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ABSTRACT
As automated driving technology advances, the role of the driver to resume control of the vehicle in conditionally automated
vehicles becomes increasingly critical. In the SAE level 3 or partly automated vehicles, the driver needs to be available and ready
to intervene when necessary. This makes it essential to evaluate their readiness accurately. This article presents a comprehensive
analysis of driver readiness assessment by combining head pose features and eye-tracking data. The study explores the effectiveness
of predictivemodels in evaluating driver readiness, addressing the challenges of dataset limitations and limited ground truth labels.
Machine learning techniques, including LSTM architectures, are utilised to model driver readiness based on the spatio-temporal
status of the driver’s head pose and eye gaze. The experiments in this article revealed that a bidirectional LSTM architecture,
combining both feature sets, achieves a mean absolute error of 0.363 on the DMD dataset, demonstrating superior performance in
assessing driver readiness. Themodular architecture of the proposedmodel also allows the integration of additional driver-specific
features, such as steering wheel activity, enhancing its adaptability and real-world applicability.

1 Introduction

According to data published by the World Health Organisation
(WHO) [1], over 1.35 million people lose their lives annually
due to road-related accidents, and millions more suffer severe
injuries. Within these unfortunate events, it has been observed
that 90% of all accidents are attributed to human errors [2].
The development of technology has given rise to the hope that
the concept of automated driving can address these challenges
[3]. Removing the driver from the driving process and trans-
ferring control of the vehicle to an automated driving function
can be a step towards eliminating human error in accidents
[4].

In L3 conditionally automated vehicles, the system temporarily
takes responsibility for steering, acceleration, and braking, along

with the vehicle-related duties, while the driver has the option
to engage in non-driving related tasks (NDRTs) like reading the
news, watching a movie, or relaxing in the driver’s seat [5].
However, the human drivers must be prepared to regain control
in cases of emergencies, like when the system malfunctions and
prompts a take-over request (TOR) or when the situation goes
beyond the system’s capabilities [6]. During such scenarios, the
ability to perceive and understand road and traffic conditions,
essentially situational awareness, becomes crucial in determining
immediate actions. At this stage, the question arises whether the
driver is ready to take back control of the vehicle. If the enabler
determines that the driver is ready, the vehicle control will be
transferred to the driver; otherwise, a safe, low-risk manoeuvre
such as safe stopping, pulling over to the side of the road, or
activating hazard lights will be activated to prevent any potential
danger [7, 8].
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Prior to initiating a TOR, it is crucial to gather both internal
and external data regarding the driver’s condition and the traffic
context [9] to ensure a secure outcome [10]. This is especially
important when dealing with take-over procedures necessitated
by sudden emergencies. Thus, the development of driver mon-
itoring systems (DMS) becomes imperative [11]. These systems
should possess the capability to assess the driver’s physical and
mental condition and subsequently correlate this data with the
specific road scenario [10]. To achieve this objective, the DMS
accumulates baseline metrics for various driver state indicators,
including factors like the driver’s gaze, posture, and physiological
measurements [12]. These baseline metrics are then employed to
compute a measure of deviation, enabling the system to evaluate
the extent of the driver’s readiness.

In this paper, we investigated the strengths and weaknesses of the
existingmodels and datasets for assessing driver readiness in con-
ditionally automated vehicles. Building on this understanding,
we develop a non-intrusive computer vision-based framework
for evaluating driver readiness using facial landmark features.
The proposed model tracks facial features and analyses their
geometric configuration as features to estimate the driver’s head
pose and gaze directions.

Our main research contribution can be summarised as follows:

∙ We introduce an extended dataset with new ground truth
labels with numerical values for driver readiness, addressing
the challenge of limited ground truth availability in the
context of driver readiness assessment studies.

∙ We leverage state-of-the-art convolutional neural network
(CNN) models in computer vision to enhance the accuracy
of feature extraction from eye-tracking data and head pose,
establishing them as reliable indicators for driver readiness
evaluation.

∙ We employ a recurrent neural network (RNN) architecture
that utilises long short-termmemory (LSTM)modules to anal-
yse spatio-temporal dependencies within the video frames
recorded from drivers.

The rest of this paper is organised as follows: Section 2 presents
the literature review, which examines the existing knowledge on
automated driving systems, the importance of NDRTs, the chal-
lenges of transitioning between automated and manual driving,
and the landscape of vision-based driver monitoring techniques.
It also delves into previous research on driver readiness and
identifies research gaps. Section 3 outlines the dataset used for
the study and explains the creation of a ground truth framework
to measure driver readiness. In Section 4, the methodology is
detailed, covering the extraction of head pose and gaze direction
features, the implementation of machine learning models, and
the training and validation strategies. Section 5 evaluates the
performance of the proposed models using various metrics,
analyses the impact of different configurations, and presents the
obtained results. Finally, in Section 6, the conclusion synthesises
the findings, reiterates the research objectives, discusses the
implications of the study’s outcomes, and suggests potential
directions for further research in automated driving and driver
readiness assessment.

2 RelatedWork

Decision-making to pass the driving control to a human driver
would need to rely on empirical data regarding drivers’ abilities
and behaviours in specific situations. This is normally done
by utilisation of camera-based systems and computer vision-
basedmethodologies to analyse the driver’s direction of attention.
For instance, if the analysis of the driver’s visual attention
indicates that the driver is completely disconnected from the
driving task, or if the analysis reveals a challenging driving
scenario, the vehicle might execute a low-risk safety manoeuvre
to position itself on the roadside [7]. Thus, it is crucial for
a DMS to consistently evaluate the driver’s readiness to take-
over, which is essential to ensure a safe and timely transfer of
control [11]. The most accurate depiction of the driver’s state
can be achieved using physiological-based DMS; however, these
systems are excessively intrusive for application in commercial
vehicles [13]. To address this, the development of DMS has largely
shifted towards leveraging computer vision and deep learning
technologies [14].

