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Summary
This paper proposes a Lasso-based estimator which uses information embedded in

the Moran statistic to develop a selection procedure called Moran’s I Lasso (Mi-Lasso)
to solve the Eigenvector Spatial Filtering (ESF) eigenvector selection problem. ESF
uses a subset of eigenvectors from a spatial weights matrix to efficiently account for
any omitted spatially correlated terms in a classical linear regression framework, thus
eliminating the need for the researcher to explicitly specify the spatially correlated
parts of the model. We proposed the first ESF procedure accounting for post-selection
inference. We derive performance bounds and show the necessary conditions for con-
sistent eigenvector selection. The key advantages of the proposed estimator are that it
is intuitive, theoretically grounded, able to provide robust inference and substantially
faster than Lasso based on cross-validation or any proposed forward stepwise proce-
dure. Our simulation results and an application on house prices demonstrate Mi-Lasso
performs well compared to existing procedures in finite samples.

Keywords: Spectral analysis, cross-sectional dependence, post-selection inference, high-
dimensional statistics, Lasso.

1. INTRODUCTION

In conventional spatial economic modeling, the researcher is required to specify (i) a spa-
tial weights matrix (SWM) describing the pair-wise relationships between the n cross-
sectional units and (ii) a spatial model specifying the spatial correlation of the variables.
Standard specifications typically include one or more spatial lags of the dependent, ex-
ogenous and/or error term (Kelejian and Piras 2017). Historically, applied researchers
have generally focused more on specifying the SWM rather than the empirical spatial
structure (LeSage and Pace 2014) and a standard robustness check in the applied spa-
tial economic literature is to test sensitivity of the estimates to different SWMs. When
estimates are found to be sensitive to the choice of SWM, researchers have attributed
this sensitivity to the choice of SWM itself. However LeSage and Pace (2014) show that
as long as the various SWMs are reasonably well correlated, estimates should not be
affected, which implies that the observed sensitivity is driven by misspecification of the
spatial economic model rather than the choice of SWM. LeSage and Pace (2014) thus
argue that correct specification of the spatial model should receive more attention.
The Eigenvector Spatial Filtering (ESF) approach, introduced by Griffith (2000, 2003),
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2 S. Barde, R. Cherodian and G. Tchuente

addresses this issue by using a subset of eigenvectors from the SWM as controls, filtering
out spatial effects from the model. Its key strength lies in its agnosticism towards the
functional form of the underlying spatial process: this offers a distinct advantage over
conventional maximum likelihood (ML) and/or generalized method of moments (GMM)
based methods, precisely because researchers are not required to explicitly specify the
process generating the spatial correlation. The ESF approach assumes instead that spa-
tial parameters are nuisance parameters. This is particularly advantageous when the
spatial process is not the primary focus of the estimation, making this feature appealing
to applied researchers who seek to obtain the unbiased direct effect of a change in an
explanatory variable from data exhibiting cross-sectional dependence.1 This approach is
preferred because establishing the presence of an underlying spatial process through a
spatial correlation test is generally easier than determining its exact form.
As a result of this feature, ESF has gained significant attention in applied economics,

for examples see Patuelli et al. (2012); Crespo Cuaresma and Feldkircher (2013); Cserek-
lyei and Stern (2015); Oberdabernig et al. (2018); Kourtellos et al. (2020); Sanso-Navarro
et al. (2023). In environmental economics, for instance, many outcomes of interest are
inherently spatially correlated. For example, when examining greenhouse gas emissions
like CO2, or energy production (Csereklyei and Stern 2015), researchers are concerned
with the direct effects of policy interventions or human actions, and spatial parameters
can be treated as nuisance parameters. Additionally, in estimating the impact of exoge-
nous shocks at the local level, researchers often leverage spatial variation between regions
without explicitly modelling spatial correlation, as seen in studies by Aum et al. (2021);
Bargain and Aminjonov (2020).
Despite its appeal, the critical challenge for ESF is that the spectral decomposition

of the n × n SWM yields n eigenvectors and if all are included in the model, it be-
comes high-dimensional and estimation by Ordinary Least Squares (OLS) is infeasible.2

Griffith (2003) argues that only a subset of eigenvectors is necessary to eliminate the
cross-sectional dependence in the dependent variable. The key question becomes identi-
fying which subset of eigenvectors is required, which we refer to as the ESF eigenvector
selection problem. Several solutions to this selection problem have been proposed, such
as several stepwise greedy algorithms where eigenvectors are iteratively added until some
user-specified threshold is reached (Griffith 2000, 2003; Tiefelsdorf and Griffith 2007).
These stepwise greedy algorithms are simple heuristic approximations to the full ESF
selection problem, thus, they are necessarily sub-optimal. Under the assumption of spar-
sity (i.e. most eigenvector coefficients are zero) Seya et al. (2015) propose using an ℓ1-
penalised regression, e.g. Lasso. Given that Lasso estimates are ultimately determined by
a tuning parameter, this turns the eigenvector selection problem into a tuning parameter
calibration problem. Seya et al. (2015) propose estimating the tuning parameter using
conventional K-fold cross-validation (CV) with prediction accuracy as the loss function.
However, a first problem is that the existing theoretical results on CV-Lasso assume the
cross-sectional units are independent (Chetverikov et al. 2020), which is hard to justify
in the context of ESF, where the eigenvectors are derived from a matrix that encodes
cross-sectional dependence. Additionally, the goal of ESF is to eliminate spatial correla-

1Throughout this paper, we will use the terms cross-sectional dependence and spatial dependence
interchangeably.
2‘High-dimensional’ will specifically refer to specifications with more parameters to estimate than ob-
servations, leading to a rank-deficient Gram matrix.
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Moran’s I Lasso 3

tion patterns and provide reliable inference on the parameter(s) of interest, not improve
prediction accuracy, and there is no guarantee that running CV with a prediction accu-
racy loss will yield consistent eigenvector selection. Related to this, the ESF literature
provides no results on constructing robust standard errors, and because all the proposed
procedures can be viewed as post-model selection estimators, they may suffer from cor-
responding inference problems (see in particular Leeb and Pötscher, 2008; Belloni et al.,
2014; Farrell, 2015), especially if eigenvector selection is inconsistent.
This paper proposes an alternative procedure for choosing the ESF Lasso tuning pa-

rameter, called Moran’s I Lasso (Mi-Lasso), which uses a transformation of the Moran’s I
spatial correlation statistic (Moran 1950) as a point estimate for the Lasso tuning param-
eter. The intuition behind Mi-Lasso is that when the spatial correlation in the residuals
is low, only a small set of eigenvectors will be necessary, so a high level of regularisation
is required, and vice versa for a high level of residual spatial correlation. We show that
Mi-Lasso has several advantages; the method is (i) intuitive, (ii) theoretically grounded,
(iii) able to provide robust inference and (iv) substantially faster than Lasso with K-fold
CV or the stepwise iterative greedy algorithms suggested in the literature.

