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Abstract

This paper explores the early lexicons of nine infants acquiring English or French to determine the
extent of systematicity in the early vocabulary, and how this changes over time. Network graphs are
generated from the point of first word production in the data set until age 30 months. Two measures
of systematicity - mean path length and clustering coeflicient - are analysed to establish the extent to
which the early productive lexicon consists of closely-connected clusters of similar-sounding forms.
Results show that early production is highly systematic when compared to random networks, but
that the network becomes more dispersed as it increases in size. Connectivity within the network is
consistently higher for infants’ actual productions when compared with the adult target forms, and
this effect increases over time. This suggests a systematic approach to production over the course of

early development.

Keywords: systematicity, phonological development, networks analysis



Systematicity over the course of early development: an analysis of phonological networks

Infants’ early words are phonologically similar to one another, if not in the vocabulary items

they select to produce, but in the way they produce them. This has been well-documented in a
number of previous studies (e.g. Szreder, 2013; Vihman, 2016; Waterson, 1971), and can be clearly
observed in datasets of early productions. For example, an inspection of Deuchar and Quay’s (2000)
record of their Spanish-English bilingual child’s vocabulary acquisition shows that many of her
earliest words are produced with an open CV syllable, and she produces a number of identical forms
to refer to a range of different (though phonologically-similar) words. This suggests that infants may
be drawing on a systematic approach to early productions, whereby a small subset of simple
phonological forms are used to produce a range of more varied and phonologically-challenging adult
targets. We would expect, therefore, that newly-acquired productions ‘cluster together’ with existing
forms, with high phonological similarity between new words and existing words in the lexicon. This
paper will test this hypothesis by analysing network graphs of infants’ early vocabulary to determine

how similar infants’ words are to one another, and how this changes over time.

Network analysis is an increasingly popular method of analysing lexical acquisition, and offers
an opportunity to consider production data on a larger scale than has previously been possible.
Network models allow the analysis of connectivity within a system (in our case, the lexical or
phonological system), and can track how that connectivity changes over time. In the case of
language development, the nodes (individual items) in the network typically consist of words, and
these are connected (or not) depending on how similar two nodes are in phonological or semantic
space. This similarity - or phonological/semantic distance - can be quantified using a number of
different methods; two words that are more similar to one another will be positioned closer together
in the network, and less similar words will be positioned further apart (due to lower/higher
phonological or semantic distance values, respectively). Because this is a convenient way to think
about language development over time, a number of studies have considered vocabulary acquisition

within this framework. Analyses have considered infants acquiring their first language (e.g.



Amatuni & Bergelson, 2017; Fourtassi, Bian, & Frank, 2020) and adults acquiring a novel language

(e.g. Luef, 2022; Mak & Twitchell, 2020; Siew & Vitevitch, 2020).

When a number of words are clustered together in phonological space, we might consider
them to be phonologically systematic. Systematicity is typically defined as a consistent mapping
between the properties of a series of word forms and their meaning (Dingemanse, Blasi, Lupyan,
Christiansen, & Monaghan, 2015); for example there is systematicity between plural forms in
English (mouse~mice and louse~lice, dog~dogs and cow~cows). Systematicity is apparent across
many linguistic domains, from phonology to syntax, and is noted as being pervasive in linguistic
structure (Dingemanse et al., 2015; Nolle, Staib, Fusaroli, & Tylén, 2018). It is suggested that
systematicity may have evolved through transmission over generations, as linguistic structure
becomes increasingly ordered through use (Kirby, Cornish, & Smith, 2008). This may be a “design
feature” of language that makes it easier to acquire and transmit, as has been shown for adults
(Kirby et al., 2008; Raviv, Heer Kloots, & Meyer, 2021), children (Raviv & Arnon, 2018), and in
computational research (Monaghan, 2011). Systematicity may thus be important in supporting the

cognitive processes required to acquire a first language.

In the present work, systematicity is not considered in terms of predictable form-meaning
mappings within groups of words, but rather consistent form-form correspondences between words.
That is, words that are similar to one another in terms of their structural and/or segmental properties
are considered to be systematic. This is typically observed in studies of early phonological
development, and is most comprehensively discussed in work by Vihman and colleagues (e.g.
Vihman, 2016, 2019; Vihman & Croft, 2007; Vihman & Keren-Portnoy, 2013). In more than four
decades of work, incorporating data from a large number of infants acquiring an impressive range
of languages, Vihman demonstrates a clear systematicity in infants’ path to target-like word
production. From the initial, relatively accurate, forms that appear in the first stages of word
production, infants are shown to draw on what they know: they generally choose, for first
production, words that are simple in their target phonological form, with consonants that are already

familiar from the most common syllables of canonical babble (McCune & Vihman, 2001). These



forms are, in Vihman’s terms, selected for first word production owing to their easily-producible
features. As the vocabulary grows, infants must necessarily acquire forms that do not contain such
accessible phonological or segmental properties. Here we begin to see regression in the accuracy of
early production, as infants systematically adapt forms to fit the most common structures and
segments in their repertoire. When words are systematically altered to fit a dominant pattern in the
child’s output, these forms are said to be adapted; adaptation is essentially an indication that
systematicity is present in an infant’s early word productions. Systematicity is apparent not just in
the earliest words, but across the trajectory of acquisition as infants deal with the challenges of early
word production by relying on well-rehearsed output forms. Over the first months of lexical
development at least, infants’ productions of newly-acquired words are likely to match their

productions of existing words in the lexicon, which results in a high number of (near-)homophones.

