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Abstract—Millimetre-wave (mmWave) communication sys-
tems use large antenna arrays and narrow beams to achieve
strong signal power. However, this approach requires extensive
beam training, which leads to high overhead. Recently pro-
posed vision-aided beam prediction methods show promising
results, reducing this overhead. However, these techniques have
considerable computational complexity, hindering practical de-
ployment. To address this issue, we propose a Semantic-Aware
Quantised Network (SemQNet) framework that leverages image
compression and a lightweight computer vision model to extract
semantic information used for training a fully connected neural
network (FCNN). Additionally, the proposed SemQNet also uses
quantisation-aware training (QAT), which enables low-precision
arithmetic operation, reducing the model size in the training
process. Our tests on the DeepSense 6G dataset show that
SemQNet achieves almost the same top-1 accuracy as existing
vision-based methods while reducing the model size by 74.21%.
This smaller model size reduces the communication overhead,
making SemQNet a practical and efficient solution for energy-
constrained mmWave communication systems.

Index Terms—Millimetre wave, semantic communication,
beam prediction, computer vision, deep learning

I. INTRODUCTION

The future of wireless communication is rapidly advancing
toward higher frequency bands, such as millimetre-wave
(mmWave) and sub-terahertz (THz). This transition is driven
to enable services like ultra-reliable low-latency communica-
tion (URLLC), massive machine-type communication (MTC),
and enhanced mobile broadband (eMBB) [1]. Fifth-generation
(5G) networks have established a foundation for applications
such as autonomous driving, augmented or virtual reality, and
Industry 4.0. However, emerging technologies and applica-
tions like mixed reality, 8K video streaming, and telepresence
are imposing even stricter requirements, pushing the limits of
5G capabilities [2]. Beyond 5G (B5G) and sixth-generation
(6G) networks are envisioned to meet these demands by
leveraging the larger bandwidths available in mmWave and
THz frequencies. However, these high-frequency bands are
inherently more sensitive to physical obstructions, requiring
precise beamforming with large antenna arrays to maintain
stable connections [4]. This precision comes at the cost of
significant beam training overhead, creating challenges for
highly mobile, low-latency applications in dynamic environ-
ments.

Various techniques have been proposed to reduce the
beam training and channel estimation overhead in mmWave
communication systems. These approaches mainly focus on

three key strategies [3], [4]. The first approach involves
developing adaptive or hierarchical beam codebooks to ef-
ficiently narrow down the set of candidate beams with fewer
measurements [5]. The second leverages compressive sensing
techniques, which take advantage of the sparse nature of
mmWave channels, to estimate the full channel with fewer
observations [6]. The third strategy focuses on beam-tracking
methods that use user mobility information to predict future
beams, reducing the need for exhaustive searches. While
these classical methods achieve some level of improvement,
their effectiveness is limited in real-world systems, especially
with larges number of antenna arrays and applications with
stringent low-latency requirements [3].

The limitations of classical approaches have driven the
adoption of machine learning (ML) techniques to address the
beam training and channel estimation challenges in mmWave.
These methods leverage multi-modal data, such as user po-
sition and orientation, LiDAR point clouds, radar measure-
ments, and RGB images, to significantly reduce training
overhead [3], [4]. Among these, vision-aided beam prediction
has shown great potential to predict optimal beams directly
from raw RGB images. While effective, the reliance on
raw image data introduces high storage and computational
demands, making this solution less practical [4]. As a result,
further advancements are needed to balance efficiency and
performance in vision-aided wireless systems.

To address the above mentioned challenge, we propose a
Semantic-Aware Quantised Network (SemQNet) framework
that combines image compression, lightweight semantic ex-
traction, and quantisation-aware training (QAT) to enhance ef-
ficiency and scalability. Unlike prior work, such as [4], which
directly uses extracted semantic features, our framework in-
troduces an additional image preprocessing step, where RGB
images are converted to grayscale and compressed using lossy
JPEG encoding. This preprocessing reduces the data size
and computational requirements while preserving essential
spatial features. MobileNetV2 a lightweight computer vision
(CV) model then processes the compressed images to extract
bounding box (bbox) features and inputs to a fully connected
neural network (FCNN). To further optimise performance,
we integrate QAT, enabling low-precision arithmetic during
training and significantly reducing the model size without
compromising accuracy. The key contributions of this work
are highlighted as:



• Proposed SemQNet framework that uses compressed
grayscale images with lossy JPEG encoding for semantic
information extraction in a practical mmWave communi-
cation, significantly reducing data size and computational
requirements.