More specifically, we establish the theoretical properties of Mi-Lasso by formalising the
assumption, implicit in the ESF literature, that the terms which include the SWM can
be represented by a subset of eigenvectors. Under some standard spatial regularity condi-
tions, we then derive non-asymptotic bounds for the coefficients of the eigenvectors and
also assess the additional conditions required for Mi-Lasso to yield consistent eigenvector
selection. Simulations confirm that Mi-Lasso performs well, both in terms of bias and of
coverage, for a range of levels of spatial correlation and when the data-generating process
includes higher-order lags. Regarding computational time, Mi-Lasso is at least an order
of magnitude faster than CV-Lasso. Finally, we examine the practical performance of
Mi-Lasso with an empirical application using the Boston Housing Dataset. We find that
Mi-Lasso selects more than triple the number of eigenvectors compared to existing ESF
procedures, and is more conservative then them in terms of assessing the significance of
estimated parameters.
The rest of this paper is organised as follows, Section 2 describes the underlying model.

Section 3 discusses the statistical aspects of ESF and looks at existing methods for the
ESF eigenvector selection problem. Section 4 presents the Mi-Lasso procedure and derives
several theoretical results. Section 5 provides a Monte Carlo study comparing Mi-Lasso
to the main existing selection procedures. Section 6 tests the proposed method in an
empirical application on house prices. Finally, Section 7 offers our concluding remarks.

2. UNDERLYING MODEL

Consider the following equation, where the endogenous n × 1 vector y is specified as a
function of an n× k matrix of exogenous regressors X and follows some spatial process:

y =Xβ0 + f(W,y,X, r) + v, (2.1)

where β0 is the k × 1 parameter vector of interest and f(W,y,X, r) is a function that,
as explained below, consists of a linear combination of spatial lags of arbitrary power.
W is an n× n SWM of known constants,3 y, X and an n× 1 vector r. One example of

3We allow for W to be normalised by a scalar factor as it allows for the recovery of the original
autoregressive parameters (Kelejian and Prucha 2010) and maintains symmetry.
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4 S. Barde, R. Cherodian and G. Tchuente

such a model is:

y =Xβ0 +

p
∑

i=1

W iyρi,0 +WXψ0 + r, (2.2)

r = δ0Wr + v, (2.3)

where ψ0, ρi,0’s and δ0 describe the degree of spatial correlation in each of the k exogenous
variables, the dependent variable and error term. Simpler spatial models can be recovered
by setting the spatial parameters ρi,0, δ0, and/or ψ0 equal to zero, and most spatial
models set p = 1. The reduced form for y of the DGP (2.2) - (2.3) is:

y = S−1
1 (Xβ0 +WXψ0 + S

−1
2 v),

assuming that both S1 ≡ (I −∑p
i=1W

iρi,0) and S2 ≡ (I − δ0W ) are non-singular.
The SWM W , with typical element wij , describes the spatial or socio-economic rela-

tionship between the cross-sectional units. When wij ̸= 0, there is a meaningful inter-
action of units j on unit i. In such cases, unit j is often referred to as a neighbour of
unit i. These interactions can stem from various sources, such as spillovers, externalities,
geographic location, regulations, technology, government policy, or government expendi-
ture. We further assume mini

∑n
j=1 |wij | > 0 with probability 1, wii = 0 by construction

and wij = wji. The variablesWr,WX andW iy are typically referred to as first order
spatial lags of r and X and ith order spatial lags of y.

Let N denote the set of observations Nn = N = {1, . . . , n}. All variables are nor-
malised, as the transformed model is estimated by a Lasso-based procedure. For reasons
of generality, we allow the elements of un, yn, Wn and Xn to be dependent on n, that
is to form triangular arrays, however, to simplify the notation we omit the n index.
Our analysis is conditioned on realised values of X and W . We consider higher-order
spatial lags only as powers of the SWM W and we allow the number of lags p to be
unknown.4 Even if p is known, the estimation of such a model is non-trivial, as shown
by Blommestein (1985). When the SWM is binary, powers of the SWM can result in the
presence of circular and redundant routes. Proper higher-order spatial lags need to have
these circular and redundant routes eliminated.5

We now make the following assumptions about variables in Equation (2.1)

Assumption 2.1. (Regularity of DGP)

1 (a) W are stochastic real symmetric n×n matrices with wii = 0. (b) The sequence
{W } is uniformly bounded in both row and column sums.

2 The n×k matrices of exogenous variables X has full column rank (for large enough
n) and all the elements of X are uniformly bound in absolute value for all n.

3 The elements of the vector of innovations v are identically and independently dis-
tributed (i.i.d.) sub-Gaussian triangular arrays with E[v] = 0 and E[vv′] = σ2

vI

where 0 < σ2
v < ∞. Additionally, the innovation’s fourth moment is assumed finite.

4More recent papers studying the estimation of higher-order spatial models, have generalised the con-
cept of a higher-order spatial lag to allow for p different weights matrices, thus, replacing W i with Wi

in (2.2). Powers of W are viewed as a special case.
5Algorithms to construct ‘proper’ higher-order spatial lags have been proposed in the literature, for
example see Anselin and Smirnov (1996).
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Moran’s I Lasso 5

Assumption 2.1.1-2.1.3 are standard assumptions in the spatial econometrics literature
(Kelejian and Prucha 1998; Lee 2004). Assumption 2.1.1 (a) is required for the spectral
decomposition, and symmetric SWMs are common in spatial applications, where the
SWM is often based on connectivity or distance between pairs of units. A non-symmetric
SWM is also possible if the corresponding eigenvectors are real (a symmetric SWM
guarantees this). Assumption 2.1.1 (b) is necessary to limit the degree of dependence in
y. Given Assumption 2.1.1 (a) if the true model is (2.2)-(2.3) and W is normalised by
the largest eigenvalue then invertibility of S1 and S2 holds if

∑p
i=1 |ρi,0| < 1 and |δ0| < 1.

