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Effective integration of drone technology for
mapping and managing palm species in the
Peruvian Amazon

Ximena Tagle Casapia 1,2 , Rodolfo Cardenas-Vigo 2, Diego Marcos1,3,
Ernesto Fernández Gamarra4, Harm Bartholomeus1,
Eurídice N. Honorio Coronado 2,5, Silvana Di Liberto Porles2, Lourdes Falen 2,
Susan Palacios6, Nandin-Erdene Tsenbazar1, Gordon Mitchell 7,
Ander Dávila Díaz2, Freddie C. Draper 7,8, Gerardo Flores Llampazo2,
Pedro Pérez-Peña2, Giovanna Chipana 4, Dennis Del Castillo Torres2,
Martin Herold1,9,10 & Timothy R. Baker 7,10

Remote sensing data could increase the value of tropical forest resources by
helping to map economically important species. However, current tools lack
precision over large areas, and remain inaccessible to stakeholders. Here, we
work with the Protected Areas Authority of Peru to develop and implement
precise, landscape-scale, species-level methods to assess the distribution and
abundance of economically important arborescent Amazonian palms using
field data, visible-spectrumdrone imagery and deep learning.We compare the
costs and time needed to inventory and develop sustainable fruit harvesting
plans in two communities using traditional plot-based and our drone-based
methods. Our approach detects individual palms of three species, even when
densely clustered (average overall score, 74%), with high accuracy and com-
pleteness for Mauritia flexuosa (precision; 99% and recall; 81%). Compared to
plot-based methods, our drone-based approach reduces costs per hectare of
an inventory of Mauritia flexuosa for a management plan by 99% (USD 5 ha-1

versus USD 411 ha-1), and reduces total operational costs and personnel time to
develop a management plan by 23% and 36%, respectively. These findings
demonstrate how tailoring technology to the scale and precision required for
management, and involvement of stakeholders at all stages, can help expand
sustainable management in the tropics.

High-resolution UAV data promises to provide cost-effective solutions
to a range of conservation challenges in the tropics1. For example,
these platforms have been used to enable community-led wildlife
monitoring in Borneo2 and delimit priority areas for conservation and
restoration in tropical dry forests in Peru3. However, despite their
potential, much of the use of UAVs retains a focus on the technology,
rather than leading to operational conservation success4. This failure is

an example of the research-implementation gap5, which is linked, in
broad terms, to insufficient focus on how to link researchers and
stakeholders6–8.

This issue is particularly notable in the use of UAVs to map and
monitor tree species populations in moist forests9–12. Sustainable use
of forest products derived from tropical trees is crucial for addressing
the interlinked challenges of biodiversity conservation, supporting
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livelihoods of local communities and climate change mitigation, and
could greatly benefit from the use of cost-effective means of mapping
species populations at the scale of entire landscapes. However, there
areno cases of the operational use of species-levelmonitoringbyUAVs
by stakeholders to support this goal. In contrast, current approaches
with high-resolution RS data focus on cases where the phenology or
colour of the species are highly distinctive13,14 orwhere the species only
occurs at low densities10, neither of which are focused onmanagement
needs. The challenges are two-fold. First, we need to overcome the
technical challenge of the issues that stakeholders face where they
require these data, and second, we need to ensure that these ‘con-
servation tools’ are accessible to and adopted by, stakeholders15.

We address these twin challenges in the context of sustainable
harvesting16,17 of the fruit of arborescent palms in Amazonia -Mauritia
flexuosa,Oenocarpus bataua, and Euterpe precatoria18–20 (Fig. 1). These
species are vital for supporting local communities, providing food and
habitat for wildlife18,21–23 and maintaining key ecosystem services23–26

including in landscapes with exceptional levels of carbon storage - M.
flexuosa dominated palm swamps store 5.4 Gigatonnes of carbon,
mostly belowground as peat27,28. These species are well-suited to sus-
tainable management as they are among the most abundant tree
species in Amazonia (so-called “hyperdominant” species)29 and have a
high economic value30: the gross potential value of M. flexuosa fruit
harvesting in northern Peru was estimated at USD 41 ± 20.1 million
annually16, whilst the global E. precatoria market was valued at USD
796.9million in 2022 and is expected to grow at an annual growth rate
of 11.3% until 203231; the market for oil from O. bataua fruits is also
expected to growby 4% annually until 203132,33. However. these species
face anthropogenic threats that diminish both their abundance and
regeneration potential17. To address the increasing demand for these
resources, management plans that implement non-destructive meth-
ods of fruit harvesting, such as climbing, must be developed and
implemented25,34.