2.1 Vision-Based Driver Monitoring

Driver behaviour analysis based on vision sensors has been a
popular topic of research, with a large body of literature focusing
on the driver’s gaze estimation as a useful cue for estimating the
driver’s attention [15]. By analysing visual cues from the driver’s
face, these systems can detect signs of drowsiness, distraction,
or other cognitive impairments [16]. Initial research relied on
assessing the driver’s gaze through head pose estimation. In
this context, Lee et al. [17] introduce a vision-based approach to
instantly determine the driver’s head orientation and gaze direc-
tion. This technique remains effective despite changes in facial
appearance due towearing glasses and functions proficiently dur-
ing both daylight and nighttime scenarios. The method employs
facial features and a geometric facial model to gauge the driver’s
yaw and pitch angles. Furthermore, the approach includes a
gaze estimation technique that employs support vector machines
(SVM) to accurately calculate both the gaze directions and gaze
regions. In the study by Tawari et al. [18], they introduced a
distributed camera system that analyses head movements. The
main strength of the model is its capability to work reliably and
consistently, even when dealing with significant head motions.
The system’s core function involves tracing facial features and
examining their spatial arrangement. This process helps gauge
head orientation through a three-dimensional model.

Recent methods mainly utilise a combination of both head and
eye features. Vasli et al. [19] presented a system for estimating
a driver’s gaze by considering cues from both the head and
eye poses. They employed a multi-plane geometrical setting
and integrated this with a data-driven learning approach. The
researchers evaluated their methods using real-world driving
data, encompassing diverse drivers and vehicles, to assess how
well the techniques could be applied broadly. Similarly, Fridman
et al. [20] investigated the improvement in classifying driver gaze
by utilising both head and eye poses instead of relying solely on
the head pose. They also explored whether individual-specific
gaze patterns were linked to the extent of gaze classification
enhancement when including eye pose data. The key insight
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from their work is metaphorically explained using the concepts
of an ‘owl’ and a ‘lizard.’ This metaphor illustrates that when
the head exhibits substantial movement (‘owl’), the addition
of eye pose information does not significantly enhance gaze
classification. Conversely, when only the eyes move while the
head remains still (‘lizard’), including eye pose data substantially
boosts classification accuracy. The authors also investigated how
this accuracy variation relates to different individuals, gaze
strategies, and gaze regions.

Recent studies involving CNNs have enabled the accurate pre-
diction of driver gaze areas, which can be applied universally
to various drivers and slight deviations in camera positioning.
Vora et al. [21] addressed the challenge of creating a generalised
gaze zone estimation system that remains consistent across
various subjects, perspectives, and scales. To assess the effective-
ness of their system, they gathered extensive real-world driving
data and trained their CNN model, achieving high accuracy.
Similarly, Lollett et al. [22] tackled the challenge of accurately
gauging a driver’s gaze in real-world scenarios, where factors like
facial obstructions and varying distances from the camera can
complicate the process.

While existing studies have shown promise in accurately pre-
dicting driver gaze areas using CNNs and computer vision
techniques, only a limited number of studies have focused on
the application of gaze zone estimation for evaluating driver
readiness in driving scenarios.

2.2 The Driver Readiness Studies

In order for the human driver to take back control of the vehicle
safely, the driver must be in an appropriate state of readiness
prior to the TOR alarm. According to ISO/TR 20195-1 [23], driver
readiness refers to the condition of the driver while engaged in
automated driving, which impacts their ability to effectively take
back control of the vehicle from the system in order to resume
manual driving.

Braunagel et al. [5] present an advanced driver assistance system
that predicts the driver’s take-over readiness in conditionally
automated vehicles. The system proactively warns the driver if
low take-over readiness is anticipated. It determines readiness
based on traffic complexity, the driver’s secondary task, and
gaze direction. An evaluation using a driving simulator with
81 participants demonstrated a 79% accuracy in predicting take-
over readiness.

Marberger et al. [24] research focused on human performance
during take-over situations and how the driver’s state impacts
these scenarios. The study established a comprehensivemodel for
the transition process from automated to manual driving. This
model defined specific time points and time intervals critical to
this transition. The researchers introduced the concept of ‘driver
availability,’ quantitatively measuring the time needed for a safe
take-over against the available time frame.

Deo and Trivedi [13] conducted a study to assess driver readiness
in conditionally automated vehicles by analysing information
from in-vehicle cameras. Human evaluators examined the cam-

era data and gave their subjective rates for the driver’s ability to
take-over control. The research introduces the term ‘observable
readiness index (ORI)’, which quantifies the driver’s readiness
based on these evaluations. Furthermore, the study presents an
LSTM model that continuously estimates the driver’s ORI by
considering various aspects of the driver’s state, including gaze,
hand position, posture, and foot activity.

In the research by Arslanyilmaz et al. [25], they explored factors
influencing the duration and quality of take-overs during system
failures before intersections. These factors encompass secondary
task characteristics, traffic density, time buffer before TOR, and
the type of TOR warning. The study’s primary aim was to
investigate how different time buffers (3 and 7 s) impact take-over
duration and quality in case of system failures near intersections.
They also aimed to analyse drivers’ eye-tracking behaviour in
these time buffers, comparing how drivers focus on information
on the dashboard and the road.

In the study by Kim, J. et al. [26], the focus was on investigating
how NDRTs impact a driver’s readiness and take-over perfor-
mance. Through a driving simulator experiment, the researchers
assessed driver take-over readiness during the transition from
automated to manual driving while participants engaged in
various NDRTs. The study established that driver readiness had a
negative correlationwith take-over time but a positive correlation
with the quality of vehicle control.

In the study conducted by Greer et al. [27], the focus was on
achieving safe transitions from automated to manual control
in vehicles by understanding the driver’s situational awareness.
The researchers introduced two metrics, the ORI and take-over
time, which quantify this awareness state. Their model used
feature vectors that included hand location, foot activity, and
gaze location as input. Additionally, the study introduced two
new metrics to assess the quality of control transitions after
the take-over event, namely the maximal lateral deviation and
velocity deviation.