Collecting and analysing data on infants’ early word productions is highly resource-intensive,
and so previous work has typically drawn on a case study design (e.g. Macken, 1979; Priestly, 1977,
Waterson, 1971), or analysis of a small subset of words from multiple infants’ wider lexicons (e.g.
Laing, 2019; Vihman, 2016), with varying timescales of development targeted. Ideally, to fully
understand the role that systematicity plays, analyses would incorporate a randomly- or
systematically-sampled range of words making up a large proportion of the early vocabulary,
observing a wide developmental timescale. Drawing on a detailed, word-by-word analysis of the
developing vocabulary would not be feasible in most cases, but a networks approach allows us to
consider systematicity across a much larger set of words and along a wider developmental trajectory
than has typically been drawn upon in research in this area. In recent work (Laing, 2024), I draw on
network analysis to analyse systematicity in the developing lexicon of nine infants acquiring
US-English or French. I show that in the first three years of life, infants’ production of new words
can be predicted based on the words they already produce and how they produce them. That is, a
word is more likely to be acquired if it is produced in a way that is phonologically similar to existing
words in the productive repertoire, particularly when the new word is similar to a cluster of existing

phonologically-similar forms in the output. This effect becomes stronger over time, suggesting that



systematicity is more relevant to later word learning (at least, up to age 30 months) than in the first
few months of word production. An analysis of target forms showed similar results, though with
weaker predictive power. Moreover, the phonological properties of infants’ word productions are
more similar to one another than their adult target forms would suggest. These findings support the
more fine-grained analyses presented by Vihman and colleagues, referenced above. While this is the
only such work looking at systematicity specifically, findings are supported by a number of studies
using the same approach. Kalinowski and colleagues (2024) analyse vocabulary checklists from
>1000 Norwegian infants across up to six individual timepoints. Their results are consistent with the
analysis of target words presented in Laing (2024) (their analysis of vocabulary norms means it is
not possible to observe infant productions of these words). Findings consistent with both Laing and
Kalinowski et al. were identified by Siew and Vitevitch (2020) in an analysis of vocabulary norms of
children aged 3-9 years acquiring English and Dutch. Fourtassi and colleagues (2020), on the other
hand, found contrasting results in their analysis of vocabulary norms from infants acquiring a range
of 10 different languages. They show that salient properties of the input (for example, statistical
regularities between words in input speech), rather than previously-learned phonological properties,

predict learning.

Note that the previous studies reported above (with the exception of Laing 2024) all draw on
age of acquisition data or vocabulary checklists, meaning that infants’ actual productions (i.e. the
way they produce words) is not considered. One of the key strengths of Laing (2024) and the current
paper is the application of phonological network analysis to real production data. From decades of
work on early phonological development, we know that infants’ earliest words are often far-removed,
phonologically speaking, from their adult targets. For example Priestley’s (1977) son is reported to
produce banana as /bajan/, sucker as /fajak/, chocolate as /kajak/ and medicine as /mejas/ within the
same week at age 1;10. The adult target forms are all highly variable in form, while the child forms
all share the systematic implementation of a disyllabic production pattern with medial /j/, following
the structure CVCVC. Such systematicity cannot even be hinted at from an analysis of the target

forms only, thereby losing what may be a crucial aspect of the acquisition process. Moreover,



Fourtassi and colleagues (2020) and Siew and Vitevitch (2020) draw on vocabulary norming data
from a cross-sectional sample of infants, meaning it is only possible to take a very general view of
acquisition, with no scope for considering individual variability across the sample. This may explain
the differing results in Fourtassi et al. (2020), and means that this work cannot address any questions

about systematicity in early acquisition (though note that this was not the intention of either paper).

This paper contributes a novel approach to the research on developmental vocabulary
networks by analysing network graphs, rather than network growth models to study phonological
networks in the developing vocabulary. All the previous work reported above uses network growth
algorithms to test whether learning can be predicted based on the words that infants already know or
produce. Such an approach can be used to test and/or compare different theoretical models of
acquisition, whereby different network growth algorithms that index different predictions can be
used as predictors in statistical models. Moreover, network growth models analyse connectivity (are
two words similar, yes or no? if yes then they are connected in the network), rather than
phonological distance (how similar are two words in the network?), and analyse the possibility of a
new word being added to the network at the next timepoint, rather than the static properties of a
network at a given timepoint. Network graphs, on the other hand, allow us to understand more about
the properties of the network at a given timepoint: how ordered/random the network is, how dense
its clusters are, and how closely connected words are to one another across the network. Crucially,
this will allow us to make predictions about network properties over time that reflect word selection

and adaptation, and thus presents an opportunity to apply Vihman’s framework on a broader scale.

Research questions and predictions

This paper builds on previous network analyses by drawing on network graphs, instead of
growth algorithms, to look more closely at the phonological distance (that is, distance between
phonetic properties of consonants in each word, as determined by distinctive features) between
individual words in the developing lexicon. In doing so, it attempts to address the following

questions:



1. How systematic are early word productions (both actual and target), and (how) does this
change over time?

2. Are the phases of word selection and adaptation identifiable in the dataset?

To test these questions, network graphs will be generated using the igraph() package (Csardi
& Nepusz, 2006) in R (R Core Team, 2020) for both the actual and target data. To address the first
question, properties of the graphs will be analysed to determine 1) how closely connected individual
words are to one another; 2) how dense the overall distribution of words is in the network; and 3)
how/whether this changes over time. Following Vihman’s work, and findings presented by Laing
(2024), it is expected that the early vocabulary will become increasingly systematic over the course
of the age-range studied. This would be reflected in denser clusters of phonologically-similar forms
and shorter distance between words. Following previous research (Kalinowski et al., 2024; Laing,
2024), this should be true for both actual and target data. Simulated networks will be used to
compare the real networks against both highly systematic and random networks to determine the

extent of systematicity present in the data, and developmental changes over time.