• Integrated QAT into the training process of FCNN to
enable low-precision arithmetic operations, reducing the
model size and training overhead while maintaining
competitive accuracy.

• Validated the proposed framework on a publicly available
dataset DeepSense 6G [7], demonstrating competitive
accuracy, improved accuracy-to-model-size ratio, and en-
hanced energy efficiency compared to existing methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section first presents the system model adopted for this
work, followed by problem formulation for semantics-aware
beam prediction.

A. System Model

This research considers mmWave communication system
with a base station (BS) equipped with an N -element uni-
form linear array (ULA) and a vision sensor to capture
the surrounding environment. The user is a mobile node
equipped with a single antenna and a GPS module to collect
real-time positional data. The communication system em-
ploys Orthogonal frequency-division multiplexing (OFDM)
for transmission, with K sub-carriers and a cyclic prefix of
duration τ . To ensure robust communication, the BS utilises
a predefined beamforming codebook B = {wq}Qq=1, where
wq ∈ CN×1 represents the beamforming vectors and Q is
the total number of beams available. Let’s assume that the
hk[t] ∈ CN×1 denotes the channel response at the k-th sub-
carrier and time instance t. The downlink signal received by
the mobile user is expressed as [4]:

rk[t] = hH
k [t]wts+ nk[t], (1)

where wt ∈ B is the beamforming vector selected at time t.
The s ∈ C is the complex transmitted symbol with a power
constraint E[|s|2] = P , and nk[t] ∼ CN (0, σ2) represent the
noise with Gaussian distribution. The optimal beamforming
vector w⋆

t is chosen to maximise the average received signal-
to-noise ratio (SNR) across all sub-carriers mathematically
given as:

w⋆
t = argmax

wq∈B

1

K

K∑
k=1

SNR|hH
k [t]wq[t]|2, (2)

where P/σ2 denotes the transmit SNR. This mathematical
formulation provides a theoretical approach to identifying
optimal beams.

B. Beam Prediction Problem Formulation

Given the system model, the goal of beam prediction is
to identify the optimal beamforming vector w⋆

t ∈ B, from a
pre-defined codebook at any time t, maximising the average

received power. Solving optimal beam prediction problems
typically requires precise channel state information, often
challenging to obtain in practical scenarios. An alternative
approach is an exhaustive search over the pre-defined beam
codebook. This exhaustive search incurs significant over-
head due to the large antenna arrays and narrow beams
in mmWave systems [8]. ML-based solutions have been
proposed to mitigate this overhead, leveraging multi-sensor
data and prior observations to facilitate rapid beam prediction
[4]. Inspired by this, we propose a semantics-aided approach
where environmental information derived from RGB images
assists in beam index prediction. Instead of directly using raw
RGB images, we compressed the images, extracted high-level
semantic features, such as object masks and bbox and trained
a DL model to predict optimal beams efficiently.

Let I[t] ∈ RW×H×C represent the RGB image captured by
the camera, placed at the BS on given time instant t, where
W , H , and C denote the width, height, and colour channels of
the image, respectively. The captured images are preprocessed
and compressed to optimise storage and processing efficiency.
This involves converting the RGB images to single-channel
grayscale and encoding them in a lossy JPEG format to
reduce their size significantly. This preprocessing step not
only reduces storage requirements but also streamlines the
subsequent extraction of high-level semantics, ensuring com-
putational efficiency. Once compressed, the images are used
to extract semantic features, denoted by S[t] from I[t]. The
task of beam prediction can then be expressed as finding a
mapping function FΘ that maps the extracted semantics S[t]
to an estimated beam index ŵt ∈ B:

FΘ : S[t] → ŵt. (3)

The ML model is parameterised by Θ, which is optimised
using a dataset D = {(Su,w

⋆
u)}Uu=1, where U is the number

of samples. The dataset consists of labelled image beam
pairs, and the objective of the ML model is to maximise the
prediction accuracy across the dataset:

Θ⋆ = argmax
Θ

U∏
u=1

Pr(ŵu = w⋆
u | Su). (4)

This work develops a deep learning (DL) framework to
learn the mapping function FΘ for mmWave beam prediction,
leveraging extracted semantic features from visual data for
efficient and accurate inference.