The current state of research on driver readiness in the context
of transitioning from automated to manual driving has taken
significant steps forward in understanding the factors influencing
this critical process. The literature review highlights the impor-
tance of driver engagement in NDRTs, the challenges posed
by the transition to manual driving, and the essential role of
vision-based DMS in assessing driver readiness. However, certain
challenges and research gaps necessitate attention. First, the
lack of comprehensive naturalistic driving datasets capturing
a wide range of driver behaviours in conditionally automated
vehicles hinders the development of data-driven approaches
to map driver activity to take-over readiness effectively. Such
datasets would significantly enhance the applicability of research
findings. Second, defining a clear and objective ground truth
for take-over readiness remains a complex task. As data-driven
approaches heavily rely on accurate ground-truth information,
the absence of a universally accepted measure for readiness
poses a challenge in designing robust models and evaluations.
Addressing these gaps would lead to more accurate and reliable
methods for assessing driver readiness during the transition from
automated tomanual driving, ultimately contributing to safer and
more efficient automated driving systems.
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FIGURE 1 Classification and positioning of gaze zones within the
vehicle cabin.

3 Dataset and Ground Truth

In this study, we randomly selected 15 video clips, each spanning
approximately 12 s, from the S6 category of the Driver Moni-
toring Dataset (DMD) [28]. This selection meets the following
prerequisites of this study:

∙ High-resolution videos: The dataset includes 1280× 720 pixels
RGB videos that are zoomed on the driver’s face only. This
ensures capturing detailed facial features and expressions
which are crucial for assessing driver readiness.

∙ Gaze estimation relevance: The scenarios depicted in the
dataset finely correspond to the gaze estimation requirements
necessary for our study, particularly for both owl-style and
lizard-style glances. This alignment between the dataset’s con-
tent and our research focus enhances the dataset’s suitability
for our investigation.

The selected video clips, captured at a rate of 30 FPS, result
in a total of 5640 frames available for evaluation. These frames
have been split into 90 sections, each lasting 2 s. Furthermore,
the chosen videos were recorded in a controlled environment
inside a real car cabin. Participants were directed to focus their
attention on specific regions of interest in the car (regions G0 to
G8), as shown in Figure 1. This deliberate focus on distinct regions
facilitates the subsequent estimation of gaze positions, which is
crucial for the analysis conducted in our study.

Acknowledging the limitations of the available dataset and to the
best of our knowledge, this is the first attempt to investigate driver
readiness by establishing relevant ground truth labels using the
DMD dataset. Given the dataset size limit, we tried to maximise
the utilisation of the available dataset for training, validation, and
test phases by considering a cross-validation approach.

3.1 Human Ratings for Driver Readiness

One of the fundamental challenges in driver readiness assess-
ment for take-over control is the absence of publicly available data
that includes relevant ground truth information regarding driver
readiness. To address the issue of ground truth, we employed a
rating method by two human evaluators, similar to the approach
taken by studies [29] and [13]. Human evaluators watch frame
feeds and assign a value to the driver readiness based on their
head movements and eye gaze. This methodology relies on
the ability of experienced drivers to identify and assess driver

TABLE 1 Driver readiness assessment levels based on head pose
and eye direction.

Rating Driver readiness Description

1 Non-attentive The driver’s head pose and
eye direction indicate a

complete lack of readiness to
take control.

2 Low attentiveness The driver’s head pose and
eye direction suggest

minimal awareness and
readiness to take control.

3 Partially ready The driver’s head pose and
eye direction show some
awareness, but their
readiness is limited.

4 Moderately ready The driver’s head pose and
eye direction demonstrate
moderate readiness to take

immediate control.
5 Fully ready The driver’s head pose and

eye direction indicate full
attentiveness and readiness

to take control.

readiness from video recordings of the driver’s face. By analysing
the driver’s head movements and eye gaze, the evaluators can
provide consistent ratings of the driver’s readiness levels. A
substantial level of agreement among evaluators would indicate
a metric for assessing the driver’s readiness for take-over that
could be determined solely through visual cues [13]. The average
value offered by the evaluators can serve as the ground truth for
training and testing a machine learning algorithm for take-over
readiness estimation.

3.2 Protocol for Collecting Ratings

Two individuals holding UK driving licenses, and familiar with
the functioning of level 3 (L3) automated driving systems were
selected as evaluators. A time span of 2 s was utilised to evaluate
driver readiness. To achieve this, a sequence of 12 frames,
equivalent to 2 s at a frame rate of five FPS, was presented to
each evaluator. Independently, they assigned a readiness score
ranging from 1 (lowest driver readiness) to five (highest driver
readiness) to the driver’s state at the culmination of that 2-s
interval. The assessment criteria for these readiness levels are
outlined in Table 1.

During the rating process, the evaluators could review each
segment and update their previous ratings. Although selecting 2-
s intervals minimises evaluators’ confusion and accelerates the
rating process, it leads to the creation of a discrete rating scale.

3.3 Readiness Index as Ground Truth

We take the average of the ratings provided by the evaluators
to create a single rating score for each 2-s interval. We employ

4 of 16 IET Intelligent Transport Systems, 2025
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FIGURE 2 Assigned ratings and derived readiness index for a 30-s time interval.

the cubic interpolation method, as described in [30], to extend
this discrete rating set to ensure a continuous representation
of driver readiness for take-over. This interpolation method
is chosen based on its ability to create smooth and accurate
curves between data points, capturing the gradual changes in
driver readiness over time. While other interpolation methods,
such as linear, polynomial, spline, and nearest neighbour, were
considered as alternatives, cubic interpolation was selected due
to its capacity to handle complex trends, reduce oscillations, and
align with the expected gradual changes in human readiness
state [31].

Consequently, for each frame, which corresponds to a time of
1/30 s, an interpolated value is generated for the readiness index
using cubic interpolation. This value serves as the foundation for
training and evaluating the driver readiness evaluation model,
acting as a representative ground truth.

