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Abstract. Land cover information is essential for understanding Earth surface processes and ecosystems. Here, we use K-10 

means clustering to classify Landsat-8 (OLI) images covering six proglacial sites of sub-Antarctic islands, the Antarctic 11 

Peninsula and the McMurdo Dry Valleys at 30 m resolution. We quantify spatial patterns of water, bedrock, vegetation and 12 

sediments, to an accuracy of 77 %. Vegetation is most abundant on South Georgia (7 % of the proglacial area) and the South 13 

Shetland Islands (1 to 2 %). Furthermore, we use change vector analysis (CVA) to discriminate landcover change in the 21st 14 

century. A latitudinal pattern is evident in ice loss and proglacial landscape change; e.g., loss of ice on South Georgia and 15 

proglacial landcover change is two orders of magnitude greater than in the McMurdo Dry Valleys. Four of the studied sites 16 

had similar landscape stability (64 to 68 % unchanged), with Alexander Island an exception (50 % change) due to recent 17 

enhanced glacier melt. Overall, we show how landcover of proglacial regions of the climatically-sensitive sub-Antarctic and 18 

Antarctica has changed since 2000, with a CVA accuracy of 80 %. These findings inform understanding of geomorphological 19 

activity, and sediment and nutrient fluxes and hence terrestrial and marine ecosystems. 20 

21 
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1. Introduction  22 

Consistent land cover information is essential to furthering our understanding of terrestrial environments, ecological niches 23 

and the atmosphere, especially across sensitive regions of Earth (Raup et al., 2007; Ban et al., 2015; Chen et al., 2019; Gong 24 

et al., 2020). Additionally, land cover maps are a critical resource required to support the research of climate change: 25 

particularly those that include information on vegetation coverage (Bojinski et al., 2014).  Different types of land cover can 26 

change or respond to climatic forcing in different ways, depending on their physical and chemical properties (GCOS, 2010). 27 

Owing to the frequent return period and extensive areas covered by satellite images, land cover maps are increasingly being 28 

produced using remote-sensing techniques and the changes occurring in the landscape can thus be detected and quantified 29 

(Friedl et al., 2010; Lea, 2018; Brown et al., 2022). Several global land cover products have been released in recent years (e.g. 30 

(Brown et al., 2022) but they typically do not include Antarctica or sub-Antarctic Islands (e.g. South Georgia), leaving a gap 31 

in our understanding of Earth’s southernmost continent.  32 

 33 

The majority (99.8 %) of Antarctica is covered by ice, with the remaining 0.2 % characterised as nunataks (i.e. mountain peaks 34 

that penetrate the ice sheet) or as proglacial regions (Burton-Johnson et al., 2016) (Fig. 1). Proglacial regions are predominantly 35 

shaped by the interplay of meltwater from glaciers, which erodes, transports and deposits sediment, and hillslope activity, 36 

which largely acts to supply new sediment into the system during mass transport events. In a warming climate, the activity of 37 

water and increased mass movements result in greater sediment discharge (Ballantyne, 2008; Staines et al., 2015; Klaar et al., 38 

2015). In polar regions, where permafrost can be extensive, the active layer is an additional and important water and sediment 39 

source on days when ground temperatures exceed 0 °C (Humlum et al., 2003; Kavan et al., 2017; Costa et al., 2018; Łepkowska 40 

and Stachnik, 2018). All of these factors mean that the Antarctic landscape is highly dynamic. 41 

 42 

Maps of land cover and land cover change are particularly important for Antarctica, owing to its dynamic landscape and rapid 43 

environmental change (Davies et al., 2013). Unlike most other regions on Earth, human activities are not the major control on 44 

land cover type in Antarctica, and the footprint of anthropogenic activities is limited to relatively small areas (Tejedo et al., 45 

2016; Tejedo et al., 2022). Until the start of the 21st century, the Antarctic Peninsula Region (APR) was one of the most rapidly 46 

warming places on Earth with a temperature rise of 1.5 °C observed since the 1950s (Vaughan et al., 2003; Mulvaney et al., 47 

2012; Oliva et al., 2017). Following a hiatus in warming at the start of the 21st century, there is evidence that this trend has 48 

resumed (Carrasco et al., 2021) and glaciers have continued to respond to the temperature increases of the 20th century and 49 

subsequent warming since 2015 (Oliva et al., 2017; Engel et al., 2023). Consequently, glacier mass loss has occurred at an 50 

enhanced rate, particularly around smaller ice masses in the APR and sub-Antarctic islands (Oliva et al., 2017; Engel et al., 51 

2018; Rosa et al., 2020). This ice mass loss has resulted in the enlargement of proglacial regions, and they will continue to 52 

expand as both land and marine-terminating glaciers continue to retreat with a warming climate (Nedbalová et al., 2013; Lee 53 

et al., 2017; Roman et al., 2019).  54 

 55 

In this study we will map the land cover of six major proglacial regions in Antarctica: i) South Georgia; ii) southern Livingston 56 

Island and Snow Island (hereafter referred to as Byers Peninsula); iii) Deception Island; iv) James Ross Archipelago; v) 57 

Alexander Island, and; vi) the McMurdo Dry Valleys (Fig.1). These sites are conspicuous for their lack of consistent land 58 

cover data between the sites. Whilst geological and geomorphological studies have produced maps at the sites (e.g. Table 1), 59 

they lack a common nomenclature. Similarly, many of these maps are several decades old, or no map of their surface exists. 60 

On Alexander Island, for example, there are very few descriptions of the landscape or land cover are available, with limited 61 

descriptive accounts (Heywood et al., 1977) and only very limited geomorphology maps of the region available (Salvatore, 62 
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2001). In contrast, some regions have been the subject of extensive mapping studies. James Ross Island, for example, has been 63 

home to several geological and geomorphological surveys, though these studies are either limited to the Ulu Peninsula (Davies 64 

et al., 2012; Mlčoch et al., 2020; Jennings et al., 2021), or lack detail on land cover information beyond the geology (Smellie, 65 

2013). Whilst there have been recent, substantial, efforts in improving the understanding of vegetation extent in Antarctica 66 

(Walshaw et al., 2024), there continues to be a lack of understanding of other import land features. 67 

 68 

Understanding the make-up of Antarctica’s proglacial regions, and how those land surface components are changing, is 69 

important because they are a source of water, sediment and solutes. The quantity and spatio-temporal pattern of sediment 70 

discharged from Antarctica has profound effects on the ecosystem of the Southern Ocean and polar lakes, which in turn can 71 

affect the rate at which carbon is sequestered from the atmosphere (Brussaard et al., 2008; Maat et al., 2019). Additionally, 72 

changes in vegetation cover can have wide-ranging impacts on wildlife. In a warming climate, the natural range of indigenous 73 

species may increase (Convey and Smith, 2007). Similarly, people visiting the APR and sub-Antarctic may introduce invasive 74 

species (Galera et al., 2021; Tejedo et al., 2022). The establishment of invasive species can expand the vegetated area, displace 75 

indigenous biota, increase competition and alter food web linkages, potentially threatening the survival of indigenous species 76 

(Molina-Montenegro et al., 2012; Hughes et al., 2020). It is, therefore, important to have a baseline dataset that describes the 77 

land cover composition of proglacial landscapes (Carrivick et al., 2018; Carrivick et al., 2019) so that future changes may be 78 

quantified. Furthermore, understanding how proglacial landscapes have responded to recent ecological and climatic change is 79 

also useful for understanding how these systems may evolve in the future (Wilkes et al., 2023). 80 

 81 

 The aims of this paper are: i) to produce the first unified map of land cover across the major proglacial areas of APR, sub-82 

Antarctic and the Dry Valleys; ii) to quantify the overall accuracy of our data and how that accuracy varies spatially, and; iii) 83 

to identify regions that have changed during the 21st century.  84 

1.1 Study Sites 85 

There is a dearth of literature that seeks to characterise proglacial regions, particularly in Antarctica. Some research has been 86 

conducted on individual rivers and catchments, notably on the Onyx River ((Chinn and Mason, 2016), James Ross Island’s 87 

Ulu Peninsula (Davies et al., 2013; Nedbalová et al., 2013; Kavan et al., 2017; Sroková and Nývlt, 2021; Jennings et al., 2021; 88 

Kavan, 2021), and on other sub-Antarctic islands, such as the South Shetland Islands (Mink et al., 2014; Oliva et al., 2016). 89 

However, these studies have taken varying approaches to characterising landscape compositions, and there is little in way of 90 

a consistent land cover dataset of these proglacial regions. Additionally, important global datasets fail to characterise the land 91 

cover of Antarctica (e.g. Brown et al., 2022).   92 

 93 

 94 
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95 

Figure 1: Location of our study sites. The areas analysed have been highlighted in red and span a latitudinal gradient from 54oS 

to78oS . Proglacial regions not analysed in this study have been highlighted in black (Burton-Johnson et al., 2016)and are primarily 

mountains (e.g. Transantarctic Mountains) or are frequently covered by extensive cloud-cover (e.g. King George Island). 