Assumption 2.1.2 ensures that the Gram matrix X ′X/n is invertible. Assumption 2.1.3
requires the errors to be sub-Gaussian, this assumption allows us to derive a probability
for the Lasso tuning parameter dominating the noise of the model. If the errors are
not sub-Gaussian then results presented in Section 4 hold as long as the Lasso tuning
parameter dominates the noise of the model. The finite fourth moment is needed for the
selection consistency proof.

3. EIGENVECTOR SPATIAL FILTERING

3.1. Spectral Decomposition and Spatial Filtering

We now show how eigenvectors from a spectral decomposition of W can be used to
spatially filter the model described in Section 2. Given assumption 2.1.1 (a), the spectral
decomposition of the real and symmetric matrix W is given by:

W = EΛE′, (3.4)

where E is an n×n matrix of n eigenvectors ei∈N and Λ is a n×n diagonal matrix of n
eigenvalues (λi∈N ) from W . The intuition behind ESF is to use individual eigenvectors
ei∈N as explanatory variables to proxy for f(W,y,X, r), yielding a high dimensional
reduced form model:

y =Xβ0 +Eγ0 + v, (3.5)

This requires the following assumptions:

Assumption 3.1. (Sparse Spectral Representation)

1 f(W,y,X, r) = Eγ0 where E is the n× n matrix of eigenvectors of W .

2 ||γ0||0 = s < n− k where s = sn is the cardinality of the active set Ω := supp(γ0).

Assumption 3.1.1 ensures that f(W,y,X, r) can be controlled for exactly using the
eigenvectors E. This assumption is satisfied if f(W,y,X, r) is a linear combination of
spatial lags, as each additive term in f(W,y,X, r) is pre-multiplied byW . For example,
substituting (2.3) into (2.2) and using the spectral decomposition of W (3.4) gives:

y =Xβ0 +EΛE′

(

p
∑

i=1

W i−1yρi,0 +Xψ0rδ0

)

+ v (3.6)

Substituting γ0 := ΛE′ (∑p
i=1W

i−1yρi,0 +Xψ0rδ0
)

recovers (3.5).
While the spectral representation assumption 3.1.1 helps to obtain the reduced form

(3.5), this specification is high-dimensional and cannot be estimated consistently by OLS,
due to the violation of the assumption that the regressor matrix G = [X,E] has full
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6 S. Barde, R. Cherodian and G. Tchuente

column rank.6 This implies a rank-deficient Gram matrix G′G/n with zero-valued eigen-
values.
Assumption 3.1.2 addresses this problem by requiring that the spatial process be

sparse, such that enough degrees of freedom are available to estimate the model by
OLS. This is a strong assumption, in the sense it implies exact sparsity, requiring enough
elements of γ0 to be exactly 0. Note that s does not need to be small relative to n, just
small enough for OLS estimation (with the relevant set), which is not overly restrictive
unless n is very small.
It is important to note that the ESF Literature implicitly assumes a sparse spectral

representation, which is formalised by assumption 3.1. Sparsity or approximate sparsity
is commonly observed in many spatial processes and as detailed below, an intuitive
justification is that each of the eigenvectors as representing a specific dimension of full
spatial domain and only a subset of these dimensions/patterns will be related to y.

If assumption 3.1 holds then f(W,y,X, r) = Eγ0 = EΩγΩ where EΩ is an n × s
matrix with columns that correspond to Ω and γΩ the corresponding vector of unknown
constants. Thus (3.5) can be reduced to the following low-dimensional equation, where
Υ0 = [β0,γΩ]

′ and GΩ = [X,EΩ].

y = GΩΥ0 + v, (3.7)

In principle, (3.7) can then be estimated by OLS. However, as EΩ is unknown, this is
infeasible in practice. Thus, we now have a selection problem.

3.2. Existing ESF Selection Procedures and the Moran’s I

ESF methods differ in the way they solve the problem of identifying EΩ, the relevant
set of eigenvectors. The first type of procedures proposed are forward stepwise greedy
algorithms, where eigenvectors are iteratively added until some user-specified threshold
is reached (Griffith 2000, 2003; Tiefelsdorf and Griffith 2007). Griffith (2003) proposes
iteratively adding eigenvectors in a greedy manner to the base regression:

y =Xβ + u, (3.8)

until the spatial correlation in the OLS residual û falls below a pre-specified level. Tiefels-
dorf and Griffith (2007) suggest using the standardised version of Moran’s I statistic for
spatial autocorrelation (Moran 1950) as the criterion for the greedy algorithm.
The test statistic for the Moran’s I (m) on the regression residual MXy = û of

y =Xβ + u where MX = I −X(X ′X)X ′ is given by:

m =
y′MXWMXy

y′MXy
=
û′Wû

û′û
, (3.9)

where W is a n× n real symmetric SWM.7 Substituting (3.4) in (3.9):

m =
û′EΛE′û

û′û

6This is because of rank(G) = rank(G′G) ≤ min(n, (n+ k)).
7The assumption of symmetry of the elements of W is maintained w.l.o.g. since û′Wû = û′[(W +
W ′)/2]û.
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Moran’s I Lasso 7

The standardised version of Moran’s I statistic (Z) on the residual û is:8

Z =

(

m− E[m]
√

Var(m)

)

, (3.10)

E[m] =
tr(MXWMX)

n− k
,

Var(m) =

2

(

(n− k)tr
(

(MXWMX)2
)

−
[

tr(MXWMX)
]2
)

(n− k)2(n− k − 2)
.

In practice, the forward stepwise greedy algorithm searches for the eigenvector within
the candidate set Ec that minimizes |Z|. The selected eigenvector ei∈N is then removed
from Ec and added to the design matrix of (3.8), and the residuals û of this updated
regression are tested to check if |Z| < ϵ, where ϵ is a pre-specified threshold level of Z,
which they suggest should be dependent on the sample size n.9 If the condition is satisfied
the iterations stop, if not the algorithm continues searching in the remaining candidate
eigenvector set Ec, with this iterative process continuing until |Z| < ϵ.