3.4 Qualitative Analysis of Readiness Ratings

In Figure 2, an illustration of a representative evaluation during
a 30-s timeframe is displayed. The upper row showcases the
ratings designated by individual evaluators. It is evident from
the illustration that the ratings display a favourable level of
convergence. While there seems to be a lower level of strictness
in the rating assignment by evaluator 2, the overall rating trend
remains consistent. The lower row, on the other hand, portrays
the readiness index in the form of a continuous variable. This
index is derived through the process of averaging and cubic
interpolation of the provided rates.

4 Methodology

We aim to evaluate the readiness index continuously based on
processing recorded driver videos. This issue is addressed as a
regression problem. Drawing inspiration from study [13], at each
moment, the video recorded from the past 2 s is taken as input
to the model, and the output is an estimated measure of driver
readiness for take-over. CNN-based models are utilised to extract
head pose and eye-tracking features from frames related to each
two-second interval. Subsequently, these frame-level features are
concatenated to represent a frame-by-frame depiction of the
driver’s state.

While CNNs extract general features from a single frame, the
decision-making basis for assessing driver readiness should con-
sider spatio-temporal data via multiple frames. Therefore, we
need a model capable of reasoning about temporal dependencies
to estimate the readiness index. Given the effectiveness of LSTM
networks in modelling long-term temporal dependencies in var-
ious sequential modelling tasks within the domain of automated
vehicles [13, 32, 33], it is utilised to estimate the readiness index.
As depicted in Figure 3, the CNN component extracts complex
spatial features from individual frames. Meanwhile, the LSTM
component effectively captures the temporal relationships across
a sequence of frames.

By employing consecutive LSTM layers, we aim to enhance the
model’s ability to capture and understand temporal dependencies
in the input data, as relevant studies show that deeper neural
network architectures can better handle complex patterns
in sequential data [34, 35]. The final step includes a dense
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FIGURE 3 Deep learning architecture for driver readiness evaluation.

layer, which integrates the combined insights from the entire
architecture to generate a precise numerical value that serves as
the predicted driver readiness index.

4.1 Frame-Level Feature Extraction

We utilise the SPIGA model presented by Prados-Torreblanca
et al. [36], for extracting head pose and eye-tracking features
due to its demonstrated higher accuracy compared to other state-
of-the-art (SoTA) models. SPIGA stands out as a leading model
for head pose estimation on the WFLW dataset [37], having
achieved the lowest MAE mean (◦) among its counterparts.
Moreover, in landmark extraction, the SPIGA model is also
considered SoTA for face alignment on datasets like 300 W [38]
and MERL-RAV [39]. This CNN-based model takes recorded
facial frames as input and calculates three head pose-related
features: Yaw, pitch, and roll, and 98 Facial Landmarks for each
frame. Its CNN architecture excels at extracting relevant features,
making it ideal for processing the facial frames in our study.
Additionally, SPIGA has been successfully tested in challenging
lighting conditions, such as those encountered in in-cabin mon-
itoring scenarios, further boosting its suitability for our research
context.

4.2 Head Pose Estimation

In computer vision, head pose estimation primarily refers to
measuring the orientation of the driver’s head with respect to the
camera or the global coordinate system. However, achieving this
requires understanding the camera’s built-in characteristics to
correct the perceptual bias caused by perspective distortion [40].
A common approach in head pose estimation is predicting the
relative orientation in a 3D environment using Euler yaw, pitch,
and roll angles [41].

Although head pose estimation has been a longstanding and
extensively explored issue, attaining satisfactory results has only
become feasible due to recent advancements in deep learning.
Conditions that pose challenges, such as extreme angles, poor
lighting, occlusions, and the presence of additional faces within
the frame, complicate the task of detecting and estimating head
poses for data scientists [41]. This study utilised the SPIGAmodel,
pre-trained on the WFLW dataset [37], to extract yaw, pitch, and
roll features. Figure 4 illustrates the model’s output for a frame
within the DMD dataset.

FIGURE 4 Head pose estimation for a sample frame of DMD
dataset using SPIGA model.

4.3 Eye-Tracking Data

Eye-tracking metrics serve as signals of where the visual focus is
directed, and this aspect is extremely important for understand-
ing, capturing, and predicting the evolving take-over procedure
[42]. Automated driving systems should be able to measure
and monitor drivers’ situational awareness during the take-over
transition period using eye-tracking data with machine learning
models [43]. The eye openness ratio provides an understand-
ing of eyelid closure, potentially indicating driver drowsiness
or fatigue [44]. Meanwhile, the horizontal and vertical ratios
provide insights into gaze direction and fixation patterns [45],
offering valuable information about the driver’s interaction with
the environment.

To initiate the analysis of eye-tracking data, the process begins
with extracting facial landmark points through the utilisation
of the SPIGA model [36], as visualised in Figure 5. Among the
98 extracted facial landmarks, special significance is placed on
landmarks 60 to 75, pinpointing the localisation of the eyes.
Noteworthy are landmarks 96 and 97, crucial for determining
the precise positions of the irises. Figure 6 illustrates the spatial
arrangement of these key points on the driver’s face.

4.3.1 Eye Aspect Ratio Metric

Eye aspect ratio (EAR) provides an approximate estimation of
the eye openness state as the ratio of the vertical distance to
the horizontal distance of the eye [46]. As we employ 98 facial
landmarks, the EAR can be defined by the equations below [47]:

6 of 16 IET Intelligent Transport Systems, 2025
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FIGURE 5 Extracted facial landmarks via SPIGA model for a
sample frame.

FIGURE 6 Visual representation of eye and iris landmarks.

EAR𝑅 =
|𝑃66 − 𝑃62|
|𝑃64 − 𝑃60| (1)

EAR𝐿 =
|𝑃74 − 𝑃70|
|𝑃72 − 𝑃68| (2)

where EAR𝑅 and EAR𝐿 represent right and left eye aspect ratios,
respectively and 𝑃𝑑𝑑 shows the keypoint number 𝑑𝑑. EAR values
below the threshold of 0.2 indicate that the eyes are closed [48].
Furthermore, when there is an extreme head rotation leading one
of the eyes to fall outside the camera’s field of view, a noticeable
difference in the calculated EAR values between the right and left
eyes becomes apparent.