Numerous initiatives have been established to promote sustain-
able fruit harvesting from economically and ecologically important
arborescent palms. However, a key challenge for developing effective

management plans for these resources is accurately mapping their
abundance and distribution. Traditional plot-based fieldworkmethods
are inefficient, particularly given the vast extent andoftenwaterlogged
conditions of these ecosystems35–37. High spatial resolution imagery is
an attractive potential solution38, yet previous studies that mapped
tropical peatlands have a spatial resolution of approximately 30m,
which provides insufficient detail to measure the abundance of palms
accurately35,36,39,40. Commercial satellite imagery with sub-50 cm reso-
lution exists, but it is limited by cost and cloud cover, similar to the use
of crewed airborne imagery38,41. In contrast, uncrewed aerial vehicles
(UAVs) provide a cost-effective, safe option for obtaining very high
spatial resolution imagery (approximately 10 cm) at sufficient spatial
scale for management purposes (100–1000 ha)38. When combined
with deep learning techniques, UAVs allow the use of automated
procedures for individual tree species detection9,42,43, as well as palm
species detection and quantification10,12. However, an operational
method for landscape-scale mapping and quantifying the abundance
of palm species indense tropical forests, where the crowns of the same
species often overlap, has not yet been implemented. While such
methods hold great potential to expand the use of management plans
in these ecosystems, the challenge extends beyond technological
proof-of-concept. For these ‘conservation tools’ to be effective at
landscape scales, they must be robust, cost-effective, easy to imple-
ment, and tailored to the needs of user organisations15. Stakeholder
involvement is crucial at every stage of development, and the costs -
including capital expenditure, implementation and training - must be
comparable or lower than other approaches15.

Here, we therefore not only aimed to automate the detection and
quantification of three economically important palm tree species -
Mauritia flexuosa, Oenocarpus bataua and Euterpe precatoria - using a
combination of field data, red-green-blue (RGB) uncrewed aerial
vehicle (UAV) imagery, and deep convolutional neural networks
(CNNs) - but also to demonstrate how it provides a cost- and time-
effective solution for the Peruvian government’s Protected Areas
authority (SERNANP) to manage these forest resources. To achieve
this, we collected RGB UAV images and GPS location points from
multiple sites whereM. flexuosa, E. precatoria, orO. batauaoccurred in
the region of Loreto in northern Peru (Supplementary Fig. 1). We
developed semantic segmentationmaps to classifyUAVmosaics pixels
as one of the three palm species or as background, and then trained a
model to partition the semantic segmentation maps into individual
palm crowns. We tested the models using UAV mosaics spanning
70–230 hectares from the Madre de Dios region in southern Peru
(Fig. 2) to assess the distribution and abundance of the palm species.
SERNANP then applied this technology to complete inventories as part
of developing two community-led management plans for sustainable
palm fruit harvesting. Finally, we compared the costs of inventories
and developing management plans using a traditional plot-based
versus our drone-based approach.

Our work is applicable to other tropical regions, as it offers a
model trained across a range of forest conditions for bridging the gap
between technological development and practical conservation. By
demonstrating how UAV-based tools can be effectively implemented,
we provide a pathway for supporting forest management and con-
servation outcomes globally.

Results and discussion
Landscape-scale palm species mapping
Our approach showed a high-level accuracy for detecting the crowns
of Mauritia flexuosa (accuracy of positive predictions: precision 99%;
completeness of positive predictions: recall 69% and average overall
performance: F1 score of 81%) but lower accuracy for Euterpe pre-
catoria (89% Precision at 50% recall and F1 of 64%) and Oenocarpus
bataua (85% Precision at 52% recall and F1 of 65%) as they were not as
abundant in the training data as M. flexuosa (Table 1 and

Species 
local names Fruit Ground 

view Drone view

Mauritia flexuosa
aguaje/buriti

Oenocarpus bataua
ungurahui/bataua

Euterpe precatoria
huasaí/acai berry

Fig. 1 | Images of the three most ecologically and economically important arbor-
escent palm species in the Peruvian Amazon.
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Supplementary Table 1). For instance, model 1, which had only 18
training palms for E. precatoria, was unable to detect this species. In
contrast, model 6, which had 266 training records for this species,
achieved a higher level of accuracy.

The success of this semantic segmentation method is particularly
noteworthy given that the UAV mosaics used in Madre de Dios were
captured by UAV cameras that were not used for model training, and
that the floristic composition varies between regions40,44. This high
level of robustness and generalisation can be attributed to the use of a
diverse set of training samples and the inclusion of data augmentation
techniques. These techniques, which modify existing training images,
introduce variations that simulate varying flight conditions, such as
changes in flying height, illumination, wind presence, humidity, and
different camera settings. By artificially expanding datasets through
image augmentation, the likelihood of encountering similar cases in
future data is increased. Our study, therefore, supports work showing
that combining a diverse dataset with data augmentation is a highly
effective technique for enhancing dataset quality and improving
model performance45,46.

