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Abstract

Fluids subject to both thermal and compositional variations can undergo doubly diffusive con-

vection when these properties both affect the fluid density and diffuse at different rates. In natural

doubly diffusive convection, the gradients of temperature and salinity are aligned with each other

and orthogonal to gravity. The resulting buoyancy-driven flows are known to lead to the formation

of a variety of patterns, including spatially localized states of convection surrounded by quiescent

fluid. These states are known as convectons. Localized pattern formation in natural doubly dif-

fusive convection has been studied under a specific balance where the effects of temperature and

salinity changes are opposite but of equal intensity on the fluid density. In this case, a steady

conduction state exists and convectons bifurcate from it. The aforementioned buoyancy balance

underpins our knowledge of this pattern formation but it is an ideal case that can hardly be met

experimentally or in nature. This article addresses how localized pattern formation in natural

doubly diffusive convection is affected by departures from the balanced case. In particular, the

absence of a conduction state leads to the unfolding of the bifurcations to convectons. In thermally

dominated regimes, the background flow promotes localized states with convection rolls attached

to the end-walls, known as anticonvectons, and the existence of these states is found to be related

to the emergence of convectons. Convectons are found to exist over a range of buoyancy ratio

values, disappearing at saddle-nodes of anticonvecton branches in the thermally dominated regime

and smoothly transitioning into domain-filling states in the solutally dominated regime. These

observations extend the scope of our understanding of localized pattern formation in fluid systems.

I. INTRODUCTION

Thermal convection provides a great framework for the study of pattern formation in

fluid systems. Rayleigh–Bénard convection, where a horizontal fluid layer is heated from

below, is widely used as an example of convection roll formation [1, 2] but it is also exten-

sively studied for more complex phenomena like the formation of a variety of patterns on

the horizontal plane [3] and transitions in a cubic domain [4, 5] or in cylindrical geometries

[6, 7]. However, since Rayleigh–Bénard convection is a supercritical problem, it has limited
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scope for multi-stability near onset. In doubly diffusive convection, by contrast, the pres-

ence of a competition between the thermal and the solutal effects on the fluid density may

change the system criticality and lead to rich dynamics close to onset [8]. When the driving

gradients of temperature and salinity are parallel to gravity, two important instabilities may

arise and have been extensively studied by the astrophysical and geophysical fluid dynamics

community: salt fingering [9] and diffusive layering [10]. These instabilities are not the only

interesting phenomenological points of interest provided by doubly diffusive convection and

other instabilities may be triggered when the buoyancy gradients are inclined, for example,

in the vicinity of icebergs [11].

We are interested here in the case of a vertical column of fluid where the gradients of

temperature and salinity are aligned with each other and orthogonal to gravity. Pattern

formation in the resulting natural doubly diffusive convection system has been mostly stud-

ied in the subcritical case by looking at linear instabilities from the conduction state, for

which the fluid is motionless [12–14]. Pioneering simulations in three dimensions revealed

a complex bifurcation scenario [15]. Further, the discovery of multiple coexisting solutions

and, in particular, of a steady state consisting in a spatially localized convection roll in

the subcritical regime by Ghorayeb & Mojtabi [12] fostered interest in spatially extended

domains. The systematic understanding of localized states into a bifurcation scenario called

homoclinic snaking [16], a term first coined by Woods and Champneys [17], subsequently

guided investigations and led to their first characterization in large, two-dimensional do-

mains of doubly diffusive convection [18], where they are called convectons. Further work

focused on three-dimensional domains and identified a new instability responsible for sec-

ondary snaking nested within the better-known, primary snaking [19, 20], localization in the

transverse direction [21] and a sudden route to chaos [22].

In parallel, convectons have been studied in the doubly diffusive convection taking place

in horizontal fluid layers driven by a vertical gradient of temperature and by the Soret effect,

the solutal response to an applied thermal gradient. In this system, usually referred to as

binary fluid convection, Mercader et al. first computed the convecton bifurcation diagram

and revealed that, in the presence of end-walls (using so-called “closed container boundary

conditions”), homoclinic snaking could be observed without bistability between the trivial

state and a spatially periodic state [23]. They subsequently identified new families of local-

ized states: anticonvectons, which display a void in the center of the domain surrounded by
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convection rolls, and multiconvectons, which are bound states of convectons and anticon-

vectons [24]. Other, more complex types of convectons have also been found, such as the

periodic traveling pulse, which consists in a slow-moving envelope inside which convection

rolls travel fast and outside which the fluid is motionless [25, 26]. Convectons have also

been found in magnetohydrodynamic convection [27], Marangoni convection [28], binary

fluid convection in a porous medium [29] and rotating convection [30].

Besides their recent discovery in the supercritical regime [31], doubly diffusive convectons

have been studied in the subcritical regime where bistability is observed between a trivial

conduction state and a domain-filling patterned state. However, in the case of interest here,

the existence of a conduction state is contingent on the presence of a physical balance: the

fluid density needs to respond equally in amplitude but oppositely in sign to changes in

its temperature and in its salinity. This physical balance is controlled by a dimensionless

parameter, the buoyancy ratio

N = −ρC∆C

ρT∆T
, (1)

where ρT (ρC) is the thermal (solutal) expansion coefficient and ∆T (∆C) is the charac-

teristic temperature (salinity) difference. The balanced case, N = −1, underpins all of our

current understanding about convectons in doubly diffusive convection but it only represents

an ideal case that is unlikely to be achieved experimentally or in nature. The aim of our

investigation is to understand how doubly diffusive convection is impacted by deviations

from its balanced case, with particular focus on convectons and related localized states.

Knowledge of their robustness to parametric changes, particularly to those of N , is critical

to establish the relevance of a large body of literature.

We start in Section II by describing the mathematical formulation of the problem. In

Section III, we present the baseline results that are obtained in the balanced case N = −1.

In particular, we describe the bifurcation scenario of three families of convectons of interest:

convectons, anticonvectons and multiconvectons. Many of these states have never been com-

puted in natural doubly diffusive convection and we have found that they play an important

role in the emergence of convectons in the unbalanced case. The main results of this paper

are reported in Section IV, where we explain how the bifurcation scenario is impacted by

the buoyancy ratio, identify how several types of localized states interact and explain the

mechanism by which convectons are created in the thermally dominated regime (N > −1).

Finally, the paper ends with a discussion in Section V.
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FIG. 1. Representation of the non-dimensional closed cavity with no-slip boundary conditions

imposed at x = ±0.5 and z = 0, Lz.

II. MATHEMATICAL FORMULATION

In this paper, we consider the doubly diffusive convection of fluid confined within a closed

rectangular cavity with thermal and solutal gradients imposed via the side-wall boundary

conditions. The non-dimensionalized governing equations for this system read:

1

Pr

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇2u+Ra (T +NC) ẑ, (2)

∇ · u = 0, (3)

∂T

∂t
+ u · ∇T = ∇2T, (4)

∂C

∂t
+ u · ∇C =

1

Le
∇2C, (5)

where u is the fluid velocity, p is its pressure, T (resp. C) is the scaled temperature (resp.

salinity) and ẑ is the upward-pointing unit vector. The equations are parameterized by

the Prandtl number Pr, the Lewis number Le, the buoyancy ratio N and the Rayleigh

number Ra. In contrast to previous studies of convectons in similar configurations (see

[18, 19, 31, 32]), we do not restrict our attention to the case where the buoyancy ratio

satisfies N = −1. Rather, we study the effect that a departure from this special value has

on the system. Following previous investigations on the impact that the Prandtl and Lewis

numbers have on the system [14, 31], we fix Le = 5, Pr = 1 and treat the Rayleigh number
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Ra as a bifurcation parameter used to characterize steady states in the system. A more

physical description of the system and its non-dimensionalization can be found in [14].