Figure 7 illustrates the results of EAR computations for four
different scenarios: (a) closed eyes, (b) partially open eyes, (c)
fully open eyes, and (d) a situation where the left eye falls
outside the camera’s field of view, due to excessive rotation of the
driver’s head.

4.3.2 Horizontal Gaze Ratio Metric

The horizontal gaze ratio (HR), ranging from 0.0 to 1.0, indicates
horizontal gaze direction. This metric is derived from ref. [49]
open-source gaze tracking Python code definitions, utilising the
specific landmark x-coordinates (𝑥𝑑𝑑).

The right eye’s horizontal gaze ratio (HR𝑅) is determined by the 𝑥
offset of the right pupil’s landmark 96 from landmark 60, divided
by the distance between landmarks 64 and 60:

HR𝑅 =
|𝑥96 − 𝑥60|
|𝑥64 − 𝑥60| (3)

Similarly, HR𝐿 represents the left eye’s horizontal gaze ratio,
calculated by the 𝑥 offset of the left pupil’s landmark 97 from
landmark 68, divided by the distance between landmarks 72 and
68:

HR𝐿 =
|𝑥97 − 𝑥68|
|𝑥72 − 𝑥68| (4)

The obtained values reflect the horizontal gaze direction. A value
within the range [0, 0.33) suggests a rightward gaze, [0.33, 0.67)
indicates a straight-ahead gaze, and [0.67, 1.0] implies a leftward
gaze tendency.

We evaluated the computed values for the horizontal gaze ratio
in each of the five driver readiness classes based on the ground
truth values generated in Section 3.3. Figure 8 illustrates the
calculated mean and standard deviation for the horizontal gaze
ratio in each of these classes. It can be observed that the driver’s
readiness level increases when the calculated standard deviation
decreases. For frames representing the minimum readiness level
with a value of 1, we observe the highest standard deviation
of 0.158, whereas conversely, for the highest assigned readiness
level of 5, the standard deviation reduces more than threefold
to 0.049.

This interpretation is straightforward: When a driver possesses
a higher level of readiness, their gaze concentration is directed
towards a specific forward region, resulting in a slower rate of
eye positional changes. This observation aligns with the findings
of ref. [50], which demonstrated that the standard deviation of
horizontal gaze position is the most sensitive metric to cognitive
focus variations, even though it remains one of the simplest
metrics to calculate.

4.3.3 Vertical Gaze Ratio Metric

The vertical gaze ratio (VR) is a metric that returns a value
between0.0 and 1.0, indicating the vertical orientation of the gaze.
The calculation involves dividing the vertical difference between
the pupil’s position and a specified reference point (62 for the right
eye, 70 for the left eye) by the height of the corresponding eye area
[49]:

VR𝑅 =
|𝑦96 − 𝑦62|
|𝑦66 − 𝑦62| (5)

VR𝐿 =
|𝑦97 − 𝑦70|
|𝑦74 − 𝑦70| (6)

where VR𝑅 represents the vertical gaze ratio for the right eye, VR𝐿

for the left eye, and 𝑦𝑑𝑑 denotes the vertical position of a specific
eye landmark 𝑑𝑑.

In this context, a value in the interval [0, 0.33) corresponds to
looking upwards, [0.33, 0.67) indicates a direct gaze, and [0.67,
1] signifies looking downwards. While the primary use of the
vertical gaze ratio is in conjunction with the horizontal gaze ratio
for gaze zone classification, values tending towards 1—where the
driver’s gaze is directed towards the lower portion of their field
of view—can suggest a decrease in readiness. This situation may
arise when the driver is engaged in an NDRT, such as tuning the
radio or using a mobile phone.
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FIGURE 7 Variation in eye aspect ratio across different eye states and extreme head rotation.

FIGURE 8 Relationship between driver readiness levels and vari-
ability in horizontal gaze ratio.

4.4 Gaze Zone Classification

Building upon the extracted features related to head pose and
eye-tracking data, the driver’s gaze area is categorised into
nine distinct regions of interest (ROI). The selection of zone
boundaries follows the definition of the DMD dataset.

While the decision to adopt a nine-region gaze classification
introduces inherent challenges, particularly with gaze regions
like 𝐺0 and 𝐺1 due to their close proximity, the availability
of gaze region annotations for the 2331 frames can provide a
robust foundation for training the gaze zone estimation classifier.
While we acknowledge that the proposed approach might not
compete with the precision of specialised, highly calibrated eye
gaze tracker cameras, the introduction of human oversight in

the manual review stage serves as a practical strategy to fill the
accuracy gap. On this basis, we ensure that a suitable foundation
will be established for the study of driver readiness assessment in
the following steps.

The main focus is selecting an appropriate classifier based on
the extracted features for head pose and eye-tracking data,
which can assign the driver’s gaze zone to one of these nine
ROIs in each frame. Two separate scenarios were considered to
estimate the driver’s gaze region using a Random Forest-based
classifier. In Case 1, the estimation relied solely on extracted head
pose features, while in Case 2, the evaluation was achieved by
combining head pose features with additional eye-tracking data.
The capability of random forest classifiers in diverse machine
learning applications is widely acknowledged, attributed to their
skill in directly interpreting acquired parameters and their min-
imal necessity for hyper-parameter tuning [51]. Following the
approach outlined in [51], we divide the dataset into training and
test sets as 80%–20%. Specifically, 1864 frames were allocated to
training purposes, while 467 were reserved for testing.

To assess the performance of the trained model, accuracy metric
and confusion matrix are employed. Accuracy is a fundamental
metric used to evaluate the performance of classification models.
Itmeasures the proportion of correctly predicted instances among
the total instances in a dataset. It is defined as follows:

Accuracy = TP + TN
TP + FN + FP + TN (7)

8 of 16 IET Intelligent Transport Systems, 2025
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FIGURE 9 Comparison of confusion matrices and accuracies for gaze zone classification scenarios.

