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Abstract
India’s ambitious climate goals include a significant role for wind energy, with plans for a nearly
threefold expansion of the existing wind fleet within the next decade. At greater levels of wind
deployment, the increased likelihood of extended periods of generation surplus and deficit presents
a challenge for managing power supply. It is essential to characterise and predict how this energy
source performs within India’s monsoon climate to ensure the reliable operation of the electricity
system. This study demonstrates, for the first time, how large-scale atmospheric variables are
related to seasonal wind energy generation anomalies in India during boreal summer.
Furthermore, an operational seasonal forecasting system is shown to skilfully predict the
atmospheric predictor variables at a lead time of 1–4 months, indicating an ability to forecast
summer wind energy generation at the country and regional level in India. The explanatory power
of the chosen atmospheric predictor variables remains high under the near-term planned
expansion of the Indian wind fleet. These findings demonstrate the potential utility of seasonal
forecast information for electricity system management in India.

1. Introduction

Decarbonisation pathways toward ambitious climate
goals consistently include rapid and widespread
deployment of wind energy technologies [1]. Like
many nations, India has pledged a net-zero compli-
ant economic development pathway, in which wind
energy is a key source of low carbon electricity. At the
time of writing, India’s energy targets include reach-
ing 121 GW installed wind capacity by the year 2032,
equating to a threefold increase in wind energy gen-
eration over 2023 levels [2].

Wind energy generation, hereafter, ‘wind gener-
ation’ is inherently weather-dependent, with the pat-
tern of generation variability a function of the prevail-
ing climate and timescale considered. In the Indian
context, wind energy experiences a strong annual
cycle [3, 4] and is affected by distinct modes of
variability, acting on interannual [5], intraseasonal
[6] and diurnal timescales [7]. The variability of
Indian wind generation across a range of timescales
is greatest in boreal summer [8, 9], coinciding with

enhanced surface winds and the frequent passage
of low-pressure systems during the Indian summer
monsoon (ISM) [10].

Conventionally, operational approaches for
managing power networks focus on maintaining
the balance of electrical supply and demand in
real time. Consequently, numerical weather pre-
dictions, spanning minutes to days, are routinely
used to provide short-term foresight of genera-
tion variability [11]. However, as the likelihood of
prolonged periods of generation surplus and defi-
cit increase at higher levels of wind deployment,
so too does the need to characterise and anti-
cipate generation variability at longer lead times
[12–14].

The potential utility of long-range climate fore-
casts for the energy sector has long been recognised
[15–17], opening the possibility to inform opera-
tional measures such as the availability and schedul-
ing of controllable generation and management of
energy storage [13]. Seasonal climate forecasts (SCF)
are increasingly used in energy sector operations in
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several regions, guiding decision-making and risk
management strategies on weekly-to-monthly fore-
cast horizons [18, 19]. Examples of skilful predic-
tion of energy-relevant meteorological variables on
sub-seasonal-to-seasonal timescales are found for
the Euro-Atlantic sector [20–23], China [24, 25]
and North America [26]. However, less attention
has been paid to the potential value of SCF for
the Indian electricity system, despite the country
hosting the third largest wind fleet globally (∼45
gigawatts—GW) and ambitious plans for near-term
expansion [2].

SCF has a long pedigree in South Asia [27],
with much attention devoted to forecasts of ISM
rainfall (ISMR). Current operational SCF systems,
based on dynamical models, demonstrate varying
levels of forecast skill in ISMR predictions, generally
showing ensemble mean correlation with observed
seasonal mean ISMR of between 0.35–0.60 [28–
30]. A recently upgraded version of the Indian
Meteorological Department forecast system achieves
the highest reported forecast skill of ISMR from a
dynamical model (r = 0.63–0.72 depending on the
rainfall dataset used for verification; [30]). At the
time of writing, only two studies provide insight
into the seasonal forecast skill of energy-relevant
variables in India [31, 32]. The earlier of the two
assesses four meteorological fields in seven regional
subdivisions of India across six operational fore-
casting models [31]. They find generally modest
skill with the European Centre for Medium-Range
Weather Forecasts (ECMWF) System 5 performing
best for the variables, with a generally higher skill
in southern and central regions. The later study
considers the seasonal forecasting system used by
the National Centre for Medium Range Weather
Forecasting (NCMRWF) of India, and demonstrates
skillful ensemble mean predictions of surface wind
speed during the summer monsoon season over
India [32]. However, neither study resolves ques-
tions of potential predictability in energy generation
itself.

