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Explainable colon cancer stage prediction with multimodal biodata through the attention-based transformer 

and squeeze-excitation framework 

 

University of Northumbria,  

UK 

Abstract 

The heterogeneity in tumours poses significant challenges to the accurate prediction of cancer stages, necessitating 

the expertise of highly trained medical professionals for diagnosis. Over the past decade, the integration of deep 

learning into medical diagnostics, particularly for predicting cancer stages, has been hindered by the black-box nature 

of these algorithms, which complicates the interpretation of their decision-making processes. This study seeks to 

mitigate these issues by leveraging the complementary attributes found within functional genomics datasets (including 

mRNA, miRNA, and DNA methylation) and stained histopathology images. We introduced the Extended Squeeze-

and-Excitation Multiheaded Attention (ESEMA) model, designed to harness these modalities. This model efficiently 

integrates and enhances the multimodal features, capturing biologically pertinent patterns that improve both the 

accuracy and interpretability of cancer stage predictions. Our findings demonstrate that the explainable classifier 

utilised the salient features of the multimodal data to achieve an area under the curve (AUC) of 0.9985, significantly 

surpassing the baseline AUCs of 0.8676 for images and 0.995 for genomic data. Furthermore, the extracted genomics 

features were the most relevant for cancer stage prediction, suggesting that these identified genes are promising targets 

for further clinical investigation. 

Keywords: Multimodal, Explainable, genomics, H&E Images, Attention model, features-relevance. 

1. INTRODUCTION 

Colon cancer is a disease which occurs within the colon or rectum of the sizeable abdominal intestine [1]. Correct 

estimation or prediction of cancer stages is directly related to the patient's prognosis, survival outlook, and treatment 

management [2–4]. Studies have shown that multimodal data leads to improving the performance of the predictive 

models for cancer stages, advancing precision oncology, improving survival risk groups, and answering complex 

cancer questions [5–7]. To understand the complex biology of colon cancer, different fluids and tissues within the 

body have been studied to comprehend its occurrence properly [8–11]. Some of the data types studied for cancer 

diagnosis, prognosis, and drug discovery include messenger Ribonucleic Acid (mRNA), micro ribonucleic acid 

(miRNA), Deoxyribonucleic acid (DNA) Methylation, Copy Number Alteration (CNA), somatic mutation, single-

stranded genomics structures, computed tomography images and Hematoxylin and Eosin (H&E) stained 

histopathological images, among others [12–15]. Several studies involving laboratory experiments have identified 

numerous potential oncogenes or tumour suppressors as biomarkers for early cancer detection and diagnosis. Other 

studies have revealed genetic alterations that drive the initiation and progression of colon polyps to colorectal cancer 

(CRC), while some have identified tumour antigens and designed genomic vaccines [14,16–21].  

Dimensionality, explainability, and insufficient annotated data are among the major challenges stalling the adoption 

of deep neural models into medical assistive support systems [22–27]. Available data for cancer stage prediction exists 

in high-dimensional space; for example, DNA methylation data contains tens of thousands of features [11,28,29]. 
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Hence, multimodal data will inhabit a larger high-dimensional space, leading to model overfitting, a high risk of 

multicollinearity, and poor generalisation. These challenges underline the need for novel dimensionality reduction 

methods to acquire effective low-dimensional data with relevant patterns. In contrast, explainability [24,30,31] focuses 

on understanding how millions of parameters work simultaneously to arrive at a decision. Explainability can also be 

defined as the mathematical quantification of how influential or 'relevant' features are to a certain prediction. Different 

deep network models has been proposed to resolved those challenges [21,32,33].  

According to the International Agency for Research on Cancer (IARC): Cancer Tomorrow, the estimated future 

incidence rate of colon cancer between the years 2022 and 2045 for the 185 countries under consideration will increase 

by 60.72%1. This is an eye-opener that more needs to be done to develop robust computational methods for timely 

and accurate cancer stage prediction, thereby increasing the survival rate of cancer patients. We hypothesise that 

integrating extracted features from histopathological images and genomics, comprising DNA methylation, miRNA, 

and mRNA, will provide a balanced biological pattern for effective cancer stage prediction. First, histopathological 

images have revealed the tumour environment, including invasive growth patterns and various mutational changes 

[34–36]. Second, the expression of miRNA, mRNA, and DNA methylation[37–39] has been identified as a key driver 

in the pathogenesis of diseases in cancer. While the miRNA [7,40], a non-coding RNA, inhibits gene expression at 

the transcriptional and post-transcriptional levels, DNA methylation plays a crucial role in transcriptional activities 

and acts as a gene suppressor. The mRNAs [41–43], protein-coding RNA, and single-stranded ribonucleic acid 

molecules transcribed from a DNA strand carry genetic information that guides protein synthesis. Integrating features 

from these four data types (i.e., images, miRNA, mRNA, DNA methylation) is expected to improve diagnostic 

performance. In this research, we propose a novel model incorporating multimodal features to analyse the 

interrelations between genomic data and histopathological image features in a condensed feature space, aiming to 

enhance the predictive performance for colon cancer stages. The proposed model, the ESEMA (Extended Squeeze-

and-Excitation Multiheaded Attention) network, incorporates dual submodules designed to capture the complementary 

features from genomics and pathological perspectives. Moreover, an in-depth investigation into the critical genomic 

features is conducted by examining the response of neurons within the bottleneck layers of the network. The structure 

of the proposed ESEMA model is illustrated in Fig 1. The overarching objective of developing the ESEMA model is 

to augment the efficacy and interpretability of the cancer staging prediction model. This enhancement is achieved 

through the dual mechanisms of channel-wise recalibration of input features via a squeeze-and-excitation block and 

the establishment of global dependencies among histopathology image patches facilitated by attention mechanisms. 

During the study, our attention-based colon cancer diagnostic classifiers achieved the listed novelties: 

• Using integrated complementary features from genomics and histopathological images for colon cancer stage 

prediction. 

• Proposing the ESEMA model for analysing interrelations between genomics and histopathological images 

for colon cancer stage prediction. 

 
1 https://gco.iarc.fr/tomorrow/en/about 



  

 

3 
 

• Generate individual scores/weights describing the relevance of each transformational feature in predicting 

the colon cancer stages and identifying likely relevant cancer-linked genes at different cancer stages. 