Landscape-scale palm quantification
Overall, ourmodel accurately quantifies the abundance of arborescent
palm species even amidst densely clustered and large populations of
palms (Fig. 3 and Supplementary Fig. 2). The approach works parti-
cularly well forM. flexuosa (Fig. 3) but could be improved forO. bataua

and E. precatoria by including more training data, especially from
forest types that were not well represented in this research (e.g., terra
firme forests). In general, the performance of the model is highest in
areas where more training data was available and where palm crowns
were fully visible: difficulties arise when palms are stacked on top of
each other, which results in some crown centres not being visible, and
hence the palm crowns are not split and the number of individuals is
underestimated compared to field data (Fig. 4).

The developed method allows us to detect the centre of arbor-
escent palms, delineate their crowns based on the distance to the
centre and the learned shape of the palm, and count the number of
individuals in a given area. Our approach shows a high level of gen-
eralization across lowland Amazonian regions, but it would still be
valuable to evaluate theperformanceof ourmodel in otherAmazonian
forests where these arborescent palm species also occur along with
varying tree species composition, such as in pre-montane forests or
other regions of Amazonia.

In large UAV mosaics, there are some areas with artifacts that can
result in misclassifications. This is evident in the case of O. bataua,
where false positives are prone to occur when certain artifacts
resemble the long leaves of this species. Although themodel is able to
reduce some misclassifications if the misclassified areas are smaller
than the average size of the palm crowns, this issue may lead to an
overestimation of the number of individuals. In addition, some palm
individuals remain undetected due to crown shape distortion, which

Fig. 2 | Distribution of the locations surveyed. Distribution of the locations sur-
veyed for (A) training and (B) testing a convolutional neural network (CNN) model
for detecting three species of arborescent palms using large-scale UAV mosaics.
The brown dots correspond to the sites where the UAV surveys were conducted.

The purple line corresponds to the Pastaza-Maranon (PM) Foreland Basin. Sources:
Cartographic base layers belong to the National Geographic Institute of Peru – IGN
(2017) and to the Ministry of Environment of Peru MINAM (2019). Source data are
provided as a Source Data file.
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occurs particularly when artifacts appear along the borders ofmosaics
or during the blending of largemosaics. This issue can bemitigated by
adhering to best practices during UAV flights particularly avoiding
flights during windy conditions47 and during pre-processing. Clipping
the edge of the mosaics can also reduce the relief displacement often
associated with insufficient overlap between images48. Working with
larger UAVs, such as Vertical Take Off and Landing UAVs (VTOLs),
could also increase the coverage extent and improve image blending,
as they capture more images in a single mission49. Their use and
associated cost analysis remain areas for future research.

The high-resolution location data provided by the UAV mosaics
enables us to visualise the spatial distribution and ecological associa-
tions of the palm species at a fine scale. These data, therefore, provide
a foundation for exploring processes, such as environmental filtering,
dispersal limitation, gene flux and/or conspecific interactions thatmay
determine the distributions of tropical tree species50,51. For example,M.
flexuosa, in our study area, tends to form large clusters in waterlogged
areas, closer towater bodies, andO. bataua tends to cluster in swampy
patches within terra firme forests25,29,52,53, suggesting that environ-
mental filtering may be important for these species, whereas E. pre-
catoria shows a scattered distribution and forms smaller groups54,
which may reflect an important role for dispersal limitation (Fig. 5).

It is important to note that the predictions of ourmodel are solely
based on the top canopy, as the UAV mosaic only captures the upper
layer of the forest. Therefore, the model detects sub-canopy and
understorey palms to a much lesser extent. However, in natural for-
ests, taller individuals of M. flexuosa - being in the top canopy and
receiving higher light incidence - bear more and larger fruits suitable
for commercialisation55, with similar trends for E. precatoria56 and O.
bataua57. Hence, fruit production is concentrated in mature canopy
palms, making this underestimation negligible when using this
approach to map this resource to support the development of
management plans.

Bridging the research-implementation gap
Our approach to bridging the research-implementation gap with
mapping the distribution of these palms, mirrors the framework of
Reed et al. (2014)8 and builds on insights from the conservation
planning6 and conservation technology literature15.