Motivated by these needs, this paper addresses the
following objectives: (1) identify climate predictors
that are related to seasonal wind generation anom-
alies during boreal summer in India; and (2) assess
the skill of an operational SCF system for capturing
the climate predictors at a 1–4month lead time, thus
evaluating the potential to forecast Indian wind gen-
eration in summer. The remainder of the paper is laid
out as follows: section 2 describes the method used to
create a synthetic wind generation dataset for India
and seasonal forecasting system used in the analysis;
section 3 presents the results of generation variability
analysis and seasonal predictions, and section 4 sum-
marises the main findings and wider implications of
the results.

2. Data andmethods

2.1. Synthetic wind generation timeseries
The short records of observed wind generation in
India (just 4–10 years, depending on the region) lim-
its the study of generation variability on interannual
timescales. Therefore, a multi-decadal reanalysis-
based synthetic wind generation timeseries was con-
structed using the method described in Norman et al
[9]. Briefly, the method uses near-surface wind speed
data from the ERA5 reanalysis [33] to estimate wind
energy generation for all wind farms in India based on
installed capacity in the year 2021. A dataset of wind
farms in India was compiled from government and
industry records (figure 1(a)). The dataset includes
information on the turbine model and associated
power curve (a functional relationship between tan-
gential wind speed at the turbine’s hub height and
power output). The simplified power-law model of
vertical wind shear within the planetary boundary
layer is used to extrapolate wind speeds on fixed ver-
tical levels to the hub height of each turbine [34]. To
achieve this, hourly wind shear exponents were com-
puted empirically at each grid cell using 10 m and
100 m wind speed data. A synthesis of hourly wind
generation was conducted per wind farm, using the
power curve of turbines at each wind farm and wind
speed from the nearest reanalysis grid cell, with the
appropriate vertical scaling applied.

The resulting generation time series for each
wind farm are aggregated to regional and national
levels (figure 1(b)) and are expressed as daily capa-
city factors, which is the ratio of daily generation to
maximum attainable generation for installed capa-
city over 24 h. The generation time series is calib-
rated against historical records of wind generation
[37] using a constantmultiplicative adjustment factor
applied to wind speeds at all wind farms within
respective Indian states. The adjustment factors that
minimise mean bias in the synthetic capacity factors
compared to the verification data over the period
2017–2021 are found iteratively. The calibrated wind
generation synthesis performs well for both the all-
India aggregate case (figure 1(c)) and constituent
states (see supplementary material section 1, figure
A1), showing high correlation with observed daily
generation values (all-India r value = 0.98) and
low daily mean absolute percentage error (all-India
value = 8%). This study focusses on the boreal sum-
mer period, specifically, the mean value of synthetic
wind capacity factors for June to September inclus-
ive (referred to as JJAS herein). Modest declining
trends in the JJAS timeseries of synthetic wind capa-
city factors for all India and sub-regions were first
removed (significant at the 99% level in all regions
except the Southern region, using a Mann–Kendal
test) before calculating seasonal anomalies.
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Figure 1. (a) Blue points show wind farm locations in India, using data sources described in Norman et al 2024 [9], with shading
representing 100 m mean wind speeds (using data from the Global Wind Atlas [35]); (b) five regional electricity grids in India
used in this study (green lines) and Indian states shaded by installed wind capacity as of March 2024 [36]; (c) daily wind
generation synthesis for all-India during 2016–2021 (red) and equivalent observed values (black); and (d) as in (c) presented as
scatter plot.

2.2. Seasonal climate forecasts
This study uses the ECMWF seasonal forecasting sys-
tem 5 (SEAS5); a global coupled ocean-atmosphere
seasonal forecast model that began operational use
in 2017 [38, 39]. The atmospheric component of
the SEAS5 model has a horizontal resolution of
approximately 36 km and 91 vertical levels [39].
This study considers 51-member 41 year-long (1981–
2021) hindcast dataset initialised on the 1 May and
run for seven months, with model output variables
available at a 6 h timestep.

2.3. Wind generation forecasts
Since direct estimates of wind generation in a fore-
cast model are affected by model biases, the predic-
tions use a perfect-prognosis approach that exploits
observed statistical relationships between climate pre-
dictor variables and the wind generation synthesis
dataset [40, 41]. Seasonal forecast skill is then eval-
uated using the same statistical model, but with
predictor variables from the SCF system (e.g. [42–
44]). The utility of candidate climate predictors
in a seasonal forecasting context depends on the
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proportion of total generation variance accounted for
by the predictors and the forecast skill of the pre-
dictor. Accordingly, a predictor variable with high
explanatory power is of limited use if it is poorly pre-
dicted. Observation-based relationships between cli-
matic indices and JJASwind capacity factor anomalies
are derived using least squares linear regression over
the period 1979–2021. The indices are described in
section 2.5. Where appropriate, multiple predictors
are combined using a multi-linear regression.