The remaining sections of this study are as follows: Related works are the basis for Section 2. The materials and 

techniques are covered in Section 3. The results are presented in Section 4, and the discussion and conclusion are 

covered in Sections 5 and 6, respectively. 

 

 

 

Fig. 1 The proposed Extended Squeeze-and-Excitation with Multiheaded Attention (ESEMA) framework consists of 

(A) the preprocessing steps, the extraction and fusion of features from DNA-Methylation, miRNA, and mRNA, and 
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(B) histopathological images. (C) The combined architecture of the Squeeze-and-Excitation block and the 

Multiheaded Attention. 

 

2. RELATED WORKS 

2.1 Pathological methods of cancer staging. 

Cancer staging quantifies the progression of cancer in a patient. The stage of cancer helps medical experts determine 

the best treatment option. The American Joint Committee on Cancer (AJCC) staging system is the most common and 

often called a pathological Tumour-Nodes-Metastasis (TNM) system. This system combines three major factors to 

determine the stage of colon cancer. The first factor is the tumour size (T), which defines how extensively cancer has 

grown into the wall of the colon. The second factor is whether the cancer cells have spread to the nearby lymph nodes 

(N), while the third factor, metastasis (M), determines whether cancer has spread to distant lymph nodes or body 

organs. Also, there is clinical colon cancer staging, which focuses on physical examination, biopsies, and imaging 

tests.  Hence, in this study, the datasets used for computational prediction of the TNM system of colon cancer staging 

are multimodal, comprising pathological images and genomics datasets. 

 

2.2 Deep Neural Network (DNN) in cancer stage prediction. 

DNN has been used extensively in cancer-related research [36,44–53] specifically in metastasis diagnosis, in which 

cancer has spread to other parts or organs of the body. This finding assists in developing appropriate treatment plans 

for cancer patients [54,55]. Also, it is used in the study of oncogenesis or tumorigenesis-the study of cancer genesis 

or evolution through which normal cells develop into cancer cells, or the examination of the causes of a cell’s abnormal 

transformations resulting from different biological processes, among which are genetics, epigenetics, and cellular 

division. Harnessing complementary features from data has been shown to enhance researchers' understanding of 

cancer metastasis and tumorigenesis [56–60].  This knowledge will be suitable for enhancing and improving our 

understanding of cancer stage prediction and identification of relevant features on samples for precision oncology. 

This will eventually translate into an increase in survival outcomes [61,62] and the discovery of new biological 

molecules for new drug targets [63–67]. 

2.3 Explainable AI (Artificial Intelligence) 

The UK government, the European Commission, and other world governing bodies are currently adopting a regulatory 

framework to address the risks and trust issues and improve the explainability and other challenges posed by the 

adoption of DNN applications in areas considered to be of high or unacceptable risk [68–71]. In critical AI decision-

making, explainability focuses on comprehending the model's expected impact and biases. It is anchored on the 

system's accuracy, fairness, and transparency in its decision-making approach. Experts and legal regulations require 

and expect DNN models to give reasons for or justify their decision-making process. The earliest works of building 

explainable functions into the DNN framework involved the introduction of causality concepts and LIME (Local 

Interpretable Model-agnostics Explanations) [72,73] while the frontier research of building explainable algorithms 

uses attention techniques [74–82].  
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In complex and high-risk decision-making applications such as cancer diagnostics, prognostics, and therapeutic 

discovery, the improved explainability will encourage more adoption of AI in effective clinical decision-making and 

support [83–86]. Recently, researchers developed an AI Multi-omics Multi-cohort Assessment (MOMA), which was 

designed to offer transparent reasoning by generating correlations that can be interpreted using existing pathological 

terms. Likewise, the AlphaFold explainable project has resolved a decade of challenges in generating the protein 3D 

structure required for drug development [87–90].  Various frontiers of learning to infuse knowledge and reasoning 

into neural network models are categorised as explainable artificial intelligence (XAI). Some of the most promising 

results are built on methodologies such as neuro-symbolic, fuzzy, Bayesian and action influence graphs [91–96].  

Explainable neural networks have been applied in many medically related diagnostics to discern how the system 

arrived at its decision-making [69,73,83,97]. DNN explainable tools that we consider in this research are in areas of 

performance enhancement, feature importance identification and visualising internal system dynamics. We compute 

feature importance on the multimodal input feature by estimating the weight relevance of the input features in 

predicting the stage of the given cancer and construct an attention map - a visualisation tool which gives a visual 

representation of the internal workings of a given function. 

2.4 Aggregating different Attention Learning Frameworks  

In this study, we augmented two different attention-based models [98–101]. The first model, a multiheaded attention 

block, used a weighted computation method on the integrated latent features to capture long-range dependency within 

a sample. The second model is a squeeze-and-excitation block [102] that compresses the spatial dimension, aggregates 

relevant features, and determines relevance along the channel metrics. Aggregating the two attention methods leads 

to a robust method for effective cancer-stage prediction. 

2.5 Cancer research with unimodal or multimodal data 

Several works have demonstrated the power of harnessing complementary representations of features in multimodal 

datasets for improved precision in cancer oncology [56,103,104]. A substantial challenge encountered in cancer 

research when employing unimodal data alongside DNNs is the reduced accuracy arising from their limited predictive 

capabilities [105–107]. We took measures to resolve this difficulty by integrating features from four different types 

of data. We integrate extracted feature representation from multimodal data to improve predictive output. In this study, 

we experiment and analyse predictive accuracy based on unimodal and multimodal data. We extract relevant features 

from sample genomics data comprising mRNA, miRNA, and DNA Methylation and integrate them with salient 

extracted features from H&E histopathological images of the same individuals. Since the genomics and images of a 

sample carry separate and complementary features of the same biological disease, we perform various experiments 

and analyses to verify the validity of our hypothesis that the integrated features will provide a robust multimodal 

statistically prognostic feature and hence give an improved prediction compared with when only unimodal data are 

used. Our ESEMA model achieves new state-of-the-art performance for colon cancer stage prediction compared to 

other state-of-the-art models, as shown in section 4.2.1. 
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3. MATERIALS AND METHODS 

3.1 Dataset 

The data used in this study was downloaded from The Cancer Genome Atlas (TCGA) with the TCGA-Assembler 

function. The dataset with four modalities with colon cancer characteristics was downloaded. The datasets are DNA 

methylation, miRNA, mRNA, Hematoxylin, and Eosin (H&E) stained histopathological images. The dataset has an 

unequal number of samples across the four different data types: 328 samples exist in mRNA expression, 261 samples 

in miRNA expression, 353 samples of DNA methylation, and 463 samples of histopathological images, respectively. 

