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Abstract  24 

Remote sensing data could increase the value of tropical forest resources by helping to map 25 

economically important species. However, current tools lack precision over large areas, and 26 

remain inaccessible to stakeholders. Here, we work with the Protected Areas Authority of Peru 27 

to develop and implement precise, landscape-scale, species-level methods to assess the 28 

distribution and abundance of economically important arborescent Amazonian palms using 29 

field data, visible-spectrum drone imagery and deep learning. We compare the costs and time 30 

needed to inventory and develop sustainable fruit harvesting plans in two communities using 31 

traditional plot-based and our drone-based methods. Our approach detects individual palms of 32 

three species, even when densely clustered (average overall score, 74%) with high accuracy 33 

and completeness for Mauritia flexuosa (precision; 99% and recall; 81%). Compared to plot-34 

based methods, our drone-based approach reduces costs per hectare of an inventory of Mauritia 35 

flexuosa for a management plan by 99%  (USD 5 ha-1 versus USD 411 ha-1),  and reduces total 36 

operational costs and personnel time to develop a management plan by 23% and 36%, 37 

respectively. These findings demonstrate how tailoring technology to the scale and precision 38 

required for management, and involvement of stakeholders at all stages, can help expand 39 

sustainable management in the tropics. 40 

Keywords: Palm tree detection, UAV, extensive areas, tropics, Deep learning, CNN, instance 41 

segmentation, management, Peruvian Amazon, crown, Arecaceae, Non Timber Forest 42 

Products, Aguaje, Buriti  43 
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1. Introduction 46 

 47 

High-resolution UAV data promises to provide cost-effective solutions to a range of 48 

conservation challenges in the tropics1. For example, these platforms have been used to 49 

enable community-led wildlife monitoring in Borneo2 and delimit priority areas for 50 

conservation and restoration in tropical dry forests in Peru3. However, despite their 51 

potential, much of the use of UAVs retains a focus on the technology, rather than leading 52 

to operational conservation success4. This failure is an example of the research-53 

implementation gap5 which is linked, in broad terms, to insufficient focus on how to link 54 

researchers and stakeholders 6–8.  55 

 56 

This issue is particularly notable in the use of UAVs to map and monitor tree species 57 

populations in moist forests 9–12. Sustainable use of forest products derived from tropical 58 

trees is crucial for addressing the interlinked challenges of biodiversity conservation, 59 

supporting livelihoods of local communities and climate change mitigation, and could 60 

greatly benefit from the use of cost-effective means of mapping species populations at the 61 

scale of entire landscapes. However, there are no cases of the operational use of species-62 

level monitoring by UAVs by stakeholders to support this goal. In contrast, current 63 

approaches with high resolution RS data focus on cases where the phenology or colour of 64 

the species are highly distinctive13,14 or where the species only occurs at low densities10 65 

neither of which are focused on management needs. The challenges are two-fold. First, we 66 

need to overcome the technical challenge of the issues that stakeholders face where they 67 

require these data, and second, we need to ensure that these ‘conservation tools’ are 68 

accessible to, and adopted by, stakeholders15. 69 

 70 



   

 

   

 

We address these twin challenges in the context of sustainable Click or tap here to enter 71 

text.harvesting16,17 of the fruit of arborescent palms in Amazonia - Mauritia flexuosa, 72 

Oenocarpus bataua, and Euterpe precatoria18–20 (Fig. 1). These species are vital for 73 

supporting local communities, providing food and habitat for wildlife18,21–23 and 74 

maintaining key ecosystem services 23–26 including in landscapes with exceptional levels of 75 

carbon storage - M. flexuosa dominated palm swamps store 5.4 Gigatonnes of carbon, 76 

mostly belowground as peat27,28. These species are well-suited to sustainable management 77 

as they are among the most abundant tree species in Amazonia (so-called “hyperdominant” 78 

species)29 and have a high economic value30: the gross potential value of M. flexuosa fruit 79 

harvesting in northern Peru was estimated at  USD 41 ± 20.1 million annually16, whilst the 80 

global E. precatoria market was valued at USD 796.9 million in 2022 and is expected to 81 

grow at an annual growth rate of 11.3% until 203231; the market for oil from O. bataua 82 

fruits is also expected to grow by 4% annually until 2031 32,33. However. these species face 83 

anthropogenic threats that diminish both their abundance and regeneration potential17. To 84 

address the increasing demand for these resources, management plans that implement non-85 

destructive methods of fruit harvesting, such as climbing, must be developed and 86 

implemented25,34.   87 

 88 

Numerous initiatives have been established to promote sustainable fruit harvesting from 89 

economically and ecologically important arborescent palms. However, a key challenge for 90 

developing effective management plans for these resources is accurately mapping their 91 

abundance and distribution. Traditional plot-based fieldwork methods are inefficient, 92 

particularly given the vast extent and often waterlogged conditions of these ecosystems 35–
93 

37. High spatial resolution imagery is an attractive potential solution38, yet, previous studies 94 

that mapped tropical peatlands have a spatial resolution of approximately 30 m which 95 



   

 

   

 

provides insufficient detail to measure the abundance of palms accurately35,36,39,40. 96 

