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Abstract: Background: Natural nootropic compounds are evidenced to restore brain func-
tion in clinical and older populations and are purported to enhance cognitive abilities
in healthy cohorts. This study aimed to provide neurocomputational insight into the
discrepancies between the remarkable self-reports and growing interest in nootropics
among healthy adults and the inconclusive performance-enhancing effects found in the
literature. Methods: Towards this end, we devised a randomised, double-blinded, and
placebo-controlled study where participants performed a visual categorisation task prior to
and following 60 days of supplementation with a plant-based nootropic, while electroen-
cephalographic (EEG) signals were concurrently captured. Results: We found that although
no improvements in choice accuracy or reaction times were observed, the application of
multivariate information-theoretic measures to the EEG source space showed broadband
increases in similar and complementary interdependencies across brain networks of various
spatial scales. These changes not only resulted in localised increases in the redundancy
among brain network interactions but also more significant and widespread increases in
synergy, especially within the delta frequency band. Conclusions: Our findings suggest
that natural nootropics can improve overall brain network cohesion and energetic efficiency,
computationally demonstrating the beneficial effects of natural nootropics on brain health.
However, these effects could not be related to enhanced rapid perceptual decision-making
performance in a healthy adult sample. Future research investigating these specific com-
pounds as cognitive enhancers in healthy populations should focus on complex cognition
in deliberative tasks (e.g., creativity, learning) and over longer supplementation durations.
Clinical trials registration number: NCT06689644.
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1. Introduction
Nootropics are a class of neurologically active compounds purported to enhance

cognitive abilities such as memory, focus, and learning, hence the associated term, “smart
drugs” [1]. Both synthetically derived (e.g., Ritalin, Piracetam, Modafinil) and naturally
occurring compounds (e.g., caffeine, medicinal mushrooms) are taken by a growing pro-
portion of the adult population for these performance-enhancing effects to aid with the de-
mands of everyday modern life (e.g., rapid decision-making, creativity, productivity) [2–5].
Natural nootropics are considered to have less side effects and more potential widespread
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health benefits compared to synthetic compounds [4,6]; consequently, they have been of
recent interest for their use in both clinical and healthy populations [1,7,8].

Among clinical human and animal studies, plant-derived extracts have been shown to
improve neural and behavioural markers of health and performance, including perceptual
motor function, learning, language comprehension, and memory [1,7–11]. The mechanisms
by which these nootropics restore cognitive abilities varies widely but commonly involves
increasing the supply and efficiency of use of energetic resources in the brain (e.g., increased
cerebral blood flow, positive allosteric modulation of acetylcholine and glutamate receptors,
and inhibition of monoamine oxidases) [8,12–15]. Additionally, they have been shown
to promote neurogenesis, stimulate phospholipid metabolism in neurohormonal mem-
branes, and enhance the beneficial cognitive effects of neurosteroids (e.g., pregnenolone
sulphate, dehydroepiandrosterone sulphate) [12,16–19]. Hence, it is understandable that
these substances would have impactful effects among cognitively impaired cohorts that
typically present with reduced energetic resources or the efficiency of resource allocation
(e.g., ageing, Alzheimer’s disease) [20–22]. Nonetheless, within the healthy working-age
adult population, the interest in nootropic supplements has grown considerably recently for
their purported ability to improve cognitive performance [2,3,12,23], with noteworthy self-
reported accounts of their benefits [6,8,24]. However, it is currently unclear how well the
impactful results from nootropic supplements found predominantly among clinical human
and animal studies can be generalised to the healthy population as cognitive enhancers, as
a significant number of the available studies in this group demonstrate minimally effective,
contrasting, or even contradictory behavioural results [1,6,8,25–29]. To exemplify this
point, nootropic effects have been observed to vary across age groups as a function of the
underlying cognitive deficits associated with senescence [8,28,30], suggesting a restorative
rather than enhancing effect of nootropic compounds [6,11]. Consequently, among high-
functioning younger adults with adequate dietary regimes which likely function near their
optimal state already, this “normalising” effect would be expected to be less pronounced,
leading to more subtle changes in overall cognitive performance. Statistically speaking, the
relatively small effect sizes from such subtle behavioural changes following supplemen-
tation likely explains the discrepancies in previous research; however, it does not explain
the overwhelmingly positive self-reports and growing interest in these compounds among
healthy adults [1–3,5,6,8,24]. These performance changes, although subtle in magnitude,
may in fact be of considerable significance subjectively and may be underpinned by more
pronounced effects neurologically. The energetic dynamics of the brain which nootropics
likely affect can be cast through the mathematical lens of information theory [31,32], where
information sharing across neuronal populations abstractly represents the electrophysi-
ological dynamics of cognitive processes and, consequentially, the metabolic constraints
underpinning them.