Since the study was designed to extract and integrate representational features on the same samples with available 

data across the four datasets, we used the 177 overlapping samples that are found across all four data types, as 

summarised in Table 1 and Table 2, showing training and the testing sample size across each stage. 

Table 1. Sample and Feature size of genomics data per subject.   

Biological data No. of Overlapping Samples No. of Features 

mRNA 177 16,377 

miRNA 177 420 

DNA methylation 177 20,129 

 

Table 2. Sample Size Distribution across Whole Slide Images per stage 

Stages Sample Size Training Sample Size (80%) Testing Sample Size (20%) Number 

of Tiles  

I  30  24 6 27,358  

II  67  54 13 47,397  

III  54  43 11 21,492  

IV  26  21 5 15,914  

Total  177  142 35 112,161 

 

3.2 Methodology 

Let 𝒳𝒳 = [X𝑡𝑡1, X𝑡𝑡2, … ,𝑋𝑋𝑡𝑡𝑡𝑡]  represent a total of 𝑑𝑑 histopathological image tiles from a subject 𝑡𝑡, and let 𝒵𝒵 = 𝑍𝑍𝑡𝑡 denote 

the concatenated genomics data (micro-RNA, DNA methylation and mRNA) sequenced from the same subject, both 

used for predicting the cancer stage 𝑦𝑦𝑡𝑡. Let the true function, which maps the sample data to the subject’s cancer stage, 

be given as 𝑓𝑓: (𝑋𝑋,𝑍𝑍) → 𝑌𝑌 and defined as: 𝑦𝑦 = 𝑓𝑓(𝑋𝑋,𝑍𝑍)      (1) 

The DNN learns an estimated function 𝑓𝑓∗:𝑋𝑋,𝑍𝑍 → 𝑌𝑌, which is so close to the true function 𝑓𝑓 given as: 𝑦𝑦𝑡𝑡� = 𝑓𝑓∗(𝑋𝑋𝑡𝑡𝑡𝑡 ,𝑍𝑍𝑡𝑡;𝜃𝜃),         (2) 
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Where 𝜃𝜃 is a set of parameter variables used in estimating 𝑦𝑦�. 
The loss function estimated over a minibatch of size 𝑏𝑏, using stochastic gradient descent computation is given as:  

𝐿𝐿(𝑋𝑋𝑍𝑍,𝑦𝑦;𝜃𝜃) = − 1𝑏𝑏∑ 𝐶𝐶𝐶𝐶(𝑓𝑓∗(𝑋𝑋𝑡𝑡𝑡𝑡,𝑍𝑍𝑡𝑡),𝑦𝑦𝑡𝑡;𝜃𝜃)𝑏𝑏𝑡𝑡=1     (3) 

𝐿𝐿(𝑋𝑋,𝑦𝑦;𝜃𝜃) = − 1𝑏𝑏∑ 𝑦𝑦𝑡𝑡 ∗ log𝑦𝑦�𝑡𝑡𝑏𝑏𝑡𝑡=1     (4) 

The CE stands for cross-entropy loss.  

 

3.2.1 Feature Extraction from histopathological whole slide image tile 

Features are extracted from image tiles using a ResNet50 pre-trained model. Histopathological feature extraction 

follows a two-step fine-tuning process using the transfer learning approach. In step 1, we freeze the convolutional 

base of the pre-trained model, meaning all the trainable layers are set to non-trainable. The model's original 

classification (output) layer is then replaced with a new classification layer comprising four neurons. This step focuses 

on training only the new classifier layer with an Adam optimiser at a learning rate of 10−4 (40 iterations; batch size = 

32). 

The second step involves fine-tuning or adapting the weight of the updated model in Step 1 to the histopathological 

images. This is achieved by selectively unfreezing the uppermost four layers of the model, which are hypothesised to 

contain more sophisticated representations of the histopathological feature map. We extracted the histopathological 

feature 𝐼𝐼𝑜𝑜𝑜𝑜 ∈ ℝ2048   from a tile image 𝑋𝑋𝑜𝑜𝑜𝑜 using the fine-tuned ResNet50 encoder. 

3.2.2 Feature extractions from genomics data  

Before extracting features from genomics data, we separately scale and normalise features in miRNA, mRNA and 

DNA Methylation and the resulting output features are concatenated to obtain a new multimodal feature. The resulting 

multimodal genomics dataset with 36,926 features was then used as an input into an autoencoder (AE) neural network. 

The encoder of AE is then used to encode the raw features with less dimensionality through the bottleneck layer. The 

encoder and the decoder of sparse AE for the extraction of genomics features were trained to generate a robust feature 

representation. The AE leverages a scalable hyperparameter optimisation framework that searches the model space 

for the best hyperparameter values. The output is conjectured to have complementary features for effective cancer 

stage prediction and stratification purposes, as proposed in [108]. Hence, after the AE was trained, 50 salient genomics 

features were extracted from the encoder, which were denoted as 𝑂𝑂𝑡𝑡 ∈ ℝ50.  

3.2.3 Reconstruction of the most relevant genes 

To understand the significance of gene expression, we employ a masking strategy on the feature representations in the 

bottleneck layer, aiming to reconstruct the original genetic features. This involves evaluating genes based on the 
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minimal reconstruction loss. Following this, the feature response values of the bottleneck layer are sorted, and 

thresholding is applied to selectively mask and retain the feature values (keeping 40, 30, and 20, respectively), as 

shown in Fig. 2. Subsequently, we compute the intersection of the reconstructed genes (the top 10 genomic feature 

values with the least reconstruction error) across these varying thresholds to ascertain the relevance of specific genes 

at different stages of cancer progression. This methodology provides insight into the critical genetic components that 

are influential across varying cancer stages. 