Inset photos A,B,D,E, and F are sourced from Wikimedia Commons. Photos C is by CS. They show: A) Grytviken on South Georgia. 

Taken in 2009 by Simon Murgatroyd (CC BY-SA 2.0); B) Camp Byers on South Beach (ESP) on Byers Peninsula. Taken in 2017 by 

“Inoceramid bivalves” (CC BY-SA 4.0); C) Telefon Bay (background), as viewed from the rim of a crater on Deception Island. 

Taken in 2020 by Espen Mills (CC BY-SA 4.0); D) Abernethy Flats on James Ross Island’s Ulu Peninsula, as viewed from Lachman

Crags, above Triangular Glacier (looking West), taken in 2022;  E) The central station of Fossil Bluff on Alexander Island in 2003.

Photo taken in 2003 by “Apacheeng lead” (Public Domain); F) The Wright Valley of the McMurdo Dry Valleys (looking west

towards Wright Upper Glacier) in 2013, taken by “Turkish D.” (CC BY-SA 4.0).  
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  1.1.1 Climate 96 

All of the six study sites have polar climates but span both maritime and continental settings. The sites are positioned along a 97 

latitudinal gradient and so permit an analysis of land cover variability with climatic patterns. The most northern site, South 98 

Georgia, is characterised by its high relief and has a mean annual air temperature (MAAT) of 3 °C, as well as receiving over 99 

2000 mm of precipitation per year (Strother et al., 2015; Bannister and King, 2015). Over half of South Georgia is glacierised 100 

(Bannister and King, 2015). The South Shetland Islands are characterised by a polar maritime climate, with air temperatures 101 

regularly exceeding 0 °C in summer. The humid environment, due to its maritime location, ice-free seas and regular cyclonic 102 

activity, results in liquid precipitation falling regularly in the summer months (Bañón et al., 2013). The James Ross 103 

Archipelago, to the north-east of the Antarctic Peninsula, has a MAAT of -7 °C and has a semi-arid polar continental climate  104 

(Kaplan Pastíriková et al., 2023). The two more southerly sites; Alexander Island and The McMurdo Dry Valleys, have 105 

continental climates (Harangozo et al., 1997). Alexander Island, specifically Fossil Bluff, has a MAAT of -9 °C and receives 106 

approximately 200 mm of precipitation each year (Harangozo et al., 1997; Davies et al., 2017). The McMurdo Dry Valleys 107 

are distinctly colder and drier than the other sites; they are hyper-arid due to katabatic winds and have a MAAT of -17 °C to -108 

20 °C (Doran et al., 1994; Marchant and Head, 2007). 109 

2. Methodology 110 

2.1. Site Selection 111 

Our site selection was informed by the British Antarctic Survey’s (BAS) rock outcrop datasets (Burton-Johnson et al., 2016; 112 

Gerrish et al., 2020), allowing us to focus primarily on the non-glacierised landscape. Nunataks in the interior of the ice sheets 113 

were excluded because they were too small to classify at 30 m resolution, and we could assume their classification to be 114 

bedrock. Since they are disconnected from the coastline, they can also be assumed largely unimportant as sediment sources to 115 

the Southern Ocean. Fossil Bluff and other coastal regions in Alexander Island and Palmer Land were included and are 116 

interesting for their proximity to George VI Sound. These regions may become important sediment sources in the near future, 117 

as exceptional melting in this region appears to have increased the likelihood of the George VI ice shelf collapsing (Banwell 118 

et al., 2021). We further narrowed the site choices to consider only those regions with cloud-free Landsat-8 Operational Land 119 

Imager (OLI) images.  120 

2.2. Land cover classifications 121 

In the last decade, satellite data from the Landsat and Sentinel programmes have become open source and increasingly easy to 122 

access. In tandem with improved computational power, such as that provided by cloud-based platforms like Google Earth 123 

Engine (GEE), it is now possible to produce land cover maps at a medium spatial resolution (10 m to 30 m) using openly 124 

available data. The Landsat-8 satellite also has the benefit of being part of a continuation program, making inter-decadal 125 

comparison possible. 126 

2.2.1. Image selection and pre-processing 127 

We classified Landsat-8 OLI (Operational Land Imager, top-of-atmosphere, TOA) images acquired between 2016 and 2020 128 

(see supplementary material section 1.6 for details) in GEE and ESRI ArcGIS Pro 2.6.0 (ArcPro), primarily using K-means 129 

clustering (using GEE’s default settings, including 10 randomised seeds). While we have chosen to use GEE and ArcPro for 130 

this research, it would be functionally possible to repeat our methodology in other software. We chose Landsat imagery, rather 131 

than higher-resolution images (such as Sentinel-2), because of its extensive archive dating back to 1972. Suitable images had 132 

low cloud cover (less than 20 % over land) and limited snow cover. Images were cloud masked (using Landsat’s quality 133 
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assessment band) and, where more than one image was available, we mosaicked them, taking the least cloudy/snowy scene as 134 

the uppermost image, thus minimising the snow and cloud cover across the unified scene.  135 

To ensure consistency with older Landsat images, we only selected six bands representing the visible and infrared wavelengths 136 

(red, green, blue, near-infrared, shortwave infrared 1, and shortwave infrared 2, ranging from 0.45 to 2.29 μm) from the images 137 

for classification. We added three further bands to the image in the form of the normalised difference snow index (NDSI, Eq. 138 

1), the normalised difference vegetation index (NDVI, Eq. 2), and the normalised difference water index (NDWI, Eq. 3). These 139 

aided the classifier in the identification of key land cover classes (ice, vegetation, and water, respectively).  140 

 141 

!"#$ = 	
'())*	 − 	,-.(1

'())*	 + 	,-.(1
	 (1) 142 

!"3$ = 	
*.(	 − 	()4

*.(	 + 	()4
	 	(2) 143 

!"6$ =	
'())* − *.(

'())* + *.(
	 	(3) 144 

 145 

Where:  146 

• green = band 3 of Landsat 8 OLI, wavelength (λ) = 0.53–0.59 μm 147 

• swir1 = shortwave infrared 1, band 6, λ = 1.57–1.65 μm 148 

• red = band 4, λ = 0.64–0.67 μm 149 

• nir = near-infrared, band 5, λ = 0.85–0.88 μm  150 

 151 

We clipped the images to a 1 km buffer around their coastline (Gerrish, L., Fretwell, P., & Cooper, 2021) and topographically 152 

corrected them to adjust for the effect of relief on the illumination of images using the Sun Canopy Sensor + C method (Soenen 153 

et al., 2005) with the REMA DSM (Reference Elevation Model of Antarctica Mosaic Digital Surface Model) (Howat et al., 154 