Commercial satellite imagery with sub-50 cm resolution exists, but it is limited by cost and 97 

cloud cover, similar to the use of crewed airborne imagery38,41. In contrast, uncrewed aerial 98 

vehicles (UAVs) provide a cost-effective, safe option for obtaining very high spatial 99 

resolution imagery (approximately 10 cm) at sufficient spatial scale for management 100 

purposes (100-1000 ha)38. When combined with deep learning techniques, UAVs allow the 101 

use of automated procedures for individual tree species detection9,42,43, as well as palm 102 

species detection and quantification10,12. However, an operational method for landscape-103 

scale mapping and quantifying the abundance of palm species in dense tropical forest, 104 

where the crowns of the same species often overlap, has not yet been implemented. While 105 

such methods hold great potential to expand the use of management plans in these 106 

ecosystems, the challenge extends beyond technological proof-of-concept. For these 107 

‘conservation tools’ to be effective at landscape scales, they must be robust, cost-effective, 108 

easy to implement and tailored to the needs of user organizations15. Stakeholder 109 

involvement is crucial at every stage of development and, the costs - including capital 110 

expenditure, implementation and training - must be comparable or lower than other 111 

approaches15.  112 

 113 

Here, we therefore not only aimed to automate the detection and quantification of three 114 

economically important palm tree species - Mauritia flexuosa, Oenocarpus bataua and 115 

Euterpe precatoria - using a combination of field data, red-green-blue (RGB) uncrewed 116 

aerial vehicle (UAV) imagery, and deep convolutional neural networks (CNNs) - but also 117 

to demonstrate how it provides a cost- and time-effective solution for the Peruvian 118 

government’s Protected Areas authority (SERNANP) to manage these forest resources. To 119 

achieve this, we collected RGB UAV images and GPS location points from multiple sites 120 



   

 

   

 

where M. flexuosa, E. precatoria, or O. bataua occurred in the region of Loreto in northern 121 

Peru (Supplementary Fig. 1). We developed semantic segmentation maps to classify UAV 122 

mosaics pixels as one of the three palm species or as background, and then trained a model 123 

to partition the semantic segmentation maps into individual palm crowns. We tested the 124 

models using UAV mosaics spanning 70-230 hectares from the Madre de Dios region in 125 

southern Peru (Fig. 2) to assess the distribution and abundance of the palm species. 126 

SERNANP then applied this technology to complete inventories as part of developing two 127 

community-led management plans for sustainable palm fruit harvesting. Finally, we 128 

compared the costs of inventories and developing management plans using traditional plot-129 

based versus our drone-based approach.  130 

Our work is applicable to other tropical regions, as it offers a model trained across a range 131 

of forest conditions for bridging the gap between technological development and practical 132 

conservation. By demonstrating how UAV-based tools can be effectively implemented, we 133 

provide a pathway for supporting forest management and conservation outcomes globally. 134 

 135 

2. Results and discussion 136 

a. Landscape-scale palm species mapping 137 

Our approach showed a high level accuracy for detecting the crowns of Mauritia flexuosa 138 

(accuracy of positive predictions: precision 99%; completeness of positive predictions: 139 

recall 69% and average overall performance: F1 score of 81%) but lower accuracy for 140 

Euterpe precatoria (89% Precision at 50% recall and F1 of 64%) and Oenocarpus bataua 141 

(85% Precision at 52% recall and F1 of 65%) as they were not as abundant in the training 142 

data as M. flexuosa (Table 1; Supplementary Table 1). For instance, model 1, which had 143 

only 18 training palms for E. precatoria, was unable to detect this species. In contrast, 144 



   

 

   

 

model 6, which had 266 training records for this species, achieved a higher level of 145 

accuracy. 146 

 147 

The success of this semantic segmentation method is particularly noteworthy given that 148 

the UAV mosaics used in Madre de Dios were captured by UAV cameras that were not 149 

used for model training, and that the floristic composition varies between regions40,44. 150 

This high level of robustness and generalization can be attributed to the use of a diverse 151 

set of training samples and the inclusion of data augmentation techniques. These 152 

techniques, which modify existing training images, introduce variations that simulate 153 

varying flight conditions, such as changes in flying height, illumination, wind presence, 154 

humidity, and different camera settings. By artificially expanding datasets through 155 

image augmentation, the likelihood of encountering similar cases in future data is 156 

increased. Our study therefore supports work showing that combining a diverse dataset 157 

with data augmentation is a highly effective technique for enhancing dataset quality and 158 

improving model performance 45,46. 159 

 160 

b. Landscape-scale palm quantification 161 

Overall, our model accurately quantifies the abundance of arborescent palm species 162 

even amidst densely clustered and large  populations of palms (Fig. 3, Supplementary 163 

Fig. 2). The approach works particularly well for M. flexuosa (Fig. 3) but could be 164 

improved for O. bataua and E. precatoria by including more training data, especially 165 

from forest types that were not well represented in this research (e.g. terra firme forests). 166 

In general, the performance of the model is highest in areas where more training data 167 

was available and where palm crowns were fully visible: difficulties arise when palms 168 

are stacked on top of each other, which results in some crown centres not being visible, 169 



   

 

   