The linear regression is first calculated and
applied to forecasts using all available reanalysis and
hindcast years. A forecast calibration is then under-
taken by inflating ensemble variance via a method
known as Climate Conserving Recalibration (CCR)
[45], and the mean bias removed. Following conven-
tion, the calibration and bias correction are under-
taken in a cross-validated or leave-one-out set-up,
whereby the year being adjusted is excluded from the
calculation (i.e. each year is adjusted using informa-
tion from all other years). This approach mimics an
operational setting whereby only past observations
inform the empirical relationship utilised in the fore-
cast. Following Doblas-Reyes et al [46], Torralba et al
[26] andManzanas et al [42], the CCR andmean bias
correction is implemented as:

F
′

n,t = ρ
σo

std(F̄t)
F̄t+

√
1− ρ2

σo√
⟨σ2

f ⟩
(Fn,t− F̄t)

(1)

where Fn,t and F
′

n,t denote the original and adjus-
ted forecast for ensemble member n at year t; F̄t the
ensemble mean, σo the observed interannual stand-
ard deviation, ⟨σ2

f ⟩ the mean intra-ensemble vari-
ance (i.e. the time mean of ensemble variance per
year), and ρ the correlation between the interannual
timeseries of observations and the ensemble mean.
Essentially, CCR modifies the ensemble spread to
achieve the same interannual variance as observa-
tions while maintaining the same interannual cor-
relation and forecast ensemble mean (hence ‘cli-
mate conserving’). Mean bias in the calibrated fore-
cast is removed by calculating anomalies and adding
the observed climatology (again in cross-validation
mode).

2.4. Forecast verificationmethods
Forecast skill is measured using the Pearson correl-
ation coefficient between the ensemble mean sea-
sonalmean prediction and the observation-based val-
idation data. Three probabilistic skill scores are also
employed: the Brier score, the Ranked Probability
Score (RPS), and the Continuous RPS (CRPS) [47].
Following convention, accuracy measures are defined
using tercile forecast categories of below normal, nor-
mal and above normal, which are defined relative to
observed and forecast climatological frequencies [48].

Therefore, Brier score and RPS are insensitive to fore-
cast bias, as tercile categories are defined relative to
the modelled climate (while the CPRS is sensitive
to forecast bias). Skill scores for the three measures
are defined as the relative improvement compared to
a climatological reference forecast, with values ran-
ging between −1 and 1, where 1 indicates perfect
skill. Additional components of overall forecast qual-
ity, namely reliability, sharpness and resolution are
assessed using an attributes diagram, with accompa-
nyingmethodological description in the supplement-
arymaterial section 2). Statistically significant trends1

were found in 10 m wind fields. For consistency with
the reanalysis-based wind generation synthetic data,
the SCF 10mwinds were first detrended by removing
the linear least-square regression fit. Other variables
show no clear linear trends across the study region,
so detrending was not conducted.

2.5. Large-scale climate indices
Following Wang and Fan [49], an index for the ISM
strength (ISMi) is defined as the difference between
the area average 850 hPa zonal wind (u850) over
Southern (40◦–80◦ E, 10◦–40◦ N) and Northern
(40◦–80◦ E, 10◦–40◦ N) regions (figure 2(a)).
Furthermore, the Western North Pacific index
(WNPi) is defined as the difference between area
average u850 over Southern (7.5◦–17.5◦ N, 100◦–
140◦ E) and Northern (20◦–30◦ N, 105◦–150◦ E)
regions of theWest Pacific (figure 2(a)). Additionally,
an ISMR index is used defined as the standardised
rainfall anomaly averaged over 18.5◦–26.5◦ N, 71.5◦–
86.5◦ E, and a WNP Rainfall (WNPR) index aver-
aged over 110◦–160◦ E; 10◦–20◦ N (see figure 2(b)).
Both rainfall indices are calculated using the Multi-
Source Weighted-Ensemble Precipitation (MSWEP)
dataset [50]; a gauge-adjusted, satellite-derived rain-
fall product.

2.6. Scenario for ‘planned expansion’ of wind farms
Finally, an additional wind generation synthesis is
constructed to represent a ‘planned expansion’ scen-
ario for near-term wind expansion up to 2026.
Planned wind capacity is added to the existing data-
base of Indian wind farms that runs to 2021 using the
following three sources:

(i) Operational wind farms commissioned in the
years 2022 and 2023 using data from Global
Energy Monitor, an independent research
organisation that maintains global inventor-
ies of wind installation locations (+4.3 GW)
[51].