         

 

Fig.2 shows the filter genomics latent space from the squeeze and excitation layers. Three separate masking settings 

of 40%, 60%, and 80% were applied to the genomic latent space, and each masking was decoded and reconstructed 

into a space of the same dimension n as the initial genomic space before feature extraction. We then reassembled 

the feature space produced by each masked latent space. Using the reconstruction errors (squared error), we 

performed a one-to-one mapping of features between the reconstructed and original inputs. We enumerate the index 

and value of the square error of the features between the real and reconstructed genomic data and sort and return 

the features in ascending order of square error. The set of most expressed genes is obtained by intersecting the set of 

features among the three masking operations. 

3.3 Experimental Setup 

The experiment was conducted to compare the predictive accuracy of our proposed ESEMA model with the other two 

models, which are the baseline method and multiheaded attention. Each category of three input datasets (images, 

genomics and fused features) is trained and validated on our proposed model and the stated other two models. The 

computational efficiency of the proposed model compared with the two other models is tabulated as shown in Tables 

3 and 4. Table 5 shows the number of model parameters for each model, and Table 6 compares our proposed model 

with the existing state-of-the-art models. 

3.3.1 Experiment 1: The Baseline Model 

The baseline model comprises the input layer, the dense layer, the pooling layer, and the classification layer. The three 

sets of input features were first trained and analysed using the baseline model to examine the effectiveness of the 

output of the extracted features when trained on a baseline model. The results of the performance of the three models 

trained on the fused input features are explained in section 4.3 under the result presentation. 
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After the initial data preprocessing exercise in Fig. 1A, features are extracted from histopathological images and the 

genomics data using ResNet50 and sparse autoencoder (AE), as shown in Fig. 1B, respectively. A fine-tuning/transfer 

learning method on ResNet50 was adopted to extract features from histopathological images. Features extracted from 

histopathological images, genomics, and their fusion are separately used to train a baseline network and two attention 

models for explainable cancer stage prediction and feature relevance identification. All experiments were conducted 

using the TensorFlow deep learning framework. 

3.3.2 Experiment 2: The Multi-headed Attention (MA) 

We observed that the baseline models performed averagely in fitting the genomics and fused input. Still, there needs 

to be a clear boundary or difference in the predictive accuracy of genomics from the multimodal features. Also, the 

need to adopt algorithms with embedded explainable functions calls for another classifier with such features.  Hence, 

the choice of the Multiheaded Attention (MA) framework.  

The multiheaded attention framework [99] is based on self-attention intuition [109]. The attention-based framework 

has proved to be the state-of-the-art model in many challenging machine learning research areas. In the self-attention 

mechanism, output is influenced by attention to the relevant input features. We combined the genomics feature 𝑂𝑂 and 

histopathological feature 𝐼𝐼 to form a join modality representation 𝐽𝐽 𝜖𝜖 ℝ1×2548, where N is the number of elements and 

d is the number of feature dimensions. The self-attention defines a query 𝑄𝑄 ∈ ℝ𝑁𝑁 ×𝑡𝑡, key 𝐾𝐾 ∈ ℝ𝑁𝑁×𝑡𝑡, and value 𝑉𝑉 ∈ℝ𝑁𝑁 𝑥𝑥 𝑡𝑡 matrix transformation on the input [109]. The score of the dot-product is computed using the query-key matrix 

given as: 

      

𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝐴𝐴𝑓𝑓𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝐾𝐾𝑇𝑇�𝑡𝑡𝑘𝑘�𝑉𝑉    (5) 

Followed by multiheaded distribution computation defined over projections of queries, keys and values given as: 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝐴𝐴𝑀𝑀𝐴𝐴𝑠𝑠𝑑𝑑(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝑠𝑠𝑡𝑡(ℎ𝐴𝐴𝑠𝑠𝑑𝑑1, … ,ℎ𝐴𝐴𝑠𝑠𝑑𝑑ℎ)𝑊𝑊0      (6) 

Finally, a linear combination of values is computed with the distribution output given by: 

  ℎ𝐴𝐴𝑠𝑠𝑑𝑑𝑖𝑖 = 𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄𝑊𝑊𝑖𝑖𝑄𝑄 ,𝐾𝐾𝑊𝑊𝑖𝑖𝐾𝐾,𝑉𝑉𝑊𝑊𝑖𝑖𝑉𝑉)     (7) 

Where 𝑊𝑊𝑖𝑖𝑄𝑄 ∈ ℝ𝑡𝑡×𝑡𝑡𝑘𝑘  , 𝑊𝑊𝑖𝑖𝐾𝐾 ∈ ℝ𝑡𝑡×𝑡𝑡𝑘𝑘 , 𝑊𝑊𝑖𝑖𝑉𝑉 ∈ ℝ𝑡𝑡×𝑡𝑡𝑣𝑣  and  𝑊𝑊𝑜𝑜 ∈ ℝℎ𝑡𝑡𝑣𝑣×𝑡𝑡  are the parameter matrices defined over 𝑄𝑄,𝐾𝐾,𝑉𝑉 learned projections and 𝑑𝑑 represents the model embedding dimension and 𝐴𝐴 represents the 𝐴𝐴th block. 

We adopt a second classifier, the multiheaded attention model, having the logic to capture intricate patterns and 

dependencies in the input data. Analysis shows that the attention model effectively improves prediction performance 

in unimodal and multimodal features compared with the result obtained in the baseline model. Although the attention 

classifier now has a tool to examine its decision-making process, the query-key-value mapping transformation is not 

enough to bring about much-expected differences in the predictive power in the multimodal and genomics features. 
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3.3.3 Experiment 3: Integrating Extended Squeeze-and-Excitation with Multiheaded Attention (ESEMA). 

To address the challenges encountered in experiment 2, we extend the Multiheaded attention model by integrating it 

with a squeeze-and-excitation block. The input is concurrently processed with SE and MA layers. The output from 

the two layers is then added, renormalised and processed with the fully connected layer for prediction. 

The Squeeze and Excitation (SE) block proposed by J. Hu et al. [75] factor in channel-wise relevance into the deep 

learning process. SE adaptively recalibrates channel-wise features by modelling interdependency between channels 

for quality feature representations. The SE block computes and assigns weights to the transformation input vector 

passed through the block. The block learns to assign greater weight to the most relevant features/channels. The metrics 

within the block network layers reprocess the feature maps using the learned global knowledge to identify informative 

features and suppress less relevant features. The spatial dimensions of the input features are compressed during the 

squeeze parts, and the channels are re-evaluated for relevance. The excitation part within the block decompresses the 

spatial component to the original dimensions of the input features. The resulting output from the block is robust feature 

representations of the transformational input features.   