 

and hence the palm crowns are not split and the number of individuals is underestimated 170 

compared to field data (Fig. 4). 171 

 172 

The developed method allows us to detect the centre of arborescent palms, delineate 173 

their crowns based on the distance to the centre and the learned shape of the palm, and 174 

count the number of individuals in a given area. Our approach shows a high level of 175 

generalization across lowland Amazonian regions, but it would still be valuable to 176 

evaluate the performance of our model in other Amazonian forests where these 177 

arborescent palm species also occur along with varying tree species composition, such 178 

as in pre-montane forests or other regions of Amazonia.  179 

 180 

In large UAV mosaics, there are some areas with artifacts that can result in 181 

misclassifications. This is evident in the case of O. bataua, where false positives are 182 

prone to occur when certain artifacts resemble the long leaves of this species. Although 183 

the model is able to reduce some misclassifications if the misclassified areas are smaller 184 

than the average size of the palm crowns, this issue may lead to an overestimation of 185 

the number of individuals. Additionally, some palm individuals remain undetected due 186 

to crown shape distortion, which occurs particularly when artifacts appear along the 187 

borders of mosaics or during the blending of large mosaics. This issue can be mitigated 188 

by adhering to best practices during UAV flights particularly avoiding flights during 189 

windy conditions47 and during pre-processing. Clipping the edge of the mosaics can also 190 

reduce the relief displacement often associated with insufficient overlap between 191 

images48. Working with larger UAVs such as Vertical Take Off and Landing UAVs 192 

(VTOLs), could also increase the coverage extent and improve image blending, as they 193 



   

 

   

 

capture more images in a single mission 49. Their use and associated cost analysis remain 194 

areas for future research. 195 

The high-resolution location data provided by the UAV mosaics enables us to visualize 196 

the spatial distribution and ecological associations of the palm species at a fine scale. 197 

These data therefore provide a foundation for exploring processes, such as 198 

environmental filtering, dispersal limitation, gene flux and/or conspecific interactions 199 

that may determine the distributions of tropical tree species 50,51. For example,  M. 200 

flexuosa, in our study area, tends to form large clusters in waterlogged areas, closer to 201 

water bodies, and O. bataua tends to cluster in swampy patches within terra firme 202 

forests25,29,52,53, suggesting that environmental filtering may be important for these 203 

species, whereas  E. precatoria shows a scattered distribution and forms smaller 204 

groups54, which may reflect an important role for dispersal limitation (Fig. 5). 205 

 206 

It is important to note that the predictions of our model are solely based on the top 207 

canopy, as the UAV mosaic only captures the upper layer of the forest. Therefore, the 208 

model detects sub-canopy and understorey palms to a much lesser extent. However, in 209 

natural forests, taller individuals of M. flexuosa - being in the top canopy and receiving 210 

higher light incidence- bear more and larger fruits suitable for commercialization 55, 211 

with similar trends for E. precatoria56 and O. bataua 57. Hence, fruit production is 212 

concentrated in mature canopy palms, making this underestimation negligible when 213 

using this approach to map this resource to support the development of management 214 

plans. 215 

 216 

c. Bridging the research-implementation gap 217 

 218 



   

 

   

 

Our approach to bridging the research-implementation gap with  mapping the 219 

distribution of these palms, mirrors the framework of Reed et al. (2014)8  and builds on 220 

insights from the conservation planning 6 and conservation technology literature15 .  221 

 222 

First, the key stakeholder, the Peruvian Protected Areas Authority (SERNANP), was 223 

involved from the proposal stage (i.e. during project ‘design’ 8) and the research 224 

question that we address - mapping palm species in dense stands - is a key question for 225 

SERNANP (i.e. the research ‘represents’ stakeholder needs 8). For example, in the 226 

region of Loreto, only 1.29% of harvested M. flexuosa fruits come from approved 227 

management plans (Regional Government of Loreto, 2019), highlighting the need for 228 

more effective resource inventory techniques to improve resource management. To 229 

date, SERNANP has granted 28 permissions to harvest M. flexuosa in the Loreto region 230 

58 and is in the process of issuing these permissions in the Madre de Dios region 59 , with 231 

our technology being used in two of these initial cases. 232 

 233 

Second, our research has engaged stakeholders over a long period8 with a strong focus 234 

on capacity building and training 6. Over the past decade, multiple research projects 235 

have brought SERNANP and our research team together, exploring the distribution and 236 

carbon stores of these palm swamps27,36, the economic potential of palm fruit harvesting 237 

16 and the potential to identify crowns of different palm species60. Our current 238 

collaboration has involved significant engagement activities through in-person and 239 

online workshops, as well as ad hoc meetings. We began with an initial session to 240 

harmonize ideas and identify stakeholder needs (online, April 10, 2019, with 18 241 

participants). This was followed by drone flight training (May 24, 2019, with 7 242 



   

 

   

 

participants), training on image preprocessing, including mosaicking (January 28, 2020, 243 

with 36 participants), and a session for using the model and providing feedback on its 244 

performance, primarily through visual assessments (August 2, 2020, with 4 245 

participants). Third, the technology we developed is designed to be user-friendly15 based 246 

on open-source software (Palacios, Tagle et al. in prep), making it accessible and easy 247 

for stakeholders to use.  248 

 249 

Finally, our approach is cost effective compared to existing methods for resource 250 

inventory.  Traditionally, SERNANP has used plot-based methods for the resource 251 

assessments58.  To compare the costs of the plot- and drone-based approaches, we used 252 

data from SERNANP to analyse the expenses associated with implementing traditional 253 

plot-based (over 10 ha) and UAV-based methods (over 200 ha) for generating these 254 

inventory data. Our UAV approach is significantly more cost-effective for mapping and 255 

quantifying the abundance of M. flexuosa stems, and for producing the information 256 

needed to develop management plans for this resource. Our UAV-based method reduces 257 

the costs per hectare of a resource inventory of M. flexuosa by 99% compared to plot-258 

based methods (USD 5 ha-1 versus USD 411 ha-1) and reduced the total operational costs 259 

of developing a management plan by 23% (Table 2). This reduction in operational costs 260 

is linked to reduced reliance on external services (Supplementary Table 2) arising from 261 

investment in capacity building. Park rangers now handle tasks that were previously the 262 

responsibility of external consultants, such as drone field surveys, data processing, and 263 

writing the resource inventory report. Consultants now focus on writing the 264 

management plan.  265 

 266 



   