Therefore, in the current study, we aimed to investigate the efficacy of nootropic
compounds in the healthy adult population to shed light mechanistically on these dis-
crepancies in previous research and provide a neurocomputational explanation for the
self-reports of improved wellbeing with nootropic consumption. Towards this objective,
we devised a randomised, double-blinded, placebo-controlled experiment (pre-registration:
https://osf.io/25afe (accessed on 6 July 2023)) that aimed to address this current research
gap by combining behavioural experimentation with neuroscientific enquiry to answer the
following research question:

What effect does a commercially available nootropic supplement have on perceptual
decision-making performance (i.e., the ability to make rapid decisions based on sensory
information) and brain network interdependencies (i.e., the collective interactions between
brain regions)?

https://osf.io/25afe
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To answer this research question, we employed a computerised experimental
paradigm testing participants’ visual perceptual decision-making while concurrently cap-
turing brain activity using electroencephalography (EEG). We implemented this cognitive
test pre- and post-60 days of daily supplementation with the Mind Lab Pro supplement.
Our analytical approach consisted of applying multivariate information-theoretic measures
to identify salient differences in brain network interdependencies that could be explained
by the supplement regime. Prior to the experimental period, we hypothesised that this sup-
plementation regime would result in negligible behavioural changes but more pronounced
effects on the brain network interdependencies underlying perceptual decision-making,
thereby explaining discrepancies in previous research and the growing interest and self-
reports of improved wellbeing among healthy adults.

2. Materials and Methods
2.1. Participant Recruitment, Selection, and Randomisation Schedule

Participant recruitment strategies included poster advertisements in the local commu-
nity, mass email notifications through approved university channels, and word of mouth.
Potential candidates were provided with a brief outline of the experimental protocol and
were asked to contact the experimental lead for further information and screening. Inter-
ested candidates were provided with an information sheet and were given time to ask
questions before informed consent was obtained.

The eligibility screening of participants was guided by the following inclusion criteria:
(i) be between 20 and 59 years old, (ii) be right-handed, and (iii) be able to cease taking
other dietary supplements for two months. Exclusion criteria included the following:
(i) currently consuming a nootropic supplement, (ii) have any known musculoskeletal or
neurological medical conditions or cognitive impairments, (iii) have a known diagnosis of
epilepsy/history of seizures, and (iv) have a known hearing or visual condition that affects
daily life function.

Following successful screening, participants were pseudo randomly assigned on a 1:1
ratio basis to the treatment or control groups based on the order they were recruited into
the study. Both the experimental lead and participants were blinded to the assignment
of treatment and control groups. Only the principal investigator was aware of the group
assignment but was not involved in experimental collection or analysis. After completing
the experiment, each participant received an GBP 50 retail voucher (Amazon.com, Inc.,
Seattle, WA, USA). Following the completion of data collection and preliminary data
analyses, both the experimental lead and participants were subsequently unblinded to
group assignments.

Full ethical permission was gained from the Faculty of Biological Sciences ethics
committee, University of Leeds (BIOSC22-022).

2.2. Interventional Compound

The treatment group received a commercially available Mind Lab Pro supplement
(https://mindlabpro.com (accessed on 8 November 2024)), while the control group was
given a matched placebo comprising an inactive cellulose substance. Participants of both
groups were asked to consume two capsules per day (the lowest range of the recommended
daily dose by the supplement manufacturer) continuously for 60 days, preferably in the
morning with breakfast. Table 1 below provides a full list of the included ingredients
for a two-capsule serving. They were asked to maintain their regular diet throughout
supplementation and to immediately report any adverse effects.

https://mindlabpro.com
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Table 1. Contents and dosage of Mind Lab Pro supplement per two-capsule serving.

Nutrition Facts Amount per Serving

Vitamin B6 2.5 mg
Vitamin B9 100 mcg

Vitamin B12 7.5 mcg
Citicoline 250 mg

Bacopa monnieri 150 mg
Organic lion’s mane mushroom 500 mg

Phosphatidylserine 100 mg
N-Acetyl L-Tyrosine 175 mg

L-Theanine 100 mg
Rhodiola rosea 50 mg

Maritime pine bark extract 75 mg

2.3. Experimental Task

The day prior to and as soon as possible following the supplementation period,
participants took part in a computerised cognitive task assessing their visual perceptual
decision-making (Figure 1) [33]. In this experiment, a working memory task was also
performed by the participants, which was not analysed in the current study. However, it is
worth noting that the order of these separate experimental tasks was randomised across
participants to prevent any carry-over effects (i.e., learning, fatigue).
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pants were instructed to classify noisy images of faces and cars, presented for 50 ms, by indicating
their response with left and right key presses, respectively, within a 1.25 s deadline following stimulus
presentation. Following an inter-stimulus interval (ISI; delay) of 100 ms, feedback was presented for
500 ms (correct, incorrect, or too slow in block capitals). (B) Sample face (top row) and car (bottom
row) images at the two levels of visual phase coherence (i.e., 32.5% and 37.5%) used in the task.