First, the key stakeholder, the Peruvian Protected Areas Authority
(SERNANP), was involved from the proposal stage (i.e., during project
‘design’8) and the research question that we address - mapping palm
species in dense stands - is a key question for SERNANP (i.e., the
research ‘represents’ stakeholder needs8). For example, in the region
of Loreto, only 1.29% of harvested M. flexuosa fruits come from
approved management plans (Regional Government of Loreto, 2019),
highlighting the need for more effective resource inventory techni-
ques to improve resource management. To date, SERNANP has gran-
ted 28 permissions to harvestM. flexuosa in the Loreto region58 and is
in the process of issuing these permissions in the Madre de Dios
region59, with our technology being used in two of these initial cases.

Second, our research has engaged stakeholders over a long
period8 with a strong focus on capacity building and training6. Over the
past decade, multiple research projects have brought SERNANP and
our research team together, exploring the distribution and carbon
stores of these palm swamps27,36, the economic potential of palm fruit
harvesting16 and the potential to identify crowns of different palm
species60. Our current collaboration has involved significant engage-
ment activities through in-person and online workshops, as well as ad
hocmeetings. We began with an initial session to harmonise ideas and
identify stakeholder needs (online, April 10, 2019,with 18 participants).
This was followed by drone flight training (May 24, 2019, with 7 par-
ticipants), training on image preprocessing, including mosaicking
(January 28, 2020, with 36 participants), and a session for using the
model and providing feedback on its performance, primarily throughTa
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visual assessments (August 2, 2020, with 4 participants). Third, the
technology we developed is designed to be user-friendly15 based on
open-source software (Palacios, Tagle et al. in prep), making it acces-
sible and easy for stakeholders to use.

Finally, our approach is cost-effective compared to existing
methods for resource inventory. Traditionally, SERNANP has used
plot-based methods for resource assessments58. To compare the costs
of the plot- and drone-based approaches, we used data from SERNANP
to analyse the expenses associatedwith implementing traditional plot-
based (over 10 ha) and UAV-based methods (over 200ha) for gen-
erating these inventory data. Our UAV approach is significantly more
cost-effective for mapping and quantifying the abundance of M. flex-
uosa stems, and for producing the information needed to develop
management plans for this resource. Our UAV-based method reduces
the costs per hectare of a resource inventory of M. flexuosa by 99%
compared to plot-based methods (USD 5 ha-1 versus USD 411 ha−1) and
reduces the total operational costs of developing a management plan
by 23% (Table 2). This reduction in operational costs is linked to
reduced reliance on external services (Supplementary Table 2) arising
from investment in capacity building. Park rangers now handle tasks
that were previously the responsibility of external consultants, such as
drone field surveys, data processing, and writing the resource inven-
tory report. Consultants now focus on writing the management plan.

Plot-based methods have much lower capital costs (Table 2), but
even when considering the higher initial capital costs associated with
the UAV use, such as acquiring a robust workstation, the UAV itself,
software licences, and team training for drone operation and image
processing, the UAV approach demonstrates a cost advantage once
the number of management plans surpasses four (Fig. 6). This cost
advantage arises due to its substantially lower marginal costs per
additional plan (Fig. 6) and is likely to be achieved as the equipment
typically lasts 3–5 years and the trained personnel are often permanent
staff who remain long-term.

The UAV approach also offers more than an order of magnitude
more spatial coverage, and this greater area not only amplifies the
economic benefits of employing drones but also enables cost-effective
surveying of locations that would otherwise be excluded. This advan-
tage empowers local communities to expand their harvesting areas
without requiring extensive search efforts. Additionally, it reduces the
time of personnel involved in these tasks by one-third (Supplementary
Table 2).

Our method, therefore, provides a practical, cost-and-time-
effective and reliable technique for generating essential information,
such as the location of palm crowns and their areas across landscapes

of 100-250 hectares. This method can support the effective develop-
ment of management plans and has the potential to improve the
spatial detail and timeliness of forest monitoring, benefiting stake-
holders involved in the sustainable management of palm resources.
Local communities can use it to locate their resourcesmore efficiently,
while NGOs and private companies can use it to validate the respon-
sible use of resources. Governmental oversight agencies, such as
SERNANP, can use it to estimate the amount of fruit harvested from a
given protected area and investigate cases of unsustainable use. By
enabling better-informeddecision-making andmanagementpractices,
our method has the potential to contribute significantly to the sus-
tainable management of palm resources and to the protection of the
intact forest landscapes where they occur.

Regarding operational matters, ourmethod saves significant time
and effort compared to the time-consuming, labour-intensive, and
subjective task of visually interpreting UAV mosaics, especially when
the identification of these species requires specialised training12. It can
also reduce the time for labelling training data by using semi-
automatic crown delineations, in contrast to the manual delineation
typically used for this type of work.