While accuracy provides a general overview of a model’s effec-
tiveness, it may not always be sufficient to fully understand
its performance, especially in cases where class distributions
are imbalanced. This is where a confusion matrix comes into
play. The confusion matrix presents a table format that breaks
down the model’s predictions into four distinct categories: True
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN). These elements provide insights into how well
the model distinguishes between classes and where errors occur.
By analysing the confusion matrix, it becomes possible to gain a
more nuanced assessment of a model’s ability to correctly classify
instances across different classes [52].

Figure 9 provides a visual representation of the confusion matri-
ces and the corresponding calculated accuracies for both analysed
scenarios. In the case of the classifier that relies solely on head
pose features, the accuracy stands at 93.15%. However, when eye-
tracking features are integrated into the existing information,
the accuracy experiences a notable enhancement, increasing by
approximately 5% to attain a commendable accuracy of 98.07%.
This improvement underscores the significant contribution of
incorporating eye-tracking data into the model’s predictive capa-
bilities, resulting in a more refined and accurate gaze region
classification. The augmentation of accuracy by this margin
indicates that the integration of eye-tracking data complements
and refines the model’s decision-making process, enabling it to
better distinguish between different ROIs.

Given the accuracy demonstrated by the random forest classifier
in gaze zone classification, we proceeded to utilise the model to
predict the gaze regions for 3309 frames, which had not been
previously annotated.

Figure 10 presents the Pearson correlation coefficient between
driver gaze-related features and driver readiness values. The cor-
relation coefficient, a statistical measure, aids in comprehending
the strength and direction of a linear relationship between two
data sets. Its function is to reveal how closely changes in one

FIGURE 10 Correlation of driver gaze patterns with readiness
levels.

variable match up with changes in another variable [53]. The
graph highlights the distinct relationships between different gaze
regions and the readiness index. Notably, regions associated with
forward gaze demonstrate the highest positive correlation with
the readiness index. Conversely, gaze regions linked to driver
distractions, such as glancing to the left or right, focusing on
infotainment systems, or fixating on the steering wheel, exhibit
negative correlations with the readiness index. These observa-
tions align with the understanding that these actions may divert
the driver’s attention away from the road, potentially lowering
their readiness to respond effectively to unexpected situations.

However, an interesting exception occurs regarding the negative
correlations observed with the left and right mirrors. This differ-
ence arises from the specific context in which the DMD dataset
was generated. In this scenario, drivers have maintained long-
lasting and consistent fixation on the mirrors. Evaluators have
interpreted this behaviour as indicative of a driver’s readiness
level reduction. While unexpected, this observation underscores
the complexity of interpreting gaze-related features within their
unique context.

The random forest classifier categorises the driver’s gaze direction
by labelling each frame of data based on the driver’s visual focus.
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However, for this data to be effectively utilised by the subsequent
machine learning model, which evaluates driver readiness, it
needs to be pre-processed. This is where the importance of
one-hot encoding comes into play.

In the context of the driver’s gaze zone classification, employing
one-hot encoding translates to generating a set of binary features,
precisely nine in number, each representing a distinct gaze region.
The core principle behind one-hot encoding is the creation of new
columns, each corresponding to a unique category present in the
categorical variable. Subsequently, for every data point, a value of
1 is assigned to the appropriate category-specific column, while
all other columns are assigned a value of 0. This transformation
enables machine learning models to comprehend categorical
distinctions without making any assumptions about the inherent
order of categories [54]. Every frame’s data is encoded such that
one of these features holds a value of 1, indicating the driver’s
focus on a particular gaze region, while the remaining features
hold values of 0. By adopting this format, the dataset becomes
amenable to harnessing the capabilities of neural networks
within the domain of machine learning.

4.5 Time Series Cross-Validation

With time series data, the concept of cross-validation takes on
a new form that adheres to temporal order. Time series carry
hidden temporal sequences, predicting future events based on
past occurrences. Here, training and validation sets are defined
while preserving the temporal order. This approach mimics real-
world scenarios where past events guide predictions of future
occurrences. Similar to our model, which evaluates the driver’s
readiness at each moment based on their head movement and
gaze position in previous moments. By considering temporal
dependencies and sequentially changing training and validation
split points, this method ensures that the data from the validation
set does not leak into the training set [55]. This encompasses
the nature of time series data and provides a more genuine
assessment of model performance.

4.6 Proposed LSTMModels

In this research, the dynamic nature of driver readiness assess-
ment demands a model that can capture temporal dependencies
within the sequential data. LSTMs excel in this aspect due to their
ability to maintain a memory state that can capture information
from earlier time steps and propagate it through time. This is
crucial for scenarios where the driver’s readiness is influenced
not only by recent events but also by past interactions with the
driver’s state. The integration of both head pose and eye-tracking
data as input features aligns well with LSTMs’ capacity to handle
multiple input streams simultaneously [56].

In this study, the effectiveness of two distinct LSTM architectures
was explored in the prediction of driver readiness: the vanilla
LSTM [57] and the bidirectional LSTM [58]. The length of the
input sequence for the model is determined to be 60 frames (2
s) after evaluating various time window sizes of 30, 60, 90, and
120 frames. Although a slightly lowermean absolute error (MAE)

was observed for 120 frames, the standard deviation was higher
compared to 60 frames.

The vanilla LSTM model includes 64 neural units (32 units in
each direction for the bidirectional LSTM) to effectively handle
the temporal dependencies within this 60-frame input sequence,
inspired by [35]. Additionally, we utilised two consecutive LSTM
layers for each architecture of vanilla and Bidirectional models
as suggested in studies [34, 35]. This makes the network deeper
and allows for the extraction of more intricate patterns from the
input data, potentially capturing more complex spatio-temporal
dependencies and improving prediction capability. Finally, a
dense layerwith a single output unit was included, utilising linear
activation to facilitate regression tasks.