(ii) Planned and under construction onshore wind
capacity detailed in the project inventory of the

1 Assessed with a Mann–Kendal test, significant at the 95% level.
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Figure 2. (a) Climatological ERA5 850 hPa zonal wind in JJAS, with green boxes showing used for the ISMi and WNPi indices. (b)
Climatological MSWEP daily mean rainfall in JJAS, with red boxes showing the regions used for the ISMR and WNPR indices.

Central Energy Agency of India (+20.1 GW)
[52].

(iii) Planned offshore wind capacity to be com-
pleted by 2026, following the Ministry of New
and Renewable Energy (MNRE) Strategy for
Offshore wind (MNRE, 2023)2.

In total, the ‘planned expansion’ scenario con-
siders an Indian wind fleet of 81.2 GW, approxim-
ately double the capacity in 2021. It is assumed that
all additional onshore capacitymakes use of amodern
turbine model power curve (Suzlon S144 3.15 MW).
Offshore capacity makes use of a Siemens Gamesa
SG11.0-200 DD 11 MW 120 m, which is a typical
offshore model at the time of writing. The ‘planned
expansion’ scenario uses ERA5 winds with no adjust-
ments (as no relevant observational generation data
exists for such a calibration).

3. Results

3.1. Observed drivers of seasonal wind generation
variability in JJAS
The ISM circulation is prominent in the ERA5 JJAS
850 hPa wind speed climatology, with the greatest
wind speeds corresponding with the Somali Jet

2 The strategy details 37 GW in offshore tenders by 2030 Gujarat
and Tamil Nadu. The Global Wind Energy Council projects 17.3
GW to be completed by 2026 [53], with capacity split 50/50
between offshore zones in Gujarat (Gulf of Khambhat) and Tamil
Nadu (Cape Comorin and Palk Strait).

(figure 3(a)). There is pronounced interannual vari-
ability, with the standard deviation reaching∼35% of
the JJAS climatology over central India (figure 3(b)).
Figure 3(c) shows the correlation between JJAS wind
capacity factor anomalies for all India and JJAS 850
hPa wind speeds across the region. Figures 3(d)–
(f) show the same correlation but for sub-regions
of the electricity grid system of India, specifically,
the Western region (WR; figure 3(d)), Southern
region (SR; figure 3(e)), and Northern region (NR;
figure 3(f)). All India, Western and Southern regions
show similar patterns, with positive correlation across
the north Arabian Sea, peninsular India and between
the Bay of Bengal and the South China Sea. For
Northern region (figure 3(f)), the positive correlation
between wind capacity factor anomalies and 850 hPa
wind speed is less widespread.

Interestingly, all India wind generation anom-
alies are negatively correlated with wind speed in the
core and southern flank of the Somali Jet, as well as
across south-east China. The negative-positive dipole
pattern of correlation between the Somali Jet and
northern/central India suggests a negative correlation
between wind generation and ISMR, as surplus ISMR
seasons are associated with an enhanced Somali Jet,
increased cross equatorial flow and enhanced easter-
lies over Northern India [54]. Table 1 summarises the
correlation between regional wind generation in JJAS
with ISMR and the ISMi index for monsoon strength.
Modest negative correlations prevail, suggesting that
the intensity of the ISM cannot explain the major-
ity of interannual wind generation variability in JJAS
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Figure 3. ERA5 JJAS 850 hPa wind speed and direction (a) climatology (1979–2021) and (b) standard deviation. Correlation
between JJAS mean wind capacity factor anomalies and 850 hPa winds for (c) all-India, (d) Western region, (e) Southern region
and (f) Northern region. Stippling denotes regions significant at 95% confidence level.

Table 1. Interannual Pearson correlation coefficient between
regional wind generation anomalies in JJAS and measures of
summer monsoon strength, namely ISMR and ISMi. Bold values
are significant at the 95% level.

India NR WR SR

ISMR −0.36 −0.57 −0.41 −0.11
W-F ISMi −0.45 −0.65 −0.48 −0.16

(n.b. Northern India represents a minor share of total
wind capacity in India −11% in 2021 [36]). The fol-
lowing sections investigate other drivers of interan-
nual wind generation variability in JJAS.

3.2. Climate predictors for India wind generation
anomalies in JJAS
To identify the main modes of interannual atmo-
spheric circulation variability over South Asia in
boreal summer, an empirical orthogonal function
(EOF) analysis of 850 hPa windspeed anomalies
average over the JJAS period was conducted over

the region (38–125◦ E; 0–37◦ N)3. Figure 4(a) shows
EOF1, which explains 33% of the total interannual
variance. The sign convention is that positive loading
of EOF1 corresponds to strengthened westerlies over
peninsular India, Indo-China, and the Philippine Sea,
which converges with the southern flank of a cyc-
lonic anomaly over WNP, representing a strengthen-
ing of the regionalWNPmonsoon [55]. The intensity
and westward extent of the WNP monsoon circula-
tion is recognised as the primarymode of interannual
atmospheric variability over the South and East Asian
regions in JJAS [56–58].