The system (2)–(5) is considered in the closed cavity that is bounded by the vertical

side-walls at x = ±0.5 and horizontal end-walls at z = 0, Lz, as depicted in figure 1. We

will consider Lz = 4λc, 5λc and 12λc, where λc ≈ 2.48 is the critical wavelength of the

primary bifurcation with periodic boundary conditions in the z-direction [13]. The following

boundary conditions are imposed on the cavity walls:

u = 0, w = 0, −∂p

∂x
+

∂2u

∂x2
= 0, T = −0.5, C = −0.5 on x = −0.5, (6)

u = 0, w = 0, −∂p

∂x
+

∂2u

∂x2
= 0, T = 0.5, C = 0.5 on x = 0.5, (7)

u = 0, w = 0, −∂p

∂z
+

∂2u

∂z2
= 0,

∂T

∂z
= 0,

∂C

∂z
= 0 on z = 0, Lz, (8)

where, in addition to the fluid velocity vanishing on the four side-walls owing to the no-slip

boundary conditions, the domain allows no thermal or solutal flux through the horizontal

end-walls.

The results presented in this paper were obtained via numerical continuation using a

spectral element numerical method based on a Gauss–Lobatto–Legendre discretization and

supplemented by Stokes preconditioning (see [33, 34] for further details). Each element of

the numerical domain was discretized using 25 nodes in both the x- and z-directions, while

the number of spectral elements nez depends upon the vertical extent of the cavity (see

table I). Validations were carried out using a higher resolution consisting of 30 nodes in

both directions. The results are presented using bifurcation diagrams that, unless otherwise

stated, present the total kinetic energy

E =
1

2

∫ 0.5

−0.5

∫ Lz

0

(
u2 + w2

)
dz dx (9)

as a function of the Rayleigh number, or via the solution streamfunction. These solution

profiles use two scales to depict both weak and strong flows in the same figure: a logarithmic

scale, showing black (clockwise flow) and grey (anticlockwise flow) streamlines; and a linear

scale, showing red (clockwise flow) and blue (anticlockwise flow) streamlines.

6



Lz nez nx nz

4λc ≈ 9.93 8 25 25

5λc ≈ 12.4 10 25 25

12λc ≈ 29.8 24 25 25

TABLE I. Discretizations used for numerical continuation. The domain is discretized using nez

spectral elements, with each element containing nx nodes in the x−direction and nz nodes in the

z−direction.

III. BALANCED SYSTEM WHEN N = −1

When N = −1, doubly diffusive convection admits a trivial state, called the conduction

state, where the fluid is static (u = 0) and the temperature and salinity profiles are linear

(T = C = x). In this state, the buoyancy force (the last term in equation (2)) is zero since

the thermal and solutal contributions are balanced, and the fluid density is uniform across

the cavity.

The presence of end-walls at z = 0 and Lz creates fundamental differences between the

system considered here and the more studied, spatially periodic one; in particular, this

system is not equivariant with respect to continuous translations in the z-direction. This

precludes the emergence of pitchforks of revolution as an instability mechanism from the

conduction state as found by Xin et al. [13] in the spatially periodic case. The presence of

end-walls also excludes domain-filling, spatially periodic states from this system: the con-

vection rolls that develop in doubly diffusive convection systems do not possess a horizontal

section which is compatible with the boundary conditions we set at the end-walls. For a

more detailed discussion on the effect of boundary conditions on doubly diffusive convection

pattern formation, we refer the reader to [19, 21]. These effects thus influence both where

the branches of convectons bifurcate from and where they terminate, as will be seen in sec-

tion IIIA. The following inversion symmetry about the center of the domain is, however,

preserved:

S∆ : (x, z) 7→ (−x,−z), (u,w, T, C) 7→ −(u,w, T, C). (10)

While this system admits states that break this inversion symmetry (for example, the two-

dimensional equivalent to the two-roll wall-attached state found by Beaume et al. [20]), we
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FIG. 2. Convecton branches and streamfunction profiles for N = −1, Pr = 1 and Le = 5 in a

domain with Lz = 12λc. (a) and (g) Bifurcation diagram showing branches corresponding to con-

vectons with an odd (L+) and even (L−) number of strong anticlockwise central rolls, which are

shown in red and blue, respectively. (b)–(e) Streamfunction profiles of the first four saddle-nodes

along L−. (f) Streamfunction profile of large-amplitude state on L+. (h)–(k) Streamfunction pro-

files of the first four saddle-nodes along L+. (l) Streamfunction profile of large-amplitude state on

L−. Contours are shown using linear (blue) and logarithmic (black and grey) scales and take the

values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).

largely only consider states that preserve this symmetry.

A. Convectons

A detailed description of the bifurcation to convectons is provided in Appendix A. In

the larger domains, the convecton branches, L+ and L−, head away from the primary tran-

scritical bifurcation of the conduction state and towards lower Rayleigh numbers before

first turning around at a left saddle-node located at Ra ≈ 1305 for L+ (figure 2(b)) and

Ra ≈ 1292 for L− (figure 2(h)). The amplitude modulation of the states increases as the

branches approach their first left saddle-node, by which point convective motion has become

spatially localized, as can be seen in figures 2(b) and (h).

After the first left saddle-nodes, the two convecton branches proceed to undergo homo-

clinic snaking over the interval 1291 < Ra < 1540 as has already been observed with periodic
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boundary conditions [31]. The convectons follow established snaking phenomenology [18],

as shown by the changes in the streamfunction plots between convectons at the first four

saddle-nodes on L+ (figures 2(b)–(e)) and L− (figures 2(h)–(k)). Between the left and right

saddle-nodes, the central anticlockwise rolls strengthen and become larger. Outside this

structure, weak counterrotating rolls strengthen with increasing Rayleigh number while re-

maining modulated due to the boundary conditions. As the branch further proceeds to the

next left saddle-node, rolls decay with the exception of the anticlockwise rolls immediately

adjacent to the large-amplitude central rolls. As a result, the convecton has grown by nu-

cleation of one roll on either of its sides during the oscillation of the branch between two

left saddle-nodes. The snaking behavior continues until anticlockwise rolls almost fill the

domain. Unlike with periodic boundary conditions, here, the convecton branches cannot

terminate on branches of spatially periodic states but rather extend towards large ampli-

tudes as defect states [35, 36]. States on L+ appear to form a central defect surrounded by

two arrays of 4 co-rotating rolls each, as seen in figure 2(f), while the L− convectons form

defects at the wall, surrounding an 8-roll structure, like figure 2(l). The specific details of

this large-amplitude behavior depends on the domain size, so will not be considered any fur-

ther here, although we note that non-periodic boundary conditions are typically associated

with more complicated behavior than periodic boundary conditions [35].

B. Anticonvectons

Branches of anticonvectons—localized states where rolls are attached to both end-walls

and separated by a void region—are a distinguishing feature of the system with no-slip

boundary conditions. Mercader et al. [24] found these states in binary fluid convection

and attributed their presence to the absence of the translational invariance associated with

periodic boundary conditions. Branches of anticonvectons and convectons were found to

undergo homoclinic snaking within the same pinning region. Anticonvectons also exist in

natural doubly diffusive convection but their properties tend to be more complex because

of the dynamical difference between rolls with different sense of rotation.

Figure 3 shows two types of anticonvectons that lie on snaking branches that we refer to as

A (shown in black) and Ã (shown in purple) and which connect near their lowest point. Both

anticonvecton branches proceed to snake upwards within the interval 1291 < Ra < 1541,

9



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

FIG. 3. Anticonvecton branches and streamfunction profiles for N = −1, Pr = 1 and Le = 5. (a)

and (g) Bifurcation diagrams corresponding to branches with two types of anticonvectons A (black)

and Ã (purple) when N = −1. (b)–(f) Streamfunctions of steady states at the saddle-nodes of the

snaking anticonvecton branch A. (h)–(l) Streamfunctions of steady states at the saddle-nodes of the

snaking anticonvecton branch Ã. Contours are shown using linear (blue) and logarithmic (black

and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black);

[−0.2,−0.4,−0.6, ...] (blue).

with both types of anticonvectons extending by a pair of anticlockwise rolls toward the

center of the domain over a single snaking oscillation. The oscillations continue until 6-roll

states (shown in figures 3(f) and (l)) are obtained and domain-size effects begin to be felt.