4.7 Training and Optimisation Strategy

In the training phase of our models, our primary objective was to
minimise MAE loss between the predicted values and the actual
ground truth values within the training dataset. To optimise the
model’s performance, we employed the Adam optimiser [59],
with a learning rate of 0.001. The learning rate determines the
step size taken during each iteration of the optimisation process.
A higher learning rate might cause the optimisation process
to overshoot the optimal solution, while a lower learning rate
might result in slower convergence [60]. The chosen learning
rate of 0.001 balances quick convergence and stable optimisation
[61], allowing the model to refine its predictions while gradually
avoiding drastic oscillations or overshooting.

The model was trained using the Tensorflow deep-learning
package on a Linux OS with an NVIDIA T4 GPU utilising
CUDA parallel processing APIs. The training batch size was
four for 100 epochs, and the training process was halted once
the model converged with no significant decrease in MAE loss
function value.

4.8 Validation and Test Strategy

We employed a model selection process to determine the most
suitable model for final evaluation. This process involved using
a validation set that was distinct from the training set. For each
training epoch, we calculated the MAE between its predictions
and the true values on the validation set. Themodel that exhibited
the lowest MAE loss on the validation set was chosen as the
most optimal one [62]. This selection criterion ensured that
we identified the model configuration that provided the best
predictive performance on unseen data.

Subsequently, the chosen model was evaluated on the test set,
which was separate from both the training and validation sets.
This set served as an independent measure of the model’s
performance and generalisation ability. By reporting the results
on the test set using the model with the minimum validation set
MAE, we aimed to provide an unbiased and reliable assessment
of the model’s capability to predict the readiness index accurately
in real-world scenarios.
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5 Evaluation

This section highlights the significance of evaluation metrics,
particularly the MAE, in quantifying the alignment between
predicted and actual values. We analyse the impact of various
parameters on the model’s predictions, delving into the influence
of cross-validation fold configurations and batch sizes on the
model’s accuracy. Next, we explore the importance of integrating
head pose and gaze features within the model architecture for
assessing driver readiness. Finally,we present the results obtained
from employing different LSTM architectures with distinct fea-
ture sets, revealing the model’s ability to assess driver readiness
in conditionally automated vehicles. Each experiment provides
valuable insights into specific aspects contributing to the overall
performance and effectiveness of the model.

5.1 Evaluation of Model Performance

Evaluation metrics are essential tools for quantifying the perfor-
mance ofmachine learningmodels. One commonmetric used for
evaluating regression tasks, such as driver readiness evaluation, is
themean absolute error (MAE). Thismetricmeasures the average
absolute difference between the predicted values 𝑦𝑖 and the actual
ground truth values 𝑦𝑖 , as outlined in Equation (8) [63].

MAE = 1

𝑚

𝑚∑
𝑖=1

|�̂�𝑖 − 𝑦𝑖| (8)

MAE provides a straightforward and interpretable measure of
how well the model’s predictions align with the actual driver
readiness status. A lower MAE indicates that the model’s predic-
tions are, on average, closer to the actual values, implying better
prediction performance.

5.2 𝑵-Fold Configuration

Since ensuring consistent test set sizes across all splits was a key
consideration in our analysis, the maximum number of folds was
constrained by the ref. [64] formula, and the split of the data was
ultimately constrained to a maximum of five folds:

Validation size + Test size =
Number of samples
Number of splits + 1

(400 + 60) + (400 + 60) = 5640

Number of splits + 1

Number of splits = 5.13

(9)

To investigate the impact of selecting an optimal number of folds
on the performance of the model, with both head pose and gaze
features, a thorough analysis was conducted. The results of this
analysis are illustrated in Figure 11 and provide insight into the
relationship between the number of folds and the average MAE
of the model.

Interestingly, the results show a trend of decreasing average
MAE as the number of folds increases from 2 to 4, reaching its
lowest value of 0.363 at four-folds. This suggests that, in this
particular context, a higher number of folds enhances themodel’s

FIGURE 11 Impact of fold configuration on model performance.

FIGURE 12 Impact of batch size on model performance.

generalisation capabilities and predictive accuracy. However, it is
worth mentioning that when the number of folds is increased to
5, there is a noticeable rise in the average MAE to 0.542.

5.3 Optimal Batch Size Selection

Batch size is a key hyper-parameter which refers to the number
of training examples utilised in a single iteration of the model’s
learning process. In this study, we evaluated different batch sizes
(from 1 to 6) to understand their impact on model performance
and training efficiency.

Upon analysing the results, as shown in Figure 12, it is evident
that different batch sizes have led to varying levels of model per-
formance. Batch sizes 1 and 2 demonstrated low MAE values for
certain folds, suggesting potential over-fitting to the training set.
Moreover, the high standard deviation ofMAE values across folds
for these batch sizes indicated inconsistency in performance.
Batch sizes 5 and 6, on the other hand, resulted in higher average
MAE values compared to batch sizes 2–4, indicating reduced
model accuracy. Despite batch size 6 having a low standard
deviation, its relatively high averageMAE suggests that themodel
might not capture the underlying patterns effectively.

Considering the trade-off between training efficiency and model
performance, batch sizes 3 and 4 emerge as promising options.
Batch size 3 produced an average MAE of 0.369 and a relatively
low standard deviation of 0.178. Likewise, batch size 4 achieved
an average MAE of 0.362 and a standard deviation of 0.209.
Considering larger batch sizes can improve training efficiency

11 of 16

 17519578, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.70006 by T

est, W
iley O

nline L
ibrary on [18/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 2 MAE calculated for predicted readiness index values in
comparison to the ground truth.

Features used

Head Gaze Vanilla LSTM Bidirectional LSTM

✓ 0.935 0.934
✓ 0.441 0.385

✓ ✓ 0.375 0.363

due to hardware optimisation and parallelism [65], batch size 4
emerges as the most suitable choice.

5.4 Results

The obtained results, as presented in Table 2, reveal several key
insights. Both LSTM architectures exhibited similar predictive
capabilities when using only the head features, like the ‘owl’
glances, resulting in MAE values of approximately 0.935 for
vanilla LSTM and 0.934 for bidirectional LSTM. Moreover, when
focusing solely on the gaze features that resemble the ‘lizard’
glances, the bidirectional LSTM model showed superior perfor-
mance with an MAE of 0.385, outperforming the vanilla LSTM’s
MAE of 0.441.