In addition, as themodel has been trained to identify palms under
various lighting conditions, no image editing for lighting conditions
are required for the UAV mosaic. As a result, SERNANP tested our
method presented here and ultimately quantified palm abundance in
two communities within the Tambopata National Reserve. These
inventories were then used to support the first management plans for
palm fruit harvesting in this National Reserve59. Due to cost efficiency,
there is potential to adopt this method for larger conservation efforts
in Peru. Currently, SERNANP is in the process of integrating our
methodology as a standardised national protocol. To facilitate this
upscaling, project pilots will be conducted in all regions of Peru where
palms are present. These pilots will gather feedback from various
protected areas to ensure the methodology’s effectiveness in diverse
landscapes.

Ourmethodology can also be applied toother regions and species
with distinctive crowns, given its robustness, which comes from
extensive data collection across a range of forest landscapes and
imaging conditions. We also use image augmentation techniques to
increase data variability and robustness of themodel and openly share
our model and code. For example, our approach should be explored
for mapping the distribution of Euterpe in the dense stands on the
floodplains of eastern Amazonia, or for species that occur at high
densities in other tropical peatlands, such as Pandanus spp. in Asia/
Oceania or Raphia spp. in the Congo basin. More broadly, our

Fig. 3 | Comparison of the number of arborescent palm trees of three species
(Mauritia flexuosa, Euterpe precatoria and Oenocarpus bataua) visible in the
UAV mosaics with model-predicted results across fifty-five sites. For sites with
less than a thousand individuals, the values of palms in theUAVmosaicswere based

on the count of GPS locations of palms with visible crowns in the canopy at each
site. For the sites with a greater number of individuals, the reference values were
the total count of manually located crowns in the UAVmosaics. The red lines show
the 1:1 relationship in each case. Source data are provided as a Source Data file.
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approach demonstrates how the gap between research and
implementation can be bridged, and these principles are applic-
able wherever technology is being designed to address con-
servation challenges.

Methods
Study area
We developed our models based on UAV and ground reference data
from 55 sites across the region of Loreto in northern Peruvian Ama-
zonia. There are a wide variety of forest types in this region, including
upland forest with clay-rich and white sand soils, seasonally flooded
forests and extensive palm swamps61. Surveys were carried out in
collaboration with local communities and the National Service of
Protected Areas – SERNANP, in areas that our partners indicated had
the presence of either Mauritia flexuosa, Euterpe precatoria or Oeno-
carpus bataua. The sites focussed on seasonally flooded forests and

palm swamps but also included some sites that covered planted palms
in local communities, which were incorporated to enhance the gen-
eralisation of the model. Our overall approach aimed to encompass
areas varying in palm density and floristic composition. Some of the
sites are within protected natural areas; other sites are forests mana-
ged by local communities (Supplementary Fig. 1). Twenty sites include
plots from the Amazon Forest Inventory Network (RAINFOR), which
we used to supply part of the palm GPS location data; these plot data
are managed using the ForestPlots.net online database62,63.

To test the models, we used four UAVmosaics from the region of
Madre de Dios in southern Peruvian Amazonia. Here, the UAV flights
were carried out over palm swamps in the Tambopata National
Reserve, which is situated in the Tambopata River basin near Puerto
Maldonado. The UAV mosaics can be accessed at https://doi.org/10.
4121/70a8cec0-dfa7-4963-ba8a-612e738ec0cb.v1. SERNANP works
closely together with local communities in this region to develop

Fig. 4 | Examples of the final model predictions for the location and crown
delineation of three species of palm tree in five habitat types. Examples of the
final model predictions for the location and crown delineation of three species of
palm tree in five habitat types: (a) plantation, (b) swamp forest, (c) terra firme, (d)

urban, and (e) pole forest. For each habitat, the average F1 score across species per
site in the region of Loreto is also shown. Source data are provided as a Source
Data file.
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Fig. 5 | Variation in stem density of three arborescent palm species (Mauritia
flexuosa, Euterpe precatoria and Oenocarpus bataua) across six UAV mosaics.
Variation in stem density of three arborescent palm species (Mauritia flexuosa,
Euterpe precatoria and Oenocarpus bataua) across six UAV mosaics covering 70 to
230 hectares in Loreto (a–c) and Madre de Dios (d–f). a Parinari community, palm

swamp. b Nueva York Community, pole forest with no presence of Oenocarpus.
c Piura community, palm swamp. d Sector Briolo – Elina, palm swamp/ terra firme
forest. eAround the Sandoval lake, palm swamp/ terrafirme forest. f Sector Briolo –

Brigida, palm swamp/ terra firme forest.
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sustainable commercial activities, such as Brazil nut harvesting44.More
recently, in response to the growing demand for palm fruits, there has
been an increased focus on harvesting the fruits of M. flexuosa in this
reserve44.