To address the second question, network graphs of infants’ actual productions will be
compared with those of the target form, to trace the ‘target-likeness’ of individual productions, and
how this changes over time. Following Vihman once again, early word selection would be reflected
in early similarities between Actual and Target network properties, as target forms are selected to
match the structures and segments that infants are able to produce, meaning they should be
produced with relative accuracy. Over time, Actual and Target forms are expected to diverge, such
that Actual forms show more systematicity in the data than Target forms. Approaches used to test

these predictions are outlined in detail below.



Methods

Data extraction and preparation

This study draws on the same data as that analysed by Laing (2024). This was drawn from
two corpora on PhonBank (Rose & MacWhinney, 2014): Providence (American English - Demuth,
Culbertson, & Alter, 2006) and Lyon (French - Demuth & Tremblay, 2008). These were selected
due to their equivalent data collection methods and the fact that the infants’ productions, as well as
the corresponding target forms, are phonetically transcribed. As well as increasing the sample size,
by drawing on two different languages it is possible to test for consistency of results
cross-linguistically, across two languages that differ phonetically, phonologically and prosodically.
Nine infants’ (5 English, 4 French; 4 boys overall) data were extracted using Phon (Hedlund &
Rose, 2020), from the transcript with their first-recorded word (age range: 0;11-1;4) to the final
transcript taken at age 2;6. Infants were recorded in the home on a fortnightly basis, participating in
naturalistic interactions with their caregivers. Two of the American infants were recorded weekly
during some periods of data collection, but this is not an issue for this analysis since no
between-child comparisons will be made. See Demuth et al. (2006) and Demuth and Tremblay

(2008) for full details of data collection.

Extracted data was filtered to include only words featuring on the communicative
development inventory (CDI, Fenson et al., 1994) of the respective language, including all variants
of a given “basic level” form (including a total of 680 possible word types for American English and
690 for European French). Following Jones and Brandt (2019), and outlined in detail in Laing
(2024), phonological variability between unique words that share the same basic level form was
taken into account when deciding whether two variable forms were considered as one word type or
two. For example, the CDI word banana occurred regularly in its plural form; in this case, and with
all plurals in both English and French, both banana and bananas were classed as the same word
type. This was also true for masculine/feminine forms in French (e.g. petit and petite ‘small’ were

classed as one form), as well as words that shared the same basic level form and were phonologically



identical or very similar (in French, aime and aiment from the infinitive aimer ‘to love’ were classed
as one form, while in English falls and falling were classed as two). While this is not a perfect
system, and no doubt loses some of the detail of early word learning, retaining phonologically highly
similar forms in the data set that may well be produced identically by the child (and share the same
meaning) would falsely inflate the extent to which words are produced in a similar way. There were
5483 non-CDI words in the initial dataset, all of which were excluded from the analysis (by
language: 2224 in French and 3259 in English). The final dataset includes 3320 word types overall,
aggregated across infants (English= 2024, French=1296). On average, infants produced 8 tokens of
each word type in a single session (SD = 18; mean English tokens = 6, SD = 11; mean French tokens

=13, SD = 29).

Overall 58.63% of word types in the dataset were excluded due to not being on the CDI.
While filtering the data in this way makes the analysis easier to compare across similar studies that
also use CDI vocabulary measures (and provides a more manageable dataset for the analysis, given
the computational load of comparing all words with all other words in the data), the loss of so many
words from the infants’ vocabularies means results likely won’t capture all relevant aspects of the

infants’ early production.

To determine the structure of the network, the first step was to create distance values between
each word and each other word in the network, referred to here as phonological distance.
Phonological distance is derived from the Euclidean distance between the distinctive features of
pairs of consonants across any given two words in the dataset. This was first done using a ‘global’
network of all forms produced by the infant up to the final session at 2;6, to create a large distance
matrix for each infant that incorporated all word productions. Essentially, this global network
reflects the distance between every word and every other word in each child’s productive vocabulary

at 2;6.

Distance values were established using methods set out in Monaghan et al. (2010), using

distinctive features to generate a set of phonetic values for each word that could then be compared



with all other words (note that only consonants were analysed, given that vowels are highly variable
in early production and also very difficult to transcribe accurately, Donegan, 2013; Kent &
Rountrey, 2020). Euclidean distance between the values of each word and each other word in each
infant’s global network was then used to determine how close/distant words were from one another.
By this measure, word pairs with a distance of 0 have the same consonants produced in the same
word position (but may differ in vowels), such as bat and bet. Often, infants produced multiple
tokens of the same word type in a given month, often with variability in the way that different tokens
were realised. Because it was not possible to generate networks with all word tokens included (even
with only single word types included, the full dataset for all nine infants includes over 3 million data
points, once distance between each word and each other word is calculated), a mean value for each
distinctive feature was established across tokens, meaning that each word’s distinctive feature value
represents the variability of the infant’s production of a given word. For example, if an infant
produced two tokens of the word doggie as [dagi] and [dati], respectively, each of the distinctive
feature values for /g/ and /t/ would be averaged across tokens to create an “average production” of
that word. This may not be a perfect measure, but it is more representative than taking, for example,

the first instance of each word type.