States lying on the branch A (figures 3(b)–(f)) can be understood as two wall-attached

convectons that grow away from the wall by the nucleation of one roll after each branch

oscillation. The convectons on Ã (figures 3(h)–(l)) differ substantially. While A convectons

are characterized by strong anticlockwise rolls squashed against the wall, the strong anti-

clockwise rolls of Ã convectons are separated from it by the presence of lower amplitude

rolls. This allows the structure to exhibit breathing behavior as it oscillates away from the

wall between left and right saddle-nodes and these lower amplitude end rolls strengthen.
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FIG. 4. Multiconvecton branches and streamfunction profiles for N = −1, Pr = 1 and Le = 5.

(a) and (h) Bifurcation diagrams for L̃− (green) and L̃+ (orange). (b)–(g) Streamfunction of six

consecutive outermost saddle-node steady states of the branch L̃−, with (d) and (e) located on

the lower segment of the branch. (i)–(m) Same as previously but for L̃+. Only five streamfunc-

tion profiles are shown as the branch turns toward low energy beyond saddle-node state (m) and

produces more complex behavior. Contours are shown using linear (blue) and logarithmic (black

and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black);

[−0.2,−0.4,−0.6, ...] (blue).

C. Multiconvectons

Sufficiently large domains allow the existence of another family of steady states that

combine convectons and anticonvectons. These are characterized by convection rolls in the

center of the domain and near its end-walls while the regions in between contain motionless

fluid. We refer to these states as multiconvectons. Figure 4 shows the simplest multiconvec-

tons that we found in doubly diffusive convection, as well as their bifurcation diagram. To

remain consistent with the rest of this paper, these are represented in a domain of size 12λc,

leaving little room for the development of these heteroclinic connections. As a result, what

we mostly observe here are states where the transitions from conduction to convection are

seen via spatial modulation and not sharp fronts. The branch shown in green, L̃−, consists

of multiconvectons with an even number of central rolls while the branch shown in orange,

L̃+, consists of multiconvectons with an odd number of central rolls. Each of these branches

has a similar snaking bifurcation diagram to the one produced by A and Ã except that the

11



bottom left saddle-node of both branches is aligned with the left boundary of the pinning

region.

The multiconvecton at the lowest energy point on L̃− (figure 4(e)) combines an Ã “an-

ticonvecton” with a single roll near each of the end-walls and a two-roll “convecton” at the

center of the domain. The multiconvectons on this branch are found to exhibit growth mech-

anisms observed for L− convectons together with mechanisms seen on Ã anticonvectons. For

example, following L̃− over a single snaking oscillation between successive left saddle-nodes

4(e) and (g), the central structure can be seen to have nucleated two rolls while the outer

structures have oscillated vertically once. Following L̃− in the reverse direction (from right

saddle-nodes 4(d) to (b)), the same can be observed with the exception that the anticonvec-

ton breathing mechanism allows the temporary formation of a second large-scale roll near

the end-wall at the left saddle-nodes, thereby replicating behavior seen along Ã between

saddle-nodes 3(h) and (i).

A similar analysis of multiconvectons L̃+ can be carried out to reveal they are consti-

tuted of convectons L+ and anticonvectons Ã with similar growth mechanisms as for L̃−.

Interpreting this branch poses more difficulty, however: domain size effects are quickly felt

and the branch turns toward low energy right before saddle-node (m). This is the reason

why we did not provide any more figure panels for this side of the branch.

IV. UNBALANCED SYSTEMS WITH N ̸= −1

A. Large-scale flow

We now turn our attention to unbalanced regimes, i.e., N ̸= −1. This does not affect

the symmetry of the equations, which remain invariant with respect to S∆. Owing to the

departure from N = −1, the basic state is no longer conductive but consists of a large-scale

recirculating flow that develops from low Rayleigh numbers. Basic properties of this large-

scale flow can be ascertained by considering a parallel flow approximation similar to those

applied in natural convection (e.g., [37]) or binary fluid convection in porous media (e.g.,

[38]). For this purpose, we consider an infinitely extended domain in the vertical direction

and assume a purely conductive heat and solute transport between the side-walls, i.e., u = 0

and T = C = x. The buoyancy force in equation (2) depends linearly on T+NC = (1+N)x.
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It vanishes when N = −1 but exhibits linear horizontal dependence when N ̸= −1. As

a result, when N > −1 (resp. N < −1), fluid at the right side-wall has an upward (resp.

downward) buoyancy force, with the opposite at the left wall. This force imbalance increases

when N is driven away from −1. The resulting horizontal buoyancy force gradients are a

source of vorticity, which may be seen from the vorticity equation:

1

Pr

(
∂ω

∂t
+ u · ∇ω

)
= ∇2ω −Ra

(
∂Θ

∂x
+N

∂Φ

∂x

)
−Ra(1 +N), (11)

where ω = ŷ · ∇ × u is the vorticity and Θ = T − x (resp. Φ = C − x) is the deviation from

the linear profile of temperature (resp. solutal concentration). Assuming steady unidirec-

tional flow in the vertical direction with Θ = Φ = 0, the vorticity equation reduces to

∇2ω = Ra(1 +N) (12)

and the resulting vertical velocity profile is given by

w(x, z) = − 1

24
Ra(1 +N) x(2x− 1)(2x+ 1), (13)

resembling that found in natural convection [37], except with a Rayleigh number that has

been modified by the deviation of the buoyancy ratio away from N = −1.

Figures 5(a)–(h) show how this flow develops in the presence of end-walls in the vertical

direction for N = −0.9. We see that the strength of the flow increases with the Rayleigh

number. This is quantified in panel (i), which shows that the quantity

Iw =

∫ 0.5

0

w

(
x, z =

Lz

2

)
dx, (14)

initially increases linearly with the Rayleigh number, in excellent agreement with the ana-

lytical prediction (13), which implies Iw = 1
384

Ra(1 +N).

The calculation that led to expression (13) is not valid near the horizontal end-walls of

the domain due to the presence of no-slip boundary conditions. Instead, we find that the

vertical flow is deflected by the end-walls to generate a single domain-filling recirculating flow

with anticlockwise circulation in thermally dominated flows (N > −1) or clockwise circula-

tion in solutally dominated flows (N < −1). Expression (13) further breaks down towards

larger Rayleigh numbers, as shown by the formation of secondary rolls when N = −0.9 in

figures 5(d)–(g). The origin of these rolls is doubly diffusive [39] and differs from the initial

formation of secondary rolls in natural convection [40], which occurs via inertial effects. We

also found inertia-driven secondary rolls in this system; however, these were at considerably

higher Rayleigh numbers, outside of the regime in which localized states are found.
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FIG. 5. Development of the anticlockwise large-scale flow with Ra until the first right saddle-node

at Ra ≈ 1257 when N = −0.9. (a)–(h) Streamfunctions of the large-scale flow at the Rayleigh num-

bers marked in (i). Contours are shown using linear (blue) and logarithmic (black and grey) scales

and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...]

(blue). (i) Plot showing Iw (14) for the large-scale flow at different Rayleigh numbers. The blue

dashed line indicates the relationship Iw = 1
384Ra(1 +N), obtained from equation (13).

B. Convectons with varying buoyancy ratio in the thermally dominated regime

We restrict our attention to convectons in thermally dominated regimes (N > −1). As

the large-scale flow and the convecton rolls have the same sense of rotation, we expect the

results to be simpler than the solutally dominated regimes (N < −1).

In weakly unbalanced systems, the convecton branches proceed to undergo homoclinic

snaking as they extend towards larger amplitudes. This behavior is illustrated in figure 6

for N = −0.999, where we see the close resemblance of the snaking branches to those in

the balanced system for N = −1 (figure 2). The strong central anticlockwise rolls in the

convectons (figures 6(b)–(e), 6(h)–(k)) and the domain-filling states (figures 6(f), (l)) that

lie on these branches are also minimally affected by the small change to the buoyancy

ratio. More detail on the small-amplitude unfolding of the primary bifurcation leading to

convection branches when N ̸= −1 is presented in Appendix B.