We adapt the squeeze-and-excitation method to the extracted fused features from genomics and histopathological 

images to rank the features in order of relevance. Given 𝑋𝑋 � ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶  is the latent feature. 𝑋𝑋�∗ ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶   is 

recalibrated by squeezing global spatial information into its channel definition and a weighted relevance descriptor 𝒛𝒛 

is generated for 𝑐𝑐 − element (the 𝑐𝑐-th feature map) as shown in equation (8).  

𝒛𝒛𝑐𝑐 = 𝐺𝐺(𝑋𝑋�) =
1𝐻𝐻×𝑊𝑊∑ ∑ 𝑋𝑋�𝑐𝑐(𝑠𝑠,𝐴𝐴)𝑊𝑊𝑛𝑛=1𝐻𝐻𝑚𝑚=1     (8) 

We adopted a simple gating mechanism with a ReLU and a sigmoid function that is realised by forming a bottleneck 

with two fully-connected (FC) layers to obtain a weight vector 𝐬𝐬: 𝐬𝐬 = 𝐺𝐺𝑒𝑒𝑥𝑥(𝑧𝑧,𝐖𝐖) = 𝜎𝜎(𝐖𝐖2𝛿𝛿(𝐖𝐖1𝑧𝑧))                                                (9) 

defined on 𝑧𝑧 in terms of the activation function 𝐬𝐬, follow by an excitation function, and the enhanced representational 

output is given as 𝑋𝑋�∗𝑐𝑐 = 𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒(𝑋𝑋�𝑐𝑐, 𝑠𝑠𝑐𝑐)            (10) 

Hence, the ESEMA model (F) jointly defined with components from squeeze-and-excitation block equation (10) 

estimated as E and multiheaded attention equation (7) estimated as M is given as: 

𝐹𝐹(𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒 ◦𝐴𝐴) = 𝐺𝐺𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒�𝑋𝑋�, 𝐬𝐬� + 𝐴𝐴((𝑄𝑄𝐾𝐾𝑇𝑇)𝑉𝑉)     (11) 

3.4 Models Training, Validation, and Testing 

For an effective training mechanism and robust generalisation fitting, the learning rate was set to (0.001), which is 

meant for effective controls in the step size during training and to prevent our model from slow or quick convergence. 

The momentum was set to 0.9, which assists the stochastic gradient descent to accelerate in the right direction and 

smooth the learning process. Also, weight decay was set to 0.0001, a regularisation term that penalises large weights 
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and prevents overfitting. The embedding dimension is 64, the batch size is 64, and the number of epochs is 100. The 

representation resulting from the MA and SE were subjected to layer normalisation and global average pooling. 

Subsequently, the processed outputs were fed into a fully connected layer for prediction purposes.  

Scikit-learn stratified 5-fold cross-validation is applied when splitting data into train/validation/test sets. This helps to 

account for the imbalance in each class sample and preserve the ratio of samples for each class. Using stratified 5-fold 

cross-validation splitting, 80% of the dataset is split for model training/validation, while the remaining 20% is set 

aside for testing the model. 

Valuable metrics are computed with AUC - Area under the ROC curve, F1-score, Precision and recall from the 

standard Scikit-learn library on the three predictive models, and necessary comparisons are made—the precision 

measure’s ability of the model not to misclassify. The recall measures the fraction of instances in a class the model 

correctly classified from all class instances. AUC – Area under the ROC curve measures the two-dimensional area 

underneath the ROC curve, a measure of an aggregate performance across all possible classification thresholds, and 

F1-Score measure the test harmonic mean of the precision and recall estimates, where, 𝑃𝑃𝑃𝑃𝐴𝐴𝑐𝑐𝐴𝐴𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇       (11) 

𝑅𝑅𝐴𝐴𝑐𝑐𝑠𝑠𝑀𝑀𝑀𝑀 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁           (12) 

𝐹𝐹1_𝑆𝑆𝑐𝑐𝐴𝐴𝑃𝑃𝐴𝐴 =
2×𝑇𝑇𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛×𝑅𝑅𝑒𝑒𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑃𝑃𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑛𝑛+𝑅𝑅𝑒𝑒𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠            (13) 

4 RESULTS 

4.1 Analysing classifier’s fitness with loss functions on the fused input.  

We present an analysis of the loss function regarding the behaviour and performance of ESEMA and the other two 

models during the learning process on the fused input features. Fig. 3 (A-C) shows the plots for the measures of 

training and validation losses over epochs of the three classifiers for the fused features. 

Fig. 3A shows the loss function over the number of iterations plotted for the baseline model.  As shown in the plot, 

we observe that the training and validation loss functions behave differently. Our observation showed high spikes in 

the validation curve, which indicates that the model underfits the input data. This shows that the baseline framework 

cannot harness the non-linear signals in the multimodal data for effective prediction. 

To resolve the challenges observed in the baseline model, we introduce an eight-headed Multiheaded attention 

framework. During the learning process, we observed that the validation function is moderately better than what is 

obtainable in the baseline framework. The spikes and loss are moderately low, and the model shows better convergence 

than what is observed in the baseline model (Fig. 3B). The challenges here are minimising the distance between the 

training and validation loss and ensuring smooth convergence in the learning process. 
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Fig. 3(A-C) shows training and validation loss curves for three models, all trained with the same fused multimodal 

input. (A) is the loss function for the baseline model, while (B) and (C) are the loss function curves for the MA and 

ESEMA models, respectively.  MA: Multiheaded Attention, ESEMA: Extended Squeeze-and-Excitation with 

Multiheaded Attention 

To resolve the problem posed by using the Multiheaded attention model, we introduce and extend Multiheaded 

attention with a modified version of the squeeze-and-excitation block. This measure achieves a practical learning 

experience. In Fig 3C, adding the modified squeeze-and-excitation block enhances the network's representation 
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capacity, and this is reflected in the loss function, which exhibits improved training stabilisation over time, converges 

effectively, and generalises well. 