Significantly, the integration of both head and gaze features
enhanced prediction accuracy. The bidirectional LSTM model,
when considering these combined features set, demonstrated
the most robust performance, achieving an MAE of 0.363
compared to the vanilla LSTM’s MAE of 0.375. Consequently,
these findings highlight the importance of incorporating both
head pose and eye-tracking data, indicating that a bidirec-
tional architecture further improves the model’s predictive
capacity to assess driver readiness in conditionally automated
vehicles.

To provide a qualitative assessment of the model’s performance
when combining features, an example of data analysis utilising
the bidirectional LSTM model on the test set of the second
fold is presented in Figure 13. This analysis aims to show how
the model’s predictions evolve when utilising different sets of
features. The top row shows predicted ratings based exclusively
on head pose features, whereas the middle row presents ratings
solely derived from gaze zone features. The bottom row of
the graph displays the model’s performance when both sets of
features are combined. Upon observation, it becomes evident that
the model’s performance is notably enhanced when these feature
sets are combined.

Specifically focusing on the range of frames spanning from 3530
to 3740, corresponding to 7 s of the recorded video, successive
changes in the driver’s head movement and gaze direction can be
observed during this period. Despite these variations, due to the
driver’s attention to the driving environment remains consistent.
The situational awareness has led evaluators to assign a high
level of readiness to this interval. However, it is worth noting that
while the model does recognise these variations in head pose and
gaze direction, its estimation of readiness slightly differs from

FIGURE 13 Evolution of model performance through feature inte-
gration.

the evaluators’ high rating. This difference might be due to the
model’s sensitivity to small changes that might not necessarily
reflect a reduction in readiness but rather a reaction to the
feature change.

Nevertheless, the key point is that the model’s performance
improves when both head pose and eye-tracking data features are
combined. The synergy between these two sets of features allows
themodel to better capture and understand the complex interplay
between the driver’s headmovements, gaze direction, and overall
readiness level.

Figure 14 provides a visual representation of the output from
the best model in each cross-validation iteration. The graphs
are colour-coded to aid in understanding the model’s learning
process. The goal is to find optimal hyper-parameters as the
model progresses through different epochs in the training set,
represented by the green colour in the graphs. The model’s
output is assessed using the validation set, denoted by the yellow
sections in the figures throughout each epoch. The model’s
architecture is designed to select the model with the lowest MAE
on the validation set as the best model. Once the best model
is identified, it is subjected to testing on the red section, which
represents a previously unseen test set.

The MAE results attained from the test set are averaged, and
this outcome contributes to the overall assessment of prediction
performance. In the case of the best model, which employs a
bidirectional LSTM architecture and utilises both head pose and
gaze zone features, the achieved MAE is recorded as 0.363. A
lower MAE suggests better performance, as it indicates less loss
function value in the predictions compared with the ground
truth values. The MAE performance improvement of −0.012 the
bidirectional LSTM over the vanilla LSTM by is equivalent to a
0.3% error reduction in predicting driver readiness status (1 to 5).
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FIGURE 14 Visualisation of model outputs in different cross-validation folds.

In addition to the MAE metric, we have also considered the
accuracy and F1 score metrics to demonstrate the performance
of the best model in the driver readiness classification. We
categorised driver readiness status into binary classes: ‘not ready’
and ‘ready’. The not ready class consists of ‘non-attentive’, ‘low
attentiveness’, and ‘partially ready’; while the ready class includes
‘moderately ready’ and ‘fully ready’ as defined in Table 1. The𝐹1=

2TP

2TP + FP + FN
, considers both false positives and false negatives,

thus assessing the model’s effectiveness in binary classifications.
The model achieves an accuracy of 0.89 and an F1 score of 0.94,
indicating that the model is able to correctly predict the driver’s
readiness status in almost nine out of ten cases, demonstrating
strong classification performance.

It is essential to acknowledge that the presence of noise in
the output from the test section is evident. This noise can be
attributed to several factors. First, the dataset has limited frames,
which could affect the model’s ability to generalise effectively.
Additionally, an imbalance in driver behaviour across different
dataset segments might contribute to the observed noise. For
example, more straightforward scenarios at the beginning of
the video and more complex situations with rapid variations in
head and eye positions at the end of the videos can challenge
the model’s performance. Despite these challenges, the model

demonstrates a reasonable level of performance in its predictions
when compared to the assigned readiness index values.

6 Conclusion

Efficient feature extraction and integration for driver readiness
evaluation was one of the objectives of this study. By combining
head pose and eye-tracking features, this model demonstrated
significant capabilities in interpreting complex relations between
the driver’s physical head orientation and direction of atten-
tion and focus. LSTMs were selected due to their effective
temporal pattern recognition. Bidirectional LSTM architecture,
more specifically when initialised with this feature combination,
performed optimally, achieving a substantial mean absolute error
(MAE) of 0.363. This emphasises that a holistic perspective on
driver behaviour provides a more accurate representation of their
readiness level.

A significant challenge in this research was the absence of a
comprehensive driving dataset that encompasses a wide range of
driver behaviours in automated vehicles. Additionally, the lack of
a clear ground truth for readiness assessment posed significant
obstacles. To address these challenges, we created a ground truth
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set in order to accurately evaluate our model and also for the
benefit of the research community in future studies.

This was done based on the qualitative observations and rat-
ings of multiple human evaluators. The model’s demonstrated
performance at an acceptable level suggests its potential for
real-world level 3 automated driving applications. As technology
progresses and data accessibility improves, these obstacles can
be reduced, leading to even greater precision and resilience in
predictive models.

The modular model architecture makes it easy to integrate
new driver-specific features, such as hand status, body posture,
and steering wheel activity, into the model for future research.
By combining these different features, the accuracy and pre-
dictive power of the model can be improved. This will allow
for a more comprehensive assessment of driver readiness in
conditionally automated vehicles. The model’s adaptability and
real-world applicability will also improve, making it more useful
for ensuring a safe and reliable automated driving experience.
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