The imbalance in the system can be seen in the large, weak rolls that fill the domain

outside of the central rolls and whose origin can be traced back to the large-scale flow
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FIG. 6. Convecton branches and streamfunction profiles for N = −0.999, Pr = 1 and Le = 5. (a)

and (g) Bifurcation diagram showing the convecton branches L+ (red) and L− (blue) and a branch

of two-pulse states (red dashed) that is terminated at small-amplitude at the black dot. (b)–(f),

(h)–(l) Streamfunctions of: (b)–(e) convectons at four saddle-nodes of L+ that are marked in (a);

(f) the domain-filling state on L+ marked in (a); (h)–(k) convectons at four saddle-nodes of L−

marked in (g); (l) the domain-filling state on L− marked in (g). Contours are shown using linear

(blue) and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey);

[10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).

considered in section IVA. These rolls are sensitive to increases in the Rayleigh number,

with each of them breaking up into smaller counterrotating rolls between successive left

and right saddle-nodes (e.g., compare figures 6(d) and (e)) as they cannot overcome the

strengthening of the rolls that contribute to the front of the convecton with increasing

Rayleigh number. This breakup allows the pair of weak anticlockwise rolls closest to the

central rolls to strengthen between right and left saddle-nodes (e.g., figures 6(c)–(d) and

(i)–(j)), which increases the number of strong anticlockwise rolls by two over each snaking

oscillation. This behavior appears similar to that observed for N = −1 (figure 2).

C. Effect of anticonvecton branch on convectons

The bifurcation diagram for N = −0.9 (Figure 5) suggests that anticonvectons play an

increasingly important role in the thermally dominated regime of doubly diffusive convection.
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(a) N = −1 (b) N = −0.99 (c) N = −0.98 (d) N = −0.975 (e) N = −0.95 (f) N = −0.89

FIG. 7. The anticonvecton branch for: (a) N = −1, (b) N − 0.99, (c) N = −0.98, (d) N = −0.975,

(e) N = −0.95 and (f) N = −0.89. The anticonvecton pinning region is shaded in light purple,

while the convecton pinning region is hatched in blue when it exists. The black arrow in (a)

indicates the direction in which the anticonvecton branch continues when N = −1 (cf. figure 3).

To understand this further, we first notice that the convecton pinning region depends upon

the structure of the anticonvecton branch. This dependence is illustrated in figure 7, where

the bifurcation diagrams for selected N show the anticonvecton branch (black) and the

pinning region associated with its snaking (light purple), together with the convecton pinning

region (blue hatched). This figure shows that the convecton pinning region, when it exists,

is bounded on the left by the lower edge of the anticonvecton pinning region. In contrast,

the right edge of the convecton pinning region changes with increasing N , owing to the

formation of a small-amplitude right saddle-node at N ≈ −0.9904, when the anticonvecton

branch connects to the branch of large-scale flow originating from Ra = 0, and its subsequent

motion towards lower Rayleigh numbers. Initially, the right edge of the convecton pinning

region coincides with the upper edge of the anticonvecton pinning region (figures 7(a) and

(b)), but changes to being bounded by the first right saddle-node of the anticonvecton

branch when this saddle-node is located within the anticonvecton pinning region (figure 7(c)).

Consequently, the convecton pinning region disappears (e.g., figures 7(d)–(f)) when this right

saddle-node passes through the left edge of the anticonvecton pinning region.

Figure 8 summarises the above changes in (Ra,N) parameter space by tracking the fol-

lowing over a range of N : the convecton pinning region (blue hatched), in which convectons
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7(f)

7(e)

7(d)

7(c)

7(b)

7(a)

(A2) (A) (L)

FIG. 8. Regions of (Ra,N) parameter space in which two-roll anticonvectons (A2), snaking anti-

convectons (A), shaded in light purple, and convectons (L), hatched in blue, can be found. The

boundaries between regions are given by: the first left and right saddle-nodes of the anticonvecton

branch (black) and the pinning region of the snaking anticonvectons (purple). Five codimension-

two points where the boundaries intersect are labelled and marked by the black circles. The red

cross marks the primary bifurcation of the conduction state when N = −1. The three panels on

the right give representative examples of the three types of states. Arrows indicate the values of

N used to produce the bifurcation diagrams in figure 7.

(L) exist; the anticonvecton pinning region (light purple), in which anticonvectons (A) ex-

ist; and the first left saddle-node of the anticonvecton branch and, when it exists, the first

right saddle-node of the anticonvecton branch. We call the lowest part of the anticonvecton

branch, to the left of the anticonvecton pinning region and between the first left and right

saddle-nodes, the two-roll anticonvecton (A2) branch, with one roll at each end-wall. From

this figure, we identify five codimension-two points where saddle-nodes corresponding to

the boundaries either originate (I), cross through each other (II) and (III) or collide and

disappear (IV) and (V). The qualitative structure of the bifurcation diagrams changes near

these points, as seen in figure 7. We discuss these changes in the remainder of this section.
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(a) N = −1 (b) N = −0.996 (c) N = −0.994 (d) N = −0.99045 (e) N = −0.99

FIG. 9. Bifurcation diagrams showing how the anticonvecton branch A (black) disconnects from Ã

(purple) and instead connects to the branch of base flow between N = −1 and N = −0.99. Arrows

indicate the direction in which the branches continue. The purple vertical dashed lines indicate

the limits of the anticonvecton pinning region. The grey vertical dashed lines in (c)–(e) indicate

the location of the lower right saddle-node of the anticonvecton branch.

1. (I): Changes at small-amplitude

The small-amplitude structure of the bifurcation diagram is the first to change as the

buoyancy ratio is increased into the thermally dominated regime. We find that the behav-

ior changes from the unfolding discussed in Appendix B (figure 20), where the branch of

large-scale flow originating from the origin connects to L− before extending towards larger

amplitudes, to involve branches of states with weak anticlockwise rolls at both ends of the

domain. This occurs in several stages and involves intermediate branches that we will not

consider in detail. For simplicity, we focus on two aspects of the small-amplitude recon-

nections around N ≈ −0.9904 (point (I) in figure 8): firstly, how the anticonvecton branch

connects to the branch of large-scale flow (figure 9) and, secondly, which branch L− connects

to instead (figure 10).

Figure 9 depicts how the lower sections of the anticonvecton branches change when N

is increased from N = −1 (figure 9(a)) to N = −0.99 (figure 9(e)). This branch segment

undergoes a cusp bifurcation when N ≈ −0.996, which leads to the two new saddle-nodes

seen in figure 9(c) when N = −0.994. The right saddle-node of this pair extends towards

lower energies and larger Rayleigh numbers as N increases and approaches the left saddle-
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FIG. 10. Bifurcation diagrams showing how the convecton branch L− (blue) connects to the

branch of multiconvectons L̃− (green dotted) between N = −1 and N = −0.99. Arrows indicate

the direction in which the branches continue. As in figure 9, the purple vertical dashed lines

indicate the limits of the anticonvecton pinning region, while the grey vertical dashed lines in

(c)–(e) indicate the location of the lower right saddle-node of the anticonvecton branch.

node that an intermediate branch (grey in figure 9(d)) undergoes before snaking towards

larger amplitudes, which is indicated by the upward-pointing grey arrow. The two saddle-

nodes connect in a transcritical bifurcation around N ≈ −0.9904 and the two branches of

anticonvectons separate as this bifurcation unfolds. This results in the branch of large-scale

flow connecting to A when N = −0.99, while Ã connects with the intermediate branch and

continues towards larger amplitudes (figure 9(e)).