Tiefelsdorf and Griffith (2007) motivate the use of Moran’s I based on its power against
a wide array of autoregressive models and residual distributions (Anselin and Rey 1991),
and the fact it can be used for small samples (Kelejian and Piras 2017). De Jong et al.
(1984) show that the range of m is the range of the eigenvalues of MXWMX , and all
possible realisations of m are just linear combinations of these n eigenvalues (Tiefelsdorf
and Boots 1995; Boots and Tiefelsdorf 2000), implying that Moran’s I can be decomposed
into the contribution provided by each eigenvector. This is visible from the fact that the
numerator of m includes E′û, which given the orthogonality of E is the OLS estimate
from a regression of û on E. Griffith (2003) thus argues that the n eigenvectors represents
mutually orthogonal spatial patterns, and only a subset Ec ⊆ E will be relevant to the
model, i.e., in a regression framework only that subset will have non-zero coefficients. On
this basis, Griffith (2003) makes several recommendations. First, if y exhibits positive
global spatial autocorrelation then Ec should be restricted to those eigenvectors with
positive eigenvalues and thus associated with at least weak positive spatial autocorrela-
tion. Second, eigenvectors with small eigenvalues should be excluded from Ec, suggesting
a minimum threshold eigenvalue of 0.25, which is related to only approximately 5% of
the variation attributed to spatial correlation in the dependent variable.

These forward stepwise procedures, through intuitive, have several key disadvantages.
First, a lot of parameters are left to the user’s discretion, such as, which statistic or
information criterion to use, what threshold ϵ to use, which eigenvectors to include in
the initialEc, and in which order to add the eigenvectors. Second, these greedy algorithms
could also be at risk of data mining, with estimated models falling victim to over-fitting.
Third, all these approaches are heuristics that aim to simplify the original, and infeasible,
subset sum problem; therefore the solutions they obtain will be sub-optimal, with no
guarantee they are close to the optimal one. Finally, these sequential methods carry a
large computational burden, which becomes more acute when n is large. This can be

8Note the matrix X in the orthogonal projection matrix MX may also include the selected eigenvectors
in Tiefelsdorf and Griffith (2007) procedure.
9Tiefelsdorf and Griffith (2007) suggest if n < 50 then ϵ ≈ 1.0 and if n ≈ 500 then ϵ ≈ 0.1.
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8 S. Barde, R. Cherodian and G. Tchuente

mitigated by limiting Ec with the rules of thumb mentioned above, but again with no
guarantee these rules will consistently recover EΩ.
This motivates Seya et al. (2015) to propose using Lasso (Tibshirani 1996), which

shrinks many of the coefficients to zero, and can thus be used for variable selection. Seya
et al. (2015) use Lasso under the assumption that the parameter vector γ0 is sparse and
the matrix of regressors X has full column rank, so that only the γ vector is penalised.
The resulting Lasso estimator is:

[β̂θ, γ̂θ] ∈ min
β∈Rk

min
γ∈Rn

{||y −Xβ −Eγ||22 + θ||γ||1}, (3.11)

where θ > 0 is the Lasso regularization or tuning parameter. Equation (3.11) defines a
family of estimators indexed by the tuning parameter θ, a hyperparameter that ultimately
determines which eigenvectors the Lasso selects.
Seya et al. (2015) propose using k-fold cross-validation (CV) combined with the Brent

algorithm to estimate θ̂, with prediction accuracy as the loss function. The Brent algo-
rithm is a root-finding algorithm that allows for the optimisation to be non-convex: the
algorithm first tries inverse quadratic interpolation in an attempt to achieve faster con-
vergence, which works well if the optimisation is convex. If it is non-convex and inverse
quadratic interpolation fails, (slower) linear interpolation is used instead. CV using the
Brent algorithm is the most time-consuming part of the Seya et al. (2015) Lasso proce-
dure. Additionally, because the theoretical results on CV-Lasso hinge on the assumption
that the cross-sectional units are independent (Chetverikov et al. 2020), it is hard to
justify their validity for ESF, where eigenvectors are derived from a matrix that encodes
cross-sectional dependence. CV procedures do exist for cross-sectionally dependent data
but they need to be carefully designed, for example see Li et al. (2020).
Some other methods have also been proposed. Pace et al. (2013) suggest simply in-

cluding the first j eigenvectors (sorted by eigenvalue magnitude) where j is simply based
on the sample size. Given this fixed rule, Pace et al. (2013) finds the quality of the ESF
approximation is sensitive to the underlying spatial processes. Chun et al. (2016) argue
that more eigenvectors are needed when the level of spatial correlation is high compared
to when it is low, thus simple rules based, for example, on sample size may result in a
sub-optimal set of eigenvectors being selected. Additionally, it is also important to note
that none of these proposed procedures take into account the post-selection inference
problem (Leeb and Pötscher 2008), so are unlikely to provide robust inference.

4. THE MORAN’S I LASSO ESTIMATOR

4.1. Moran’s I Lasso framework for eigenvector selection

Lasso estimates are ultimately a function of the tuning parameter θ. Supposing θ = 0,
the Lasso solution reduces to the OLS solution, whereas with a sufficiently large θ the
penalised parameter vector is shrunk to zero (no eigenvectors selected). More moderate
values of θ will result in some parameters being shrunk towards zero and some to precisely
zero. As outlined above, the goal of ESF is to eliminate spatial correlation patterns in a
linear regression framework. Information about these patterns will be contained in the
regression residuals û, and we propose using these to determine a point estimate for θ.

It seems reasonable to assume that when the level of spatial correlation in the residuals
is low, only a small set of eigenvectors is necessary. Thus, a high level of regularization
(value of θ) is required. In contrast, when the level of spatial correlation is high, a large set
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Moran’s I Lasso 9

1 Decompose the SWM to get the candidate set of Eigenvectors E.
2 Estimate simple residuals û =MXy where MX = I −X(X ′X)−1X ′ and

calculate corresponding the absolute standardised Moran’s I of û denoted Z
3 Estimate

[β̂L, γ̂L] ∈ min
β∈Rk

min
γ∈Rn

{||y −Xβ −Eγ||22 +
1

Z2
· ||γ||1} (4.12)

and save the selected eigenvectors, denoted EL.
4 Let β̂pr be the OLS coefficient from a regression of ȳ = y −ELγ̂L on MEX

where ME := I −EL(E
′
LEL)

−1E′
L.