The principal component (PC1) timeseries is pos-
itively correlated with the WNPR index (r = 0.90)
and the WNPi (r = 0.95). The correlation pattern
in figure 4(a) is similar to the regression map of
JJAS wind generation anomalies onto JJAS 850 hPa

3 The sensitivity of the EOF analysis to the defined geographical
extent was tested using different sized domains and yielded similar
results (see supplementary material section 3).
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Figure 4. (a) EOF1 and (b) EOF2 of JJAS 850 hPa wind speed anomalies over South Asia (38–125◦ E; 0–37◦ N). Vectors denote
the wind anomalies for the EOFs and shading denotes the correlation between 850 hPa wind speed and the PC timeseries. (c)
Timeseries of PC1 (black) with all-India JJAS wind capacity factor anomalies (blue) and (d) PC2 timeseries (black) with JJAS
ISMR anomalies (red).

Table 2. Correlation between wind generation anomalies in JJAS
per region and candidate climate predictors. Values in bold are
significant at the 95% level.

All-India NR WR SR

WNP rainfall 0.68 0.33 0.56 0.71
WNPi 0.75 0.33 0.63 0.79
EOF1 0.78 0.36 0.65 0.80
EOF2 −0.19 −0.50 −0.24 −0.20
10 m winds 0.90 0.47 0.83 0.80

wind speed shown in figures 3(c)–(f). Accordingly,
PC1 is highly correlated with India wind generation
anomalies (r = 0.78, see figure 4(c) and table 2).
Comparably high correlation is also found between
wind generation anomalies and the two WNP mon-
soon indices (WNPR: r = 0.68 and WNPi: 0.75 for
all-India, table 2). The strength of these relationships
is not as great as between wind generation anomalies
and area-weighted 10 m windspeed over India (12◦–
32◦ N, 68◦–89◦ E; r= 0.90, referred to as ‘10mwinds’
in table 2), a more directly linked variable. However,
the WNPi monsoon still explains more than half the
total observed variability of all-India wind generation
anomalies.

The second EOF of regional windspeed, which
explains 16% of total variance, corresponds to a
strengthening of the ISM circulation, with PC2
strongly correlated with the ISMR index (r = 0.83,
figure 4(d)). In general, PC2 shows a weak rela-
tionship with regional wind generation anomalies,
except for a negative association in the Northern
region (table 2). Positive loading of EOF2, and the

corresponding strengthening of the ISM circulation,
is associated with enhanced easterlies in themonsoon
trough, which oppose climatological westerlies in the
Northern region and reduce wind energy generation.

The statistical relationships between the large-
scale climate predictors and Indian wind energy
generation identified here can be exploited when
using SEAS5 outputs (see section 2.3). The following
section evaluates the ensemble mean forecast skill of
these three climate predictors.

3.3. Ensemble mean forecast skill of climate
predictors
Figure 5(a) shows the grid scale correlation between
the SEAS5 ensemblemean and ERA5 10mwindspeed
anomalies4. Significant positive correlation values are
mostly restricted to the subtropics, with northern
regions of India showing weak positive correlation
and even negative values in the monsoon trough
region. The correlation between the area average
hindcast ensemble mean and ERA5 10 m windspeed
anomalies in the highlighted box in figure 5(a) is r
= 0.67. Figure 5(b) shows the correlation between
SEAS5 and ERA5 850 hPa windspeed anomalies,
which exhibits an overall stronger and more wide-
spread correlation than for 10mwind speed, particu-
larly in the equatorial Pacific. The correlation between
the JJAS WNPi in SEAS5 and ERA5 is 0.75. By com-
parison, the third climate predictor shows slightly
weaker correlation, specifically, between PC1 of the

4 Calculated by removing observed and model climatology,
respectively, not in cross-validation mode.
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Figure 5. Pearson correlation over 1981–2021 between SEAS5 ensemble mean and ERA5 (a) JJAS 10 m wind speed anomalies and
(b) JJAS 850 hPa wind speed anomalies. Green box in (a) denotes 12◦–32◦ N, 68◦–89◦ E. Green boxes in (b) show the regions
used to define the WNPi.

EOF decomposition of 850 hPawind speed anomalies
from ERA5 and hindcast ensemble mean5 (r = 0.70).