2.4. Stimuli

The stimuli consisted of 18 face (Face Database; Max Plank Institute of Biological Cy-
bernetics3) and 18 car (sourced from the Internet) grayscale images adapted from previous
studies [33–36], retrieved to use as visual stimuli (image size: 512 × 512 pixels; bit depth:
8 bits/pixel) (Figure 1A). Each original image had its background removed before being
transferred onto a uniform grey background (RGB: [115 115 115]), and images were equated
for spatial contrast, frequency, luminance, and the total number of frontal and side views
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(i.e., a maximum of ±45◦) to ensure identical magnitude spectra (i.e., average magnitude
spectrum of all images in the database). All images had their corresponding phase spectra
manipulated using the weighted mean phase technique, altering their image phase coher-
ence and therefore characterising the phase coherence percentage and the quantity of visual
sensory evidence available. Two levels of visual sensory evidence, 32.5% and 37.5% phase
coherence, were selected to manipulate image classification difficulty (Figure 1B). A Stone
64-bit-based workstation (CPU: i7-9700; RAM 500 GB SSD) running Windows Professional
7 (Linux-x86_64-bit) and PsychoPy presentation software (v3.8.10) controlled the stimulus
display (RGB: [128 128 128]). Images were presented on an Iiyama ProLite B2484HSU
24-inch monitor (Iiyama Corporation, Iiyama City, Japan) (resolution: 1920 × 1080 pixels;
refresh rate: 75 Hz). Participants were positioned 60 cm from the monitor, and each image
subtended approximately 8 × 8 degrees of visual angle.

2.5. Behavioural Task

Participants performed an object categorization task, in which they classified whether
faces or cars were embedded in a series of images (Figure 1). Each trial began with a white
(RGB: [255 255 255]) fixation cross presented on-screen for a randomised duration between
1 and 1.5 s. Then, a visual stimulus was presented for 50 ms. Participants were instructed to
provide their response as soon as they had reached a decision (i.e., as quickly and accurately
as they could), with a response deadline set to 1.25 s. Participants responded by pressing
the correctly assigned key (i.e., left and right arrow presses for faces and cars, respectively)
using their right index and middle fingers. Following an inter-stimulus interval (ISI;
delay) of 100 ms, they then received visual feedback following each response for 500 ms.
Three possible outcome statements, in block capitals, were presented as feedback, namely
(1) correct (RGB: [0 255 0]), (2) incorrect (RGB: [255 0 0]), and (3) too slow (RGB: [0 0 255]),
for correct, incorrect, and timed-out responses (i.e., exceeding the response deadline of
1.25 s), respectively. Single-trial reaction times (RTs) and choice accuracy (i.e., correct
and incorrect) were collected as metrics of decision-making performance, with timed-out
responses (i.e., exceeding the response deadline of 1.25 s) treated as incorrect. In total,
participants completed 576 trials per session, consisting of four blocks of 144 trials each,
with a 60 s rest period between blocks. Within each block, trials were divided equally
between face and car images (imType) (i.e., 72 face and 72 car trials per block) and the
two levels of stimulus phase coherence (imCoh) (i.e., 72 37.5% and 72 32.5% trials per block).
The entire task lasted approximately 25–30 min.

2.6. EEG Recording and Pre-Processing

EEG signals were recorded in a sound-attenuated room using a 64-channel Brian
Visions amplifier system and Analyzer software (Versions 2.1.1) at a sampling frequency
of 1000 Hz. Following data capture, the EEG signals were processed in Matlab software
R2023a using the EEGLab toolbox [37]. More specifically, following each data capture
session, we firstly re-referenced the EEG signals to the average of all channels. We then
bandpass-filtered the signals within the 0.5–200 Hz range. To remove power line noise, we
subsequently applied spectrum interpolation (code taken from the Fieldtrip toolbox [38])
at 50 Hz and its corresponding harmonics up to 200 Hz [39]. To remove muscle and
eye artefacts along with any remaining channel and line noise, we applied independent
component analysis and, following an automated classification procedure, we removed
artefactual components identified with a >90% certainty threshold. Stimulus-locked epochs
(0–800 ms post-stimulus presentation) were extracted and averaged across trials for each
participant to enhance the signal-to-noise ratio of the EEG signals. Finally, to enhance the
spatial resolution of the EEG data for subsequent functional connectivity analyses in the
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EEG source space, we extracted the surface Laplacian for each participant’s data using a
custom Matlab script [40].

2.7. Higher-Order Brain Network Interdependencies

Cognitive processes like perceptual decision-making involve complex interdepen-
dencies between different networks of neuronal populations operating across a range of
frequency bands [41]. To provide a thorough mechanistic account of brain network interde-
pendencies following nootropic supplementation, we therefore analysed the EEG signals
from the representative stimulus-locked trial of each participant separately within the
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–40 Hz)
frequency bands and extracted brain networks at multiple scales to localise the putative
nootropic effects. This delta band range was chosen even though the temporal resolution
of the stimulus-locked trials was 1.25 Hz (i.e., 1/800 ms trial length = 1.25 Hz temporal
resolution), as it was found in preliminary analyses that the partially represented cycles in
the lower delta frequencies contributed significantly to the analysis output. Meanwhile,
the gamma frequency range selected was based on the gamma frequency ranges available
with EEG that are less prone to artefacts [42]. Temporal waveforms for each frequency
band were extracted using a low- and high-pass bi-directional Butterworth filter combina-
tion with zero-phase distortion (“filtfilt” function in Matlab). To provide comprehensive
insight into the changes induced by nootropic supplementation in the brain, we adopted
a recently proposed greedy search algorithm (GSA) to identify higher-order networks
of interdependencies between brain regions in a computationally efficient way that are
maximally different between experimental groups [43]. More specifically, beginning with
the representative stimulus-locked trial for each participant from the follow-up session, we
firstly quantified the interdependence between all possible triplets of EEG channels. These
interdependencies were quantified using two distinct information-theoretic measures of
multivariate correlation strength, the total correlation (TC), and the dual total correlation
(DTC) [44,45]. TC (Equation (1)) and DTC (Equation (2)) are non-negative multivariate
generalisations of mutual information (MI), which for a system of n random variables
denoted as Xn = (X1, . . . , Xn), can be expressed in terms of entropies (H) as