5 Calculate a conventional (heteroskedastic) standard error for β̂pr.

Algorithm 1: Mi-Lasso Algorithm

of eigenvectors will be necessary. Thus, a low level of regularization (value of θ) is required.
Following Tiefelsdorf and Griffith (2007) we propose using the standardised Moran’s I
(3.10) to measure the spatial correlation of the residuals due to its previously mentioned
properties, in particular its decomposability with respect to the set of eigenvectors E
used in the Lasso estimation. As Z takes on large values when the correlation is high
and small values when the correlation is low, we propose using the inverse of the square
of Z from the residuals of (3.8) as a point estimate of θ,

θ =
1

Z2
, ∀ Z ̸= 0 (4.13)

The inverse square ensures that the tuning parameter is always positive regardless of the
value of Z, as a positive tuning parameter is required for a unique Lasso solution to exist.
This choice is further discussed in section 4.3. The proposed estimator is called Moran’s
I Lasso (Mi-Lasso) and is outlined in Algorithm 1.
As Lasso is a shrinkage estimator, it induces a downward bias on the estimated non-

zero coefficients. One option is to use post-Lasso, where the Lasso estimator is first used
as a selection procedure, before OLS is used to estimate the model selected by Lasso.
This straightforwardly provides unbiased estimates, assuming Lasso selects the correct
eigenvectors. The Moran’s I Post-Lasso (Mi-pLasso) estimator is defined as:

[β̂pL, γ̂pL] = min
β∈Rk

min
γ∈Rn

||y −Xβ −Eγ||22 subject to supp(γ0) = supp(γ̂L). (4.14)

However, in practice there is no guarantee Lasso will yield perfect selection. Wüthrich
and Zhu (2023) highlight the often large impact that imperfect selection and the resulting
omitted variable bias has on the standard errors of post-Lasso and double post-Lasso
(Belloni et al. 2014). Their recommendation, which is to use instead the high-dimensional
OLS method of Cattaneo et al. (2018), cannot be used here because by construction the
number of regressors in (3.5) is larger than n, ruling out even high-dimensional OLS.
Moreover, our estimation procedure, which is Lasso-based, enables us to improve on
existing Lasso ESF methods, such as Seya et al. (2015).
In order to conduct inference over β, conditional on the nuisance parameter γ, we

propose an alternative way to calculate standard errors, based on a partial regression
framework similar to that of Chernozhukov et al. (2015). The procedure uses the Lasso
estimate of γ and EΩ (the Lasso selected eigenvectors) denoted γ̂L and EL. Specifically,
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10 S. Barde, R. Cherodian and G. Tchuente

we propose using the estimate of an OLS regression of ȳ = y −ELγ̂L on MEX where
ME := I −EL(E

′
LEL)

−1E′
L. This corresponds to a partial regression framework, where

the Lasso residuals of y on the eigenvectors E are regressed on the residuals of an OLS
regression ofX on the selected eigenvectors. The difference, namely the lack of selection in
the regression ofX on E, ensures that the resulting partial regression estimator produces
the same point estimate as Mi-pLasso (4.14), i.e. β̂pr = β̂pL.

10 The correspondence of the
two point estimators means that the theoretical properties derived below carry across,
while also ensuring that the procedure provides appropriate coverage, as confirmed in
the Section 5 simulations.
In order to focus the theoretical analysis on the parameter vector γ, we use the FWL

partial regression theorem to partial out the X matrix. Yamada (2017) show that the
FWL theorem could be used in a low-dimensional Lasso setting. Lemma 4.1 shows that
the FWL theorem can also be applied to the high-dimensional case of Mi-Lasso.

Lemma 4.1. Consider the following two Lasso regressions:

[β̂, γ̂] = min
β∈Rk

min
γ∈Rn

{||y −Xβ −Eγ||22 +
1

Z2
||γ||1}, (4.15)

[γ̃] = min
γ∈Rn

{||ỹ − Ẽγ||22 +
1

Z2
||γ||1}, (4.16)

where X is an n × k matrix, E is an n × n matrix, ỹ = MXy, Ẽ = MXE with
MX = I −X(X ′X)−1X ′. Then if Assumptions 2.1 and 3.1 holds γ̂ = γ̃.

The proof is provided in the supplementary material.
We now introduce the following additional notation in the design. Without loss of

generality, let CΩΩ = n−1Ẽ′
ΩẼΩ, CΩῺ = n−1Ẽ′

ΩẼῺ, CῺΩ = n−1Ẽ′
Ὼ
ẼΩ and CῺῺ =

n−1Ẽ′
Ὼ
ẼῺ where ẼΩ is an n×s matrix with columns corresponding to the active set Ω. Ὼ

is the complement set and the n×q matrix ẼῺ is defined accordingly with qn = q = s−n.

The block-wise (re-scaled) Gram matrix Cn = C = n−1Ẽ′Ẽ is thus:

C =

[

CΩΩ CΩῺ

CῺΩ CῺῺ

]

.

Similarly we define γ = [γΩ,γῺ]
′ = [γ1, . . . , γs, γs+1, . . . , γn]

′.

4.2. Non-asymptotic bounds

This section produces performance bounds for the Mi-Lasso estimates of γ. Given the
high-dimensional structure of ESF, the Gram matrix G′G/n is singular. This implies its
minimum eigenvalue will be zero. However, as shown by Bickel et al. (2009) for the case
of Lasso, the following restricted eigenvalue (RE) condition only requires the appropriate
sub-matrix of the Gram matrix to have positive and finite eigenvalues.

Assumption 4.1. (Restricted Eigenvalue) Let b̄ and t be positive constants and Ω

10This due to the idempotent property of ME , combined with the fact that by construction MEEL

produces a null matrix.
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Moran’s I Lasso 11

denote the active set. Then the restricted eigenvalue condition holds for Ẽ, as n → ∞ if
we assume:

τmin := min
C(Ω,b̄)

||Ẽ∆||2√
n||∆||2

≥ t > 0, (4.17)

where

C(Ω, b̄) = {∆ ∈ R
n : ||∆Ὼ||1 ≤ b̄||∆Ω||1, ∆ ̸= 0} (4.18)

and ∆ = γ̃ − γ0.

Assumption 4.1 requires that ∆ lies within the restricted set (4.18). As ∆ is the
difference between the estimate γ̃ and the true parameter γ0, the restricted eigenvalue
bounds the minimum change in the prediction norm from a deviation ∆ within the
restricted set C(Ω, b̄) relative to the norm of the deviation on the true support ∆Ω.
By combining Assumptions 2.1 and 3.1 with the RE condition, and treating X and E

as constants (realisations) we can now establish the ℓ1 and ℓ2 parameter norm bounds
and the ℓ2 prediction norm bound for the Mi-Lasso estimates of γ.