 

   

 

Plot-based methods have much lower capital costs (Table 2), but even when considering the 267 

higher initial capital costs associated with the UAV use, such as acquiring a robust workstation, 268 

the UAV itself, software licenses, and team training for drone operation and image processing, 269 

the UAV approach demonstrates a cost advantage once the number of management plans 270 

surpasses four (Fig. 6). This cost advantage arises due to its substantially lower marginal costs 271 

per additional plan (Fig. 6) and is likely to be achieved as the equipment typically lasts 3-5 272 

years and the trained personnel are often permanent staff who remain long-term. 273 

 274 

The UAV approach also offers more than an order of magnitude more spatial coverage and this 275 

greater area not only amplifies the economic benefits of employing drones but also enables 276 

cost-effective surveying of locations that would otherwise be excluded. This advantage 277 

empowers local communities to expand their harvesting areas without requiring extensive 278 

search efforts. Additionally, it reduces the time of personnel involved in these tasks by one-279 

third (Supplementary Table 2).  280 

 281 

Our method therefore provides a practical, cost-and-time-effective and reliable technique for 282 

generating essential information such as the location of palm crowns and their areas across 283 

landscapes of 100-250 hectares. This method can support the effective development of 284 

management plans and has the potential to improve the spatial detail and timeliness of forest 285 

monitoring, benefiting stakeholders involved in the sustainable management of palm resources. 286 

Local communities can use it to locate their resources more efficiently, while NGOs and private 287 

companies can use it to validate the responsible use of resources. Governmental oversight 288 

agencies, such as SERNANP, can use it to estimate the amount of fruit harvested from a given 289 

protected area and investigate cases of unsustainable use. By enabling better informed decision-290 

making and management practices, our method has the potential to contribute significantly to 291 



   

 

   

 

the sustainable management of palm resources and to the protection of the intact forest 292 

landscapes where they occur. 293 

 294 

Regarding operational matters, our method saves significant time and effort compared to the 295 

time-consuming, labour-intensive, and subjective task of visually interpreting UAV mosaics, 296 

especially when the identification of these species requires specialized training 12. It can also 297 

reduce the time for labelling training data by using semi-automatic crown delineations, in 298 

contrast to the manual delineation typically used for this type of work.  299 

 300 

Additionally, as the model has been trained to identify palms under various lighting conditions, 301 

no image editing for lighting conditions are required for the UAV mosaic. As a result, 302 

SERNANP tested our method presented here and ultimately quantified palm abundance in two 303 

communities within the Tambopata National Reserve. These inventories were then used to 304 

support the first management plans for palm fruit harvesting in this National Reserve59.  Due to 305 

cost efficiency, there is potential to adopt this method for larger conservation effort in Peru. 306 

Currently, SERNANP is in the process to integrate our methodology as a standardized national 307 

protocol. To facilitate this upscaling, project pilots will be conducted in all Peruvian regions 308 

where palms are present. These pilots will gather feedback from various protected areas to 309 

ensure the methodology's effectiveness in diverse landscapes. 310 

 311 

Our methodology can also be applied to other regions and species with distinctive crowns given 312 

its robustness, which comes from extensive data collection across a range of forest landscape 313 

and imaging conditions. We also use image augmentation techniques to increase data variability 314 

and robustness of the model, and the fact that our model and code is openly shared. For example, 315 

our approach should be explored for mapping the distribution of Euterpe in the dense stands on 316 



   

 

   

 

the floodplains of eastern Amazonia, or for species that occur at high densities in other tropical 317 

peatlands, such as Pandanus spp. in Asia/Oceania or Raphia spp. in the Congo basin. More 318 

broadly, our approach demonstrates how the gap between research and implementation can be 319 

bridged, and these principles are applicable wherever technology is being designed to address 320 

conservation challenges. 321 

 322 

3. Methods  323 

a. Study area 324 

We developed our models based on UAV and ground reference data from 55 sites across the 325 

region of Loreto in northern Peruvian Amazonia. There are a wide variety of forest types in this 326 

region including upland forest with clay-rich and white sand soils, seasonally flooded forests 327 

and extensive palm swamps61. Surveys were carried out in collaboration with local communities 328 

and the National Service of Protected Areas – SERNANP, in areas that our partners indicated 329 

had the presence of either Mauritia flexuosa, Euterpe precatoria or Oenocarpus bataua. The 330 

sites focussed on seasonally flooded forests and palm swamps but also included some sites that 331 

covered planted palms in local communities, which were incorporated to enhance the 332 

generalisation of the model. Our overall approach aimed to encompass areas varying in palm 333 

density and floristic composition. Some of the sites are within protected natural areas; other 334 

sites are forests managed by local communities (Supplementary Fig. 1). Twenty sites include 335 

plots from the Amazon Forest Inventory Network (RAINFOR) which we used to supply part 336 

of the palm GPS location data; these plot data are managed using the ForestPlots.net online 337 

database62,63. 338 

 339 

To test the models, we used four UAV mosaics from the region of Madre de Dios in southern 340 