2019) at 30m resolution (equivalent to the resolution of Landsat-8 OLI multispectral bands). South Georgia, which is not 155 

covered by REMA, was corrected using the SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model), also 156 

at 30m resolution (Farr et al., 2007). Subsequently, we conducted a principal component analysis of the images, and the first 157 

three components, containing 99.6 % (± 0.3 %) of the data, were selected for classification (Frohn et al., 2009; Chasmer et al., 158 

2020).  159 

2.2.2. Classification 160 

We used a hierarchical K-means clustering approach to classify Landsat-8 (OLI) images (Figure 2). K-means is widely used 161 

in land classification studies (Grimes et al., 2024; Phiri and Morgenroth, 2017), and is preferential to over other unsupervised 162 

approaches (e.g. ISODATA) since it can be used to identify a user-defined number of classes. K-means works by segmenting 163 

an image into distinct clusters, which the user then interprets to classify these clusters using existing knowledge of the field, 164 

or previously published maps often based on field research (e.g. Table 1). A first-order land classification (clustered with K = 165 

75, see supplementary material section 1.1) of “land”, “snow & ice” (hereafter referred to simply as “ice”), and “water” 166 

informed the subdivision of each of these classes in a second, more detailed, analysis of the dominant land cover classes 167 

(further details in supplementary material section 1.2.). A two-stage approach was used to limit misclassification by ensuring 168 

water, ice, and bare land were in distinct classes. The code used to produce this classification is also publicly available (see 169 

section 2.4.5).  170 

 171 
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We used this first-order land classification to subset each image 172 

accordingly and then to cluster these resulting images into 40 discrete 173 

groups (K = 40). Specific K values were determined through expert 174 

judgement and represent values that minimised the chance of 175 

misclassification (see further details in supplementary material 1.1). 176 

Using the limited catalogue of published maps and literature available 177 

for these areas (see Table 1); we visually inspected these clusters to 178 

manually assign each of them a final land classification. Our first-179 

order land class was subset into five classes “Bedrock”, “Coarse/wet 180 

sediment”, “Fine & dry sediment”, “Vegetation”, and “Land (non-181 

differentiated)”. The water class subset into “Water” and “Turbid 182 

water”, while the ice class subset into “Ice” and “Wet ice”. In cases 183 

where clouds partially obscured land, we assigned pixels to the more 184 

general class of “Land (non-differentiated)”. Therefore, we produced 185 

ten land classes that describe eight distinct surface types (plus no data 186 

and land undifferentiated, see supplementary material for more 187 

details), that could be identified from a combination of field 188 

observations and a review of available maps of Antarctica (Table 1) 189 

and finding commonalities between them (further details in 190 

supplementary material section 1.3.).  191 

 192 

During the classification process, we created two different 193 

sedimentary classes because we found that pixels containing wet 194 

sediments (such as rivers) or blocky superficial sediments, such as 195 

scree, clustered distinctly from those pixels that contain sediments 196 

smaller than cobbles in size and fissile sedimentary rocks. This 197 

approximate grain size threshold was derived from information on 198 

geomorphological maps for the region (Jennings et al., 2021), and observations made on James Ross Island during the 2022 199 

field season. We emphasise that the first of these two classes describe pixels that contain sediment that may be coarse, wet, or 200 

both. The second of these classes describes surfaces with fine sediments with minimal water content. 201 

 202 

Table 1: Resources used to interpret clusters and assign them to a land class 203 

Location Resources 

James Ross Island Geomorphology map, Jennings et al. (2021)  

Geomorphology map, Davies et al. (2013)  

Geological map, British Antarctic Survey, Smellie et al. (2013)  

Geological map, Czech Geological Survey, Mlčoch et al. (2020) 

Vegetation map, (Barták et al., 2015)) 

 

Dry Valleys Interactive geological map, SCAR, (Cox et al., 2023) 

 

Alexander Island Geological map, British Antarctic Survey (1981)  
 

Deception Island Geology and geomorphology Map , British Antarctic Survey, Smellie et al. (2002) 

ASPA 140 (map of vegetation), (Secretariat of the Antarctic Treaty, 2022)  

 

Figure 2: Our approach to classifying land cover 
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Livingston Island Geomorphology map, Lopez-Martinez et al. (1996) 

Vegetation map, Ruiz-Fernández et al. (2017) 
 

South Georgia Geomorphology map, Clapperton (1971)  

 204 

2.3. Accuracy Assessment  205 

Having used the limited pre-existing maps and field-survey data 206 

to inform our interpretation of the K-means clusters, we had to 207 

depend on finer-resolution imagery as the primary independent 208 

validation source, with interpretations of images aided by the 209 

use of previously published maps. Although we could not find 210 

alternative land cover data, we still used the methods of best 211 

practice described by (Olofsson et al., 2013, 2014) to ensure our 212 

accuracy assessment was robust (see supplementary material 213 

section 1.5). Therefore, we generated 3000 random points, 214 

stratified by the area of each land class, and visually compared 215 

them to 10 m resolution Sentinel-2 MultiSpectral Instrument 216 

(MSI) images. Sentinel-2 MSI images were used as an 217 

independent data source for validation as they are finer 218 

resolution than Landsat images, thus giving a better indication 219 

of the “true” land cover. Given the dominance of the ice class 220 

in our classification, this meant most of the stratified sample 221 

points landed on ice. We conducted a second level of accuracy 222 

assessment with 1000 points on just the proglacial classes to 223 

ensure their accuracy was adequately calculated. 224 

The classes of turbid water and wet ice were particularly 225 

problematic because they typically comprised episodic 226 

sediment plumes and snow/ice melt. Therefore, we combined 227 

these classes with water and ice respectively for the purposes of 228 

accuracy assessment. We produced a 10 km resolution grid to 229 

display the spatial variability in the accuracy of this 230 

classification (as a proxy for confidence), with each cell colour-231 

coded according to the percentage of accurate assessment 232 

points within it. Full accuracy assessment matrices are available 233 

in the supplementary material (section 1.5). 234 

We also compared the spectra for each land-type, to ensure each 235 

land-type could reasonably be differentiated from each other. 236 

2.4. Change detection  237 

We repeated the search described in section 2.2.2 for Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images acquired for 238 

each of our sites between 2000 and 2003 and conducted change detection (Fig 3). This search resulted in a pair of image 239 

mosaics (hereafter referred to as image pairs) for five sites, comprising a mosaic from the early 2000s (Landsat-7), and a 240 

Figure 3: The change detection (CVA) approach used in this 

study 
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mosaic from close to 2020 (Landsat-8). It was not possible to find a suitable image for Deception Island, so we could not 241 

conduct change detection for this site; this meant change detection was conducted over only five of the six sites for which a 242 

land cover map was produced. We manually inspected the image pairs for each site to ensure they were co-registered using 243 

GIS. We aimed to ensure that both mosaics comprised images collected from the same time of year, to ensure they represent 244 

the same part of the growth and hydrological season, and avoided images with high snow cover, where possible. In some cases, 245 

poor image availability meant that some image pairs could not be collected from the same time of the year (though the temporal 246 

difference was minimised). We ensured that key features such as flowing rivers and unfrozen lakes, were, as much as possible, 247 

present in both mosaics. Then we conducted a change vector analysis (CVA) to identify regions of change in each of our sites, 248 

using the approach described by (Xu et al., 2018). Further details of the CVA approach used can be found in the supplementary 249 

material (section 1.4). 250 

Table 2: Class to class changes and their abbreviations 251 

Class to class change Abbreviation 

Wet ice to coarse/wet sediment WITC 

Ice to fine & dry sediment ITF 

Ice to coarse/wet sediment ITC 

Ice to turbid water ITT 

Coarse/wet sediment to turbid water CTT 

Coarse/wet sediment to wet ice CTWI 

Fine & dry sediment to bedrock FTB 

Coarse/wet sediment to bedrock CTB 

Coarse/wet sediment to fine & dry sediment CTF 

Coarse/wet sediment to vegetation CTV 

Bedrock to coarse/wet sediment BTC 

Fine & dry sediment to coarse/wet sediment FTC 

 252 

2.4.2. Accuracy assessment 253 

To validate the accuracy of our change maps, we reproduced the change detection analysis on Byers Peninsula with a 70/30 254 

split of the training points between the classifier and validation. This approach is regularly used to assess the accuracy of land 255 

cover and change products, in the absence of independent data (Xu et al., 2018), and this ratio between training and validation 256 

has been shown to be most reliable (Adelabu et al., 2015). By splitting the data 70/30 between training and validation, the 30 257 