Theorem 4.1. Suppose Assumption 2.1-3.1 and Assumption 4.1 holds for b̄ = b+1
b−1 for

some b > 1 and the regularization parameter satisfies 1
Z2 ≥ 2b

√

4σ2
v
logn
n with probability

tending to one as n → ∞, then:

||γ̃ − γ0||1 ≤
(

1
b + 1

)

s

τ2minZ
2n

, (4.19)

||γ̃ − γ0||2 ≤
(

1
b + 1

)√
s

τ2minZ
2n

, (4.20)

1√
n
||Ẽ(γ̃ − γ0)||2 ≤

(

1
b + 1

)√
s

τminZ2n
. (4.21)

The proof is provided in the supplementary material.
The three convergence rates presented in Theorem 4.1 depend on the number of eigen-

vectors with non-zero coefficients, the sample size, and Z. They also require that the
tuning parameter dominates the noise of the model. By assuming the errors are sub-
Gaussian (Assumption 2.1.3) we prove the probability of this event occurring goes to one
as n → ∞ (see proof for further details).

Corollary 4.1. If the condition of Theorem 4.1 are satisfied and s/Z2n = op(1) then
the bounds (4.19)-(4.21) are op(1) as n → ∞.

Corollary 4.1 is satisfied if Z = Op(1), which is reasonable as Z is a measure of
correlation, and s grows at a rate slower than n, which is satisfied by Assumption 4.2.4
below.

4.3. Consistent Eigenvector Selection

This section shows the conditions required for Mi-Lasso to consistently select the non-
zero and zero elements in γ. Following Zhao and Yu (2006), we say that γ̃ =s γ0 if and
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12 S. Barde, R. Cherodian and G. Tchuente

only if sign(γ̃) = sign(γ0) where sign(·) maps positive entry to 1, negative entry to -1
and zero to zero. We now define selection consistency for Mi-Lasso as:

Definition 4.1. (Zhao and Yu 2006) Mi-Lasso estimates γ̃ are selection consistent if:

lim
n→∞

P (γ̃ =s γ0) = 1.

The following assumptions are required to prove sign consistency of Mi-Lasso.

Assumption 4.2. (Selection Consistency) There exists M1,M2,M3 > 0, 0 ≤ c1 <
c2 ≤ 1 and a vector of positive constants ν, such that the following holds:

1 1
n ẽ

′
iẽi ≤ M1 ∀i,

2 α′CΩΩα ≥ M2 ∀ ||α||22 = 1,

3 n
1−c2

2 mini=1,...,s |γi| ≥ M3,
4 s = O(nc1),
5 |CῺΩ(CΩΩ)

−1 sign(γΩ)| ≤ 1− ν.

Assumption 4.2.1 is a normalisation of the transformed eigenvectors. Assumption 4.2.2
bounds the eigenvalue of the eigenvectors with non-zero coefficients from below, so the
inverse of CΩΩ is well behaved. Assumption 4.2.3 and Assumption 4.2.4 are required
as they ensure convergence in the high dimensional space as n → ∞. Assumption 4.2.3
ensures there is a difference of size nc2 between the decay rate of γΩ and

√
n, preventing

the estimates from being dominated by the disturbance terms, which aggregate at a rate
of n−1/2. Assumption 4.2.4 is a sparsity assumption that requires the square root of the
size of the true model

√
s to increase at a slower rate than the rate difference, preventing

the Lasso estimation bias from dominating the model parameters. Assumption 4.2.4 is a
stronger sparsity assumption than Assumption 3.1.2. Assumption 4.2.5 (assuming CΩΩ

is invertible) is the Irrepresentable Condition (IC), which is the necessary condition for
the consistency of Mi-Lasso selection, the inequality holds element-wise. The IC requires
the correlation between the relevant and irrelevant eigenvectors to be zero or weak. In
the Mi-Lasso framework, this is likely to be satisfied as the columns of E are mutually
orthogonal. The columns of Ẽ may not be, however, as the eigenvectors are projected
into the column space of X. Unfortunately, in practice, the IC is impossible to verify as
we do not know the true parameter vector γ0.

Theorem 4.2. Assuming Assumption 2.1, 3.1 and 4.2 hold, and c2 − c1 = 0.5. Given

s+q = n implies Mi-Lasso is sign consistent for all 1
Z2 that satisfy 1

Z2
√
n
= op(n

c2−c1
2 ) =

op(n
1
4 ) and 1

n3Z8 → ∞, we have

P
(

γ̃ =s γ0
)

≥ 1−O(n3Z8) → 1 as n → ∞.

The proof is provided in the supplementary material.
Theorem 4.2 shows that Mi-Lasso is consistent in selecting the true model if the 4th

moment of the errors is finite (Assumptions 2.1.3), Assumptions 2.1-4.2 hold and the
difference between c2 and c1 is 0.5. The greatest difference (between c2 and c1) for which
Mi-Lasso is consistent is 0.5, smaller differences can also yield consistency, but this would
require higher order moments of the errors to be finite. For example, if we assume that
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Moran’s I Lasso 13

the 6th or 8th moment is finite, the difference would need to be 1/3 or 0.25 for Mi-Lasso
to be consistent (see proof for further details).
Throughout the paper we have specifically used θ = Z−2 as the penalty parameter in

the Mi-Lasso method. However, the theoretical results obtained above can hold for a wider
range of inverse transformations. Assuming a more general regularization parameter θa =
|Z|−a, the condition in Theorem 4.1 becomes:

1

|Z|a ≥ 2b

√

4σ2
v log n

n
(4.22)

Similarly, the conditions from Theorem 4.2 become:














1

|Z|a√n
= op(n

c2−c1
2 ) = op(n

1
4 )

1

n3|Z|4a → ∞
(4.23)

Taken together, conditions (4.22) and (4.23) provide the following bounds on the trans-
formation exponent a, where cn is a sequence converging to 0:

log

(

2b

√

4σ2
v log n

n

)

≤ a log

(

1

|Z|

)

≤ cn

(

log
(

n
c2−c1+1

2

))

. (4.24)

Based on a sensitivity analysis that was run on these bounds for reasonable values of
b, σ2

v and n, we formulate the following remark, which motivates a = 2 as a pragmatic
choice.11

Remark 4.1. In presence of significant spatial correlation, θ = Z−2 has a high proba-
bility of being amongst the values of θa = |Z|−a, with a ≥ 0, for which the assumptions
of Theorem 4.1 and 4.2 are compatible.

5. SUMMARY OF MONTE CARLO ANALYSIS

In order to evaluate the finite sample performance of Mi-Lasso and compare it to the
main existing ESF procedures, we conduct two Monte Carlo exercises with a DGP given
by (2.2). The set of estimators compared includes näıve OLS, which regresses y on x
ignoring spatial correlation, the CV-Lasso algorithm of Seya et al. (2015), the forward
stepwise algorithm of Tiefelsdorf and Griffith (2007), as well as an alternative version of
algorithm 1, where post-Lasso is used to obtain the estimate of β in step 4.