TC(Xn) = ∑n
j=1 H

(
Xj

)
− H(X1, . . . Xn) (1)

DTC(Xn) = H(X1, . . . Xn)− ∑n
j=1 H

(
Xj

∣∣∣Xn
−j

)
(2)

Here, for TC (Equation (1)), the sum of the Shannon entropies of individual vari-
ables in Xn (∑n

j=1 H
(
Xj

)
) is contrasted against their joint Shannon entropy ( H(X1, . . . Xn)).

Meanwhile, for DTC (Equation (2)), H(X1, . . . Xn) is contrasted against the sum of the
conditional Shannon entropies ( ∑n

j=1 H
(

Xj

∣∣∣Xn
−j

))
. The mathematical differences between

these multivariate measures of MI results in the emphases of distinct types of collective
interdependence. More specifically, TC quantifies the shared information in a system that
is similar across variables (i.e., the collective constraints [46]), while DTC, also known as
the binding information [47], quantifies the shared randomness across a system (i.e., com-
plementary information) [46]. Hence, the subtraction of these two quantities (Equation (3)),
a measure known as the O-Information (Ω) [46], quantifies the net balance between syn-
ergy and redundancy in a system (positive Ω values suggest predominantly redundant
system interactions while negative values suggest net synergistic interactions). Through
the application of TC, DTC, and Ω to networks of EEG source signals here, we aimed to
provide important insight into the collective interactions of multiple brain regions and the
types of statistical relationships they manifest, along with the changes induced in these
characteristics with nootropic supplementation. In the current study, we used a Gaussian
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copula-based method to generate lower-bound estimates of TC and DTC and, consequently,
Ω [48].

Ω = TC − DTC (3)

Returning to the GSA adopted from recent work [43], having quantified all pairwise
interdependencies between EEG channels within a specific frequency band for each par-
ticipant, we quantified the standardised mean difference for each pair between treatment
and control groups using the Cohen’s d effect size (Equation (4)) [49]. Here, µtreatment

and µcontrol are the average TC, DTC, or Ω values from the treatment and control groups,
respectively, while s is the pooled standard deviation, where s2

control (s2
treatment) and mcontrol

(mtreatment) are the variance and the sample size of the control (treatment) group, respec-
tively. A positive (negative) value for d therefore represents the effects direction, indicating
increases (decreases) in brain network interdependencies following the intervention. As
both the positive and negative values of Ω were of interest in the current study, we reversed
the signs of the estimated Ω values (i.e., -(TC − DTC)) and re-applied the GSA to identify
maximally discriminative redundant and synergistic brain networks.

d =
µtreatment − µcontrol

s
, . . . s =

√
(m − 1)s2

treatment + (mcontrol − 1)s2
control

mtreatment + m − 2
(4)

We then used this pairwise computation as the basis for subsequent computations at
the higher interaction order of triplets by identifying the pair with the maximum (minimum)
effect sizes and determining all possible triplet subsets that contain the identified pair of
EEG channels. This procedure was further redeployed in a stepwise manner at successively
higher interaction orders up to 16-channel networks, representing 1/4 of the entire scalp
map and well within the range of reliable Ω estimation [43,50]. In doing so, we were able to
identify large brain networks that maximally discriminated between experimental groups,
both in the direction of greater and less network interdependencies among the treatment
group compared to the control group while avoiding the combinatorial explosion inherent
to computing higher-order interactions.

Having identified the brain networks most different between groups at the follow-up
session across multiple interaction orders, be they significantly higher or lower than the
control group, we then worked backwards to compute the same brain networks found to be
significantly discriminative at follow-up but from the pre-session EEG data. These baseline
values were then included as a covariate in separate analysis of covariance (ANCOVA)
models for each frequency band and interaction order alongside experimental group affilia-
tion as a fixed factor and the follow-up session TC or DTC values as the dependent variable
(SPSS Statistics 28 software). This enabled us to control for baseline differences to effectively
ascertain whether these group differences at follow-up are genuine nootropic effects or
could be simply explained by differences present from the outset of the experiment.

2.8. Statistical Analyses

For behavioural analyses, trials where participants responded <300 ms or >1200 ms
post-stimulus presentation were discarded as “fast guesses” and “attentional lapses”, respec-
tively [51]. The median RT for each participant at baseline and follow-up was calculated
from the correct trials only, while the percentage of correct total trials was also taken to sum-
marise choice accuracy. These summary statistics were employed in Mann–Whitney U tests
to determine statistical differences between groups. Furthermore, to determine if specific
features of the perceptual decision-making task were influenced by the nootropic, the choice
speed and accuracies were also summarised in the same way but from easy and hard trials
(i.e., high and low imCoh, respectively) and the different imType trials (i.e., face and car
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images) only. To ensure our results are not limited by a sample size, we also capitalised on
the large number of trials of reaction time data to test for statistical differences between pre-
and post-sessions at the within-participant level using a Bayesian prevalence approach [52].
Specifically, test statistics were generated for each participant, and group-level statistical
differences were inferred through Monte Carlo simulations (N = 10,000 runs). Statistical
significance was set a priori to p < 0.05. False discovery rates (FDRs) during the ANCOVA
procedures (see “Higher-order brain network interdependencies” of the Section 2) were
controlled separately for models testing greater than (i.e., maximal Cohen’s d) and less
than (i.e., minimal Cohen’s d) brain network interdependencies using the Benjamini and
Hochberg approach [53]. All ANCOVA models met the assumption of homoskedasticity as
per White’s test (p > 0.05).