III. PROPOSED SEMENTIC EXTRACTION AND QAT

This section presents the proposed SemQNet framework,
which comprises three main components: image preprocess-
ing, lightweight semantic information extraction using Mo-
bileNetV2, and DL model training with QAT. The block
diagram of the proposed model is shown in Fig. 1.

A. Data Compression

The input data consists of RGB images captured by a vision
sensor placed at the BS. These images undergo preprocessing



Fig. 1. Proposed system model with QAT.

to optimise the computational efficiency and storage require-
ments, including conversion to grayscale and compression
into a lossy JPEG format. This preprocessing pipeline ensures
that the meaningful spatial features of the visual data are
preserved while reducing the data size significantly. The
system prepares the input for the subsequent semantic extrac-
tion process by transforming the RGB images into compact
representations.

B. Semantic Information Extraction

For semantic information extraction, we employ Mo-
bileNetV2 [9], a lightweight and efficient CV model opti-
mised for edge processing. Instead of training MobileNetV2
from scratch, we incorporate a pre-trained version into our
architecture with minor adjustments. This approach provides
two primary benefits: (i) enhanced detection performance
through transfer learning and (ii) accelerated training conver-
gence. By utilising transfer learning, MobileNetV2 leverages
prior knowledge gained from large, diverse datasets such
as the COCO dataset [10], which contains object classes
commonly encountered in outdoor environments.

At the inference stage of MobileNetV2, a sequence of input
compressed images I is processed; it extracts key semantic
features such as object classes and bbox coordinates. This
capability allows for the efficient conversion of raw images
into compact semantic representations denoted as S[t], which
serve as input to the beam prediction model. The bbox
features are represented as Sbbox = [xc, yc, w, h], where
Sbbox ∈ R4×1. The xc, yc are the coordinates of the object’s
center, and w and h denote its width and height, respectively.
These features are normalised to the range [0, 1] to ensure
compatibility with the training pipeline and improve model
convergence.

C. Deep Learning with QAT

The semantic features Sbbox are fed into a 2-layer fully
connected neural network (FCNN) designed for efficient and
accurate beam prediction. Each layer in the FCNN contains
175 neurons and utilises the rectified linear unit (ReLU)
activation function to model complex relationships between
the input features and the beam indices.

1) Model Architecture:
• Input Layer: Takes the 4-dimensional semantic vector

(bounding box coordinates) as input.

• Hidden Layers: Consist of two fully connected lay-
ers with 175 neurons each, designed to learn complex
relationships between the semantic features and beam
indices. This architecture is intentionally chosen for fair
comparison given in one of the pioneering works in this
domain [4].

• Output Layer: Produces a probability distribution over
the available beam indices, enabling the beam selection
that maximises the expected received SNR.

2) Quantisation-Aware Training: To achieve both accuracy
and efficiency in computation and storage, we integrate QAT,
which performs low-precision arithmetic operations, such as
using 8-bit integers instead of 32-bit floats, during training.
Unlike post-training quantisation, which applies quantisation
after a model has been fully trained in floating-point precision,
QAT includes quantisation steps directly within the training
loop [11]. By doing so, the model parameters and intermediate
features learn to be robust under low-precision arithmetic,
thereby reducing model size and computational overhead
when deployed on energy-constrained or latency-sensitive
platforms.

a) Setup for QAT: Recall from our system model dis-
cussed in Section. II-A, a dataset D = {(Su, w

⋆
u)}Uu=1, where

each Su ∈ R4 represents the extracted semantic features at
instance u, and w⋆

u ∈ {1, . . . , Q} denotes the optimal beam
index selected from a predefined beamforming codebook B.
The neural network fΘ : R4 → RQ is parameterised by Θ
(comprising weights and biases) and maps the semantic input
Su to a set of logits ẑu, where Q is the number of possible
beam indices.