Ground reference data collection
For the training and validation data, 5089 individuals of M. flexuosa
(4497), E. precatoria (282) and O. bataua (310) palms were identified
and georeferenced using a handheld Trimble Geo7X GPS-receiver and
the dual-frequency GNSS Trimble Tornado antenna, with an average
error of approximately 5m from 2017 to 2019 across all 55 sites.

UAV missions
For the training and validation data, UAV data were collected con-
currently with ground data collection using small commercial multi-
rotors (DJI Phantom 4 Pro and DJI Phantom 4 RTK)64 over 55 sites from
2017 to 2019. Some sites were surveyed every year, and others only
once during this period.

For the testing data, SERNANP conducted missions using com-
mercial small multi-rotors (DJI Phantom 4 and DJI Mavic 2, the latter
possessing slightly different camera characteristics) across three sites
from 2019 to 2022, flying over the Sandoval lake twice — in 2019 and
in 2021.

To ensure the generalisability of the model against variations in
the spatial resolution of the UAV mosaics, the missions were con-
ducted at various flying heights, ranging from 60 to 150metres above
ground level (AGL). It is important to note that the maximum flying
height permitted by national legislation is 150mAGL, whichprecluded
capturing images from higher altitudes (up to 500m AGL), which
could otherwise have been useful60. The forward and side overlap
ranged from 80 to 90%, and the camera angle was mostly at the nadir
position (90°)64.

Data processing
The data processing involved five stages: pre-processing, training an
image semantic segmentation model, training an instance segmenta-
tion model (Supplementary Fig. 3), accuracy assessment and model
testing, and cost analysis. Pre-processing was conducted using various
software platforms, detailed in the following subsection. The remain-
ing stages were conducted entirely in the Python programming
language65,66, with specific packages referenced as needed.

Pre-processing: Training and Validation data preparation. The pre-
processing consisted of 4 steps: (1) mosaicking, (2) multiresolution
superpixel partitioning and labelling, (3) tiling and (4) image aug-
mentation. TheUAV images collected on themissions weremosaicked
using the software Pix4DMapper. Due to the intricate structure of
vegetation, different parameters were tested to obtainmosaics with as
few artifacts as possible60. In some cases, the mosaics were generated
from a single mission, while in other cases, images from different
flights over the same site were combined. Eighty-nine UAV mosaics
were obtained in total67.

To reduce the time spent on data labelling, mosaics were then
used as input for a multiresolution superpixel partitioning that
delineates the crowns60. Each crown was assigned the species label
corresponding to the ground reference data (the palm tree locations
recorded with the GPS). To ensure the accuracy of the data, shapefile
layers containing the ground reference points were overlaid on the
RGB mosaic using open-source software Quantum GIS (QGIS). This
process was conducted to verify whether the location points aligned
with the palm tree crowns in themosaic. In caseswhere reference palm
trees weremisaligned, they were eithermanually adjusted or excluded
from the classification if the corresponding palm tree was not clearly
identifiable in the mosaic. Subsequently, the shapefiles containing the
delineated crowns with their assigned species labels were rasterised to
match the same extent as the UAV mosaics using the Python pro-
gramming languaje65. This approach saves time in training data pre-
paration, as the conventional practice involves manual delineation,
which is time-consuming and costly, especially when verifying a large
number of tree crowns requires cross-checking by an experienced
visual interpreter68.

The third and fourth steps were also conducted in Python. In the
third step, mosaics with the labelled data were sliced into tiles of
512 × 512 pixels, ranging from 4 × 4m to 30 × 30m on the ground,
depending on the mosaic’s spatial resolution. This size is sufficient to
capture at least two palms per tile, as shown in our crown measure-
ments (Supplementary Table 3), following the approach for sample
selection by Brodrick et al. (2019)69. The tiles were split into a training
set (80%) and a validation set (20%). To test the accuracies and gen-
eralization of the model, seven combinations of tiles were used to
ensure that the trained model could effectively handle diverse char-
acteristics associated with UAV data collection or geographical loca-
tions. These characteristics encompassed factors such as illumination
conditions, mosaic spatial resolution, and floristic composition (Table
1). To increase the ability of the model to generalise, some of the tiles
were augmented using up to two different augmenters per batch,

