
								reported		
76	Deet	ND for	FFC/DFC	Course	Linnan	ND	ما منافق ما م	Normalisas of	1	4
Zhang	Post-	NR for	EEG/PEC	Sparse k-	Linear	NR	Multiple	Number of	k-means	1
et al.	treatme	PTSD	(unclear)	means	mixed		imputatio	clusters (2)	repeated	
(2021)	nt	data		clustering	models		n .	determined	on 100	
	sympto			(identify	(predict		reported	and 	randomly	
	m			PTSD	outcome		for	assessed by	selected	
	severity			subtypes,	from		depressio	the gap	subsampl	
	(continu			n = 106)	subtype, n		n dataset	statistic	es	
	ous,				= 72; <i>n</i> =		but not		(random	
	CAPS;				63)		for PTSD	Sparsity	90% of	
	CAPS-5)						dataset	parameter	the	
								optimised	sample in	
							EEG and	by inner-	each	
							MRI	loop cross-	subsampl	
							preproces	validation,	e)	
							sing	value not		
							reported	reported	PTSD	
							in		treatmen	
							methods		t	
							section		outcome	
									s dataset	
									divided	
									into two	

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods	(purpose,	calcula	g	setting	methods	level
	predicte	Point	of	(purpose,	n	tion				
	d		candidate	n	participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure			analysed,						
)			n with						
				categoric						
				al						
				outcome)				<u> </u>		
									cohorts,	
									cluster	
									analysis	
									applied,	
									and	
									linear	
									mixed	
									modellin	
									g	
									repeated	
						·			in the	
									second	
									cohort	
Zhutovs	≥30%	6 to 8	MRI	Independ	Univariate	NR	Participan	NR	10-fold	2
ky et al.	reductio	months	(unclear)	ent	analysis		ts missing		cross-	
(2019)	n in	from		compone	with		follow-up		validatio	
	PTSD	baselin		nt	threshold-		data were		n	
	score	e		analysis	free		excluded			
	(binary,	assess		using the	cluster		from			
	CAPS)	ment		meta-ICA	enhancem		analysis,			
				approach	ent and		and 3			
				(dimensi	permutati		participan			
				on	on		ts were			
				reduction	analysis		excluded			
				, n = 28	(dimensio		due to			
				controls)	n		excessive			
					reduction,		movemen			
				Gaussian	n = 44)		t during			
				process			MRI			
				classifier						
				(predicto			MRI pre-			
				r			processin			
				selection			g			
				and			reported			
				predictio			in			

Study	Outcom	Outco	Predictor	Machine	Additional	Sample	Data pre-	Hyperpara	Validatio	Evide
	e(s) to	me	type	learning	methods	size	processin	meter	n	nce
	be	Time-	(number	methods	(purpose,	calcula	g	setting	methods	level
	predicte	Point	of	(purpose,	n	tion				
	d		candidate	n	participan					
	(variable		predictor	participa	ts					
	type,		variables)	nts	analysed)					
	measure			analysed,						
)			n with						
				categoric						
				al						
				outcome)				8		
				n, <i>n</i> = 44			suppleme			
				including			ntary			
				n = 20			material			
				with			12			
				treatmen						
				t						
				response						
				outcome)						
Zilcha-	Change	Pre to	MRI	Linear	Pearson	NR	Excluded	Hyperpara	10-fold	1
Mano	in	post-	(unclear)	kernel	correlatio		3	meter	cross-	
et al.	sympto	treatm		support	ns (test		participan	optimisatio	validatio	
(2020)	m score	ent		vector	correlatio		ts due to	n (kernel	n during	
	(continu			machine	n between		excessive	scale and	support	
	ous,			with <i>t</i> -	predictors		movemen	function)	vector	
	CAPS)			test	and		t during	during 10-	machine	
				filtering	treatment		MRI	fold cross-	training	
		•		and	outcome,			validation,	Correlati	
				wrapper 	n = 55)		Predictors	settings not	ons not	
)	based			regressed	reported	cross-	
				sequenti			for age,		validated	
				al			sex, and			
				predictor			MRI			
				selection			scanner,			
				(predicto			and normalize			
				r reduction						
				and			d (-1 1)			
				selection,			MRI			
				n = 179)			preproces			
				1,5,			sing			
							reported			
							in			
							suppleme			
							ntary			
							materials			

Journal Pre-proof

Note. AIC = Akaike Information Criterion; CAPS = Clinician-Administered PTSD Scale; CAPS-5 = Clinician-Administered PTSD Scale for DSM-5; CHAID = Chi-square Automatic Interaction Detection; DTS = Davidson Trauma Scale; EEG = Electroencephalography; ICD-10 = International Classification of Diseases 10th Revision; IES-R = Impact-of-Event-Scale-Revised; MMPI-2 = Minnesota Multiphasic Personality Inventory-2; MRI = Magnetic Resonance Imaging; NR = Not Reported; OOB = Out-Of-Bag; PAI = Personalised Advantage Index; PCL = PTSD Checklist; PCL-5 = PTSD Checklist for DSM-5; PDS = Posttraumatic Stress Diagnostic Scale; PEC = Power Envelope Connectivity; PHQ-9 = Patient Health Questionnaire-9; PI = Prognostic Index; PSS = Post-traumatic Symptoms Scale; PTSD = Post-traumatic Stress Syndrome; RCT = Randomised Controlled Trial.

Declaration of Competing Interest

The authors declare that they have no known potential competing interests that could affect the objectivity of the work presented in this paper.

Highlights

- All were rated high risk of bias, primarily due to inappropriate sample size.
- None of the studies reported every step of the machine learning pipeline.
- Just one reported external validation, in randomly partitioned hold-out sample.
- Two studies compared machine learning to traditional methods, with mixed results.
- ML may advance precision treatment for PTSD but methods must be applied rigorously.