Under standard (full-precision) training, the forward pass
through a two-layer FCNN can be represented as:

z(1)u = SuW1 + b1, a(1)u = ReLU(z(1)u ), (5)

z(2)u = a(1)u W2 + b2, ẑu = z(2)u .

Here, Wl and bl denote the weights and biases of the l-th
layer, and a

(l)
u the activation output from that layer.

b) Incorporating Quantisation into the Forward Pass:
The quantisation operations is introduced in the training loop,
where Q(·) represent the quantisation operator and DQ(·)
the corresponding dequantisation operator. These operators
approximate the process of mapping floating-point values
to lower-precision integers and then back again. During
training, the parameters and activations are passed through
these quantisation steps so that the model learns robust
weight distributions and feature representations to reduced
precision. For a given variable x (which could be a weight or
an activation), the quantisation process can be conceptually
described as [11]:

x̂ = DQ(Q(x)), (6)

where, Q(x) converts the floating-point value x into an integer
approximation based on observed ranges and a scale factor



and DQ(·) maps the integer back to a floating-point represen-
tation, simulating the effect of low-precision inference. When
quantisation applied to weights and activations, these become:

Ŵl = DQ(Q(Wl)), â(l)u = DQ(Q(a(l)u )). (7)

Hence, the forward pass with QAT integrated is:

z(1)u = ŜuŴ1 + b̂1, â(1)u = ReLU(z(1)u ), (8)

z(2)u = â(1)u Ŵ2 + b̂2, ẑu = z(2)u .

Here, Ŝu, Ŵl, and b̂l represent the quantised-and-
dequantised inputs, weights, and biases. During training, these
quantisation steps ensure the network learns how to operate
effectively in the quantised domain.

c) Training Objective with QAT: As beam prediction is
a multi-class classification problem, a standard cross-entropy
loss function is used, mathematically denoted as:

L(Θ) = − 1

U

U∑
u=1

log

(
exp(ẑu,w⋆

u
)∑Q

q=1 exp(ẑu,q)

)
, (9)

where ẑu,q denotes the logit corresponding to the q-th beam
index for the u-th sample. Gradient-based optimisers (e.g.,
Adam) are employed to update the full-precision parame-
ters. The quantisation operations are treated as part of the
computational graph, and straight-through estimators are used
to handle the non-differentiability of the rounding steps in
Q(·). This process ensures that the model parameters Θ are
adjusted to minimise L(Θ) while simultaneously adapting to
the constraints imposed by quantisation.

IV. DATASET AND SIMULATION SETUP

This section presents the dataset, simulation environment
and performance metrics used to evaluate the proposed
SemQNet for beam prediction in mmWave communication
systems.

A. Dataset Description

The performance of the proposed SemQNet framework is
evaluated using a publically available DeepSense 6G dataset
[7], a widely recognised benchmark for sensing-aided wireless
communication research. The dataset contains multi-modal
data collected in a real-world wireless environment, including
mmWave wireless communication signals, GPS coordinates,
and RGB images. Data acquisition was performed using a
sophisticated hardware testbed consisting of a stationary unit
(BS) and a mobile unit (vehicle). The stationary unit is
equipped with a 16-element 60 GHz mmWave phased array
and an RGB camera. In comparison, the mobile unit acts as
a transmitter with a 60 GHz quasi-omni antenna and a GPS
receiver for logging real-time location information.

Each sample in the dataset includes the transmitter’s GPS
position, an RGB image capturing the surrounding environ-
ment, and the mmWave receive power vector corresponding
to a predefined beamforming codebook. Our analysis focused
exclusively on scenario 5 of the DeepSense 6G dataset.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Batch Size 128
Learning Rate 1× 10−2

Learning Rate Decay Epochs 15 and 30
Total Epochs 50
Learning Rate Reduction Factor 0.1

This scenario features measurements collected at night in
an urban setting, creating diverse visual and communication
conditions for testing the framework’s robustness. Scenario
5 contains a total of 2,300 samples, which are divided into
training, validation, and testing subsets in a 70/20/10 ratio
to ensure a balanced evaluation. The dataset provides a rich
and challenging testbed for assessing the proposed semantic-
aware quantised network, leveraging multi-modal insights
under varying conditions.