3. Results
In total, 37 participants (treatment group = 19 participants; control group =

18 participants) were successfully recruited; however, five participants (treatment group =
2 participants; control group = 3 participants) voluntarily withdrew before the supplemen-
tation period ended, leaving 32 participants (treatment group = 17 participants; control
group = 15 participants) as the study sample. No significant differences between groups
were present for age (treatment group: 38 ± 8.3; control group: 31.7 ± 10.3 (p > 0.05)), while
a relatively even gender split was found in both groups (treatment group: M = 10/F = 7;
control group: M = 8/F = 7). Of the two participants from the treatment group that with-
drew, neither self-reported adverse effects, demonstrating an overall good tolerance for
the supplement across the cohort. Participants were assessed 3.66 ± 3.2 days after their
scheduled supplementation period was complete and self-reported good adherence to the
supplementation regime.

3.1. Nootropic Supplementation Did Not Improve Perceptual Decision-Making Performance

We found no statistically significant differences within or between experimental
groups (p > 0.05) across correct trials of any image type or difficulty level (“Correct tri-
als”, Figure 2(1A,2A)), high imCoh trials (“Easy trials”, Figure 2(1B,2B)), low imCoh trials
(“Hard trials”, Figure 2(1C,2C)), car imType trials (“Car trials”, Figure 2(1D,2D)), or face
imType trials (“Face trials”, Figure 2(1E,2E)) for choice speed (Figure 2(1)) or choice accuracy
(Figure 2(2)). Both groups typically demonstrated slower reaction times at follow-up com-
pared to baseline; however, this increase was lower in the treatment group. This resulted in
the treatment group demonstrating typically faster reaction times at follow-up compared
to controls, except for the hard trials (see Figure 2(1A,B,D,E)). However, no evidence was
found for an improvement in choice reaction times due to nootropic supplementation.
Further testing of these differences at the within-participant level using a Bayesian preva-
lence approach revealed that no group-level effects could be inferred (i.e., the confidence
intervals from the Monte Carlo simulations fell below zero), with a minority of both groups
(treatment = 7; control = 5) demonstrating significant reductions in choice reaction times.

For choice accuracies, both groups scored highly at both sessions (>80% of trial correct
on average), suggesting the task was well within their capabilities. The control group
demonstrated a slight improvement in the percentage of trials correct at follow-up com-
pared to baseline, a trend that was generalised across all imType and imCoh trials. This
coincides with the subtle increase in reaction times in this same group, suggesting a change
in the speed and accuracy bias across the intervention in this group. Meanwhile, the
treatment group demonstrated no noticeable changes in choice accuracy following the
intervention and had typically lower choice accuracy than the control group.
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face trials (E) depicted as violin plots to illustrate the distribution of reaction times. (2) In the same
order of trial types (A–E), the choice accuracies are displayed as the median and standard deviation
of the percentage of total trials correct for both experimental groups at the pre- (light colour) and
post- (dark colour) sessions.

3.2. Information Sharing Across Brain Networks Is Enhanced Following Nootropic Supplementation

The application of TC and DTC as part of a GSA to the representative stimulus-locked
trials of participants identified maximally discriminative brain networks across a range of
interaction orders and frequency ranges (Figures 3 and 4). All the identified brain network
interdependencies quantified using TC and DTC were in favour of enhanced information
sharing among the treatment group at follow-up compared to controls, controlling for
baseline differences. No brain networks exhibiting greater information sharing among
the control group were found for TC or DTC; therefore, results in this direction are not
illustrated here.

Beginning with the findings from TC (Figure 3) following FDR correction (critical value
for p = 0.031), significantly greater network interdependencies were found in all frequency
bands except the gamma band (Figure 3A). Typical TC value ranges within baseline and
follow-up sessions for both groups (control = red; treatment = blue) for all significant
frequency bands are illustrated in Figure 3B.1,B.2, respectively. The most discriminative
networks from the significant frequency bands were of a relatively low interaction order
(see Figure 3C for the scalp topography with the most discriminative brain networks
highlighted). The delta band demonstrated significantly enhanced TC among treatment
group participants up to the sixth order (Figure 3A); however, the fourth-order brain
network was most discriminative here (F = 5.61, (p = 0.0152)). This brain network consisted
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of EEG sources covering the left and right frontotemporal and the centroparietal region
(Figure 3C). Meanwhile, the theta, alpha, and beta bands all demonstrated significantly
enhanced information sharing for brain networks up to the 13th order for theta and 16th
order for both alpha and beta bands (Figure 3A). However, the most discriminative brain
networks for all three frequencies were consistently composed of triplets of EEG sources
(theta: F = 9.1 (p = 0.0059); alpha: F = 12.95 (p = 0.0014); beta: F = 14.5 (p < 0.001)) (Figure 3A).
For the theta band, this triplet consisted of two EEG sources over the central lobe and
one on the right temporal lobe (Figure 3C), while the alpha band triplet consisted of EEG
sources originating from the left temporal lobe only. Finally, for the beta band, which
demonstrated the most significant difference between groups at follow-up controlling for
baseline differences, the triplet was composed of more widespread EEG sources from the
frontal, right temporal, and parietal brain regions.
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Figure 3. An overview of the findings from the application of TC to the EEG source signals using
the GSA. (A) The F-statistic representing the group differences for each frequency band and inter-
action order taken from ANCOVA models that controlled for baseline differences in TC values. No
significant differences in favour of greater TC among the control group were found, so the treatment