% of pixels used for validation are “independent” of those used by the classifier. To ensure this split was unbiased, we randomly 258 

sorted the training points.  259 

2.4.5 Code availability  260 

The codes used in these methods are available at: 261 

Christopher D Stringer. (2022). Contemporary (2016–2020) land cover across West Antarctica and the McMurdo Dry Valleys 262 

[Code] (Version 1). Zenodo. https://doi.org/10.5281/zenodo.6720051 ; and: 263 

Christopher D Stringer. (2023). 21st century land cover change across the major proglacial regions of West Antarctica and the 264 

McMurdo Dry Valleys [Code]. (Version v1). Zenodo. https://doi.org/10.5281/zenodo.7991208  265 
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3. Results and interpretations 266 

3.1. Land cover classifications 267 

3.1.1. The land classes 268 

The largest land class at our sites is ice; the large ice sheets and glaciers at all sites have been mapped, though this class also 269 

includes limited snow cover. While mapping ice masses is not the primary goal of this study, the high accuracy (see section 270 

3.3.1) of the ice class makes this dataset a useful resource to assess changes in the small, land-terminating glaciers within our 271 

study sites (Fig. 4).  272 

 273 

Of the sedimentary classes, coarse and wet sediment is the predominant land class at four of the six sites, particularly on South 274 

Georgia and Byers Peninsula, where it represents the majority (57 % and 56 % respectively) of the proglacial land cover (Fig. 275 

6). This land class includes the major surface drainage networks of Antarctica (Fig. 4) for example, it accurately depicts the 276 

major rivers of the Bohemian Stream and Abernethy River on James Ross Island and the Onyx River in the McMurdo Dry 277 

Valleys (c.f. (Chinn and Mason, 2016; Kavan et al., 2017; Jennings et al., 2021). The coverage of fine and dry sediment class 278 

varies inversely to that of the coarse/wet sediment. For example, on South Georgia, the 57 % coverage of coarse sediment is 279 

in comparison to a 33 % coverage of fine and dry sediment. On Deception Island, where fine and dry sediments are the 280 

dominant land class (53 %), there is only 26 % coverage of coarse/wet sediment (Fig. 6). At all of the sites, between 70 % and 281 

80 % of the proglacial surface is covered by sediment. The bedrock class, which primarily describes igneous and metamorphic 282 

rock surfaces, is most abundant on Deception Island, comprising 14 % of its proglacial areas (Fig. 6). It is of similar abundance 283 

in the Dry Valleys (13 %), with between 7 and 9 % of Alexander Island, James Ross Archipelago, and Byers Peninsula 284 

Figure 4: A comparison between , a) the land classification produced in this study; b) a geomorphology map, adapted from Jennings

et al. (2021). Jennings et al. (2021) produced this data through a series of extensive field surveys on the Ulu Peninsula. Vegetation

locations as collected in the field by Jan Kavan (of CARP) in 2021 are also displayed. Note the similarities in the ice class, locations

of river systems, and scree slopes. NB: the colours in panel b have been adapted to allow a more direct comparison with the map

produced in this study (a).  
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comprised of bedrock. The absence of the bedrock class on South Georgia is accounted for by its lack of igneous outcrops, as 285 

well as well-developed sedimentary systems and extensive vegetation cover (Clapperton, 1971)   286 

  287 

Figure 5: Land cover maps of the six sites, including 10 classes, which describe eight distinct surfaces. NB: ice class may include 

limited areas of seasonal snow cover. Higher resolution maps can be found in the supplementary material (Section 2).  
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  288 

Figure 6: Percentage land cover values (excluding ice, no data and land (undifferentiated)) for each 

site, overlaying the coastline of Antarctica (coastline sourced from BAS). Error bars indicate the 

95% confidence intervals. 
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The classes relating to water (water, turbid water, wet ice) are of varying quantities across all of the sites, and may represent 289 

transient features (e.g. seasonal melt water/sediment plumes). The wet-ice class proved to be a little ambiguous to interpret 290 

from clusters and represents saturated firn and ‘slush’ ice (i.e. partially melted ice or partially frozen water). Wet ice is most 291 

abundant on Alexander Island, with 17 % coverage (Fig. 6), and highlights the record-high surface melt observed around the 292 

King George VI Ice Shelf in late 2019 (Banwell et al., 2021). This large amount of wet ice is comparable to the James Ross 293 

Archipelago (15 %), where a large proportion of wet ice is accounted for by a melt event that resulted in a large area of 294 

saturated firn on Snow Hill Island (Fig. 7). This transient nature of wet ice is also seen with the turbid water class, which can 295 

pick out sediment plumes (Fig. 7).  296 

 297 

Our land classification has also identified regions of vegetation. This includes extensive areas of vegetation on South Georgia, 298 

which we have calculated to cover 8 % of its proglacial surface and are clearly identifiable in satellite images (Fig. 6). We 299 

have also identified several sites of vegetation on the South Shetland Islands; especially those on Deception Island (total 1 % 300 

surface coverage, Fig. 6) within ASPA 140 (subsite B) on Deception Island (Secretariat of the Antarctic Treaty, 2022). In some 301 

cases, we have even been able to identify very small areas of vegetation such as those located on James Ross Island, which 302 

were verified in the field (Fig. 4).  303 

3.1.2. Spatial variations 304 

We observe a spatial variation in land cover between the sites (Fig. 5, 6). There is typically more coarse/wet sediment at sites 305 

further away from the pole; this is offset by a general decrease in fine and dry sediments. However, the Dry Valleys are an 306 

exception to this, with 44 % of the land covered by coarse or wet sediments. The second most southern site, Alexander Island, 307 

has 0 % of its proglacial surface covered by coarse/wet sediment, compared with 57 % on South Georgia. 308 

Figure 7: How the wet ice and turbid water classes compare to the images they are derived from, with a large area of saturated

firn on Snow Hill Island (64°28'S, 57°4W) , and a sediment plume off the coast of Vega Island (63°52'S, 57°16'W) 
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Unlike other land classes, the proportion of the (inland) water and wet ice classes appears to be more evenly spread across the 309 

sites. There is a slight apparent latitudinal pattern in these data, with more water at the sites further to the north, and variability 310 

between the east and west (i.e. when comparing the South Shetland Islands with James Ross Archipelago, Fig. 6). South 311 

Georgia and Byers’ Peninsula have the largest amount of liquid water present (when joining the water and turbid water classes 312 

together), around 3 %. James Ross Archipelago has significantly less (1 %) and Alexander Island has 1 % of its surfaces 313 

classified as water, owing to a large amount of supraglacial water at the time of image acquisition. We classified some of this 314 

melt as water, rather than wet ice, as it was unambiguously liquid when we inspected and interpreted the clusters. Much of 315 

these inter-site differences in liquid water likely represent differences in climatic setting; those sites with the greatest proportion 316 

of the water class are in milder, maritime climates, with higher temperatures and more of its precipitation falling as rain. The 317 

bedrock class does not show a clear latitudinal pattern and is most abundant in Deception Island (14 %) and the McMurdo Dry 318 

Valleys (13 %).  319 

 320 

We noted a latitudinal pattern in the presence of vegetation, with the largest proportions of vegetation coverage observed on 321 