In the interest of brevity, Table 1 presents a summary of the results obtained for the
case where each spatial unit has an average of µ = 4 connected neighbours. The tables
containing the full results of the analysis are provided in the supplementary material.
Overall, the findings of the analysis support the theoretical properties discussed in section
4. All ESF estimators perform well in terms of the bias on β̂, clearly outperforming OLS,
and Mi-Lasso provides the same point estimate as a post-Lasso estimation on the selected
model, i.e. β̂pL = β̂pr. Instead, the first key difference between the ESF methods lies in
the coverage statistics, where Mi-Lasso produces the best coverage, i.e. closest to the
optimal values of 0.95 and 0.99. In particular, as discussed in section 4.1, näıvely using
post-Lasso on the Lasso-selected eigenvectors leads to poor inference, specifically overly

11The results of this sensitivity analysis are available in the supplementary material.
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14 S. Barde, R. Cherodian and G. Tchuente

n ρ1 Estimator Bias MSE SD AASE CI95 CI99 |Ω̂|

Näıve OLS 0.019 0.012 0.109 0.104 0.934 0.989 -
Mi-pLasso 0.010 0.013 0.113 0.100 0.918 0.977 3

100 0.3 Mi-Lasso 0.010 0.013 0.113 0.106 0.938 0.986 3
Post CV-Lasso 0.005 0.014 0.117 0.098 0.894 0.971 3
FstepZ 0.003 0.019 0.138 0.104 0.874 0.962 13

Näıve OLS 0.047 0.016 0.116 0.109 0.903 0.981 -
Mi-pLasso 0.011 0.017 0.130 0.093 0.813 0.904 13

100 0.6 Mi-Lasso 0.011 0.017 0.130 0.116 0.914 0.985 13
Post CV-Lasso 0.010 0.016 0.126 0.100 0.870 0.959 4
FstepZ -0.026 0.019 0.134 0.100 0.872 0.945 9

Näıve OLS 0.089 0.024 0.127 0.117 0.861 0.959 -
Mi-pLasso 0.005 0.022 0.148 0.079 0.702 0.820 36

100 0.9 Mi-Lasso 0.005 0.022 0.148 0.143 0.929 0.979 36
Post CV-Lasso 0.009 0.019 0.136 0.101 0.839 0.943 5
FstepZ -0.056 0.023 0.141 0.098 0.807 0.913 12

Näıve OLS 0.016 0.004 0.063 0.065 0.951 0.991 -
Mi-pLasso 0.012 0.005 0.066 0.064 0.937 0.984 3

250 0.3 Mi-Lasso 0.012 0.005 0.066 0.065 0.949 0.990 3
Post CV-Lasso 0.010 0.005 0.067 0.062 0.937 0.983 4
FstepZ 0.006 0.007 0.085 0.064 0.894 0.963 19

Näıve OLS 0.036 0.006 0.066 0.067 0.921 0.985 -
Mi-pLasso 0.013 0.006 0.077 0.059 0.841 0.934 25

250 0.6 Mi-Lasso 0.013 0.006 0.077 0.070 0.924 0.986 25
Post CV-Lasso 0.017 0.005 0.069 0.063 0.919 0.977 5
FstepZ -0.012 0.006 0.075 0.062 0.904 0.966 13

Näıve OLS 0.063 0.009 0.070 0.070 0.852 0.952 -
Mi-pLasso 0.005 0.007 0.084 0.047 0.699 0.829 82

250 0.9 Mi-Lasso 0.005 0.007 0.084 0.082 0.939 0.985 82
Post CV-Lasso 0.019 0.006 0.076 0.064 0.883 0.960 9
FstepZ -0.029 0.007 0.080 0.062 0.847 0.945 19

Näıve OLS 0.012 0.002 0.048 0.046 0.930 0.976 -
Mi-pLasso 0.008 0.003 0.049 0.045 0.917 0.967 5

500 0.3 Mi-Lasso 0.008 0.003 0.049 0.046 0.924 0.974 5
Post CV-Lasso 0.005 0.003 0.050 0.044 0.915 0.970 6
FstepZ -0.003 0.003 0.059 0.045 0.896 0.955 18

Näıve OLS 0.033 0.004 0.050 0.047 0.881 0.964 -
Mi-pLasso 0.002 0.003 0.059 0.038 0.792 0.893 78

500 0.6 Mi-Lasso 0.002 0.003 0.059 0.051 0.917 0.971 78
Post CV-Lasso 0.014 0.003 0.054 0.045 0.889 0.964 10
FstepZ -0.017 0.003 0.055 0.044 0.875 0.957 21

Näıve OLS 0.059 0.006 0.053 0.050 0.762 0.910 -
Mi-pLasso -0.006 0.004 0.065 0.027 0.589 0.703 243

500 0.9 Mi-Lasso -0.006 0.004 0.065 0.064 0.938 0.978 243
Post CV-Lasso 0.013 0.004 0.059 0.045 0.860 0.954 17
FstepZ -0.036 0.005 0.058 0.044 0.786 0.901 37

Note: MSE is mean squared error, SD is the standard deviation of β̂, AASE is the average
asymptotic standard error, CI95/99 is the coverage of the 95/99 % confidence intervals.

Table 1: Bias, MSE, SD, AASE, and 95/99 %coverage and selected eigenvectors for µ=4
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Variable Description

p Median values of owner-occupied housing in thousands of U.S. dollars
crim Per capita crime
zn Proportion of residential land zoned for lots over 25,000 ft2 per town
indus Proportion of non-retail business acres per town
chas An indicator: 1 if tract borders Charles River; 0 otherwise
nox Nitric oxide concentration (parts per 10 million) per town
rm Average number of rooms per dwelling
age Proportion of owner-occupied units built prior to 1940
dis Weighted distance to five Boston employment centers
rad Index of accessibility to radial highways per town
tax Property-tax rate per ✩US10,000 per town
ptr Pupil–teacher ratio per town
black Percentage of blacks
lsp Percentage of lower status population

Table 2: Variables used in Boston housing application

tight confidence intervals and poor coverage. A second difference lies in the computational
requirements of the methods, where Mi-Lasso outperforms the other ESF methods by at
least an order of magnitude, as it does not require iterative methods to either select the
eigenvectors or the Lasso penalisation parameter.