4.2 Classifiers performance accuracy with fused features 

4.2.1 Evaluating the quality of the model predictions. 

To validate the robustness of our predictive models, we calculated multiple metrics during the testing phase. Table 3 

shows the robustness of the three models. ESEMA obtained the best predictive accuracy result in all categories of the 

datasets.  The results of the integrated features show that the proposed ESEMA model harnesses the salient and 

complementary feature representation from the multimodal data, leading to improved model performance and 

predictive accuracy.  Table 3 is the AUC result for the classifiers across the three categories of the input data. We can 

see that ESEMA gives the most improved predictive accuracy with a difference for the multimodal feature 

(AUC=0.9985 for fused) compared to the AUC result obtained with the unimodal feature (AUC= 0.9950 for genomics 

and AUC=0.8676 for images). This proof of concept signifies that multimodal features give the most improved 

predictive accuracy. Results from other performance metrics also support this justification. Models' performance 

results for precision, recall, and F1-score measures show the performance improvement when using the multimodal 

features over unimodal input features, as tabulated in Table 3.  

Table 3. Model performance in unimodal and fused data. 

Model Data Type AUC Precision Recall F1_Score 

Baseline 

 

Images 0.7800 0.5291 0.5312 0.5240 

Genomics 0.9700 0.7996 0.9160 0.8401 

fused 0.9700 0.8000 0.9244 0.8431 

Multiheaded 

Attention (MA) 

Images 0.7906 0.5756 0.5512 0.5546 

Genomics 0.9932 0.9572 0.9510 0.9533 

Fused 0.9838 0.9423 0.9418 0.9417 

Extended- Squeeze-

and-Excitation 

Multiheaded 

Attention (ESEMA) 

Images 0.8676 0.6607 0.6443 0.6485 

Genomics 0.9950 0.9593 0.9514 0.9542 

Fused 0.9985 0.9887 0.9864 0.9875 

 

Table 4 shows the model performance and the predictive accuracy for the three classifiers by data types in the four 

cancer stages. Regarding model performance, our proposed model ESEMA shows the best performance across all the 

performance metrics. Also, by data type, the multimodal fused input dataset shows an improved predictive accuracy 

across all stages per model, and ESEMA shows where this difference is most significant compared with the other 

models.  
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Table 4. Predictive accuracy across stages per model in unimodal and fused data 

Model  Data Type Cancer 

Stages 

AUC Precision Recall F1_Score 

 

 

 

Multiheaded Attention (MA) 

Images 1 0.8396 0.5928 0.6315 0.6088 

2 0.7974 0.6491 0.7270 0.6847 

3 0.7626 0.5136 0.3807 0.4277 

4 0.7626 0.5467 0.4656 0.4973 

Genomics 1 0.9970 0.9898 0.9368 0.9619 

2 0.9938 0.9594 0.9841 0.9716 

3 0.9953 0.9503 0.9622 0.9558 

4 0.9867 0.9293 0.9207 0.9239 

Fused 1 0.9902 0.9534 0.9475 0.9503 

2 0.9834 0.9579 0.9586 0.9583 

3 0.9763 0.9153 0.9220 0.9184 

4 0.9852 0.9424 0.9389 0.9397 

 

 

 

 

Extended Squeeze-and-

Excitation Multiheaded 

Attention (ESEMA) 

Images 1 0.9056 0.7490 0.7019 0.7212 

2 0.8749 0.7351 0.8048 0.7676 

3 0.8230 0.5681 0.4979 0.5274 

4 0.8667 0.5905 0.5724 0.5776 

Genomics 1 0.9942 0.9753 0.9501 0.9623 

2 0.9971 0.9535 0.9817 0.9672 

3 0.9936 0.9729 0.9291 0.9487 

4 0.9949 0.9354 0.9447 0.9385 

Fused 1 0.9995 0.9907 0.9931 0.9919 

2 0.9990 0.9913 0.9950 0.9931 

3 0.9983 0.9834 0.9834 0.9834 

4 0.9970 0.9895 0.9742 0.9817 

 

Table 5. The number of network parameters for baseline, multi-head attention, and ESEMA concerns three 

sets of input datasets. 

Network Parameters (Fused) 

(M) 

Parameters 

(Genomic) (K) 

Parameters (Image) 

(M) 

Baseline  2.15 1.10 2.15 

Multiheaded Attention 

(MA)  

17.21 416.29 16.81 

ESEMA  17.95 416.69 17.50 

The suggested ESEMA model, which combines Multiheaded Attention and Squeeze-and-Excitation processes, has 

more trainable parameters (17.95 million) than either the baseline model (2.15 million) or the solo Multiheaded 

Attention network (17.21 million), as shown in Table 5. This implies that the ESEMA model will need additional 

computer resources for training and inference. To improve computational efficiency for a real-world deployment, 

systems with GPU support would be advantageous due to their capacity to accelerate calculations concurrently. 

Furthermore, methods like quantisation and pruning might be used on the ESEMA model to minimise computational 

complexity while maintaining performance. Quantisation reduces the precision of weights and activations, whereas 

pruning eliminates unneeded connections or parameters. Implementing these strategies reduces the computing needs 

of the ESEMA model, making it more suitable for deployment in resource-constrained contexts.  
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Table 6. Performance comparison of ESEMA with the state-of-the-art model. 

 Model    AUC 

 Arya et al.[110]   0.9300 

 Olatunji et al.[111]  0.8100 

 Guo et al. [112]   0.9710 

 Zhang et al. [113]   0.9322 

 Proposed ESEMA  0.9985 

 

The proposed Extended Squeeze-and-Excitation Multiheaded Attention (ESEMA) model outperforms all other 

strategies, with an AUC of 99.85%. This indicates ESEMA's superior prediction capacity for accurately detecting 

cancer stages compared to earlier approaches. As shown in Table 6, while Arya et al. and Zhang et al. perform well 

with 0.9300 and 0.9322 AUC, respectively, ESEMA exceeds them, as do Guo et al., who achieve a commendable 

0.9710 AUC. ESEMA's high accuracy demonstrates the utility of its improved attention mechanism and design in 

gathering complex patterns in data, making it a good option for prediction decisions. 

4.2.2 Analysing the Confusion-Matrix (CM). 

The confusion matrix is an essential predictive model with the functionality to give insight into the model that gets 

confused and shows an overall model performance. Fig.4 shows the confusion matrix computed from our proposed 

ESEMA classifier on the three categories of input features. The diagonal of the matrix gives the number of cases 

accurately predicted for each class. Table 7 compares the number of accurately predicted cases in MA vs ESEMA. 