Distance scores were generated between each word and each other word in each child’s
dataset, for both Target and Actual forms. These scores were then normalised, and a normalised
distance of 0.25 was chosen to indicate connectivity. That is, words were said to be connected in the
network if their distance score was 0.25 or less. This accounted for the lower quartile of
connectivity across the dataset. For a full overview of the data preparation process, including

validation of the 0.25 connectivity threshold, see Laing (2024, supplemental materials).

Data analysis

Network graphs. The prepared data was then used to generate a series of network graphs
for each infant (for both Target and Actual data) using the igraph() package in R (Csardi & Nepusz,

2006). One network was generated per month, for each month in the dataset, based on all new



words produced in the given month and all months prior. Words that had already been produced in
previous months were not included in the network; While this means that the data does not capture
change in the production of a single form over time, it allows us to observe network growth at the
point of acquisition for each word form. The network at timepoint n+1 thus included all word types
produced up to and including timepoint n, plus all additional words produced for the first time at
n+1. Monthly network size for each infant is shown in Table 1. The igraph() package generates
graphs that include all nodes (whether or not they are connected to other nodes'), and measures the
distance between all connected nodes, as well as the clustering of nodes in graphical space. Two
example networks are shown in Figure 1, where differences between Actual and Target networks, as
well as phonological distance between nodes, and un-connected “hermit” nodes, are visualized. IPA

transcriptions of the Target and Actual words in each network are shown in Table 2.

Two key variables will be explored through an analysis of network graphs: mean path length
and average clustering coefficient. Path length is a measure of distance between nodes, and mean
path length indexes the average phonological distance (of all connected nodes) within a network; by
this measure, we would expect that systematicity in early phonological development would be
reflected in low mean path length, as words are, on average, more closely connected. Clustering
coefficient is an indication of network density: a higher average density of nodes in the network
indicates denser clusters of similar forms; again, this is what we would expect to see in a network of
early phonological development. See Goldbeck (2013) for a full overview of network structures and

measures.

Simulated networks. Networks with high phonological systematicity should exhibit
properties of prototypical “small-world” network growth, namely a low mean path length and a high
average clustering coefficient (Amaral, Scala, Barthelemy, & Stanley, 2011; Steyvers & Tenenbaum,
2005; Watts & Strogatz, 1998). Words should be more densely connected, with shorter connections

between words. As this is what we expect to see in the phonological networks tested here,

! Recall that any two nodes that have a scaled phonological distance of >.25 will not be connected.



small-world networks serve as a suitable comparison with the real data. If high systematicity is
present in the data, then there should be no statistical difference between the real network and a
small-world network of equal size. To test this, mean path length and clustering coefficient values
were generated for both the Target and Actual networks, as described above. Data were then
compared to the growth of a simulated small-world network of equal size, known as a
Watts-Strogatz network (Watts & Strogatz, 1998). This network was generated computationally in
R using the igraph() package (Csardi & Nepusz, 2006), and was matched for network size and mean
connectivity within the network at each month. The real data were also compared to a
similarly-sized but randomly-generated network known as a Erd6s—Rényi model. If the real network
grows in a systematic way, then we would expect the real data to differ significantly from the
randomly-generated Erdés—Rényi network. Again, this was generated using the igraph() package
(Csardi & Nepusz, 2006), and was matched for network size at each month (but not mean
connectivity, as this is not required for a random graph). To run these analyses, mean path length
and clustering coeflicient were calculated for each monthly graph - the Real data, and the two kinds
of Simulated data (prototypical systematic network vs. random network) - and the two kinds of

Simulated network were tested against the Real network.

Statistical models. Two different analysis methods will be drawn upon to test the two
research questions. To test RQ1, network graphs will be compared to simulated small world and
random networks of equivalent size to determine whether the data (the Real network, drawing from
infants’ Actual productions) differs from the Simulated networks using linear mixed effects
regression models. To test RQ2, generalised additive mixed effects models (GAMMs) will be used,
since these allow the analysis of non-linear change over time, and can account for statistical
differences between two non-linear trajectories of data that may differ in non-linear ways (Soskuthy,
2017; Wieling, 2018). Fixed effects in the model can include parametric terms, as is typical in
regression modelling, and also smooth terms, or non-linear fixed effects. Much like mixed-effects
linear models, GAMMs can account for random effects in the data; in this case by-subject random

effects were included through the addition of random smooths in the model.



To account for the fact that adjacent values (i.e. connectivity at month » and month n+1) are
likely correlated, GAMM modelling includes an autocorrelation parameter; see Soskuthy (2017)
and Wieling (2018) for full details. Additionally, the start point for each infant’s data (i.e. their first

recording session) was indexed in the model.

Results

RQ1: How systematic are early word productions, and (how) does this change over time?

To address the first research question, linear mixed-effects regression models test the
predictive effect of data type (Real vs. two kinds of Simulated data) on mean path length and
clustering coeflicient. For both variables, we would expect the Real data to differ significantly from
the Simulated Erd6s—Rényi (random) network, and for the Real network to show similar properties
to the Simulated Watts-Strogatz (small-world) network. Note that the extent of the expected
statistical difference is not easy to predict here: if the Real network is very similar to the
Watts-Strogatz network then no statistical difference would be expected, but this relies on the Real
data being highly systematic, which may not be realistic. In order to fully understand the nature of

the data, figures and model outputs will be inspected in relation to these predictions.