Other branches also extend towards smaller amplitudes as the buoyancy ratio increases,

including branches of multiconvectons that consist of states containing central rolls (like

convectons) and an anticlockwise roll at either end of the domain (see figures 11(b.ii)–(b.v)

and (c.ii)–(c.v) for examples). Figure 10 illustrates this behavior for the branch of even mul-

ticonvectons L̃− (green dotted) and how this leads to the branch connecting with L− (blue)

by N = −0.99 (figure 10(e)). In the balanced system (figure 10(a), but also figure 4(a)),

this multiconvecton branch snakes upwards in both directions from the left saddle-node at

E ≈ 6, as indicated by the thick and thin green dotted lines. As N increases, this lower

left saddle-node moves towards lower energies and the adjacent branch segments undergo

a cusp bifurcation around N ≈ −0.996, which leads to the additional saddle-nodes seen on
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the lower part of L̃− by N = −0.994 (figure 10(c)). The newly formed right saddle-nodes

are located at similar values of the Rayleigh number as the right saddle-node that forms on

the anticonvecton branch in figure 9, as evidenced by the dashed vertical grey lines in both

figures. This continues to be the case as N increases to N = −0.99045 (figure 10(d)). Mean-

while, we find that L− disconnects from the branch of large-scale flow between N = −0.996

and N = −0.994 and, instead, continues by snaking upwards (see blue arrows in figure 10).

Similarly to the intermediate branch previously discussed, L− exhibits a left saddle-node

that approaches the right saddle-node of L̃− when N = −0.99045 (not shown) before con-

nection at around N ≈ −0.9904. The branch of odd multiconvectons L̃+ exhibits analogous

changes and connects to L+ by N = −0.99.

Figure 11 depicts sections of the bifurcation diagrams and streamfunctions of states along

the branches for N = −0.99 after these reconnections have occurred and the branch of

anticonvectons connects to the branch of large-scale flow (top row), while each branch of

convectons connects to the corresponding branch of multiconvectons (bottom two rows).

The initial behavior of the anticonvecton branch is similar to that previously seen when

N = −0.9 (figure 5), as a domain-filling anticlockwise flow develops across the domain and

strengthens with increasing Rayleigh number (figures 11(a.i) and (a.ii)). This branch turns

around at the right saddle-node marked (iii), where the state has one secondary anticlockwise

roll at either end of the domain. These rolls strengthen as the branch is followed towards

the following left saddle-node marked (vi) and separate from the weak domain-filling flow as

the small clockwise rolls, first seen in (a.iii), strengthen and extend across the full horizontal

extent of the domain (figures 11(a.iii)–(a.vi)). The subsequent behavior of this anticonvecton

branch closely resembles that when N = −1 (figure 3), where the anticonvectons extend by

a pair of strong anticlockwise rolls across each oscillation as the branch snakes upwards until

the domain has nearly filled (a.xiii). The main difference, however, is the presence of the

weak anticlockwise flow that fills the region between the two sets of stronger rolls.

As a result of the reconnection process illustrated in figure 10 and the corresponding

one for L+ and L̃+, we find that each branch of convectons (blue and red solid lines) con-

nects with the corresponding branch of multiconvectons (green and orange dotted lines) at

a small-amplitude right saddle-node, as shown in figures 11(b) and (c). Figures 11(b.i) and

(c.i) depict the associated state, which we see contain either one (c.i) or two (b.i) weak

central anticlockwise roll(s) separated by a pair of weak clockwise rolls from the larger
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(a) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii)

(b) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

(c) (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

FIG. 11. Bifurcation diagrams and streamfunctions for steady states whenN = −0.99. Top row: (a) Branch of anticonvectons

A (black) and (i)–(xiii) selected profiles of anticonvectons. Middle row: (b) Branch of even convectons L− (blue) and even

multiconvectons L̃− (green); (i) State at the saddle-node where L− and L̃− join; States at the first four saddle-nodes of (ii)–(v)

L− and (vi)–(ix) L̃− Bottom row: (b) Branch of odd convectons L+ (red) and odd multiconvectons L̃+ (orange); (i) State

at the saddle-node where L+ and L̃+ join; States at the first four saddle-nodes of (ii)–(v) L+ and (vi)–(ix) L̃+. Contours

are shown using linear (blue) and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey);

[10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue).
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anticlockwise rolls, which each contain a secondary anticlockwise end roll with amplitude

comparable to the central roll(s). After these right saddle-nodes, each of the convecton and

multiconvecton branches proceed to snake upwards within the anticonvecton pinning region

before finite domain effects become important at large amplitudes. During this upwards

snaking process, the central rolls of both types of states develop in similar ways (com-

pare figures 11(b.ii)–(b.v) to (b.vi)–(b.ix) and (c.ii)–(c.v) to (c.vi)–(c.ix)). As the branches

are followed between successive left and right saddle-nodes, the central anticlockwise rolls

strengthen and a secondary roll develops on the interior side of each of the large, weak

anticlockwise rolls. The central rolls proceed to weaken while the secondary rolls continue

to strengthen and disconnect from the background flow as each branch is followed towards

the following left saddle-node, resulting in the increase of the number of rolls of the central

structure by two over a single snaking oscillation.

Differences between convectons and multiconvectons, however, are observed by the pres-

ence or absence of strong anticlockwise rolls located at either end of the domain. Starting

from the right saddle-nodes where the corresponding branches meet ((i) in figures 11(b) and

(c)) and heading towards lower Rayleigh numbers along either convecton branch, the pair

of anticlockwise end rolls seen in figures 11(b.i) and (c.i) weaken. This leads to each of the

large background rolls extending from the central rolls to one end of the domain and the ab-

sence of stronger anticlockwise end rolls in convectons. In contrast, as each multiconvecton

branch is followed from its small-amplitude right saddle-node, marked (i) in figures 11(b)

and (c), towards lower Rayleigh numbers, the secondary anticlockwise end rolls strengthen

and separate from the large background rolls, as seen in figures 11(b.vi) and (c.vi). The

strength of these end rolls is governed by the segment (iv)–(v) on the anticonvecton branch,

as can be seen by comparing these end rolls at the left saddle-nodes ((b.vi), (b.viii), (c.vi)

and (c.viii)) to (a.v) and those at the right saddle-nodes ((b.vii), (b.ix), (c.vii) and (c.ix))

to (a.iv). Thus, in contrast to the central rolls of both convectons and multiconvectons that

strengthen with increasing Rayleigh number, the end rolls in the multiconvectons weaken

with increasing Rayleigh number.
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2. (II): From snaking to isolas

The snaking of the connected branches of convectons and multiconvectons seen in fig-

ure 11 persists until N ≈ −0.9866 (point (II) in figure 8), when the first right saddle-node

of the anticonvecton branch (figure 11(a.iii)) coincides with the right edge of the convecton

and anticonvecton pinning regions. As this right saddle-node passes into the anticonvecton

pinning region for larger values of the buoyancy ratio, the snaking branches break up into a

set of vertically stacked isolas that are bounded between this saddle-node and the left edge

of the anticonvecton pinning region, as exemplified in figures 13(a) and (b). This is the same

process that was termed ‘Snake death II: Isola formation’ by Yulin and Champneys [41],

who first observed it in a model of a discrete optical cavity with detuning and a linear loss

term. Champneys et al. [42] later presented a theoretical argument explaining how such

behavior can arise from the unfolding of a saddle-center bifurcation when a fold in a branch

of homogeneous states coincides with an edge of the pinning region. This appears to also

be the case here in the doubly diffusive system, where the anticonvecton branch at small

amplitude acts as the branch of homogeneous states.

The manner in which the snaking branches break up into a set of vertically stacked iso-

las can be understood by considering the unfolding of transcritical bifurcations that occur

between the convecton and multiconvecton branches. Figure 12 depicts one such example

near the right saddle-nodes associated with convectons and multiconvectons with four cen-

tral rolls. The right saddle-nodes of L− and L̃− approach as the buoyancy ratio increases

between N = −0.98664 (figure 12(a)) and N = −0.98663 (figure 12(b)), before connecting

in a transcritical bifurcation between N = −0.98663 and N = −0.98662 (figure 12(c)). As

this bifurcation unfolds upon further increase of the buoyancy ratio, the upper and lower

branch segments of L− separate and respectively connect to the upper and lower branch

segments of L̃−, as seen in figures 12(c) and (d). This leads to a pair of branches connecting

convectons to multiconvectons. While it has not been confirmed here, it is likely that right

saddle-nodes associated with convectons with different number of central rolls reconnect

over a small range of buoyancy ratios, which would result in an intermediate combination

of isolas and snaking, similar to behavior that Yulin and Champneys [41] found.