3.4. Ensemble mean forecast skill of wind
generation in India
Now turning to estimates of wind generation,
table 3 shows the correlation between predicted
and observed JJAS wind generation anomalies at
1–4months lead time using the observation-based
statistical relationships for three predictor variables:
WNPi, EOF1 of JJAS u850, and 10 m winds (see
table 2). The correlation values are broadly sim-
ilar across all predictor variables and regions. The
Northern region exhibits the lowest skill (r = 0.45
with WNPi) and the Southern region the highest (r
= 0.56 with WNPi). This high correlation reflects
the large fraction of variance explained by the WNPi
(table 2) and the SEAS5 forecast skill for the WNPi
(r = 0.78), which is comparable to prediction skill
found for other SCF systems (e.g. [59, 60]).

5 i.e. the EOF decomposition was conducted on each ensemble
member before averaging over resulting modes. Alternatively,
ensemble members can be projected onto observed modes (i.e. the
eigenvectors) and the resulting PCs averaged to gauge similarity in
spatiotemporal variability. This approach yields a similar correla-
tion value (r = 0.71).

Table 3. Skill of JJAS Indian wind generation forecasts based for
three predictor variables. All values are significant at the 95%
level. N.B. these predictors are cross-correlated, see main text.

India NR WR SR

WNPi 0.64 0.45 0.56 0.56
EOF1 0.58 0.36 0.48 0.54
10 m winds 0.62 0.40 0.53 0.56

As all predictors describe similar large-scale
atmospheric variability affecting the Indian subcon-
tinent in JJAS, and inmany cases are cross-correlated,
any combination of the predictors in a multi-linear
regression model shows virtually no improvement in
skill for wind generation over the single best perform-
ing predictor in each sub-region. The only exception
is found in the Northern region, where local 10 m
winds (averaged over 18◦–35◦ N, 64◦–80◦ E) com-
bined with the WNPi yields a ∼12% increase in skill
(r = 0.50). As mentioned previously, both the ISMi
and WNPi are correlated with JJAS wind generation
anomalies in this Northern region, so the addition of
the 10 m winds as a predictor adds a predictable sig-
nal imparted from ISM variability, which is otherwise
only partially captured in the WNPi variable.

Splitting the SEAS5 hindcast period considered
in this study into early (1981–2001) and late
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Figure 6. Kernel density estimate of ensemble spread in JJAS wind capacity factors, coloured by tercile, for individual years based
on SEAS5 hindcasts. Forecast probabilities per tercile category shown as overlaid text. Individual ensemble members as yellow
points and observed values as black points.

Table 4. Forecast quality metrics for 1–4 month lead time JJAS wind generation estimated from the observation-based relationship with
the WNPi. Bold (italic) values are significant at the 95% (90%) level based on a bootstrap resampling method. The significance of the r
values are based on the 95% level using a two-sided Student’s t-test. As described in section 2.3, the forecasts are calibrated using a
cross-validation approach, so ensemble mean correlation values are lower than the values listed in table 3.

Wind (JJAS) 1 month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)

India 0.61 0.27/0.14/ 0.10 0.38 0.42 0.56/0.54/0.42
NR 0.47 0.08/0.25/0.01 0.35 0.45 0.62/0.38/−0.07
WR 0.54 0.00/0.22/0.02 0.33 0.37 0.60/0.38/0.20
SR 0.53 0.21/0.00/0.03 0.32 0.35 0.45/0.56/0.20

(2002–2021) periods reveals higher ensemble mean
skill in the late period for all-India generation predic-
tions (full: 0.61, early: 0.48, late: 0.67). The increase
in forecast skill in the later hindcast period appears to
come from a stronger predictor-predictand relation-
ship (i.e. the relationship between WNPi and wind
generation), as the correlation between ensemble
mean SEAS5 and observed WNPi values (i.e. pre-
dicted and observed WNPi) remains similar (not
shown).

3.5. Probabilistic forecast skill of wind generation
in India
Using the climate predictor with the highest frac-
tion of total variance explained (i.e. the WNPi),
wind capacity factors are estimated for each ensemble
member of the SEAS5 hindcasts. The hindcast spread
in wind capacity factors for each year are shown in
figure 6 for the all-India case. The tercile categories are
denoted in colours. The percentages show the fraction

of ensemble members in each tercile and black points
denote the observed values.

The ensemblemembers capture the signal of years
with strongly negative wind generation anomalies
well. The lowest tercile category is correctly pre-
dicted by >80% of ensemble members in four of the
five lowest generation years (1983, 1988, 1998, 2010,
2020), which are also the years with the five lowest
values of the predictor variable.Most of the large neg-
ative anomalies coincide with rapid onset of La Nina
following transition from El Nino conditions [61].