Brain Sci. 2025, 15, 226 11 of 20

group results are illustrated only. Areas coloured white indicate no significant differences were found.
The interquartile ranges of the most significant interaction order TC values for control (red) and
treatment (blue) groups at the baseline (B.1) and follow-up (B.2) sessions are depicted as boxplots
for each frequency band. The TC values illustrated were normalised by the interaction order for
comparability. The gamma band contained no significantly different network dependencies and so
was not illustrated here. (C) The most significantly different brain networks were also illustrated
topographically, where blue-shaded areas highlighted the included EEG sources.
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Figure 4. An overview of the findings from the application of DTC to the EEG source signals
using the GSA. (A) The F-statistic representing the group differences for each frequency band and
interaction order taken from ANCOVA models that controlled for baseline differences in TC values.
No significant differences in favour of greater DTC among the control group were found, so the
treatment group results are illustrated only. The interquartile ranges of the most significantly different
network DTC values for control (red) and treatment (blue) groups at the baseline (B.1) and follow-up
(B.2) sessions are depicted as boxplots for each frequency band. The DTC values illustrated were
normalised by the interaction order for comparability. (C) The most significantly different brain
networks were also illustrated topographically, where blue-shaded areas highlighted the included
EEG sources.

The nootropics effect of information sharing across brain networks was much more
widespread and significant when quantified using DTC (Figure 4A–C), suggesting the
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nootropic enhanced the sharing of complementary information more so than redundant
information. All five frequency bands here displayed significantly enhanced information
sharing (FDR critical value: p = 0.0027), but in contrast to TC (Figure 3), these differences
steadily increased for the most part as a function of the interaction order (Figure 4A). This
trend was especially obvious for the beta band, where the highest-order network analysed
was also the most discriminative (F = 63.04 (p < 0.00001)) (Figure 4A). Interdependencies
between 12 EEG sources within the delta band demonstrated the most significant group
differences (F = 100.41 (p < 0.00001)), followed by 12th-order network interdependencies
within the alpha (F = 65.98 (p < 0.00001)) and theta (F = 63.76 (p < 0.00001)) bands. The
gamma band was noticeably lower in terms of its group differences, with a 13th-order
network of EEG sources demonstrating the highest discrimination in this frequency range
(F = 42.4 (p < 0.00001)). Based on these results, it is likely that significant enhancements to
information sharing would be found in higher-order brain networks than those analysed
here. As found in the TC results (Figure 3B.1,B.2), the alpha band provided the greatest
amount of shared information across the intervention, while the delta band typically
provided the least bits of information (the bits of information were normalised by the
interaction order for comparability) (Figure 4B.1,B.2).

3.3. Natural Nootropic Supplement Increases Both the Redundancy and Synergy Between
Brain Regions

The balance between redundant (i.e., informationally similar) and synergistic
(i.e., informationally complementary) interdependencies in the brain pre- and post-
supplementation with a nootropic or placebo was quantified using the O-Information
(Ω), revealing salient group differences across multiple interaction orders and frequency
bands that all favoured the treatment group in terms of increased redundancy and synergy
(Figures 5 and 6). As with the TC and DTC results (Figures 3 and 4), no significant differ-
ences were found in favour of greater redundancy or synergy among the control group;
hence, findings favouring the treatment group only are illustrated here. We found that the
discriminative networks of EEG sources identified were redundancy-dominated (i.e., posi-
tive Ω values) across sessions and groups for both the redundancy (Figure 5) and synergy
(Figure 6) analyses. Therefore, the boxplots in Figure 6B.1,B.2 of the synergy analysis depict
a significant decrease in redundant information (corresponding to an increase in synergistic
information) for the treatment group (blue boxes) compared to controls (red boxes) within
the delta and gamma frequency bands.