Figures 13(a) and (b) present the bifurcation diagram for N = −0.975 after the breakup

process has finished and all convectons lie on one of the vertically stacked isolas. Each isola is

23



(a) N = −0.98664 (b) N = −0.98663 (c) N = −0.98662 (d) N = −0.98661

FIG. 12. Bifurcation diagrams showing the unfolding around a transcritical bifurcation between L−

(blue solid) and L̃− (green dotted) at N ≈ −0.98662 (near (II) in figure 8). The branch segments

show convectons and multiconvectons with four central rolls close to the right edge of the pinning

region.

‘C-shaped’ and most are bounded between the left edge of the anticonvecton pinning region

at Ra ≈ 1288 and the first right saddle-node of the anticonvecton branch at Ra ≈ 1314.

We find that exceptions arise, however, both for the isolas containing convectons with one

or two central rolls and those containing nearly domain-filling states, which are found to lie

within different ranges of Rayleigh numbers, but note that this may be anticipated as the

top and bottom saddle-nodes of regular snaking branches can be located at different values

of the parameter from those of the pinning region (see figure 11).

Figures 13(c)–(j) illustrate the typical manner in which the form of convectons changes as

a single isola is traversed. Starting at the lower right saddle-node (c) and following the lower

branch segment (originally L−, blue) towards the following left saddle-node, the pair of outer

central rolls strengthen, while the inner central rolls and end rolls weaken (figures 13(c)–(e)).

All six rolls of the convecton proceed to strengthen as this branch segment is followed to the

upper right saddle-node (figures 13(e)–(g)). The remaining two segments of the isola (green

dotted) originated from the multiconvecton branch, L̃− and, as such, we see that the end

rolls of the convectons are stronger on these branch segments and have maximal strength at

the left saddle-node (i). Following these multiconvecton branch segments from right saddle-

node (g) back to (c), we see how the central rolls vary in the reverse order to that just

described, with the four central rolls first weakening towards the left saddle-node (i). The

outer pair of central rolls continue to weaken from the left saddle-node (i) towards the right
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 13. (a), (b) Bifurcation diagram for N = −0.975 showing the branch of anticonvectons (black)

and stacked isolas of convectons (red/orange dotted and blue/green dotted). (b) Magnification of

the vertically stacked isolas. (c)–(j) Streamfunctions of selected convectons along the isola with

four central rolls. Contours are shown using linear (blue) and logarithmic (black and grey) scales

and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...]

(blue).

saddle-node (c), while the inner central rolls strengthen again. This behavior echoes that

seen in figure 11, where the central rolls within a multiconvecton varied over a single snaking

oscillation in the same way as convecton rolls.

3. (III): End of convectons

The first right saddle-node of the anticonvecton branch continues towards lower Rayleigh

numbers as the buoyancy ratio increases and ultimately passes through the left edge of the

anticonvecton pinning region, as seen in figure 7. The isolas of convectons are bounded

by this saddle-node and the left edge of the anticonvecton pinning region, as evidenced in

figure 14. Thus, as the buoyancy ratio increases between N ≈ −0.9866 (II) and N ≈ −0.972

(III), the right saddle-nodes of the isolas move towards lower Rayleigh numbers. Meanwhile,

the left saddle-nodes only undergo small changes in location, as seen in the left panel of

figure 14. The isolas therefore become smaller until they disappear around N ≈ −0.972

(III), when the first right saddle-node of the anticonvecton branch coincides with the left

edge of the anticonvecton pinning region.
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FIG. 14. Isolas of convectons with four central rolls as N increases to point (III) of figure 8 showing

N = −0.985 (black), N = −0.98 (blue), N = −0.975 (red) and N = −0.9725 (purple). The faint

solid lines present the anticonvecton branch at the corresponding parameter values, while the

vertical dashed lines mark the Rayleigh numbers of the first right saddle-node of each branch. The

panel on the left shows a magnification of the region near the left saddle-nodes of the isolas.

4. (IV) and (V): End of anticonvectons

The snaking structure of the anticonvecton branch persists over a wider range of buoyancy

ratios; its existence, however, still depends upon there being competition between thermal

and solutal buoyancy effects and we cease to find snaking anticonvectons when N > −0.91

(point (V) in figure 8).

The two-roll anticonvectons (A2) are the first anticonvectons to stop existing. This occurs

by the first right saddle-node of the anticonvecton branch moving towards lower Rayleigh

numbers at a faster rate than the following left saddle-node, as seen in figure 8. The two

saddle-nodes then coincide and disappear in a cusp bifurcation around N ≈ −0.93 (point

(IV)). Figure 15(a) depicts the anticonvecton branch for N = −0.93, shortly after the cusp

bifurcation, where the solution labeled (c) is located in the vicinity of this cusp bifurcation

and the branch only starts snaking around Ra ≈ 1281. The branch segment preceding

the snaking corresponds to the large-scale anticlockwise flow strengthening and developing

stronger secondary rolls at both ends of the domain (figures 15(b)–(d)). Since these end

rolls are secondary rolls of the domain-filling flow, rather than separated from a weaker

recirculation flow, these states are dynamically different from the two-roll anticonvectons
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(a) N = −0.93 (b) (c) (d) (e) (f) (g) (h)

(i) N = −0.85 (j) (k) (l) (m) (n) (o) (p)

FIG. 15. Anticonvecton branches and streamfunctions for selected states along the branch when

N = −0.93 (top row) and N = −0.85 (bottom row). These represent the behavior either side of

point (V) in figure 8, where the anticonvecton branch snakes for N < −0.91 and does not snake

for N > −0.91. Contours are shown using linear (blue) and logarithmic (black and grey) scales

and take the values: [−10−3,−10−2,−10−1] (grey); [10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...]

(blue).

(A2) illustrated in figure 8.

The anticonvecton pinning region becomes smaller as the buoyancy ratio increases, as

first shown in figures 7 and 8. This continues until N ≈ −0.91 (point (V) in figure 8), when

the anticonvecton branch stops snaking. This transition occurs in the form of successive cusp

bifurcations where left and right saddle-nodes disappear. This process is similar to the way

localized states in the quadratic-cubic Swift–Hohenberg equation disappear in the approach
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to the codimension-two point where the criticality of the primary bifurcation changes [16].

Figure 15 illustrates the differences between the evolution of the states along the snaking

anticonvecton branch (N = −0.93, top row) and their evolution along the non-snaking

branch (N = −0.85, bottom row). In both cases, convection rolls first appear near the

end-walls before new rolls successively appear, filling the domain toward its center. When

N = −0.93, this nucleation occurs symmetrically pairwise between successive left saddle-

nodes (figures 15(d)–(f)). This continues until a domain-filling ten-roll state is reached (fig-

ure 15(g)), whose rolls proceed to strengthen with increasing Rayleigh number (figure 15(h)).

However, when N = −0.85, while we see initial strengthening of rolls adjacent to the end

rolls (figure 15(m)), further interior rolls proceed to strengthen in a spatially modulated

manner, rather than in a successive nucleation process, to reach an eleven-roll domain-filling

state (figure 15(n)). Again, the interior rolls strengthen with Rayleigh number to achieve

nearly uniform amplitude by Ra = 1500 (figures 15(o) and (p)).

A weak anticlockwise flow surrounds each of the domain-filling states in figure 15. This

flow strengthens with increasing N , as can be seen by comparing the outer contour lines in

figures 15(h) and (p), while the secondary interior rolls weaken. While we have not studied

these states further into the thermally dominated regime, we would expect the trend to

continue until a single domain-filling anticlockwise roll, driven primarily by the thermal

buoyancy force, is achieved.