Although, positive skill is generally found across
the forecast verification metrics considered (table 4),
insignificant skill is more often found with the dis-
crete measures BSS and RPSS, both of which are
more sensitive to ensemble size than r values and
continuous measures (e.g. CRPSS) [62]. The Relative
Operating Characteristic Skill Score (ROCSS) is also
positive for each tercile category, indicating that
the number of hits (correct predictions) is greater
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Figure 7. Attributes diagram for 1–4 month lead time JJAS wind capacity factor forecasts based on SEAS5 estimated from the
observation-based relationship with the WNPi. (a)–(c) shows the reliability diagram, (d)–(f) shows the sharpness diagrams, and
(g)–(i) shows the Relative Operative Characteristic plots, all for lower, upper and middle tercile categories, respectively (see
supplementary material section 2 for further details of attributes diagram).

than the number of false alarms (incorrectly pre-
dicted non-occurrences) across a range of probability
thresholds.

All skill metrics are to some extent sensitive to
sample size, though this is particularly the case for
assessments of forecast reliability and sharpness [48].
The aggregated wind capacity factor evaluated here
provides just one value per hindcast year, which is
a smaller effective sample size than for a gridpoint
assessment, where events can be pooled across all
grid cells within a region. While acknowledging this
caveat, the attributes diagram shown in figure 7 sug-
gests the forecasts are reliable and sample a range of
probabilities for at least the upper and lower tercile
categories—i.e. the correct shape and generally with
positive contributions to skill.

3.6. Relevance of climate predictors in expanded
wind fleet
The installed capacity of wind power in India is
expected to grow significantly in the coming years,

expanding into greenfield sites and usingmodern tur-
bine designs. Different technical parameters of mod-
ern turbine designs have been shown to affect wind
generation performances and present an additional
factor to consider as the wind fleet grows [9].

The explanatory power of the chosen climate pre-
dictors was tested for a plausible ‘planned expan-
sion’ scenario for wind power in India that includes
an additional 41.4 GW wind capacity, approximately
double the total capacity in 2021 (figure 8). This level
of capacity expansion is approximately in line with
themidpoint of the planning horizon used in the cur-
rent National Electricity Plan of India, which envis-
ages a tripling of wind capacity to 121 GWby the year
2032.

Table 5 shows the correlation values between the
SEAS5 ensemble mean climate predictors (WNPi,
u850 EOF1 and 10 m wind speed) and the ERA5
synthetic wind generation anomalies for the exist-
ing fleet and for the ‘planned expansion’ scenario.
The correlation values are very similar across all
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Figure 8. Location of existing wind farms in 2021 (∼40 GW, blue points) and additional wind farms considered in the ‘expanded
scenario’ (∼41 GW, purple points). Points display spatial information only, with size differentiation for visual clarity.

Table 5. Pearson correlation coefficients between JJAS mean wind capacity factor anomalies per region and the three climate predictors.
Values in regular font are for existing wind capacity and underlined font for the ‘planned expansion’ scenario. All values are significant
at the 95% level using a two-sided Student’s t-test.

Predictor All-India NR WR SR Gujarat Offshore
Tamil Nadu
Offshore

W-F WNPi 0.75/0.77 0.33/0.37 0.63/0.66 0.79/0.75 0.61 0.35
u850 EOF1 0.78/0.79 0.36/0.39 0.65/0.66 0.80/0.77 0.61 0.37
10 m winds 0.90/0.92 0.47/0.55 0.83/0.85 0.80/0.78 0.82 0.43

regions in both cases, with very modest increases in
the Northern and Western regions. These increases
could be due to slightly steeper ramping and/or con-
stant rated power sections of the turbine power curve
considered in the additional capacity of the ‘planned
expansion’ scenario. Also, a greater degree of spatial
smoothing occurs in the ‘planned expansion’ scen-
ario, likely causing very slight increases in correla-
tion values for respective regions. Correlation values
for individual offshore zones are slightly less than the
regional aggregates, likely due to the large concentra-
tion of capacity (∼8.5GW) over relatively small areas.
However, the generally high correlation across regions
show that generation anomalies averaged over the
summer season for near-term wind development in
India remain well-described by the previously identi-
fied predictor variables.

4. Discussion and conclusion

This study has investigated large-scale climate pre-
dictors that show observed relationships with boreal

summer (JJAS) wind energy generation in India. It
then tests the ability of the ECMWF System 5 sea-
sonal forecast model to predict wind capacity factors
for India. This exposition is believed to be the first
such application of SCFs to wind energy generation
in India within the academic literature. The seasonal
forecasts at 1–4 months lead time show significant
positive skill for wind capacity factors in India and
regional subdivisions based on their ability to predict
the large-scale climatic variables that show observed
relationships with India wind generation.