The two measures will be discussed in turn. Models include mean path length or average
clustering coeflicient as the dependent variable, respectively, each with Data type (Real
vs. small-world vs. random), Corpus (English vs. French) and Age as fixed effects, and Subject as a
random effect with a by-Subject random slope for the effect of age. Initial model comparisons
showed that including Network size, alongside Age, improved fit in the model testing clustering
coefficient, but not mean path length (see Supplementary materials, S1, for model comparisons).

Network size is thus included as a fixed effect in the clustering coefficient model only.

Mean Path Length. Nested model comparisons revealed a significant effect for Data type
on mean path length. See Table 3. As shown in Table 4, the Real data had a significantly lower

mean path length than the random Simulated data, as predicted. The difference between the Real



data and the Simulated small world data was also significant, but the extent of this difference was
smaller than that reported for the random network, thereby lending support to initial predictions.
The extent of these effects in each corpus is shown in Figure 2, where the comparison between the
Real data and the random Simulated data is visually much wider than that of the Real vs. Simulated
small-world network. There was a significant effect for Corpus, whereby French data had a higher
mean path length than English data, and importantly, for the English (but not the French) corpus,
the Real data had a lower mean path length than the Simulated small-world data, indicating
particularly high systematicity in the English corpus. Contrary to predictions, there was no change
in systematicity over time (i.e. no effect of Age was observed). Plots showing the effect of age on

the two variables can be found in the Supplementary Materials, S2.

Clustering coefficient. The same main outcomes were found when clustering coefficient
was tested in the model. See Tables 3 and 4. The Real data had a significantly higher clustering
coefficient than the random Simulated data, but this was significantly lower than that of the
small-world Simulated data in both corpora. Again, the magnitude of the difference was much
larger in the Real vs. random Simulated comparison than the Real vs. small world Simulated
comparison, again supporting predictions. This is visualised in Figure 3. Here there was no effect
for Corpus on the data, nor an effect for Age. However, there was a significant effect for Network
size; with each additional word added to the network, clustering coefficient decreased by 0.05%.

This outcome is opposite to what was predicted, suggesting a decrease in systematicity over time.

Actual vs. Target data. The differences between the Real data and the small-world
Simulated data are difficult to interpret, given that there is no clear model of what phonological
systematicity would look like in a highly systematic small-world network. To further interrogate
systematicity within the data, network properties of the Real (Actual) data analysed above were
compared to the Real Target data - that is, the phonological distance between the child’s Actual
production and its Target counterpart was analysed. Target data serves as an appropriate proxy for
connectivity and clustering within a “standard” phonological network, albeit a network that is

constrained by words produced in early acquisition, and further constrained by the fact that only a



subset of these (i.e. CDI words) are included in the data set. We would expect that mean path length
and clustering coefficient would each show higher systematicity in the Actual network than the
Target network”. Basic model structure was the same as reported above, but with only Real data
(Actual vs. Target) included, instead of Real vs. Simulated data. The inclusion of Network size as a

fixed effect improved model fit for both dependent variables and so was included in both models.

There was a significant effect for Data type on mean path length. See Table 3. Model outputs
revealed that Target data had a significantly higher mean path length than Actual data (see Table 5
and Figure 4). Again there was also a significant effect for Corpus, whereby the French data had a
higher mean path length than the English data overall. Network size, but not Age, significantly
affected mean path length, which increased as Network size increased. Again this indicates a
decrease in systematicity over time: with each new word added to the network, mean path length

increased by 0.04%.

The effect of Data type on clustering coefficient was also significant. Average clustering
coefficient was significantly lower in Target compared with Actual data. See Figure 5. The French
data had a significantly lower mean clustering coefficient than the English data, which from Figure 5
appears to be driven by earlier development, as Actual networks start out with lower clustering
coefficients in the French, compared to the English, data. Again, there was a significant effect for
Network size, and this was consistent with the result reported above for mean path length, with a
decrease in systematicity as network size increased. As new words were acquired in the network,
average clustering coefficient decreased by 0.04%. This time, Age was also a significant predictor in

the model; with each passing month, clustering coefficient decreased by 0.56%.

2 Note that this result was observed for network growth models in Laing (2024), whereby the Actual network was found

to be a better predictor of learning based on the known network of each child.



RQ2. Is there evidence of word selection and adaptation in the dataset?

To address the second research question, the phonological distance between Target and Actual
forms was taken as a proxy of word selection and adaptation. That is, if a word is produced in a
target-like way (i.e. assumed to be selected?), then the phonological distance between the Target
form and the way it is produced (Actual form) should be low. The opposite is true for adapted forms,
as we expect, by definition, a non-target-like production and thus a higher distance between Target
and Actual form. This measure is not perfect, but coding selected/adapted forms would otherwise
have to be done by hand, which is not feasible across such a large dataset. Following Vihman’s
(2019) framework, we would expect low distance between Actual and Target forms earlier on in

development as words are selected, and higher distance later as word adaptation begins to take hold.