V. DISCUSSION

In this paper, we have considered how breaking the balance between opposing thermal

and solutal gradients affects the formation of patterns in natural doubly diffusive convection

within a closed vertical cavity. In the balanced system, the steady conduction state loses

stability via bifurcations which give rise to states comprised of steady convection rolls in the

center of the domain known as convectons. Other types of localized convection states exist

which are not connected to the conduction state. In the absence of balance between thermal

and solutal effects, the steady conduction state does not exist and is, instead, replaced at low

Rayleigh numbers by a large-scale recirculating flow that strengthens with both increasing

Rayleigh number and variation of N away from the balanced system value: N = −1. The

primary bifurcations of the conduction state, from which branches of convectons bifurcate
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when N = −1, unfold as a result of this large-scale flow. These small-amplitude changes

are found to be the main structural differences between the bifurcation diagrams for the

balanced and weakly imbalanced systems. Further differences develop as the buoyancy

ratio is increased into the thermally dominated regime as anticlockwise rolls at the ends of

the domain tend to strengthen. This strengthening enables the branch of anticonvectons

(steady states comprised of convection rolls located near the end-walls) to connect with the

branch of large-scale flow originating from Ra = 0 by N ≈ −0.9904. We found that the

position of the first right saddle-node of the resulting branch was critical in understanding

the evolution of the branches of localized states. The branches of localized states maintain

an organized structure despite variations in the buoyancy ratio. This differs from related

systems with a broken symmetry, including [43, 44], where the structure of the snaking

branches become increasingly complex as the degree of symmetry breaking increases. We

attribute this difference to the fact that breaking the balance between thermal and solutal

effects preserves the centro-symmetry in this study.

Anticonvectons persist over a wider range of buoyancy ratios than convectons, provided

N > −1, and we found that they cease to exist as the snaking of their solution branch van-

ishes. The anticonvectons, which were characterized by the successive nucleation of interior

rolls during snaking, then become states for which all interior rolls strengthen simultaneously

as the branch is continued monotonically in Rayleigh number. This resembles the transi-

tion from successive to simultaneous roll formation found in fluids heated laterally within a

vertically stabilizing gradient of salt, where Lee et al. [45] used experimental data to divide

the parameter space consisting in thermal and solutal Rayleigh numbers into regimes corre-

sponding to these two types of behavior together with stagnant and unicellular flows. They

found that the boundaries between regimes occurred at approximately constant buoyancy

ratios between N ≈ 10 and N ≈ 55, which Lee and Hyun [46] later confirmed numerically

and Dijkstra and Kranenborg [47] related to paths of bifurcation points. We should note,

however, that these studies considered different doubly diffusive convection setups (with

N > 0) and, hence, we should not try to directly compare results.

While we have identified how the branches of localized states terminate in the thermally

dominated regime of doubly diffusive convection, our results indicate that they can be ex-

pected to exist on a broader parameter range in the solutally dominated regime (figure 8).

In this regime, the large-scale recirculating flow now opposes the anticlockwise flow of the
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N −1 −1.05 −1.1 −1.15 −1.2

FIG. 16. Convectons at Ra = 1350 and Pr = 1, with the buoyancy ratio varying in inter-

vals of N = −0.01 from N = −0.98 to N = −1.2. Contours are shown using linear (blue and

red) and logarithmic (black and grey) scales and take the values: [−10−3,−10−2,−10−1] (grey);

[10−3, 10−2, 10−1] (black); [−0.2,−0.4,−0.6, ...] (blue); [0.2, 0.4, 0.6, ...] (red).

central convecton rolls, which will lead to more complex dynamics. To begin to explore the

potential differences, we tracked a four-roll convecton at Ra = 1350 from N = −1 into both

the thermally and solutally dominated regimes and present the streamfunctions of these

states from N = −0.98 to N = −1.2 in figure 16. Upon increasing N into the thermally

dominated regime, the central convecton rolls undergo similar changes to when the Rayleigh

number was increased in the balanced (figure 2) and weakly imbalanced (figure 6) regimes.

The small clockwise rolls that separate the four strong anticlockwise rolls also weaken and

split, which leads to the state ceasing to exist by N = −0.97, as expected from results

presented in Section IVC3.

Upon decreasing N into the solutally dominated regime from N = −1, instead of the

convectons ceasing to exist, they evolve continuously into domain-filling states consisting of

counter-rotating rolls through the strengthening of the clockwise rolls, as seen in figure 16. A

similar transition to different domain-filling patterned states may also be observed starting

from convectons with different numbers of central rolls. This opens new fundamentally

important questions related to the potential variety of domain-filling states and the transition

to them from localized states, which will be addressed in future work.

The results presented in this paper focused on a domain size of 12 critical wavelengths,

but we anticipate that the phenomena unraveled on convectons, anticonvectons and multi-

convectons, including the unfolding of their bifurcations, extends to any larger domain size
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provided the localized states are not close to be domain-filling.
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Appendix A: Primary bifurcation in the balanced case

We begin by detailing key properties of the balanced system (N = −1) with no-slip

boundary conditions in z. The conduction state can destabilise in either transcritical or

pitchfork bifurcations [12, 13] when the buoyancy force driven by the side-wall heating over-

comes viscous dissipation. Transcritical bifurcations arise when S∆-symmetric eigenmodes,

which have a roll centered in the middle of the domain, become destabilizing, while pitchfork

bifurcations arise when an eigenmode that breaks the S∆-symmetry becomes destabilizing.

By varying the size of the domain, Ghorayeb and Mojtabi [12] found that the ordering of

the first set of transcritical and pitchfork bifurcations switches and that the two bifurcations

occur in quicker succession in larger domains. Thus, we start by illustrating these primary

bifurcations in small domains (Lz = 4λc ≈ 9.93 and Lz = 5λc ≈ 12.4), before considering

them in the larger domain with Lz = 12λc ≈ 29.8.

Figure 17 presents the bifurcation diagrams showing the first two bifurcations of the

conduction state when Lz = 4λc (figure 17(a)–(e)) and Lz = 5λc (figure 17(f)–(j)). In both

of these domains, the conduction state first destabilizes in a pitchfork bifurcation and the

resulting branches consists of asymmetric states like those shown in figures 17(d), (e), (i)

and (j). These branches terminate on L+ (red), the branch containing spatially modulated

states with an anticlockwise central roll that bifurcates from the following transcritical bi-

furcation, which also produces L− (blue), the branch containing spatially modulated states

with a clockwise central roll. The insets in figures 17(a) and (f) further emphasize how the

supercritical branch undergoes a saddle-node bifurcation shortly after onset in an analogous

manner to the three-dimensional behavior observed by Beaume et al. [20]. Which of the

primary branches L+ and L− is initially supercritical depends on the domain size and we

find that L− (blue) bifurcates supercritically when Lz = 4λc while L+ (red) bifurcates su-
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

FIG. 17. First primary pitchfork and transcritical bifurcations of the conduction state in domains

with vertical extent: (a)–(e) Lz = 4λc and (f)–(j) Lz = 5λc. The bifurcation diagrams (a) and

(f) show the vertical velocity of states at the point marked by the black crosses in the stream-

function plots (other panels) against the Rayleigh number. The following branches are shown:

conduction state (black), L+ (red), L− (blue) and branches of asymmetric states that bifurcate

from the pitchfork bifurcation (purple). The insets provide a magnification of the first transcritical

bifurcation including a vertical dotted line where necessary to help visualisation. The remaining

panels present the streamfunction of states marked in the bifurcation diagrams using contour val-

ues: [−10−3,−10−2,−10−1] (grey, anticlockwise); and [10−3, 10−2, 10−1] (black, clockwise). Here,

and in subsequent figures, the panels depicting the streamfunction are not to scale. The horizontal

midline is shown using a red, blue or purple dotted line to indicate whether the state lies on the

L+ (blue), L+ (red) or asymmetric (purple) branches.

percritically when Lz = 5λc. The streamfunction panels (c) and (g) indicate that states on

the supercritical branch possess clockwise outermost rolls, whereas the corresponding rolls

are anticlockwise for the subcritical branch (see panels (b) and (h)), and this observation

can likely be applied more generally to other domain sizes.