Significantly increased redundancy was found in all frequency bands following FDR
correction (critical value: p = 0.0278), where three frequency bands (i.e., delta, alpha, and
beta) were shown to comprise significantly different redundancies for network interaction
orders up to the maximum analysed here (i.e., 16 channels) (Figure 5A). Meanwhile, the
theta and gamma bands demonstrated a much lower prevalence for this nootropic effect,
demonstrating significantly greater redundancy up to the sixth and third interaction orders,
respectively (Figure 5A). As found in the TC results (Figure 3), these differences were most
significant at lower interaction orders, suggesting local information processing at specific
brain regions was enhanced post-supplementation. Indeed, the delta band was the only
frequency range where the most significant network was composed of more than three
EEG sources, with the sixth order being most significant (F = 19.6 (p < 0.001)). This band
also demonstrated the largest amount of redundant information across sessions and groups
(displayed in normalised bits (Figure 5B.1,B.2) and incorporated left frontotemporal and
right temporoparietal regions (Figure 5C). The beta band triplet was the most different
between groups (F= 19.76 (p < 0.001)) and included occipital and right temporal–occipital
brain regions (Figure 5C).
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Figure 5. An overview of the findings from the application of O-Information (Ω) to the EEG source
signals using the GSA to find maximally discriminative networks of redundant interactions. (A) The
F-statistic representing the group differences for each frequency band and interaction order taken from
ANCOVA models that controlled for baseline differences in Ω values. No significant differences in
favour of greater Ω among the control group were found, so the treatment group results are illustrated
only. Areas coloured white indicate no significant differences were found. The interquartile ranges
of the most significant interaction order Ω values for control (red) and treatment (blue) groups at
the baseline (B.1) and follow-up (B.2) sessions are depicted as boxplots for each frequency band.
The Ω values illustrated were normalised by the interaction order for comparability. (C) The most
significantly different brain networks were also illustrated topographically, where blue-shaded areas
highlighted the included EEG sources.

The significant reductions in redundancy (increases in synergy) found among the
treatment group were frequency band-specific, with the predominant effects found in
the delta band followed by the gamma band (FDR critical value: p = 0.0101) (Figure 6A).
All other frequency bands did not demonstrate any nootropic effects. The delta band
demonstrated its most significantly different network interdependencies at the seventh
interaction order (F = 25.1 (p < 0.0001)); however, these significant differences continued in
a mostly consistent way up to the maximum 16th order analysed here (Figure 6A). Indeed,
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this effect was more pronounced than that found of the statistical differences found within
the delta band or any other band among the maximally redundant networks (Figure 5),
suggesting an overall effect in the direction of increased synergy for the delta band. This
most significantly different brain network in the delta band was composed of EEG sources
scattered across frontal, temporal, and parietal brain regions (Figure 6C). Meanwhile, for the
gamma band, the fifth-order network was most significantly different (F = 9.9 (p = 0.0043))
and was more focussed around the frontal and left temporal brain regions (Figure 6C).
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Figure 6. An overview of the findings from the application of O-Information (Ω) to the EEG source
signals using the GSA to find maximally discriminative networks of synergistic interactions. (A) The
F-statistic representing the group differences for each frequency band and interaction order taken from
ANCOVA models that controlled for baseline differences in Ω values. No significant differences in
favour of lower Ω among the control group were found, so the treatment group results are illustrated
only. Areas coloured white indicate no significant differences were found. The interquartile ranges
of the most significant interaction order Ω values for control (red) and treatment (blue) groups at
the baseline (B.1) and follow-up (B.2) sessions are depicted as boxplots for each frequency band.
As the system of EEG sources for participants was strongly redundancy-dominated across sessions,
the Ω values illustrated are positive but demonstrate a significant reduction in the treatment cohort
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(i.e., increased synergy). Boxplots for theta, alpha, and beta bands are not illustrated, as no significant
networks were identified within these ranges. The Ω values illustrated were normalised by the
interaction order for comparability. (C) The most significantly different brain networks were also
illustrated topographically, where blue-shaded areas highlighted the included EEG sources.

4. Discussion
This randomised, double-blinded, placebo-controlled study investigated the effects of

a plant-based nootropic supplement on visual perceptual decision-making performance and
brain network interdependencies in a healthy adult cohort. Through a visual categorisation
task where participants performed consecutive trials of rapid perceptual decision-making
based on visual stimuli (i.e., face vs. car images) while EEG signals were concurrently
captured, we analysed changes in perceptual decision-making performance (i.e., choice
accuracy and reaction times) and the underlying brain network interdependencies follow-
ing 60 days of nootropic supplementation. Supporting our a priori hypothesis, we found
evidence for pronounced neurophysiological changes despite no significant behavioural
improvements (i.e., choice accuracy or choice reaction times). Specifically, we found broad-
band changes in brain network interdependencies of various interaction orders that suggest
nootropic supplementation increased the strength of complementary and similar statistical
dependencies between brain regions, resulting in an overall enhancement of brain network
cohesion and computational capacity. The findings presented here offer a neurocomputa-
tional explanation for the increased interest in and positive self-reports of using nootropic
supplements in healthy adult cohorts despite the inconclusive behavioural effects found in
the literature.