Peruvian Amazonia. Here, the UAV flights were carried out over palm swamps in the 341 



   

 

   

 

Tambopata National Reserve, which is situated in the Tambopata River basin near Puerto 342 

Maldonado. The UAV mosaics can be accessed at https://doi.org/10.4121/70a8cec0-dfa7-4963-343 

ba8a-612e738ec0cb.v1 SERNANP works closely together with local communities in this 344 

region to develop sustainable commercial activities, such as Brazil nut harvesting44. More 345 

recently, in response to the growing demand for palm fruits, there has been an increased focus 346 

on harvesting the fruits of M. flexuosa in this reserve44. 347 

 348 

b. Ground reference data collection  349 

For the training and validation data, 5,089 individuals of M. flexuosa (4497), E. precatoria 350 

(282) and O. bataua (310) palms were identified and georeferenced using a handheld 351 

Trimble Geo7X GPS-receiver and the dual-frequency GNSS Trimble Tornado antenna, 352 

with an average error of approximately 5 m from 2017 to 2019 across all 55 sites. 353 

 354 

c. UAV missions 355 

For the training and validation data, UAV data were collected concurrently with ground 356 

data collection using small commercial multi-rotors (DJI Phantom 4 Pro and DJI Phantom 357 

4 RTK) 64 over 55 sites from 2017 to 2019. Some sites were surveyed every year and others 358 

only once during this period.  359 

For the testing data, SERNANP conducted missions using commercial small multi-rotors 360 

(DJI Phantom 4 and DJI Mavic 2, the latter possessing slightly different camera 361 

characteristics) across three sites from 2019 to 2022, flying over the Sandoval lake twice 362 

— in 2019 and in 2021. 363 

 364 

To ensure the generalisability of the model against variations in the spatial resolution of the 365 

UAV mosaics, the missions were conducted at various flying heights, ranging from 60 to 366 

https://doi.org/10.4121/70a8cec0-dfa7-4963-ba8a-612e738ec0cb.v1
https://doi.org/10.4121/70a8cec0-dfa7-4963-ba8a-612e738ec0cb.v1


   

 

   

 

150 meters above ground level (AGL). It is important to note that the maximum flying 367 

height permitted by national legislation is 150 m AGL, which precluded capturing images 368 

from higher altitudes (up to 500 m AGL) which could otherwise have been useful60. The 369 

forward and side overlap ranged from 80 to 90% and the camera angle was mostly at the 370 

nadir position (90°)64. 
371 

 
372 

d. Data processing 373 

The data processing involved five stages: pre-processing, training an image semantic 374 

segmentation model, training an instance segmentation model (Supplementary Fig. 3), 375 

accuracy assessment and model testing, and cost analysis. Pre-processing was conducted 376 

using various software platforms, detailed in the following subsection. The remaining stages 377 

were conducted entirely in the Python programming language65,66, with specific packages 378 

referenced as needed. 379 

 380 

Pre-processing: Training and Validation data preparation 381 

The pre-processing consisted of 4 steps: (1) mosaicking, (2) multiresolution superpixel 382 

partitioning and labelling, (3) tiling and (4) image augmentation. The UAV images collected 383 

on the missions were mosaicked using the software Pix4DMapper. Due to the intricate structure 384 

of vegetation, different parameters were tested to obtain mosaics with as few artifacts as 385 

possible 60. In some cases, the mosaics were generated from a single mission, while in other 386 

cases, images from different flights over the same site were combined. Eighty-nine UAV 387 

mosaics were obtained in total 67. 388 

To reduce the time spent on data labelling, mosaics were then used as input for a multiresolution 389 

superpixel partitioning that delineate the crowns60. Each crown was assigned the species label 390 

corresponding to the ground reference data (the palm tree locations recorded with the GPS). To 391 



   

 

   

 

ensure the accuracy of the data, shapefile layers containing the ground reference points were 392 

overlaid on the RGB mosaic using open-source software Quantum GIS (QGIS). This process 393 

was conducted to verify whether the location points aligned with the palm tree crowns in the 394 

mosaic. In cases where reference palm trees were misaligned, they were either manually 395 

adjusted or excluded from the classification if the corresponding palm tree was not clearly 396 

identifiable in the mosaic. Subsequently, the shapefiles containing the delineated crowns with 397 

their assigned species labels were rasterized to match the same extent as the UAV mosaics using 398 

the Python programming languaje65. This approach saves time in training data preparation, as 399 

the conventional practice involves manual delineation, which is time-consuming and costly, 400 

especially when verifying a large number of tree crowns requires cross-checking by an 401 

experienced visual interpreter68 .  402 

 403 

The third and fourth steps were also conducted in Python. In the third step,  mosaics with the 404 

labelled data were sliced into tiles of 512 x 512 pixels, ranging from 4x4m to 30x30m on the 405 

ground, depending on the mosaic’s spatial resolution. This size is sufficient to capture at least 406 

two palms per tile, as shown in our crown measurements (Supplementary Table 3), following 407 

the approach for sample selection by Brodrick et al. (2019)69. The tiles were split into a training 408 

set (80%) and a validation set (20%). To test the accuracies and generalization of the model, 409 

seven combinations of tiles were used to ensure that the trained model could effectively handle 410 

diverse characteristics associated with UAV data collection or geographical locations. These 411 

characteristics encompassed factors such as illumination conditions, mosaic spatial resolution, 412 

and floristic composition (Table 1). To increase the ability of the model to generalize, some of 413 

the tiles were augmented using up to two different augmenters per batch, applied randomly70. 414 