Table 2 | Cost comparison between of expenditure by SERNANP on traditional plot-based fieldwork and drone (UAV) surveys
for developing management plans for sustainable management of M. flexuosa

Area Cov-
ered (ha)

Total
costs (USD)

Total time
(person-hrs)

Operational expendi-
tures (USD)

Capital
costs (USD)

Resource inven-
tory costs (USD)

Inventory costs per
area (USD/ha)

Plot-based method 10ha $29,863 1136 h $14,521 $15,342 $4110 $411/ha

UAV survey 230 ha $39,890 724h $11,205 $28,685 $1,0956 $5/ha

Change in costs
based on UAV utilisa-
tion (%)

34% − 36% − 23% 87% − 73% − 99%

Total costs are the sum of operational expenditure and capital costs; resource inventory costs are one component of the operational expenditure. Source data are provided as a Source Data file.

Fig. 6 | Comparison of the total costs of producing different numbers of
management plans between approaches that use traditional plot-based field-
work or drone (UAV) surveys for mapping the abundance of
arborescent palms. Source data are provided as a Source Data file.
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applied randomly70. Image augmentation artificially expands datasets,
increasing the likelihood of encountering similar cases in future data,
which improves dataset variability and model performance45,46. The
augmenters used were affine image transformations such as flipping
(50%), rotating ±20°) and zooming in and out (0.8 to 1.2) to simulate
different flying paths and altitudes and colour modifications as the
change of brightness (±20%) and saturation (−20% to + 10%) to
resemble different illumination conditions adding blur to resemble the
presence of humidity/light fog or water droplets, motion blur to
simulate different wind conditions, elastic transformations to resem-
ble artifacts in themosaics, and JPEGcompression to simulatedifferent
camera sensors.

Speciesmapping: Image Semantic Segmentationmodel. We used a
deep convolutional neural network (CNN), selecting a semantic seg-
mentation architecture and task formulation, rather than object
detection. This decision was based on the feedback from our main
stakeholders, who indicated that having delineated crowns was an
important asset for themand it has been shown that having crownarea
information (i.e., dominance) is more effective for forest
management68. We selected the DeepLab v3 + architecture, which has
as its backbone MobileNet-v2 and atrous spatial pyramid pooling
(ASPP), allowing enlarging the field of view of filters to incorporate
multiple scales context but maintaining localisation accuracy71. We did
not perform instance segmentation simultaneously at this point due to
the high computational costs and complexity9,68.

Palm quantification: Instance segmentation model. In tropical for-
ests, the clustering of individual species at close proximity presents a
challenge for quantifying species’ abundances. Directly quantifying
individuals from semantic segmentation maps is inaccurate due to
masks potentially encompassing multiple crowns. Hence, a method is
required to split these multi-crown segments without high computa-
tional costs or complexity. We used a simple yet powerful convolu-
tional neural network-basedmethod, for instance, segmentationbased
on semantic segmentation masks called DeepWatershed Transform72,
which learns how to identify the centre of the palm trees. This method
is inspired by the classical watershed transform algorithm, where the
distance to the boundary helps to discriminate crowns72. The model
uses the segmented image plus the UAV mosaic as input to detect the
instances and delineate “basins”, where each basin corresponds to an
individual palm crown.

To ensure accuracy, the removal of small predicted pieces of
crowns is conductedbyapost-process thatfirstfills small holes to keep
the integrity of an instance, filling a maximum of 1000 pixels per
instance. Then, the instances are eroded to make the spacing between
crowns clearer, using the Scikit morphology binary erosion (enlarging
darker regions, thus the spaces between crowns). Next, structural
erosion from SciPy is applied to maintain the crown shape, where the
kernel sizes depend on the species. Later, the instances smaller than
the averageUAVmeasurements of crown size (Supplementary Table 3)
are removed and holes are filled after erosion using the Scikit mor-
phology module.

Accuracy assessment and model testing. To evaluate the model’s
transferability, we utilised full UAV orthomosaics to assess the accu-
racy and robustness of the seven models trained on different data
subsets, as described onTable 1. Among thesemodels, sixwere trained
using different arrangements of training and test data, while the “Final”
model incorporated all the training data from the region of Loreto and
was tested using the data from the region of Madre de Dios
region (Fig. 2).

The training and test data arrangements were designed to cover
data scenarios of increasing complexity. Model 1 involved a dataset
from a single location with a similar floristic composition, images

captured on similar dates within the same year, and the utilisation of
the sameUAV. The objectivewas to establish a baseline for themodel’s
performance. For training and testing this model, five UAV mosaics
from the Veinte de Enero community in Loreto from October 2017
were used.