Results show that ESEMA has 6.5% improved accuracy over MA on integrated features, 2.61% improved predictive 

accuracy with genomics-only features, and 11.57% improved predictive accuracy with image-only features.   
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Fig. 4 Confusion matrix (CM) for Multiheaded and ESEMA classifiers. (A)-(C) are CMs for Image, genomics and 

fused features with the MA model, respectively, and (D)-(F) are CMs for the three feature sets with the ESEMA model 

Table 7. Confusion Matrix summary regarding the number of samples accurately predicted by the two 

classifiers (MA vs ESEMA) for three different inputs. 

 

 

 

 

MA 

(Cases Correctly Predicted) 

 

ESEMA 

(Cases Correctly Predicted) 

Stages Images Genomics Fused Images Genomics Fused 

1 2654 4923 4880 3579 5201 5196 

2 5838 9329 8756 5459 9399 9035 

3 1129 3539 3566 1270 3618 4033 

4 913 2823 2757 1445 2934 2993 

 

4.2.3 Explainable - Investigating the model attention heads representations. 

In this study, we approach explainability using two different computational utilities – mean attention distance and 

heatmap visualisation metrics [109,114,115]. The attention score is calculated as a dot product between key-query 

vectors of the projected input. Fig. 5 shows the graph distribution of attention score over the attention heads in the 

block generated during the forward pass of the input in inference mode through the ESEMA model. We can see the 
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spread of the attention heads within the transformer block over the input features in the plot. Also, in Fig.5, we can 

see attention heads 0, 1, and 7 attending to local abstraction activations and attention heads 3 and 4 attending to global 

abstraction activations. 

 

Fig. 5. Attention heads with global and local learning of salient features for cancer stage prediction. 

                                      

4.2.4 Attention heatmaps – cancer stages activation heatmap with fused features. 

We examine and highlight what the classifier attends to by superimposing the attention maps over the fused input 

features space. We randomly chose three blocks from a total of eight blocks (each block has eight attention heads) in 

our classifier to generate the attention heat maps and analyse insightful regions. Fig. 6 shows the attention heatmap 

from randomly selected blocks 1, 5, and 8. We observed different and insightful heatmap activations on each of the 

attention heads within each block. We can see that the region of interest being attended to within the attention heads 

differs across each block. The activation within block 1 is global, while block 5 comprises a mixture of local and 

global attention; also, block 8, which is the innermost block, is more of local attention. These are explainable and 

interpretable tools that medical experts can use to improve precision cancer treatment design and management.   
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Fig. 6. Attention heatmap showing activation regions across eight attentions in three different transformer blocks 

(Block 1, 5, and 8), the core mechanism and process in learning contextual dependencies within the feature space. 

For visualisation purposes, the attention heatmap is obtained using 2048 image features and 652 genomic features. 

 

4.2.5 Feature Relevance 

Since cancer is highly heterogeneous and given that two cancer samples in the same stage can be driven by different 

biomarkers, we implemented a feature relevance adaptive function and adaptively attached relevance to features within 

the input that might be useful to experts for further therapeutic discovery design, prognosis management, or for other 

survival risk stratification. 

As shown in Fig. 7, we explore the relevance of each feature in the input space. We compute attention weight over 

each feature, which signifies the contribution of each feature in the input to determine the cancer stage of a sample 

patient. This feature relevance computation was made possible using the state-of-the-art squeeze-and-excitation block 
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[75]. This represents another explainable and interpretable tool that medical experts could use to explore how the 

model arrives at its decision. The identified relevant features could assist the colon cancer pathologist/specialist in 

building trust in the neural network model, obtain insights for further laboratory testing and screening, and decide the 

stage for borderline cases.  

The graphs in Fig. 7 indicate how important each extracted feature is in predicting the cancer stages. The extracted 

features close to the origin are the most relevant, while those far off can be said to be less relevant. Different features 

are attributed to the model for its decision-making and provide an informative direction for further analysis by the 

expert. The relevance of the genomics extracted features in arriving at sample cancer stages are identified by the 

orange lines within each graph, Fig. 7 (A-D) 
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Fig.7(A-D) shows attention weights for input features predicting cancer stages. (A) shows the order of features 

considered relevant for predicting stage I in colon cancer. (B) – (D) are relevant features for predicting stages II, III 

and IV cancers, respectively. The orange lines represent the genomics features extracted in order of relevance. 
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As shown across the four graphs, different features are identified as relevant in predicting a typical cancer stage. This 

is in accordance with the heterogeneousness and complexity of cancer’s diseases. Across the four cancer stages, the 

top important features are from the genomics representational features, as indicated by orange vertical lines in Fig. 7. 

4.2.6 Mapping the genomic reconstructed space into the original genomics features space. 

Given that genomics characteristics are frequently reported as the most relevant features in predicting cancer stages, 

we rebuild a feature space with a comparable dimension to that of the input genomic space from the latent feature 

space. Next, we calculated the Square Error (SE) between the functional genomic space and the decoded reconstructed 

space features' values, as described in section 3.2.2. The result of the intersection operation on the set of features 

returned by the three masking settings is shown in Table 8. The top 10 most relevant genes in the four stages are first 

highlighted in Fig 7. Furthermore, Fig. 8(A-D) shows the snapshot of the intersection of the reconstructed genes (the 

top 10 genetic values with the least reconstruction error) 

Some of the genes shown in Table 8 have previously been associated with colon cancer, whilst some others are novel 

biomarkers with no prior association with colon cancer. Previous research has demonstrated a link between some 

genetic characteristics and colon and other cancer prognostic or diagnostic outcomes. 

 

 

Table 8. The top 10 most relevant genes in different stages are estimated by our proposed model. 