Image augmentation artificially expands datasets, increasing the likelihood of encountering 415 

similar cases in future data, which improves dataset variability and model performance45,46. The 416 



   

 

   

 

augmenters used were  affine image transformations such as flipping (50%), rotating (± 20°) 417 

and zooming in and out (0.8 to 1.2) to simulate different flying paths and altitudes and color 418 

modifications as the change of brightness (± 20%) and saturation (-20% to +10%) to resemble 419 

different illumination conditions adding blur to resemble the presence of humidity/light fog or 420 

water droplets, motion blur to simulate different wind conditions, elastic transformations to 421 

resemble artifacts in the mosaics, and JPEG compression to simulate different camera sensors. 422 

 423 

Species mapping: Image Semantic Segmentation model  424 

We used a deep convolutional neural network (CNN), selecting a semantic segmentation 425 

architecture and task formulation, rather than object detection. This decision was based on 426 

the feedback from our main stakeholders, who indicated that having delineated crowns was 427 

an important asset for them and it has been shown that having crown area information (i.e. 428 

dominance) is more effective for forest management 68. We selected the DeepLab v3+ 429 

architecture, which has as its backbone MobileNet-v2 and atrous spatial pyramid pooling 430 

(ASPP), allowing enlarging the field of view of filters to incorporate multiple scales context 431 

but maintaining localization accuracy71. We did not perform instance segmentation 432 

simultaneously at this point due to the high computational costs and complexity 9,68. 433 

 434 

Palm quantification: Instance segmentation model 435 

In tropical forests, the clustering of individual species at close proximity presents a 436 

challenge for quantifying species’ abundances. Directly quantifying individuals from 437 

semantic segmentation maps is inaccurate due to masks potentially encompassing multiple 438 

crowns. Hence, a method is required to split these multi-crown segments without high 439 

computational costs or complexity. We used a simple yet powerful convolutional neural 440 



   

 

   

 

network-based method for instance segmentation based on semantic segmentation masks 441 

called Deep Watershed Transform72, which learns how to identify the centre of the palm 442 

trees. This method is inspired by the classical watershed transform algorithm, where the 443 

distance to the boundary helps to discriminate crowns72. The model uses the segmented 444 

image plus the UAV mosaic as input to detect the instances and delineate “basins”, where 445 

each basin corresponds to an individual palm crown. 446 

 447 

To ensure accuracy, the removal of small predicted pieces of crowns is conducted by a post-448 

process that first fills small holes to keep the integrity of an instance, filling a maximum of 449 

1000 pixels per instance. Then, the instances are eroded to make the spacing between 450 

crowns clearer, using the Scikit morphology binary erosion (enlarging darker regions, thus 451 

the spaces between crowns). Next, structural erosion from SciPy is applied to maintain the 452 

crown shape, where the kernel sizes depend on the species. Later, the instances smaller than 453 

the average UAV measurements of crown size (Supplementary Table 3) are removed and 454 

holes are filled after erosion using the Scikit morphology module.  455 

 456 

Accuracy assessment and model testing 457 

To evaluate the model's transferability, we utilized full UAV orthomosaics to assess the 458 

accuracy and robustness of the seven models trained on different data subsets as described 459 

on Table 1. Among these models, six were trained using different arrangements of training 460 

and test data, while the "Final" model incorporated all the training data from the region of 461 

Loreto and was tested using the data from the region of Madre de Dios region (Fig. 2). 462 

 463 



   

 

   

 

The training and test data arrangements were designed to cover data scenarios of increasing 464 

complexity. Model 1 involved a dataset from a single location with a similar floristic 465 

composition, images captured on similar dates within the same year, and the utilization of 466 

the same UAV. The objective was to establish a baseline for the model's performance. For 467 

training and testing this model, five UAV mosaics from the Veinte de Enero community in 468 

Loreto from October 2017 were used. 469 

 470 

Models 2 to 4 aimed to test the model's robustness over time and involved three different 471 

combinations of datasets grouped by the year of data collection. These combinations 472 

utilized two years of data for training and one year for testing. This approach allowed us to 473 

account for variations in illumination conditions, habitat diversity, and spatial resolutions 474 

resulting from different flying heights. 475 

 476 

Model 5 assessed the model's robustness across different locations. In this case, the model 477 

was trained on data from one hydrological basin around the Allpahuayo-Mishana National 478 

Reserve and then tested on data from another basin in the Pacaya Samiria National Reserve. 479 

 480 

Model 6 explored the model's performance when the floristic composition of the forests 481 

differed slightly. For this scenario, we used most of the available training data from various 482 

areas around the Pastaza- Marañon (PM) Foreland Basin, encompassing different habitat 483 

types, illumination conditions, and spatial resolutions. The model was then tested with 484 

mosaics from the Nueva Jerusalen site, in the north of the Loreto Region, close to the border 485 

with Colombia73.  486 

 487 



   