Models 2 to 4 aimed to test the model’s robustness over time and
involved three different combinations of datasets grouped by the year
of data collection. These combinations utilised two years of data for
training and one year for testing. This approach allowed us to account
for variations in illumination conditions, habitat diversity, and spatial
resolutions resulting from different flying heights.

Model 5 assessed the model’s robustness across different loca-
tions. In this case, themodelwas trainedondata fromonehydrological
basin around the Allpahuayo-Mishana National Reserve and then tes-
ted on data from another basin in the Pacaya Samiria National Reserve.

Model 6 explored the model’s performance when the floristic
composition of the forests differed slightly. For this scenario, we used
most of the available training data from various areas around the
Pastaza-Marañon (PM) Foreland Basin, encompassing different habitat
types, illumination conditions, and spatial resolutions. The model was
then tested withmosaics from the Nueva Jerusalen site, in the north of
the Loreto Region, close to the border with Colombia73.

The general performance of the different models was evaluated
with the Precision (user’s accuracy), Recall (producer’s accuracy) and
F1 score from the Scikit-learn Package74. For the species mapping
assessment, a Point-in-polygon method was used75, comparing the
ground data polygon with the predicted points. Given that the pre-
diction points are exclusively generated for the target species, in order
to evaluate whether the model is predicting non-palm trees as palm
trees (commission error), we manually designated other objects not
belonging to the target species, as points in the background class. This
was done in areas where the presence of the three palm species was
not visually identified, such as the crowns of other trees. The selection
of these points mirrored a similar number to those allocated for the
target species within each plot. In addition, the overall accuracy and
the confusion matrices were also calculated.

The Precision— user’s accuracy (UA) —is the number of correctly
classified objects (true positives, tp) in a class divided by the total
number of points that were predicted by the model:

UAclass =
tpclass

Nclassif ied
ð1Þ

The Recall— producer’s accuracy (PA) —is derived by dividing the
number of correctly classified objects per class (tp) by the total num-
ber of polygons according to the ground reference:

PAclass =
tpclass

Nground ref erence class
ð2Þ

The F1 score is the harmonic mean of recall and precision to
provide a comprehensive assessment of a model’s performance and
thus expresses the balance between recall and precision:

F1 score= 2×
precision× recall
precision+ recall

ð3Þ

The F1 score was used to assess overall performance, instead of
the overall accuracy, becauseM. flexuosa was more abundant in most
plots compared to other palm species.

The overall accuracy (OA) is the total number of correctly classi-
fied pixels (tp), divided by the total number of samples (Nc):

OA=
Pi

class tp
Nc

ð4Þ

where i is the number of classes.
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To evaluate our approach to counting individual trees, the pre-
dicted number of individual arborescent palm trees was compared to
the visible number of palm trees per UAV mosaic across fifty-five sites
(Fig. 3). Subsequently, we calculated the R2, RMSE, and the Normalised
RMSE to assess the relationship between the predicted and visible
counts. For sites with fewer than a thousand individuals, the visible
palm values in the UAV mosaics relied on the count of GPS locations;
for sites with a higher number of individuals, the reference values were
based onmanually located crowns. This approach enabled us to assess
the scalability of our method across both smaller, uniform areas and
larger, more variable regions.

Cost analysis
We sourced the costs associated with developing management plans
to support sustainable palm fruit harvesting of M. flexuosa, based on
both plot- and drone-based inventories, from SERNANP. We grouped
the costs as external services provided by consultants (staff for the
field survey, data processing and reporting), capital costs including
capital equipment (small boat, drone, appropriate computer with
licenced software) and capacity building (drone pilot licences for the
park rangers, training on image processing), recurring costs (field
consumables not provided by the consultant team), and SERNANP
permanent staff costs (Supplementary Table 2).

Costs were quantified in Peruvian Nuevos Soles and converted to
USDusing the exchange rate for 202176. The costswerebasedonactual
expenditure corresponding to the Master Plan of the Tambopata
National Reserve 2019–202344.

Data availability
The UAV mosaics and their details can be found at 4TU ResearchData
[https://doi.org/10.4121/70a8cec0-dfa7-4963-ba8a-612e738ec0cb.v1]67.
Source data are provided in this paper.

Code availability
The code for training the model andmaking predictions is available at
Code Ocean [https://doi.org/10.24433/CO.0764353.v1]66. For the
model training workflow, open the Jupyter notebook “1.PalmsCNN_-
Tutorial.” To work only with the predictions, use “2.PalmsCNN_Tutor-
ial_Prediction.”The Google Collab notebook and single Python scripts
can be found at GitHub: https://github.com/iiap-gob-pe/PalmsCNN/
tree/main.
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