GAMMs were used to examine connectivity of the infants’ Actual and Target networks and
how these changed over time. These were run using the mgcy() package in R (Wood, 2011). These
models analyse the extent to which the two networks differ (or not) from one another across infants,
and how this changes non-linearly month-by-month. The model tested mean number of connections
in the network (average number of connections of each node in the network, or mean k) as the
dependent variable, working on the assumption that connectivity in the Target vs. Actual networks
would be similar during periods of word selection (i.e. Actual and Target words are similar to one
another and so distribution of connectivity should be similar), and would differ during periods of
adaptation. Specifically, periods of adaptation should lead to higher connectivity in the Actual
network than the Target network, since we expect productions to be more similar (and thus more
well-connected) in Actual forms; we would expect connectivity across data types to diverge at the
point that word adaptation begins to take hold. Essentially, a higher number of connections (higher
mean k) for Actual vs. Target networks is expected during periods of adaptation, and no difference

in connectivity is expected for periods of selection. Data type (Actual vs. Target) and Corpus

3 though note that, while a selected form is, by definition, target-like in phonological form, a target-like form isn’t

necessarily a selected form.



(English vs. French) were included as parametric terms, with Data type being the variable of interest
in the model. Network size and Age were included as smooth terms, as well as by-Subject and
by-Data type random smooths for the effect of Age, which account for by-Subject and by-Data type
differences in the data over time. To test for an effect of Data type, model comparisons were run
using the compareML() function from the itsadug() package (Rij, Wieling, Baayen, & Rijn, 2022):
the full model including the effect of Data type and the by-Data type random smooth was compared
to a model without these terms. Because model summaries for GAMM smooths may be
non-conservative (Soskuthy, 2017), smooth plots will be observed alongside any significant effects

to determine relevant trends in the data.

Model comparisons revealed a significant effect for Data type on connectivity in the networks
over time. See Table 3. Figure 6 shows the difference between Actual and Target connectivity over
the course of development. The red line indicates periods of significant difference, showing that
Actual vs. Target connectivity was significantly different throughout the period of analysis; Actual
forms were always more well-connected than Target forms. This contrasts with the expectations set
out above. However, Figure 6 clearly shows an increase in the difference in connectivity between
Actual and Target forms over the period of data collection, supporting the expectation that Target
and Actual forms are more similar earlier on in development, with an increasing difference in mean
connectivity over the course of the analysis, favouring higher connectivity in Actual, compared with

Target, forms.

Discussion

This paper set out to test the presence of systematicity in infants’ developing lexicons by
analysing phonological network graphs from nine infants acquiring French or English. Network
graphs allow a close-up view of phonological similarity between forms within the network (via mean
path length) and the extent to which groups of phonologically similar forms cluster together (via
average clustering coefficient). Systematicity in the network would be reflected in shorter distance

between forms and denser clusters of phonologically similar forms. The analysis also sought to



identify periods of selection and, later, adaption - indicating a shift towards increasing

systematization - in the data.

The first research question asked whether or not systematicity could be identified using a
network graphs analysis, and, if so, whether or not this changed over time. This essentially presents
a replication of analyses on the same data by Laing (2024), using a different analytical approach.
Comparisons of network graphs generated using the real data against random and highly systematic
simulated network graphs lend support towards the presence of systematicity within the data, and
this was strengthened with a follow-up analysis comparing networks of the infants’ actual
productions with those of the target forms. Overall, infants’ early productions had a shorter mean
path length and formed denser clusters of similar forms within the networks (i.e. higher average
clustering coefficient) than simulated random networks and networks of the target phonological
forms, though these were typically less systematic than prototypical highly systematic “small world”
simulated networks. These findings support those of Laing (2024) to suggest that systematicity is
present in early phonological productions, at least up to the age of 2;6 and in the languages included

here.

The picture gets a little more complex when changes over time are considered. Laing (2024)
identified an increase in the predictive power of the network model over time, which indicated
increasing systematicity in the network. However, this was not the case for the present analysis;
here, systematicity appeared to decrease as age or network size increased. These contrasting findings
are likely driven by differences in what was being analysed: the network growth algorithms in
Laing’s (2024) paper predicted how likely it was that any given word will be added to the network in
the next month. Over time, the network was more likely to acquire new words that would connect to
the most densely-connected words in the existing network (controlling for network size). Adding the
present findings to this picture, networks at earlier timepoints had denser clusters of words than
those at later timepoints, and phonological distance between words was typically higher at later
timepoints. This aligns with what we know about systematicity over the course of early phonological

development, as the kinds of words being targeted for production become more variable. This is



demonstrated in case study accounts of infants’ early words, where we see the establishment of
different production patterns, or templates (Vihman, 2019) over time. For example, in Waterson’s
(1971) case study of her son’s production at 18 months, five distinct structures are identified in his
data, to which newly-acquired words are systematically adapted. In this example, we see
systematicity becoming more prevalent in the data (as a wider range of templates gives rise to more
opportunity for word adaptation) but clusters of similar words may be less dense, as adaptation takes

place in a number of different - but systematic - ways.

In all but one of the analyses there were consistent differences between the English and
French data, whereby systematicity was stronger in the English data in terms of both mean path
length (words were closer together in the English data) and clustering coefficient (clusters of
connected words were denser in the English data). Laing (2024) showed differences in the same
data but only in the Target forms, whereby English words were more likely to be learned by infants
than French words. Both here and in the previous study, this difference can be partly explained by
the fact that the English corpus is larger than the French one (29,149 tokens in French and 31,073 in
English, see Laing, 2024 Table 1). It could also be the case that the English data is more
well-connected (and therefore more systematic) than the French, likely due to phonological
differences between the two languages. For example, mean syllable length in the French data was
higher than that of the English (1 vs. 1.53, respectively), and all 10 tokens in the data with more
than 3 syllables were French (see Laing, 2024). If there is more variability in the French target
forms - especially in terms of syllable length, given that the measures used here aligned words by
syllable - this would naturally lead to less connectivity in this data. It is unlikely, however, that there
are any inherent differences in in the way that French and English infants draw on systematicity in
early production. Vihman (2016) analysed the early words of five bilingual infants to show that the
systematic patterns used in early production were consistent in both of the infants’ languages. Even
when a child is acquiring two phonological systems, the way in which infants systematically tackle

the challenges of production is consistent across those languages.