B. Simulation Setup

The simulations for the proposed SemQNet framework
were conducted to evaluate its performance in predicting
optimal beam indices using semantic features extracted from
visual data. As outlined in the section III, image preprocessing
involves converting RGB images to grayscale and compress-
ing them into a lossy JPEG format. Semantic extraction is
performed using a pre-trained MobileNetV2 model, while the
extracted bounding box features are fed into a 2-layer fully
connected DL model trained with QAT, which employs 8-bit
integer precision to simulate low-precision arithmetic, ensur-
ing model robustness and efficiency for resource-constrained
platforms. The reason for choosing this DL model architecture
to perform a fair comparison with the pioneer work proposed
in [4]. Additionally, we also utilised the other semantic repre-
sentation image mask, extracted using the MobileNetV2. The
model configuration and simulation setup is same as given
in [4]. Moreover, the DL model uses the ReLU activation
function and is trained using the Adam optimiser with a
cross-entropy loss function. The simulations were imple-
mented in PyTorch with GPU acceleration enabled, utilising
an Intel RTX 4060 GPU. The key simulation parameters
are summarised in Table I. This simulation setup ensures a
rigorous evaluation of the proposed framework’s performance
under realistic conditions, leveraging state-of-the-art tools and
techniques for semantic-aware beam prediction.

C. Performance Metric

The evaluation of the proposed SemQNet framework for
semantic-aware beam prediction is based on three key per-
formance metrics: top-k accuracy and energy efficiency.
These metrics provide a comprehensive understanding of
the framework’s predictive accuracy, resource efficiency, and
computational feasibility in real-world scenarios.



1) Top-k Accuracy: Top-k accuracy is the primary metric
used to evaluate the predictive performance of the proposed
framework. It is defined as the percentage of test samples with
the ground-truth beam index within the top-k predicted beam
indices. This metric assesses the ability of the framework to
rank the optimal beam index highly among its predictions. For
comprehensive evaluation, we report top-1, top-2, and top-3
accuracies.

2) Energy Efficiency: Energy efficiency is critical for de-
ploying the proposed framework in energy-constrained en-
vironments. It is measured as the average electrical energy
consumption required to transfer raw data or model param-
eters over a wireless link, expressed in kilowatt-hours per
gigabyte (kWh/GB). The energy efficiency is estimated using
the following equation:

Eest = N
[
(α× tc) + (β × Ptrn)

]
, (10)

where, tc is the computation time for training, N is the num-
ber of sharing iteration, Ptrn denotes size of model parameters,
α is computation constant (0.003), and β is communication
constant (0.0001) [12].

V. RESULTS AND DISCUSSIONS

This section focuses on the performance evaluation of
proposed SemQNet framework using the metrics discussed
in Section IV-C.

A. Top-k Beam Prediction Performance

The results in Fig. 2 present the top-k beam prediction
accuracies achieved by four modalities: Vision, bbox, Mask,
and the proposed SemQNet framework. The comparison
evaluates the effectiveness of each approach in identifying the
optimal beam index under a consistent simulation setup for
fair benchmarking, as used in the base paper [4]. For Vision,
a ResNet-50 model processes raw RGB images; for bbox, a
two-layer FCNN is employed; Mask utilises a LeNet-based
CNN architecture; and SemQNet leverages QAT-FCNN with
semantic information from compressed greyscale images.

The top-1 accuracy results highlight that SemQNet achieves
an accuracy of 57.02%, closely matching the performance
of Vision 58.1% and bbox 57.75%, with only a negligible
drop. This performance underscores the ability of SemQNet
to maintain accuracy despite the use of compressed input data
and an energy-efficient architecture. Conversely, the Mask-
based approach achieves a significantly lower top-1 accuracy
of 47.5%, highlighting the limitations of binary mask repre-
sentations for beam prediction. Additionally, the increasing
trend in accuracy from top-1 to top-3 across all modalities
demonstrates the ability of these models to capture a broader
range of plausible beam indices. This is particularly important
in practical scenarios where the wireless environment is dy-
namic, and providing multiple high-probability beam options
can enhance decision-making reliability.