 

   

 

The general performance of the different models was evaluated with the Precision (user’s 488 

accuracy), Recall (producer’s accuracy) and F1 score from the Scikit-learn Package74. For 489 

the species mapping assessment, a Point-in-polygon method was used75, comparing the 490 

ground data polygon with the predicted points. Given that the prediction points are 491 

exclusively generated for the target species, in order to evaluate whether the model is 492 

predicting non-palm trees as palm trees (commission error), we manually designated other 493 

objects, not belonging to the target species, as points in the background class. This was done 494 

in areas where the presence of the three palm species was not visually identified, such as 495 

the crowns of other trees. The selection of these points mirrored a similar number to those 496 

allocated for the target species within each plot. In addition, the overall accuracy and the 497 

confusion matrices were also calculated. 498 

 499 

The Precision— user’s accuracy (UA) —is the number of correctly classified objects 500 

(true positives, tp) in a class divided by the total number of points that were predicted 501 

by the model:  502 

𝑈𝐴𝑐𝑙𝑎𝑠𝑠 =
𝑡𝑝𝑐𝑙𝑎𝑠𝑠

𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
, (1) 

 503 

The Recall— producer’s accuracy (PA) —is derived by dividing the number of 504 

correctly classified objects per class (tp) by the total number of polygons according to 505 

the ground reference: 506 

𝑃𝐴𝑐𝑙𝑎𝑠𝑠 =  
𝑡𝑝𝑐𝑙𝑎𝑠𝑠

𝑁𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠 
, (2) 

 507 



   

 

   

 

The F1 score is the harmonic mean of recall and precision to provide a comprehensive 508 

assessment of a model's performance and thus expresses the balance between recall 509 

and precision: 510 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, (3) 

The F1 score was used to assess overall performance, instead of the overall accuracy, 511 

because M. flexuosa was more abundant in most plots compared to other palm species. 512 

 513 

The overall accuracy (OA) is the total number of correctly classified pixels (tp), 514 

divided by the total number of samples (Nc): 515 

𝑂𝐴 =
∑ 𝑡𝑝𝑖

𝑐𝑙𝑎𝑠𝑠

𝑁𝑐
, (4) 

where i is the number of classes. 516 

 517 

To evaluate our approach to counting individual trees, the predicted number of 518 

individual arborescent palm trees was compared to the visible number of palm trees per 519 

UAV mosaic across fifty-five sites (Fig. 3). Subsequently, we calculated the R2, RMSE, 520 

and the Normalized RMSE to assess the relationship between the predicted and visible 521 

counts. For sites with fewer than a thousand individuals, the visible palm values in the 522 

UAV mosaics relied on the count of GPS locations; for sites with a higher number of 523 

individuals, the reference values were based on manually located crowns. This approach 524 

enabled us to assess the scalability of our method across both smaller, uniform areas 525 

and larger, more variable regions. 526 

 527 



   

 

   

 

Cost analysis 528 

We sourced the costs associated with developing management plans to support 529 

sustainable palm fruit harvesting of M. flexuosa, based on both plot- and drone-based 530 

inventories, from SERNANP. We grouped the costs as external services provided by 531 

consultants (staff for field survey, data processing and reporting), capital costs including 532 

capital equipment (small boat, drone, appropriate computer with licenced software) and 533 

capacity building (drone pilot licences for the park rangers, training on image 534 

processing), recurring costs (field consumables not provided by the consultant team), 535 

and SERNANP permanent staff costs (Supplementary Table 2). 536 

Costs were quantified in Peruvian Nuevos Soles and converted to USD using the 537 

exchange rate for 202176. The costs were based on actual expenditure corresponding to 538 

the Master Plan of the Tambopata National Reserve 2019-202344.  539 

 540 

 541 

 542 

  543 



   

 

   

 

Data availability 544 

Source data are provided with this paper. The UAV mosaics and their details can be found at 545 

4TU ResearchData [https://doi.org/10.4121/70a8cec0-dfa7-4963-ba8a-612e738ec0cb.v1] 67.   546 

 547 

Code availability 548 

The code for training the model and making predictions is available at Code Ocean 549 

[https://doi.org/10.24433/CO.0764353.v1] 66 550 

For the model training workflow, open the Jupyter notebook "1.PalmsCNN_Tutorial." To 551 

work only with the predictions, use "2.PalmsCNN_Tutorial_Prediction." 552 

 553 

The Google Collab notebook and single python scripts can be found at GitHub:  554 

https://github.com/iiap-gob-pe/PalmsCNN/tree/main 555 

 556 

 557 
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Table 1. Average classification accuracies across three species of arborescent 798 

palms for assessing the robustness of the seven different approaches for model 799 