South Georgia and the South Shetland Islands, and no coverage on Alexander Island or the McMurdo Dry Valleys. This is 322 

consistent with observations made in Arctic regions, where regions closer to the poles have significantly less vegetation 323 

coverage (Walker et al., 2018)(Walker et al., 2018). Although no vegetation was detected on Alexander Island or in the 324 

McMurdo Dry Valleys, small areas of vegetation have previously been described (Heywood et al., 1977; Pannewitz et al., 325 

2003), though they are typically below the resolution of our classification. The most northern site of South Georgia had 326 

significantly more vegetation than any other site (7 % of the proglacial regions are covered by vegetation, Fig. 6), while the 327 

McMurdo Dry Valleys and Alexander Island have no detectable vegetation coverage. James Ross Island has very little 328 

vegetation cover (< 1 %), while the South Shetland Islands show 2 % coverage on Byer’s Peninsula and 1 % on Deception 329 

Island.  330 

3.1.3. Potential drivers of variability 331 

The spatial pattern in sedimentary classes are consistent with the expectation that greater runoff should occur in polar regions 332 

with higher temperatures (Syvitski, 2002). Increased runoff would result in a greater proportion of the surface being covered 333 

by the coarse/wet sediment class. However, the Dry Valleys are an exception to this, with 44 % of the land covered by coarse 334 

or wet sediments (Fig. 6). This is likely due to the high relief of the region, allowing for greater mass movement and scree 335 

formation (Kirkby and Statham, 1975; Doran et al., 2002), and consistent solar radiation during the austral summer facilitating 336 

glacier melt and, in combination with subglacial drainage, the formation of large rivers such as the Onyx River (Gooseff et al., 337 

2011; Conovitz et al., 2013; Badgeley et al., 2017). We did not identify any coarse sediment on Alexander Island. The 338 

reasoning for this is two-fold: i) an apparent lack of major drainage networks, and; ii) the scree slopes in this region appear to 339 

be small and thin. When viewed from Sentinel-2 images, we could identify only small-size scree slopes and very few streams, 340 

consistent with observations made by (Heywood et al., 1977), who noted that many scree slopes were composed of fine 341 

sediments.  342 

 343 

The spatial patterns in the wet ice, water and turbid water classes show more water at the sites further to the north, and 344 

variability between the east and west, likely due to climatic conditions favouring liquid water on the South Shetland Islands 345 

and South Georgia. The disproportionately large amount of water and wet ice on Alexander Island and the James Ross 346 

Archipelago relates to the high melt in these areas at the time of image acquisition (Banwell et al., 2021). The bedrock class is 347 

most abundant on Deception Island and McMurdo Dry Valleys, owing to ongoing volcanism on Deception Island (Smellie et 348 

al., 2002; Rosado et al., 2019) and extensive volcanic history of the McMurdo Dry Valleys (Petford and Mirhadizadeh, 2017; 349 
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Smellie and Martin, 2021). This class is also associated with volcanic rocks on James Ross Island (Mlčoch et al., 2020; 350 

Jennings et al., 2021), Byers Peninsula (Gao et al., 2018) and metamorphic rock outcrops on Alexander Island (British 351 

Antarctic Survey, 1981). 352 

 353 

Whilst latitude accounts for some of the variation in vegetation coverage, it is not the only factor. The sparse vegetation 354 

coverage on James Ross Island, despite its relatively low latitude, is consistent with field observations and is logical given its 355 

semi-arid climate and high wind speeds (Martin and Peel, 1978; Davies et al., 2013; Barták et al., 2015; Nývlt et al., 2016; 356 

Hrbáček and Uxa, 2020; Kňažková et al., 2021; Váczi and Barták, 2022). The relatively high vegetation coverage of Byers 357 

Peninsula and South Georgia is also logical given the milder, maritime climates of the South Shetland Islands and South 358 

Georgia, compared to the drier continental climate of Alexander Island and the McMurdo Dry Valleys. Deception Island has 359 

less vegetation than the neighbouring Byers’ Peninsula, perhaps due to the impact of ongoing volcanic activity on the island 360 

and relatively recent eruptions resulting in unfavourable conditions (Collins, 1969; Smith, 2005, 1988). 361 

3.2. The changing landscape  362 

Out of the five sites we investigated for change, four had similar landscape stability with between 64.2 % and 68.2 % of the 363 

land cover remaining unchanged during our study period (Fig. 8). Alexander Island, however, varies from this trend with a no 364 

change proportion of just 50.2 %. This is primarily due to the exceptional melt of snow and ice in the region at the time of the 365 

second image (2019), which led to more sediment being exposed (ITF) and some lakes and supraglacial lakes (ITT) forming 366 

in their place. 84 % of the change on Alexander Island is due to loss of the ice class, associated with snow and ice melt (a list 367 

of abbreviations can be found in Table 2). This dramatic change in land cover coincides with sustained positive-degree 368 

temperatures that occurred in 2019 for the contemporary image and also led to exceptional melt on the George VI ice shelf 369 

(Banwell et al., 2021).  370 

Alexander Island is also the exception to a general pattern we observe in the loss of ice across Antarctica. In general, there is 371 

a latitudinal pattern in the loss of ice across our sites. If we consider the ITT, ITC ad ITF classes, South Georgia had 45 % of 372 

its land cover change associated with ice loss. In contrast, this value was less than 1 % for the Dry Valleys; two orders of 373 

magnitude difference. This pattern of ice loss occurs in tandem with a southward increase in the proportion of land cover 374 

change associated with sedimentary changes (FTC, CTB, or CTF). Some of these differences in sedimentary class may also 375 

be accounted for by the stabilising and moisture-retaining properties of vegetation coverage (Aalto et al., 2013; Klaar et al., 376 

2015), which is higher at the more northerly sites (Fig. 6). If we specifically consider the FTC class, we see it is most abundant 377 

on Byers Peninsula. This is likely a product of episodic changes in the flow of streams, which would be expected in the South 378 

Shetland Islands given their high rates of precipitation (Bañón et al., 2013). Of the three sites where vegetation was identified 379 

in the land cover product, the greatest change was seen on the Byers’ Peninsula; with 2 % of its total change accounted for by 380 

the CTV class, exceptional vegetation growth in the South Shetland Islands is consistent with previous findings (Torres-381 

Mellado et al., 2011).   382 
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3.3. Data accuracy 383 

3.3.1. Overall accuracy of land cover product 384 

The overall accuracy of our land cover classification is 95.9 %. However, this overall value should be taken with caution, since 385 

a large proportion of our areas of analysis are covered by ice. This high accuracy represents the fact that our approach is very 386 

effective at differentiating ice from land and water. The accuracy of each land class individually provides a more informative 387 

assessment of this approach. We find that each proglacial land class has a relatively large standard error, owing to the small 388 

number of pixels that we checked (Table 3). 389 

 390 

Table 3:  Accuracy assessment of all land classes. NB: n<3000 as several points landed on cloud-covered parts of the 391 
reference images. % error refers to the size of the 95% confidence bounds, relative to the error-adjusted area. 392 

Class 
Error-adjusted area 

(km2) 

95% confidence 

(km2) 
% Area % error n 

Water 99.1 45.5 0.2 45.9 9 

Ice 44 001.5 219.6 92.2 0.5 2 595 

Figure 8: The proportion of the proglacial landscape that has changed at each site analysed, and the make-

up of those changed regions. 
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Bedrock 231.3 174.2 0.5 75.3 27 

Fine & dry sediment 2 131.5 195.9 4.5 9.2 134 

Coarse/wet sediment 1 156.6 174.2 2.4 15.1 114 

Vegetation 115.7 56.4 0.2 48.8 10 

 393 

The overall accuracy of the proglacial component of the classification is 77.0%, with the greatest percentage uncertainty in the 394 

smaller-sized land classes (water and vegetation). While this overall accuracy is slightly lower than some products (e.g. 395 