Vision bbox Mask SemQNet
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Fig. 2. This figure plots top-k accuracies for four modalities. For comparison,
the modalities vision, bbox, and Mask from base paper [4] are also plotted
with our proposed SemQNet.
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Fig. 3. This figure plots top-1 accuracy vs model size in (MB) for four
modalities.

B. Model Size vs. top-1 Accuracy

The results in Fig. 3 illustrate the relationship between
model size (in MB) and top-1 accuracy for four modalities
used in the simulation setup. This comparison highlights
the trade-off between accuracy and model complexity, show-
casing the efficiency of SemQNet in achieving competitive
accuracy with significantly reduced model size. For instance,
the Vision modality processes raw RGB images using a
ResNet-50 architecture and achieves the top-1 accuracy of
58.1%, but at the cost of the largest model size, 2.265 MB.
In contrast, the bbox modality, utilising a two-layer FCNN for
bounding box features, achieves a comparable top-1 accuracy
of 57.75% with a much smaller model size of 0.31 MB,
making it significantly more efficient. However, our proposed
SemQNet framework achieves a top-1 accuracy of 57.02%,
closely matching Vision and bbox, with the smallest model
size of only 0.08 MB. This result underscores the impact of
incorporating QAT, which reduces the memory and energy
footprint of model training without compromising accuracy.

C. Energy Efficiency

As wireless systems are deployed over large geographical
areas, data collection and model training are often performed
in centralised locations, requiring edge nodes to transmit raw



Fig. 4. This figure plots the energy estimates in (kWh/GB) vs number of
share rounds during training.

data to a central server. This centralised approach, however,
incurs significant communication overhead, particularly as the
volume of data and number of iterations grow. An alternative,
energy-efficient paradigm is distributed learning, where edge
nodes perform semantic extraction and local model training
before sharing only the model parameters with a central server
for aggregation. Hence, to evaluate the effectiveness of our
proposed SemQNet framework, we performed a simulation
in a distributed manner where the edge node shared the
model parameter to a centralised server over 20 iterations. The
cumulative energy consumption was estimated by simplifying
the energy estimate energy given in Section IV-C. Here, we
considered the communication overhead only resulting the
Eest = N(β × Ptrn).

The results, plotted in Fig. 4, shows the linear relationship
between energy consumption and communication rounds. The
model size Ptrn emerges as the primary factor influencing
energy expenditure, with larger models incurring greater
communication overhead. For instance, Vision demonstrates
the steepest growth with a cumulative energy estimate of
4.42 × 10−6 due to its large model size. In contrast, the
bbox and Mask exhibit moderate energy consumption, with
cumulative of 6.05 × 10−7, and 9.41 × 10−7, respectively.
Finally, the proposed SemQNet, with its highly compact
model size, achieves the lowest cumulative energy consump-
tion of 1.56 × 10−7, minimising communication overhead
while maintaining competitive predictive performance.

VI. CONCLUSION

In this work, we proposed SemQNet, a novel framework
for semantic-aware beam prediction in mmWave commu-
nication systems. The framework incorporates an efficient
image preprocessing pipeline that converts RGB images to
grayscale and applies lossy JPEG encoding to enable seman-
tic information extraction using a lightweight MobileNetV2
model. The extracted bounding box features are then used
to train a FCNN optimised with QAT, which reduces the
model size and enables low-precision arithmetic, transitioning
from float32 to int8 operations. The proposed framework
was evaluated on the DeepSense 6G dataset, achieving top-

1 accuracy comparable to Vision-based (ResNet-50) and
bbox-based (FCNN) approaches. Despite using compressed
images and lightweight architecture, SemQNet demonstrated
competitive predictive performance, validating its effective-
ness. Furthermore, SemQNet achieved a 74.21% reduction in
model size, significantly lowering communication overhead
in distributed learning scenarios. This work highlights the
potential of SemQNet for resource-constrained, low-latency
applications, paving the way for energy-efficient and scalable
solutions in next-generation wireless communication systems.
Future efforts will focus on extending the latency analysis
and exploring further optimisation to enhance real-time per-
formance in highly dynamic environments.
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