training and testing.  Source data are provided as a Source Data file. 800 

Mod
el 

Training Testing 

Differen
ces 

over* 

Precisi
on 

Rec
all 

F1-
sco
re 

Images 
from 

Yea
r 

No. of 
UAV 

mosai
cs 

No. 
of 

tiles  
use
d 

Mosaic 
from 

Yea
r 

No. of 
UAV 

mosai
cs 

1 

Veinte 
de 

Enero 
site 

201
7 

4 764 

Veinte 
de 

Enero 
site 

201
7 

1 ic 0,63 0,60 0,61 

2 All sites 

 
201
7 + 
201
8 

26 
105
05 

Nueva 
York & 
2 de 
Mayo 

de 
Muyuy 

201
9 

2 ic, fc, sr 0,59 0,60 0,59 

3 All sites 

 
201
8 + 
201
9 

33 
104
20 

Veinte 
de 

Enero 
& 

Parinar
i 

201
7 

2 ic, fc, sr 0,86 0,46 0,45 

4 All sites 

201
7 + 
201
9 

34 
116
51 

Jenaro 
Herrer

a & 
Iquitos 

201
8 

2 ic, fc, sr 0,77 0,54 0,56 

5 

Around 
the 

National 
Reserve 
Allpahu

ayo 
Mishan

a 

All 
yea
rs 

13 
515
7 

Around 
the 

Nation
al 

Reserv
e 

Pacay
a - 

Samiri
a 

201
9 

2 
ic, sp, fl, 

gl 
0,86 0,59 0,67 

6 

Within 
the 

Pastaza 
Maraño
n (PM) 
Forelan
d Basin 

All 
yea
rs 

79 
279
92 

Nueva 
Jerusal
en site 

201
9 

2 
ic, sp, fl, 

gl, td 
0,72 0,77 0,72 

Final 

All the 
training 

sites 
from the 
Loreto 
region.  

All 
yea
rs 

81 
299
02 

All the 
sites in 
Madre 

de 
Dios 

region 

201
9-

202
2 

4 
ic, sp, fl, 

gl, td 
0,88 0,67 0,74 

* ic: iIllumination conditions, fc: floristic composition, sr: spatial resolution, gl: geographical location, td: 

amount of training data 



   

 

   

 

 801 

Table 2. Cost comparison between of expenditure by SERNANP on 802 

traditional plot-based fieldwork and drone (UAV) surveys for developing 803 

management plans for sustainable management of M. flexuosa. Total 804 

costs are the sum of operational expenditure and capital costs; resource 805 

inventory costs are one component of the operational expenditure. Source 806 

data are provided as a Source Data file. 807 

 808 

  

Area 

Covered 

(ha) 

Total 

costs  

(USD) 

Total 

time 

(person-

hrs) 

Operational 

expenditures 

(USD) 

Capital 

costs 

(USD) 

Resource 

inventory 

costs 

(USD) 

Inventory 

costs per 

area 

(USD/ha) 

Plot-based 

method 

10 ha $29,863 1,136 h $14,521 $15,342 $4,110 $411/ha 

UAV survey 230 ha $39,890 724 h $11,205 $28,685 $1,0956 $5/ha 

Change in costs 

based on UAV 

utilization (%) 

  34% -36% -23% 87% -73% -99% 
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 810 

Figure 1. Images of the three most ecologically and economically important arborescent 811 

palm species in the Peruvian Amazon 812 
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 814 

Figure 2. Distribution of the locations surveyed for (A) training and (B) testing a 815 

convolutional neural network (CNN) model for detecting three species of arborescent 816 

palms using large-scale UAV mosaics. The brown dots correspond to the sites where 817 

the UAV surveys were conducted. The purple line corresponds to the Pastaza-Maranon 818 

(PM) Foreland Basin. Sources: Cartographic base layers belong to the National 819 

Geographic Institute of Peru – IGN (2017) and to the Ministry of Environment of Peru  820 

MINAM (2019). Source data are provided as a Source Data file. 821 
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824 

Fig. 3. Comparison of the number of three species of arborescent palm (Mauritia 825 

flexuosa, Euterpe precatoria and Oenocarpus bataua) visible in the UAV 826 

mosaics with model-predicted results across fifty-five sites. For sites with less 827 

than a thousand individuals, the number of palms in the UAV mosaics was based 828 

on the count of GPS locations of palms with visible crowns in the canopy at each 829 

site. For the sites with a greater number of individuals, the reference values were 830 

the total count of manually located crowns in the UAV mosaics. The red lines 831 

show the 1:1 relationship in each case. Source data are provided as a Source 832 

Data file. 833 



   

 

   

 

 834 

Figure 4. Examples of the final model predictions for the location and crown delineation of 835 

three species of palm tree in five habitat types: (a) plantation, (b) swamp forest, (c) terra firme, 836 

(d) urban, and (e) pole forest. For each habitat, the average F1 score across species per site in 837 

the region of Loreto is also shown. Source data are provided as a Source Data file. 838 



   

 

   

 

 839 

Fig. 5.  Variation in stem density of three arborescent palm species (Mauritia 840 

flexuosa, Euterpe precatoria and Oenocarpus bataua) across six UAV mosaics 841 

covering 70 to 230 hectares in Loreto (a-c) and Madre de Dios (d-f). (a) Parinari 842 



   

 

   

 

community, palm swamp, (b) Nueva York Community, pole forest with no 843 

presence of Oenocarpus, (c) Piura community, palm swamp,  (d) Sector Briolo 844 

– Elina, palm swamp/ terra firme forest, (e) Around the Sandoval lake, palm 845 

swamp/ terra firme forest, (f) Sector Briolo – Brigida, palm swamp/ terra firme 846 

forest. 847 

 848 

 849 

Fig. 6. Comparison of the total costs of producing different numbers of 850 

management plans between approaches that use traditional plot-based 851 

fieldwork or drone (UAV) surveys for mapping the abundance of arborescent 852 

palms. Source data are provided as a Source Data file. 853 

 854 

 855 