(Malinowski et al., 2020; Pazúr et al., 2022), it should be noted that we achieved this without the availability of extensive 396 

training data, making it more comparable with the more moderate accuracies achieved by Chen et al. (2015), for example. The 397 

sediment classes typically perform well, with relatively small percentage errors (Table 4). The confusion matrices can be found 398 

in the supplementary material (section 1.5) 399 

 400 

Since we were unable to assess the accuracy of the turbid and wet ice classes, we have provided an example of a classification 401 

of each land class, to allow for a qualitative assessment of its accuracy (Fig. 7). 402 

 403 

Table 4: Accuracy assessment of proglacial classes. NB: n<1000 as several points landed on cloud-covered parts of the 404 
reference images. % error refers to the size of the 95% confidence bounds, relative to the error-adjusted area. 405 

Class 
Error-adjusted area 

(km2) 

95% confidence 

(km2) 
% Area % error n 

Water 85.7 26.4 2.0 30.9 15 

Bedrock 285.5 56.7 6.6 19.9 45 

Fine & dry sediment 2 375.5 106.9 54.7 4.5 371 

Coarse/wet sediment 1 444.7 108.8 33.3 7.5 257 

Vegetation 148.5 40.1 3.4 27.0 34 

 406 

When comparing the spectra, we found that our identified classes had distinct spectral signatures that were consistent between 407 

locations (supplementary section 1.7). Some subtle differences, mostly within the red and near-infrared bands, existed in the 408 

sediment and bedrock classes, and most likely represent differences in regional geology (Salvatore et al., 2014). The pattern 409 

for vegetation is also notable. Vegetation is typically characterised by peaks in the near-infrared wavelengths; however we do 410 

not observe this in our spectra, likely because the vegetation of Antarctica is dominated by cryptogamic species (e.g. moss) 411 

which do not reflect strongly in this band (Váczi et al., 2020). The spectra for South Georgia do show a peak in the near-412 

infrared band, consistent with the presence of vascular (leafy) vegetation (Tichit et al., 2024) 413 

We find that our sedimentary classes are similar in spectral pattern (likely due to similarities in geology), but that the coarse/wet 414 

class present with lower reflectance values at each site (supplementary section 1.7). We interpret this to be either due to its 415 

higher water content or its higher grain size (Clark, 1990; Salvatore et al., 2023), which would explain the challenges we found 416 

in differentiating between coarse and wet sediments. We note that this distinction is not as clear with the classes on Deception 417 

Island. Whilst we have assigned K-means clusters to different classed based on the previously mapped presence of scree and 418 

streams, additional caution should be used for interpretations made at this site. The water (water and turbid water) classes are 419 

also distinct from each other (supplementary section 1.7), primarily on the basis reflectance values, consistent with previous 420 
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studies showing that turbid water has higher reflectance values (Cui et al., 2022). We observed distinctly higher reflectance 421 

values for water at Alexander Island, probably because the water at this site is mostly ponded on top of glaciers/ice.  422 

 423 

3.3.2. Spatial confidence in land cover product 424 

We produced a map to represent the confidence of our dataset (Fig. 10), which is notable for its spatial homogeneity; no 425 

individual site appears to be more or less accurate than any other. The McMurdo Dry Valleys have the most “very low 426 

confidence” cells, but this is a function of it being the second largest site analysed, with the largest coverage of proglacial land. 427 

Since proglacial classes are less accurate than ice (Table 3 and Table 4), it is to be expected that the greatest amount of “very 428 

low confidence” cells would be present here. We also observed that many of these “very low confidence” cells contain only 429 

one or two assessment points. This means that just one inaccurate point may result in the cell being classified as “very low 430 

confidence”, when in fact further analysis may reveal it performs better than is represented here.  431 

We also note that the highest accuracy, i.e. the regions with the highest density of “very high confidence” cells, are within the 432 

ice sheets at each site, which is consistent with the analysis (Table 3). This is particularly clear on South Georgia and Alexander 433 

Island. The regions with “no points” are primarily over the large ice sheets, particularly to the centre of James Ross Island, 434 

Alexander Island and the Dry Valleys. Because of the large coverage of ice, many cells were not checked during the accuracy 435 

assessment because the random point algorithm does not regularly space points. However, in reality, we are highly confident 436 

of cells within the centre of ice sheets: they are clearly ice when inspected and the 92.4% accuracy of the ice class (Table 3) 437 

suggests they are very likely to be accurate.  438 
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439 

Figure 9: Maps of each site indicating the spatial variability in confidence. Very low confidence = <20% 

of points were accurate; low confidence = 21 to 40%; medium confidence = 41 to 60%; high confidence 

= 61% to 80%; very high confidence = >80%  
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3.3. Overall accuracy of change detection 440 

We found our change detection approach had a total validation accuracy of 80.1 %. The accuracy varies by class (Table 5), 441 

with the most accurate class being ITT and FTB, albeit from a low sample size. The least accurate class is the Coarse/wet 442 

sediment to wet ice (CTT) class. However, as stated in section 2.4.1., it is also important to consider the geomorphological 443 

processes that the change classes represent. For example, if we merge together classes that represents the same process as CTT 444 

(i.e. formation of a lake/formation of a wet area), we see the error reduces from 60.0 % to 5.9 %. 445 

 446 

Table 5: Accuracy assessment of land cover change. % error denotes the proportion of pixels misclassified within that 447 
land class. Geomorphological process (GP error denotes the error of the geomorphological process represented by 448 
one or more change classes.  449 
NB:  * denotes that there are two possible ways in which classes can be represented as a GP: either as lake formation 450 
and slush-ice formation, or both could be represented as one lake formation class – this affects the resultant GP 451 
error, therefore two GP errors are displayed. 452 

Change Class Geomorphological process (GP) % error GP % error n 

No change No change 20.7 20.7 1563 

Wet ice to coarse/wet 

sediment 
Ice melt (land) 25.0 2.8 8 

Ice to turbid water  Ice melt (water) 0.0 0.0 13 

Ice to coarse/wet sediment  Ice melt (land) 12.7 2.8 79 

Ice to fine & dry sediment Ice melt (land) 33.3 2.8 21 

Bedrock to coarse/wet 

sediment  Sediment deposition 6.7 6.7 15 

Coarse/wet sediment to 

turbid water  Lake formation* 60.0 60.0/5.9 10 

Coarse/wet sediment to 

wet ice  

Slush-ice formation/ 

lake formation* 
29.2 29.2/5.9 24 

Coarse/wet sediment to 

bedrock 
Erosion 32.3 21.6 127 

Coarse/wet sediment to 
fine & dry sediment  

Drying 15.3 15.3 98 

Coarse/wet sediment to 

vegetation  
Vegetation formation 30.8 30.8 13 

Fine & dry sediment to 

bedrock  Erosion 0.0 21.6 1 

Fine & dry sediment to 

coarse/wet sediment Wetting 11.7 11.7 290 

 453 

We can also visually inspect the classes of change by looking at the map of change relative to real changes in the landscape 454 

viewed from satellite images (Fig. 11). We can see that our change detection is good at detecting phase changes, such as 455 

melting ice (ITF and ITT); in the case of Alexander Island, this highlights the exposure of new sediments, while on Snow 456 

Island (Byers Peninsula site) this highlights the formation of new proglacial lakes. We are also able to detect more subtle 457 

changes in the flow of streams and the presence of wet sediments on James Ross Island (increased river activity, shown by 458 

FTC) and Seymour Island (James Ross Archipelago site) with reduced river activity and possible dust deposits.  459 
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460 

Figure 10: Examples of the four most frequently observed change classes: 86 % of the change identified in out data can be described 

by these four classes. The CTF example shows less active river channels in the modern image associated with drier sediments on 

Seymour Island. FTC shows the opposite, with more active river channels associated with wetter sediments on James Ross Island. 