The second research question attempted to identify periods of word selection and adaption in



the data using generalised additive mixed models (GAMMs). This analysis worked on the
assumption that overall connectivity in the network (mean number of connections per node, or mean
k) should be similar for Actual and Target forms during periods of word selection, since infant
productions should be more phonologically accurate for selected words, and thus similar in
connectivity to the target forms. Periods of adaptation, on the other hand, should see a difference in
connectivity between Target and Actual data; new Target forms in the network will be more distant,
and less likely to connect to existing forms, whereas Actual forms should continue to connect to
existing words in the network. Thus, we expect a divergence between connectivity in the Target and
Actual networks. This was, to some extent, borne out in the data, though distinct periods of
selection and adaptation could not be identified. Instead, a gradual increase in the difference in
connectivity between Actual and Target networks was observed over time; the difference in

connectivity was always significant, and mean k was always higher in Actual than Target networks.

One key question arising from these findings is the extent to which network graphs - in
particular the measures used in this study - can help us understand systematicity. Even though this
analysis incorporated a more close-up analysis of network properties than those that draw on
network growth models alone - i.e., by taking into account distribution of the nodes within the
networks across three measures (mean path length, average clustering coefficient, and mean k) - still
the analyses all abstract away from the detail of early word production, and specifically what drives
connectivity and clustering within the network. The measures used to generate phonological distance
may not have been able to take into account holistic or prosodic properties of early words, so we may
lose a potential source of connectivity within the networks (for example, a reliance on consonant
harmony, which reveals within-word, as well as potential between-word, systematicity). That being
said, the examples in Table 2 suggest that the measures used here are capturing systematicity
appropriately. The data shows a preference for glides/fricatives word medially, and words are
typically produced with an open final syllable, with a range of different consonants produced overall.
That is, the systematicity in these forms is most apparent in the structures of the words, rather than

the segments. Crucially, the phonological distance measure appears to capture this phonological



systematicity appropriately; note that doggie, daddy and duckie - all produced with a CVFVV

structure, where F is a fricative - are closely connected in the network graphs shown in Figure 1.

Furthermore, Kalinowski and colleagues (2024) explore the potential for even more nuanced
indices of phonological distance by iterating across, as well as between, similarities within words in
the network. Their findings validate the measures used here, by showing consistency between the
current approach and a more complex phonological distance measure that incorporates phonological
similarity across the whole word (rather than aligning by syllable structure) and does not exclude
vowels. Moreover, infants are likely to have drawn on different approaches to early word production,
some which might have been represented as systematic more effectively by the measures used here.
Finally, the focus on mean & to analyse word selection and adaptation is a crude measure for
identifying changes in the data that are likely very subtle. Future work may want to draw on cluster
analysis to observe these changes in the data more closely. That being said, phonological distance
between Target and Actual forms may be a useful measure for objectively identifying word selection

or adaptation in future studies.

While this analysis presents a more nuanced view of systematicity than in previous studies
that draw entirely on network growth models, including Laing (2024), Fourtassi and colleagues
(2020) and Siew and Vitevitch (2020), closer inspection of the network graphs themselves may have
been useful in supporting and explaining the findings in more detail, particularly the extent to which
individual infants approached word selection and adaptation. Future work could combine
computational analyses of networks with a more impressionistic analysis of infants’ early word
productions to bring together these two very different but equally valuable methodologies. Indeed,
drawing on modelling to understand large-scale data makes it possible to quantify findings in a more
rigorous way, but it abstracts away for the nature of early productions and means we miss out on the
detail of the patterns that are being drawn upon. It also overlooks the extent to which infants take
very individualised paths in phonological development (Vihman, 1993), and the possibility that
broad-scale generalization is simply not reflective of the reality of early production. Future studies

in this area may also want to consider how variability between infants, and infants acquiring



different languages, is represented in vocabulary growth networks.

Overall, these findings support a case for systematicity in early development. The analysis of
network graphs supports and builds on existing studies in this area - those that present a ‘close-up’
case-study analysis (e.g. Szreder, 2013; Waterson, 1971) and those that draw on computational
methods to analyse large data sets in a generalised way (e.g. Fourtassi et al., 2020; Laing, 2024) - to
present a nuanced evaluation of a large-scale early production data set. Findings suggest that the
developing network is characterised by dense clusters of similar-sounding words, and that

systematicity is present in early production from the beginning.
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Table 1

Number of word types in each child’s network at each month. Network size is cumulative such that

values in each month include the word types produced in all previous months. Empty cells represent

months in which a given infant did not have a recording.