No Stage 1 Stage 2 Stage 3 Stage 4 

1 BEX1 ACTL8 BEST4 AMPH 

2 CACNA1I AMPH C8G ASTE1 

3 CD14 AQP8 CA7 CACNA1E 

4 COL2A1 ASTE1 CCDC141 CACNB1 

5 DBH BAAT CLCA2 CCDC141 

6 DHRS2 BEST4 DEFA5 CCDC181 

7 DIRAS3 CACNA1E DEFA6 CHGB 

8 DNAH11 CNGA3 DHRS2 CHRNB2 

9 EPHB6 CYP3A4  DIRAS3 CLCA2 

10 GLYATL2 ELOVL2 FMNL3 CNGA3 

 

David et al.[116] linked ASTE1 to tumour-infiltrating lymphocytes in colorectal malignancies. Rachael et al.[117] 

found that CACNA1E amplification and overexpression are associated with relapse in favourable histology of Wilms' 

tumours. Xiao-Shun et al.[118] found that BEST4 expression is elevated in clinical CRC samples and that high levels 

of expression are associated with advanced TNM (tumour, lymph nodes, distant metastasis) stage, LNM (lymph node 

metastasis), and poor survival. XIAOHANG et al.[119] showed that CLCA accessory mRNA expression has 

predictive significance in colon cancer. Guang-Zhen et al.[120] established a relationship between CA7 and expression 

in colorectal carcinoma, and CYP3A4 was identified as an anti-colorectal cancer (CRC) target of formononetin (FN) 

by Zhang et al. [121] Furthermore, Qinglin et al. [122] connected FMNL3 to overexpression in tumour tissues and 
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predicted an immuno-hot phenotype in pancreatic cancer. Alexander et al. [123] report that COL2A1 has reoccurring 

alterations in chondrosarcoma. Hao Yu et al.[124] found that EphB6 deficiency in intestinal neurons enhances tumour 

formation in colorectal cancer. 

Table 8 shows the insights gained from this investigation, including: 

• Certain Stage-Specific Gene Expression: Some genes show stage-specific expression patterns, indicating 

their possible roles in cancer development and progression phases. For example, BEX1, CACNA1I, CD14, 

COL2A1, and DBH are only expressed at certain phases, implying that they are involved in the related 

biological processes or pathways. Previous research connected BEX1, CACNA1I, and DBH genes to 

expression in various cancers, such as the brain, neurodevelopmental disorders, and lungs, with only CD14 

correlating with poor clinical outcomes in CRC. The CD14 molecule shows promise as a target for colorectal 

cancer immunotherapy. 

• Gene Co-Expression: The table shows DIRAS3, AMPH, ASTE1, CACNA1E, and CACNB1 as co-expressed 

genes, which occurs when many genes are expressed simultaneously at the same stage. This co-expression 

might imply functional links or common regulatory mechanisms among these genes. Bildik et al. [125] found 

that DIRAS3 is downregulated in malignancies of the ovary, breast, lung, prostate, colon, brain, and thyroid. 

AMPH (Amphiphysin) - According to Protein Atlas, AMPH is a gene associated with glioma and is used as 

a predictive biomarker in pancreatic cancer, but it has no known association with colon cancer. A prior study 

by Zhou et al. [126] found that higher CACNB1 (Calcium Voltage-Gated Channel Auxiliary Subunit Beta 

1) expression in CRC is related to poor patient survival, although their biological activities in CRC are 

unclear. While ASTE1 (Asteroid Homolog 1) is connected with lymphocytes in colorectal cancers, 

amplification and overexpression of CACNA1E are associated with recurrence in Wilms' tumours with good 

histological characteristics. Understanding these co-expression patterns can give insight into the molecular 

pathways that drive cancer growth. 

• Potential Biomarkers: Genes with constant expression throughout many stages, such as DIRAS3, AMPH, 

ASTE1, CACNA1E, and CACNB1, may be used as biomarkers for cancer progression. Their consistent 

expression patterns indicate their importance in cancer biology and possible use as diagnostic or prognostic 

markers. 



  

 

23 
 

 

 

         

Fig. 8 Snapshot of the intersection of the reconstructed genes (the top 10 relevant gene features that have the least 

reconstruction error) for (A) Stage I, (B) Stage II, (C) Stage III, and (D) Stage IV. 

5. DISCUSSION 

Our proposed model achieved improved performance in colon cancer stage prediction based on multimodal fused 

features, justifying our proof-of-concept that multimodal input features perform better compared with unimodal input. 

Also, explainable and interpretation tools are used to clarify how the classifier arrived at its decision to predict the 

cancer stages.  

This study examines the application of a deep neural network in predicting colon cancer stages, utilising multiple data 

sources. The focus extends beyond mere accuracy to include an exploration of candidate genes relevant for cancer 

stage classification through the proposed masked reconstruction autoencoder approach. This dual strategy seeks to not 

only enhance colon cancer detection but also to discover novel biomarkers for future research. Our proposed methods 

can be applied to study other types of cancers. Though the introduction of the attention mechanism resulted in 

improved prediction and stratification accuracy, some shortcomings were still observed. The first identified 

shortcoming to be considered in our future research is the need to include more diverse datasets such as somatic 
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mutation (SM), Copy number variation (CNV),  Reverse Phase Protein Array (RPPA), Insertion – Deletions (InDels) 

of bases in genes, Structural Variants (SVs), Single-Nucleotide Variants (SNVs), metabolome and proteome to obtain 

more salient complementary features within the multimodal datasets integration for improved predictive performance. 

The future work should consider the development of novel algorithms to investigate the interactions between features 

across multiple datasets, using graph-like deep neural network  

When deployed in a clinical real-application environment, the two major challenges of this combined architecture are 

principally related to high model parameterisation and memory requirement management. The computational 

efficiency of the model can be optimised through knowledge distillation [127], the use of model quantisation [128–

130] or layer fusion [131]. 

Similar to this, the current limitations in evaluating the effectiveness of the combined architecture are limited samples 

that existed in the current open-access datasets for the model training, the lack of external datasets for effective model 

validation, and imbalanced classes across different cancer stages. Evaluation methods can be improved through data 

generation using generative models.  The most relevant features in the study are extracted features from genomics 

datasets. In our future study, we hope to adopt the feature selection method and directly identify expressed genes.   

6. CONCLUSION 

Examining model performance reveals diverse patterns across different architectures and data types. Starting with the 

basic model, our model performs moderately overall, with genomic data regularly beating image data and fused data 

improving marginally over separate modalities. Moving to the Multiheaded Attention (MA) paradigm improves 

performance significantly across all data categories, with genetic data continuing to dominate the relevance. The 

Extended Squeeze-and-Excitation Multiheaded Attention (ESEMA) model outperforms MA, demonstrating the 

effectiveness of its improved attention mechanism. Again, genomic data is the most predictive, with fused data 

constantly outperforming other modalities.  

The findings underline the need to combine multimodal data with enhanced attention processes to attain the best-

predicted performance in cancer staging tasks. 
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