The ensemble mean forecast skill for all-India
capacity factors is similar for all three climate pre-
dictors trialed, explaining∼40% of interannual vari-
ability in all-India wind capacity factors. Modest
improvements to forecast skill inNorthern India were
achieved using local 10 m winds as an additional pre-
dictor. The level of forecast skill found in SEAS5 for
India wind generation is comparable to seasonal pre-
dictions of energy sector impact variables in some
other regions, including boreal winter wind energy
in Europe [22]; boreal winter gas demand in the UK

11



Environ. Res. Lett. 20 (2025) 044036 J Norman and A C Maycock

[63], boreal summer electricity demand in Italy [64];
and wind speeds over high wind resource zones of
China [24, 25].

The study highlights the roles of monsoon circu-
lations in South Asia on anomalous wind generation
in India, namely the ISM and WNP monsoon. The
predictive skill found in the wind generation forecasts
likely arises from the ability of SEAS5 to accurately
represent the ISM (e.g. [38]) and WNP monsoon
(e.g. [65]) circulations, which, in turn, are strongly
linked with accurate seasonal prediction of tropical
sea surface temperature anomalies ([38, 66]; see sup-
plementary material section 5).

Linking specific meteorological phenomena to
weather-dependent generation can help the targeted
improve generation forecasts in several ways (e.g. [67,
68]). Firstly, a physical interpretation can help assess
the limits of predictability (e.g. [69, 70]) and pin-
point important processes for future model devel-
opment. Second, knowledge of the meteorological
drivers behind generation variability may help dia-
gnose varying forecast skill, which can arise due to
non-stationarities in the climate system, influencing
the strength of teleconnections relevant to the pre-
diction ([71]; and evidenced in Results section 3.4).
Furthermore, identifying the main climate driver(s)
of prediction skill may help elucidate periods within
which forecast skill is enhanced, so-called ‘windows of
opportunity’ [72]. The analysis presented here identi-
fied the lowest generation seasons for wind following
rapid transitions between ENSO phases, specifically
in the four seasons where JJAS wind capacity factors
fall below one at least standard deviation (2020, 2010,
1983, 1988). The physical reasoning for the large neg-
ative anomalies following peak boreal winter El Nino
conditions transitioning to La Nina by the follow-
ing summer stems from a large anticyclonic anom-
aly that counters the WNP climatological monsoon
circulation and downstream climatological westerlies
over India [73, 74]. Future work should determine
the extent to which ENSO transition events present a
window of opportunity to forecast extreme seasonal
wind generation anomalies in India.

Further refinements to the research methodo-
logy should include additional calibration of the
generation synthesis as more historical generation
data becomes available. Additional robustness test-
ing would add to the overall confidence in the veri-
fication and prediction quality (e.g. use of differ-
ent reanalysis datasets—see supplementary material
section 4). Model diversity in multi-model assess-
ment has been identified as contributing to pooled
skill (e.g. [75]). Therefore, evaluation of other SCF
systems would be a worthwhile extension of the
work. Other downscaling methodologies are also
applicable, including the direct association between
forecast ensemble mean and impact variables [76],

circulation analogues [77, 78] weather generators
[79], and various machine learning methods [80,
81]. Furthermore, different bias correction/calib-
ration methods exist for seasonal forecasts (e.g.
quantile mapping, ratio of predictable components).
Although verification measures across these various
bias correction/calibration methods have shown only
marginal differences in other regions of South Asia
(e.g. [42]).

Despite the promising indications of forecast
skill demonstrated in this study, a substantial frac-
tion of interannual wind generation variability
remains unexplained. The potential utility of sea-
sonal forecasts should therefore consider the spe-
cific application in the energy sector and the capacity
for and implications of using probabilistic forecast
information [82]. In such real-world applications,
numerous contextual factors may shape the relative
pros and cons of forecast-influenced contingencies
(e.g. prior experience, the level of comprehension of
the forecast information and the availability of con-
tingency measures, etc [83, 84]). Further demonstra-
tion of actual or potential forecast value within the
context of the Indian electricity system will require
deeper consideration of operational procedures
[85] and direct collaboration with practitioners [86].

Finally, the analysis presented here is conditioned
on the standing stock of wind capacity in India as
of 2021, with extra consideration given to a plausible
‘planned expansion’ scenario. India’s national climate
targets include a three-fold increase in wind energy
generation [2]; however, individual Indian states may
proceed at different rates. As such, futurework should
assess the implications of greater capacity with differ-
ent geographical configurations for potential predict-
ability. The prospects for generation prediction for
other renewable energy technologies alsowarrant fur-
ther study, particularly solar photovoltaics (PV), with
current plans targeting a six-fold increase in solar PV
energy generation over 2023 levels by 2032 [2].

Data availability statement
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1418.
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