Speaker Corpus 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Alex English 2 6 8 26 42 56 63 94 96 101 107 137 170 222 276
Lily English 12 15 16 20 26 53 117 167 214 272 325 368 401 417 444 456 475
Naima English 6 24 40 62 140 221 274 338 367 406 441 455 475 484 504 513 530 547 564 565
Violet  English 3 6 9 17 39 59 109 164 198 224 268 292 325 379 396
William  English 35 76 99 157 180 200 214 221 235 245 264 286 302 312
Anais French 2 4 9 20 21 46 48 51 54 56 70 120 133 174 189 226 276 285
Marie French 108 110 112 117 123 131 134 137 164 203 234 260 288 336 374
Nathan  French 2 5 6 14 19 21 25 27 32 33 43 57 8 92 119 141 168
Tim French 3 17 21 40 60 80 106 148 173 219 281 304 310 333 384 421 443 469




Table 2

IPA transcriptions of Actual and Target forms produced by one English-acquiring infant’s data,

including one token of all words produced up to and including 14 months.

Gloss  Age Target Actual
baby 13 berbi  tede
COwW 13 kags ha
daddy 13 dedi  dedr
dog 13 dag da
duck 13 dak de
duckie 13 daki  dider
hi 13 har he
mommy 13 mami  Awe
moon 13 mun  mam
puppy 13 papi  babe
teddy 13 tedi dedr
yes 13 j® he
ball 14 bal SWA
doggie 14  dagi haver
eye 14 ar €
kitty 14 kiti kiz1




Table 3
Outputs from nested model comparisons testing the effect of data type (Real vs. Simulated and Actual

vs. Target on mean path length and clustering coefficient.

Model Df  Chisq p
Mean Path Length (Real vs. Simulated) 2 58594 <0.001
Mean Path Length (Actual vs. Target) 1 187.86 <0.001

Clustering Coefficient (Real vs. Simulated) 2 1325.23 <0.001
Clustering Coeflicient (Actual vs. Target) 1 26941 <0.001

Mean connectivity (Actual vs. Target): GAMM 3 182.63 <0.001




Table 4
Outputs from linear mixed effects regression models testing comparisons of Real vs. Simulated data on

mean path length and clustering coefficient.

Mean path length Clustering coefficient
Effect beta SE t p beta  SE t p
Intercept 0.599 0.12 5.143 <0.001 0.770 0.02 34.163 <0.001

Real vs. Erd6s—Rényi  1.915 0.06 33.152 <0.001 -0.673 0.01 -72.649 <0.001
Real vs. Watts-Strogatz  0.321 0.06 5.668 <0.001 0.156 0.01 17.217 <0.001
Corpus 0.468 0.05 9.813 <0.001 -0.014 0.01 -1.228 0.246

Age 0.000 0.00 -0.027 0979 0.002 0.00 1.888 0.064

Network size NA NA NA NA 0.000 0.00 -10.470 <0.001




Table 5
Outputs from linear mixed effects regression models testing comparisons of Actual vs. Target data on

mean path length and clustering coefficient.

Mean path length Clustering coefficient
Effect beta  SE t p beta SE t p
Intercept -0.080 0.10 -0.801 0.446 09340 0.03 32.438 <0.001

Actual vs. Target 0.192 0.01 16375 <0.001 -0.1143 0.01 -21.043 <0.001
Corpus 1.600 0.04 45.453 <0.001 -0.0274 0.01 -3.790 <0.001

Age 0.005 0.00 1348 0.195 -0.0056 0.00 -4.453 <0.001
Network size 0.000 0.00 4.233 0.001 -0.0004 0.00 -14.009 <0.001




Target network Actual network

Figure 1. Two networks generated from one English-acquiring infant’s data. The networks incorpo-
rate all words produced by the child up to and including age 14 months. The Target network is shown
on the left, and the Actual network on the right. Teal dots represent nodes (words) in the network, and
lines between the dots are the edges. Thicker lines represent shorter phonological distances (these
are also visually represented in graph space, whereby closer phonological distance is represented by
nodes plotted more closely together). Words represent the target words, though note that the Actual
network plots distance between words as produced by the infant. Hermit words had a scaled distance

of >.25 with all other words in the network.
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Figure 2. Change in mean path length as network size increases, in Real vs. Simulated (random and
small-world) data. English and French data is plotted separately. Coloured lines represent Data type;

coloured bands represent 95% Cls. See S2 for the same data plotted according to the effect of Age.



English

French

1.00

b

I

[$)]
1

0.50 -

Clustering Coefficient

.

[V}

a1
1

0004 *

\

c——

T
200

o -

Data type === Real m=m Simulated - random (Erdos Renyi) #== Simulated — small world (Watts—Strogatz)

Figure 3. Change in clustering coefficient as network size increases, in Real vs. Simulated (random
and small-world) data. English and French data is plotted separately. Coloured lines represent Data

type; coloured bands represent 95% Cls. See S2 for the same data plotted according to the effect of

Age.
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Figure 4. Change in mean path length as network size increases, in Actual vs. Target data. English

and French data is plotted separately. Coloured lines represent Data type; coloured bands represent

95% Cls. See S2 for the same data plotted according to the effect of Age.
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Figure 5. Change in mean clustering coefficient as network size increases, in Actual vs. Target data.
English and French data is plotted separately. Coloured lines represent Data type; coloured bands

represent 95% Cls. See S2 for the same data plotted according to the effect of Age.
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Figure 6. Difference smooth plot showing difference between connectivity (mean k) in Actual vs. Tar-
get forms from the GAMM model specified above. Shaded area shows 95% confidence intervals, red
line along x-axis indicates months in which the difference between Actual and Target forms was sig-

nificant.
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