Through the application of multivariate measures of statistical dependency (i.e., TC
and DTC) within a greedy search algorithm [28], we consistently identified significantly
greater sharing of both similar and complementary information between EEG sources
among the treatment group (see Figures 3 and 4). Remarkably, these significantly different
brain networks were found across a range of spatial scales (k = 3–16 channels) and frequency
bands (i.e., delta–gamma ranges) and, through the application of the O-Information [31,35],
were shown to signify an overall shift towards increased synergy in the brain following
nootropic supplementation (see the greater F-statistics in Figures 4A and 6A compared to
Figures 3A and 5A). Although the brain networks analysed here were strongly redundancy-
dominated (see Figure 6B.1,B.2) and redundancy was shown to increase across several
localised EEG sources (Figures 3 and 5), the most significant changes from baseline were
found in the direction of increased complementarity (Figure 4) and reductions in redun-
dancy dominance (i.e., increased synergy) (Figure 6), together suggesting improvements
in both local and distributed information processing [54]. This also suggests that the cru-
cial balance between redundancy and synergy as functionally segregative and integrative
forces, respectively, in dynamic systems like the brain was maintained following nootropic
supplementation, thus ensuring adequate robustness (through compensatory increases
in redundancy) to support the overall increase in computational capacity gained with
increased synergy [54–56]. Indeed, the prevalence of synergistic interactions has been
closely linked to goal-directed learning [57], the evolution of human intelligence and dif-
ferent states of consciousness [58,59], and it contributes to metabolically efficient neural
codes [60,61]. Hence, the main result of this study is of crucial evidentiary importance
towards demonstrating the efficacy of nootropic supplements in supporting brain health in
the general adult population.

However, aside from the evidence provided here for nootropic supplements support-
ing brain health, further work is required to fully understand their efficacy as cognitive
performance enhancers. Characteristics of the task such as the limited sample size restrict
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the conclusions that can be made from this study in this regard. The participants of both
groups exhibited high choice accuracies at both sessions, which could be perceived as the
task not being sufficiently difficult to tease out the treatment effects. However, this low
error rate provided us with a large number of valid trials to probe the brain networks un-
derpinning perceptual decision-making, which ultimately lead to identifying a consistent
enhancement of functional complementary across brain regions in the treatment group. Re-
garding sample size, our study is similar to most of the related literature that has frequently
demonstrated subtle behavioural effects [6,12,25,27–29], and our behavioural results were
further supported by Bayesian inference on within-participant tests performed on the
large-scale RT trial data [52]. This contrasts with other nootropic compounds renowned
for their obvious cognitively stimulating effects (e.g., caffeine) [28,62] but which result
in withdrawal symptoms not found among the compounds analysed here, likely due to
the modulatory effect on cortical energy expenditure with caffeine consumption [62]. The
compounds analysed here perhaps fall under a separate class of nootropics with more
subtle effects on brain metabolism and function among healthy adults that manifest over
longer timescales [1,8]. Furthermore, the supplements’ predominant effect on comple-
mentary cortical interdependencies in the delta frequency range (Figure 6) closely aligns
with recent findings demonstrating global increases in synergistic brain interdependencies
during meditation in the same neural oscillations [63]. Hence, our conjecture here is that
research on these nootropic compounds as performance enhancers among healthy adults
should instead follow a similar vein as studies on meditation and mindfulness practises that
consistently found significant effects on complex cognition (e.g., creativity, learning) [64,65].
This position is supported by the multimodal integrative functions of synergy-dominated
cortical regions most likely effected by the nootropic; however [55,59], due to the broadband
prevalence of these effects among redundant brain interdependencies (Figure 5), it does not
limit the potential of these compounds in other domains [66,67]. Future research on these
compounds in the healthy adult population should therefore examine their effects using
complementary modalities (e.g., fMRI) across greater supplementation durations and in
more deliberate cognitive tasks.

5. Limitations
The conclusions drawn from this study’s behavioural findings are limited by the

sample size included; although within-participant statistical testing supported our findings
and the fact the numbers are in line with other studies, this should still be considered. This
study suggests that the behavioural effects are subtle in comparison to the neurological
effects of the nootropic supplement in healthy adults but does not rule out the subjective
significance of any induced changes in cognitive performance, however small. Moreover,
we found anecdotally that the participants recruited had a disproportionately high level
of educational attainment compared to the general population, suggesting their cognitive
function and so may not be fully representative of the general population. Nonetheless,
the cognitive load required for this task was low, and previous studies employing this
experimental paradigm have found it to be generally applicable to various populations
(e.g., young versus old) [34]. The restricted temporal resolution of the stimulus-locked trials
analysed here (i.e., 1.25 Hz) resulted in the whole period of lower delta band frequencies
not being fully represented. Nevertheless, removal of this lower delta range (0.5–1.25 Hz) in
preliminary analyses resulted in the correlation strength of many network interdependen-
cies illustrated here being lost. Hence, we suggest that the partial coverage of these lower
frequency ranges given in this analysis provided crucial insight into the nootropic’s effects,
as evidenced by the statistically significant effects persistently shown (see Figures 3–6).
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Future work with longer naturalistic stimulations will most likely demonstrate even more
prominent nootropic effects within this delta frequency range.

6. Conclusions
This study provides neurocomputational insight into the discrepancy between the

growing popularity of natural nootropic supplements in the healthy adult population and
their inconclusive cognitive-enhancing effects, showing that pronounced neurophysiolog-
ical effects can occur in the absence of behavioural performance changes. Our findings
support the idea that natural nootropic compounds can improve brain health by enhancing
the synergy between brain regions, but these benefits do not necessarily result in cognitive
enhancement among healthy working-age adults, specifically in rapid visual perceptual
decision-making. Future work should focus on more deliberative cognitive tasks and use
complementary experimental modalities to comprehensively explain mechanistically the
cognitive effects of natural nootropics.
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