6. EMPIRICAL APPLICATION - BOSTON HOUSING DATASET

We now compare the ESF selection procedures on the Boston Housing Dataset, first
used by Harrison and Rubinfeld (1978) to evaluate the relationship between house prices
and demand for clean air, and later reveal by Gilley and Pace (1996) upon noting the
high spatial correlation in the dataset. This provides an illustration of the kind of ap-
plied setting described in the introduction: the parameter of interest is the effect of
nitric oxide concentration, but the data is spatially correlated. Given that there is no
guarantee that Gilley and Pace (1996) provide the correct specification, and given that
the researcher might only concerned with the direct effect of the variable, ESF is an
appropriate methodology, allowing to simply control for the spatial effects.12

The dataset includes 508 census tracts (spatial units). Table 2 describes the variables
used in the analysis. The eigenvectors are from a binary SWM where the tracts are
connected if they share a border, and the SWM is normalised by the maximal of the row
(or column) sum. The following basic model (excluding any eigenvectors) is:

ln(p) =β0 + β1crimi + β2zni + β3indusi + β4chasi + β5nox
2
i + β6rmi + β7agei

+ β8disi + β9radi + β10taxi + β11ptri + β12blacki + β13lspi + εi.

Table 3 shows a sub-set of the covariate parameter estimates for näıve OLS (ignoring
the spatial correlation), Mi-Lasso, post CV-Lasso, and FstepZ. These results show that
the OLS estimates are biased by spatial dependence. For example, the coefficient on nox2,
dis, and rm all exhibit a downward bias in the simple-OLS case. It is important to note
that the Mi-Lasso standard errors are generally larger than the other filtered estimates

12The data is from the R package ‘spdep’ (Bivand and Wong 2018).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
c
tj/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/e

c
tj/u

ta
f0

0
8
/8

0
4
5
5
9
2

 b
y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

0
 M

a
rc

h
 2

0
2
5



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

16 S. Barde, R. Cherodian and G. Tchuente

Dependent variable: ln(p)

Näıve OLS FstepZ Post CV-Lasso Mi-Lasso
(1) (2) (3) (4)

zn 0.001∗∗∗ 0.001∗ 0.001∗∗∗ 0.0002
(0.0004) (0.0004) (0.0004) (0.001)

indus 0.002 -0.0003 0.003 0.005
(0.002) (0.002) (0.002) (0.003)

chas 0.104∗∗∗ 0.038 0.065∗∗∗ 0.059
(0.038) (0.038) (0.025) (0.056)

nox2 -0.588∗∗∗ -0.219∗ -0.126 -0.220
(0.124) (0.125) (0.096) (0.177)

rm 0.091∗∗∗ 0.177∗∗∗ 0.221∗∗∗ 0.194∗∗∗

(0.028) (0.032) (0.016) (0.019)
dis -0.047∗∗∗ -0.032∗∗∗ -0.029∗∗∗ -0.028∗∗

(0.008) (0.007) (0.006) (0.011)
black -0.003∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗

(0.001) (0.001) (0.001) (0.002)
lsp -0.029∗∗∗ -0.020∗∗∗ -0.017∗∗∗ -0.020∗∗∗

(0.004) (0.003) (0.002) (0.004)

Adj. R2 0.785 0.896 0.901 -
Resid. S.E. 0.189 0.132 0.129 -
d.f. 492 431 449 -

No. Eigenvectors - 61 43 197

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parenthesis. Full re-
sults of covariate estimates can be found in the on-line supplement. The adjusted
R2, residual standard error and the degrees of freedom are omitted for Mi-Lasso as
they are not comparable to the other estimator, due to the partial regression step of
Algorithm 1.

Table 3: Sub-set of Parameter Estimation Results

and in some cases this changes the significance, for example zoned land (zn), adjancency
to the Charles river (chas) and nitic oxide concentration (nox) - the parameter of interest
in Harrison and Rubinfeld (1978) - are insignificant for Mi-Lasso and significant for
simple-OLS and other filtered procedures. Combined with the findings of the Monte-Carlo
analysis regarding coverage, this suggests that the significance obtained with existing ESF
might in fact be spurious.

7. CONCLUSION AND FURTHER WORK

The main aim of this paper is to improve on existing solutions to the ESF eigenvector
selection problem. Various methods currently exist, with none dominating clearly in
practice. Both the forward-iterative procedures with a user-defined cut-off (Tiefelsdorf
and Griffith 2007) and the CV-Lasso method (Seya et al. 2015) are relatively slow,
especially as sample size increases. Furthermore, these methods can be seen as ad-hoc,
as there is a lack of theoretical results in the ESF literature. In the case of CV-Lasso, for
instance, the methodology aims to maximise prediction accuracy, while the goal of ESF
is to reduce bias on the parameter of interest β.
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This paper starts by formalising the assumptions that underpin ESF, and on the
basis of these proposes an alternative Lasso-based procedure called Moran’s I Lasso (Mi-
Lasso). Rather than use CV to obtain the Lasso penalisation parameter θ, this method
uses information about the level of spatial correlation in the näıve regression residuals,
measured using Moran’s I, to determine a point estimate for θ. In a second step, once the
eigenvectors have been selected, it uses a partial regression framework to obtain reliable
inference on β. The key benefits of the method are that it is intuitive, theoretically
grounded, provides good coverage of the sampling distribution of β̂, and is substantially
faster than stepwise procedures or the CV Lasso of Seya et al. (2015). We have derived
performance bounds for the Mi-Lasso estimates of the eigenvector coefficients and shown
the conditions necessary for the estimator to provide consistent eigenvector selection.
Our simulation results confirm that the estimator performs well in terms of bias, MSE
and coverage compared to existing selection procedures for a range of levels of spatial
correlation and in an empirical application on house prices.
While this paper provides an important first step in formalising and improving ESF

methods, several limitations remain, providing direction for future work. First, it relies on
strong sparsity and spectral assumptions for the reduced form to hold, in particular that
the SWM used in the estimation is the same as the one in the DGP. This is unrealistic in
practice, especially when considering that empirical SWMs will almost never correspond
to the exact connectivity of the (unknown) DGP, and therefore warrants a relaxation
to approximate sparsity and spectral assumptions. Second, while the simulations carried
out suggest that the partial regression framework used in the final step performs well,
it falls short of a formal normality proof for the distribution of the resulting estimator,
which calls for further investigation in this direction.
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