The ITF example shows a reduction in the extent of glaciers and snowcover on Alexander Island, while the ITT example shows the 

development of proglacial lakes following glacier retreat on Snow Island in the South Shetland Islands. While these four panel sets 

are designed to highlight the four main change classes, all change classes can be seen within these panels. NB: "Modern images are 

derived from Landsat-8 OLI, and the old images are dervcied from Landsat-7 ETM+.  
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  461 

3.4. Data availability 462 

The data used to produce these results, alongside the sampling points for the accuracy assessment and the spatial map of 463 

confidence, are available as TIFs and shapefiles at:  464 

Stringer, C. (2022). Contemporary (2016 - 2020) land cover classification across West Antarctica and the McMurdo Dry 465 

Valleys (Version 1.0) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/5A5EE38C-E296-48A2-85D2-466 

E29DB66E5E24 ; and:  467 

The land cover change maps produced from this paper are available at: Stringer, C. (2023). 21st century land cover change 468 

across the major proglacial regions of West Antarctica and the McMurdo Dry Valleys 469 

https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=d6721952-a9ab-4021-adc6-1ccb4d52f1f9. 470 

Land class spectra are available in the supplementary materials. 471 

4. Discussion of study approach and limitations 472 

4.1. Methodological approach 473 

4.1.1. Landcover classification 474 

There is a dearth of available data with which to produce an independent training data set necessary for a supervised 475 

classification approach (e.g. Random Forest Classification, Support Vector Machine) for a wide-scale land classification in 476 

Antarctica (Rodriguez-Galiano et al., 2012). Therefore, we decided to use an unsupervised classification approach. 477 

Unsupervised approaches do not require training datasets, and instead use the spectral characteristics of each pixel to 478 

statistically cluster similar pixels together without user input. The K-means algorithm is fully objective and removes the 479 

potential to target predefined classes which may be difficult to identify in medium-scale resolution satellite images, or that 480 

may be in abundance in those areas visited by mapped areas (i.e. those producing training data), but not more widely (Grimes 481 

et al., 2024). This approach is particularly useful for large, national/regional scale spatial analysis and has recently been applied 482 

to the classification of Greenland (Grimes et al., 2024; Mohd Hasmadi et al., 2009). Given land cover data are disparate and 483 

incomplete over the study sites, this approach had the added benefit that our field knowledge, as well as information from 484 

published maps of relatively small areas (Table 1) could be used to interpret clusters that cover much wider areas.  485 

 486 

4.1.1. Change detection 487 

There are several ways that change detection can be conducted, and these methods have previously been the subject of 488 

comprehensive literature reviews (Lu et al., 2004; Tewkesbury et al., 2015). The most commonly used of these techniques is 489 

post-classification comparisons (PCC) of image pairs. This technique involves creating a land cover classification of images 490 

in two time periods, and then directly comparing the change in classes. Although this method is intuitive, it is flawed because 491 

its overall accuracy is reliant on the accuracy of the two land cover products. Individual errors in each land cover map are 492 

compounded in the final map of change, resulting in unacceptably high uncertainty values (Lu et al., 2004; Tewkesbury et al., 493 

2015). Change vector analysis determines the changes in the spectral properties of images over time, which allows for a 494 

classification that allows the specific type of change to be identified (Bovolo and Bruzzone, 2007). Whilst Change Vector 495 

Analysis (CVA), as used in this study, has been criticised for being difficult to interpret (Carvalho Júnior et al., 2011), recent 496 

advances in this methodology mean that the method has increased the usability of the technique, as well as its ability to identify 497 

https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=d6721952-a9ab-4021-adc6-1ccb4d52f1f9


 

Stringer et al., confidential manuscript in review 

23 

 

 

different types of change (Xu et al., 2018). CVA determines changes in the spectral properties of images over time and has the 498 

benefit of avoiding compounding errors (Lu et al., 2004; Tewkesbury et al., 2015). 499 

4.2. Study challenges and limitations 500 

4.2.1. Land classification challenges 501 

Previous studies have highlighted three key challenges when it comes to classifying terrestrial landcover: i) distinguishing 502 

moisture levels in soils/sediments; ii) distinguishing sediment grain size, and; iii) the spectral heterogeneity of bedrock. Whilst 503 

we have described land classes that use these terms, since they are useful geomorphological descriptors, we do not argue that 504 

we have solved these fundamental challenges associated with distinguishing between these groups spectrally, but instead 505 

address how our study has come to its final classification scheme for these groups. 506 

 507 

In terms of moisture, our coarse/wet sediment class came from clustering of mapped features such as scree slopes and 508 

braidplains. Previous research has shown that areas of scree slope, and moisture sediments are typically associated with lower 509 

albedo values (Clark, 1990; Salvatore et al., 2023), which likely accounts for why these groups were clustered together. 510 

Nonetheless, combining these two land types in a single class provides a useful indicator of geomorphologically active regions 511 

of the landscape.  512 

 513 

In our study we found two challenges in classifying bedrock. The first of these challenges was associated with how bedrock is 514 

typically mapped, versus how we have classified it. For example, in the Dry Valleys, bedrock accounts for 13 % of the area 515 

and the performance of the classification is particularly notable for its ability to pick out an exposed basement sill (Petford and 516 

Mirhadizadeh, 2017) in Wright Valley. In other studies (e.g. Jennings et al., 2021), bedrock classes are often over-represented 517 

(Fig. 4) because the study aims to map geomorphology or geology, rather than surface characteristics such as physical 518 

weathering and in situ production of block fields. Moreover, field observations show that boulders and other glacigenic 519 

sediments overlie many of the large igneous extrusions. Therefore, our classification gives a sense of mostly thin surface 520 

coverage of exposed solid bedrock. Previous work (e.g. Salvatore et al., 2014) has highlighted the spectral differences in 521 

different types of bedrock, and indeed we also found that several distinct clusters formed during our classification process that 522 

highlighted distinct igneous and metamorphic outcrops. For simplicity, these clusters were combined into a single “bedrock” 523 

class. 524 

4.2.2 Study limitations and future work 525 

While we made every effort to minimise the differences in the time of year between image pairs, and took further steps to 526 

ensure there was evidence of hydrological activity and minimal snow cover,  there remains the possibility that some of the 527 

changes we detected are due to a differences in growing season or hydrological season, or unusual weather events. In particular, 528 

those seasonal factors could affect the area of the vegetation and coarse/wet sediment classes. Future studies should seek to 529 

ensure ground conditions are similar when conducting change detection, the first step of which is to ensure images are from 530 

as close to the same part of the hydrological and growing season as possible. Whilst it is possible to distinguish between glacial 531 

ice and snow (e.g. Awasthi and Varade, 2021; Li et al., 2022), many previous land classifications of polar regions have not 532 

done so  (Grimes et al., 2024; Wang et al., 2020). Some recent studies have made use of snow masking algorithms (e.g. Roland 533 

et al., 2024), however this in itself presents a challenge in that it can alter the land area compared during change detection, 534 

which itself introduces further uncertainty. Therefore, we took the decision to follow the tried and tested approach of choosing 535 

images with limited visible snow cover.  536 
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One of the key challenges of any remote sensing study is validation, and this has been the topic of considerable discussion and 537 

review (e.g. Olofsson et al., 2013, 2014). A difficulty found in our study was the lack of existing datasets with which to validate 538 

our approach. Furthermore, those independent datasets that do exist were already exploited to aid us in the interpretation of K-539 

means clusters (Table 1). Therefore, similar to previous research in remote regions (Grimes et al. 2024), we used our 540 

interpretations of higher resolution satellite imagery for validation. This may have introduced some biases through the 541 

misclassification of validation points, but we contend this was preferable to introducing biases from validating our approach 542 

against datasets that were used in the initial classification process. The challenges in validating this work highlight the need 543 

for further mapping of Antarctic regions based upon field observations. Alexander Island, in particular, was difficult to classify 544 

due to a lack of supporting material to aid our cluster interpretations; the most recent geological map is from 1981 (British 545 