Figure 18 presents the branches bifurcating from the first two transcritical bifurcations

of the conduction state in the larger domain with Lz = 12λc. The conduction state first

destabilizes in a pitchfork bifurcation (not shown owing to the short extent of the bifur-

cating branches) and, shortly after, in a transcritical bifurcation at Ra ≈ 1629.6, where

the branches L+ and L− bifurcate subcritically and supercritically, respectively but remain

indistinguishable on the scale of the figure. Due to the presence of no-slip boundary con-

32



(a) (b) (c) (d) (e)

FIG. 18. First two transcritical bifurcations for N = −1, Le = 5 and Pr = 1 in a domain with

Lz = 12λc and no-slip boundary conditions. (a) Bifurcation diagram showing the branches that

originate from these bifurcations. (b)–(e) Streamfunctions along the four main branches: (b) L+,

(c) L−, (d) L+
2 and (e) L−

2 . The contour values used were: [−10−3,−10−2,−10−1] (grey); and

[10−3, 10−2, 10−1] (black).

ditions on the horizontal end-walls, the critical eigenmode associated with the transcritical

bifurcation is spatially modulated and vanishes at the ends of the domain. This eigenmode

possesses a central roll, which leads to the formation of an anticlockwise central roll for L+

(figure 18(b)) and of a clockwise one for L− (figure 18(c)). As the solution amplitude grows

along the branch, anticlockwise rolls are nonlinearly favored [48] and convectons develop

with an odd number of localized rolls along L+ and with an even number of localized rolls

along L− [18].

Beyond this first transcritical bifurcation, the conduction state undergoes further bifur-

cations associated with eigenmodes of different wavelengths. For example, the conduction

state undergoes a further transcritical bifurcation at Ra ≈ 1636.5, where branches of two-

pulse states (L+
2 and L−

2 ) bifurcate. Like their single-pulse counterparts, states on these

branches become amplitude modulated as each branch is followed towards larger amplitudes

(see figures 18(d) and (e)).

Appendix B: Primary bifurcation unfolding

When N ̸= −1, the presence of a large-scale flow leads to the unfolding of the primary

transcritical bifurcation. We explore here this unfolding at small amplitude and extend
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earlier results by Bardan et al. [49].

a. Small domains

Figure 19 shows the unfolding of the primary bifurcations for Lz = 4λc and Lz = 5λc.

Regardless of the buoyancy ratio and domain size, the branches containing states with a

clockwise (black streamlines) central roll extend to large amplitude as the L− branch (blue),

while those with an anticlockwise (grey streamlines) central roll extend to larger amplitudes

as L+ (red). When N = −0.9999, the branch of large-scale flow developing from Ra = 0

connects to the branch initially associated with the states containing clockwise rolls in the

top left and bottom right corners of the domain, i.e., L− when Lz = 4λc (figure 19(b)) and

L+ when Lz = 5λc (figure 19(e)). The results when N = −1.0001 are analogous except that

we find that the branch of large-scale flow developing from Ra = 0 now connects to the

branch initially associated with states containing weak anticlockwise rolls in the top left and

bottom right corners of the domain, i.e., L+ when Lz = 4λc (figure 19(h)) and L− when

Lz = 5λc (figure 19(k)). In both cases, we find that the branch connecting with Ra = 0

possesses solutions whose outermost rolls oppose the large-scale shear flow (13).

Unlike the transcritical bifurcation considered above, this primary pitchfork bifurcation

does not unfold as the buoyancy ratio varies away from N = −1 because the large-scale

flow preserves the S∆ symmetry of the system [49]. Nevertheless, this bifurcation and

the bifurcating branches are affected both by the buoyancy ratio and the domain size, as

illustrated by the presence or absence of purple lines in figure 19. When N departs from

−1, the primary pitchfork bifurcation is transferred to the branch that originates from

Ra = 0 but the termination point of the resulting branches remains on L+. This leads to

short branch segments that either connect L− to L+ or connect L+ to itself. The former

connections persist as N is varied away from the balanced case, as evidenced in figures 19(a)

and (j). In the latter case, however, the two pitchfork bifurcations approach each other

on L+ and ultimately collide (at N ≈ −0.999902 when Lz = 5λc and N ≈ −1.00009 when

Lz = 4λc), so that the aforementioned pitchfork bifurcations are absent from the bifurcation

diagrams presented in figures 19(d) and (g).
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FIG. 19. Unfolding of the primary transcritical bifurcation in small domains of length Lz = 4λc

(left set of panels) and Lz = 5λc (right set of panels) for N = −0.9999 (top row) and N = −1.0001

(bottom row). (a), (d), (g), (j) Bifurcation diagrams showing the vertical velocity of states at the

point marked by black crosses in the streamfunction plots against Rayleigh number for branches

with N = −1 (dotted lines) and either (a), (d) N = −0.9999 or (g), (j) N = −1.0001 (solid lines).

The colors red, blue and purple indicate L+, L− and branches of asymmetric states, respectively.

The streamfunction plots are shown at the marked points in the bifurcation diagrams. The horizon-

tal midline is shown using a red or blue dotted line to indicate whether the state lies on L− (blue)

or L+ (red). The contour values used were: [−10−3,−10−2,−10−1] (grey); and [10−3, 10−2, 10−1]

(black).
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N = −0.997

(a)

N = −0.999

(b)

N = −1

(c)

N = −1.001

(d)

N = −1.003

(e)

L+
2 L+

2 L−
2 L−

2

FIG. 20. Unfolding of the primary bifurcation in a domain with Lz = 12λc for N between (a)

N = −0.997 and (e) N = −1.003. The branch segments shown include the conduction state or

large-scale flow (black), L− (blue), L+ (red) and the branch of two-pulse states, L+
2 (red dashed)

or L−
2 (blue dashed), that connects to one of the convecton branches.

b. Large domains

The unfolding of the primary transcritical bifurcation for Lz = 12λc is illustrated in fig-

ure 20. We find that the branch of large-scale flow originating from low Rayleigh numbers

connects to L− when N > −1 and to L+ when N < −1 in a similar fashion to the Lz = 4λc

scenario (figures 19(a) and (g)). The second convection branch connects at small amplitude

to the branch of large-scale flow states following the primary transcritical bifurcation but

quickly proceeds to connect to a branch of two-pulse convectons originating from the un-

folding of the second transcritical bifurcation, as shown in figure 20. Here, we find that L+

connects to L+
2 when N > −1, while L− connects to L−

2 when N < −1.

Figure 21 shows an enlargement of the bifurcation diagram for N = −0.999 (figure 20(b)).

As the branch of weak anticlockwise base flow states (e.g., figure 21(b)) is followed towards

larger Rayleigh numbers, the single large roll breaks up into a series of weak counterrotating

rolls with a clockwise roll in the center of the domain (figure 21(c)). The central rolls

proceed to strengthen along L−, while the outer rolls weaken and are replaced by weak

anticlockwise flows that extend vertically from the central rolls to either vertical end of the

domain (figure 21(d)). At small amplitude, convectons on L+ assume a similar form to

those on L− except that their central rolls rotate in opposite direction (figure 21(e)). The

large outer rolls break up as the branch is followed towards states with lower kinetic energy
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(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 21. (a) Extension of the bifurcation diagram for N = −0.999 in a domain with Lz = 12λc

shown in figure 20(b). (b)–(h) Streamfunctions of the small-amplitude profiles along the dif-

ferent branch segments. The contour values used were: [−10−3,−10−2,−10−1] (grey); and

[10−3, 10−2, 10−1] (black).

(figure 21(f)). The central rolls continue to weaken while other interior rolls strengthen to

give rise to multi-pulse states corresponding to the unfolding of L+
2 as the branch is continued

further towards lower Rayleigh numbers (figure 21(g)). The subsequent behavior of this two-

pulse solution appears to be sensitive to the domain size and we find that the branch turns

back on itself and re-enters the parameter regime depicted in figure 21(a), before leaving by

following the branch segment associated with the second two-pulse convecton branch, L−
2

(figure 21(h)), and snaking toward larger amplitude states.
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