Antarctic Survey, 1981) and only limited geomorphological maps of the region exist (Salvatore, 2001). This site highlights the 546 

need to collect more high-quality ground data in Antarctica, in order to improve our wider understanding of proglacial 547 

environments in the southernmost continent. Even projects to produce high-quality maps in small areas of these remote regions 548 

would improve the performance of remote techniques, such as those described in this study. 549 

5. Summary and conclusions 550 

In this study, we have created a land cover map of the major proglacial regions of sub-Antarctic islands, the Antarctic Peninsula 551 

Region, and the McMurdo Dry Valleys. Given the lack of consistent land cover or geomorphology maps in Antarctica, we 552 

used an unsupervised K-means clustering approach to classify 30 m resolution Landsat-8 OLI images by interpreting clusters 553 

in a hierarchical approach using our expert judgement and field experience in Antarctica. We present information on the 554 

coverage of nine land cover classes: turbid water, water, wet ice, ice, land (non-differentiated), bedrock, fine sediment, coarse 555 

sediment, and vegetation. We have mapped 8 distinct land surface (plus a no data and Land (undifferentiated) class) at 30 m, 556 

with an accuracy of 77.0 % for proglacial classes, and 92.2% for ice. We have also highlighted the spatial pattern in land 557 

classes, notably in vegetation and coarse/wet sediment, which are typically more abundant in sites that are more northerly.  558 

Additionally, we have analysed land cover changes in the proglacial regions of Antarctica, which we achieved using a CVA 559 

approach at an accuracy of 80.1 %.  Through our analysis of change, we have highlighted a latitudinal pattern in ice loss; the 560 

proportion of landscape change on South Georgia due to the loss of ice is two orders of magnitude greater than that in the Dry 561 

Valleys. This change also occurs in tandem with the opposite pattern occurring in the sediment class changes; this is possibly 562 

also influenced by an increase in vegetation coverage in more northern sites. We have also highlighted the extensive change 563 

of the landscape that has occurred on Alexander Island where 50 % of the proglacial coverage has changed this century, likely 564 

as a consequence of recent dramatic warming events around the George VI ice shelf.  565 

 566 

This dataset provides a first step in understanding the make-up of Antarctica’s important proglacial regions. It also highlights 567 

the need for greater ground-verified data to improve the accuracy of future Antarctic land classifications.  We expect that these 568 

data will further research in several disciplines, particularly those that focus on ecology, environmental sciences and 569 

atmospheric sciences, and will provide an important first dataset for monitoring environmental and ecological change in 570 

Antarctica.  571 



 

Stringer et al., confidential manuscript in review 

25 

 

 

Author contribution 572 

CS produced the data, conducted the analysis and wrote the manuscript. AC supported the change detection analysis. JC 573 

conceived the project, and supported CS in writing the first draft of the manuscript. DQ and DN reviewed the manuscript prior 574 

to submission. All authors contributed to the writing. 575 

Acknowledgements 576 

This work is supported by the Leeds-York-Hull Natural Environment Research Council (NERC) Doctoral Training Partnership 577 

(DTP) Panorama under grant NE/S007458/1. The Ministry of Education, Youth and Sports of the Czech Republic project 578 

VAN 1/2022 and the Czech Antarctic Foundation funded fieldwork that contributed to part of this work. The Czech Antarctic 579 

Research Programme (CARP) are thanked for their support of this project, particularly for accommodating CS at the Johann 580 

Gregor Mendel Research Station on James Ross Island during the austral summer of 2021/22 and at the Nelson Island, South 581 

Shetlands facility during the austral summer of 2022/23. We also thank all of the staff at CARP for their logistical support. 582 

Michael Grimes, Elizabeth Mroz, and Eszter Kovacs of the University of Leeds and Jan Kavan of Masaryk University are 583 

thanked for their technical support. The British Antarctic Survey (BAS) and Stephen Jennings provided maps of Alexander 584 

Island and James Ross Island respectively that made this study possible. BAS also provided other resources, including aerial 585 

imagery.  586 

Competing interests 587 

The authors declare that they have no conflict of interest. 588 

References 589 

Aalto, J., le Roux, P.C. and Luoto, M. 2013. Vegetation mediates soil temperature and moisture in arctic-590 

alpine environments. Arctic, Antarctic, and Alpine Research. 45(4), pp.429–439. 591 

Adelabu, S., Mutanga, O. and Adam, E. 2015. Testing the reliability and stability of the internal accuracy 592 

assessment of random forest for classifying tree defoliation levels using different validation methods. 593 

Geocarto International. 30(7), pp.810–821. 594 

Awasthi, S. and Varade, D. 2021. Recent advances in the remote sensing of alpine snow: a review. 595 

GIScience & Remote Sensing. 58(6), pp.852–888. 596 

Badgeley, J.A., Pettit, E.C., Carr, C.G., Tulaczyk, S., Mikucki, J.A. and Lyons, W.B. 2017. An englacial 597 

hydrologic system of brine within a cold glacier: Blood Falls, McMurdo Dry Valleys, Antarctica. 598 

Journal of Glaciology. 63(239), pp.387–400. 599 

Ballantyne, C.K. 2008. After the Ice: Holocene Geomorphic Activity in the Scottish Highlands. Scottish 600 

Geographical Journal. 124(1), pp.8–52. 601 

Ban, Y., Gong, P. and Giri, C. 2015. Global land cover mapping using Earth observation satellite data: 602 

Recent progresses and challenges. ISPRS Journal of Photogrammetry and Remote Sensing. 103, pp.1–603 

6. 604 

Bannister, D. and King, J. 2015. Föhn winds on South Georgia and their impact on regional climate. 605 

Weather. 70(11), pp.324–329. 606 



 

Stringer et al., confidential manuscript in review 

26 

 

 

Bañón, M., Justel, A., Velázquez, D. and Quesada, A. 2013. Regional weather survey on Byers Peninsula, 607 

Livingston Island, South Shetland Islands, Antarctica. Antarctic Science. 25(2), pp.146–156. 608 

Banwell, A.F., Tri Datta, R., Dell, R.L., Moussavi, M., Brucker, L., Picard, G., Shuman, C.A. and Stevens, L.A. 609 

2021. The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, 610 

Antarctic Peninsula. Cryosphere. 15(2), pp.909–925. 611 

Barták, M., Váczi, P., Stachoň, Z. and Kubešová, S. 2015. Vegetation mapping of moss-dominated areas of 612 

northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar 613 

Reports. 5(1), pp.75–87. 614 

Bojinski, S., Verstraete, M., Peterson, T.C., Richter, C., Simmons, A. and Zemp, M. 2014. The Concept of 615 

Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bulletin of the 616 

American Meteorological Society. 95(9), pp.1431–1443. 617 

Bovolo, F. and Bruzzone, L. 2007. A theoretical framework for unsupervised change detection based on 618 

change vector analysis in the polar domain. IEEE Transactions on Geoscience and Remote Sensing. 619 

45(1), pp.218–236. 620 

British Antarctic Survey 1981. British Antarctic Territory geological map : scale 1:500,000 , Sheet 4 G. 621 

Britain. D. of O. Surveys, ed. 622 

Brown, C.F., Brumby, S.P., Guzder-Williams, B., Birch, T., Hyde, S.B., Mazzariello, J., Czerwinski, W., 623 

Pasquarella, V.J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, 624 

O., Moore, R. and Tait, A.M. 2022. Dynamic World, Near real-time global 10 m land use land cover 625 

mapping. Scientific Data. 9(1), p.251. 626 

Brussaard, C.P.D., Wilhelm, S.W., Thingstad, F., Weinbauer, M.G., Bratbak, G., Heldal, M., Kimmance, S.A., 627 

Middelboe, M., Nagasaki, K., Paul, J.H., Schroeder, D.C., Suttle, C.A., Vaqué, D. and Wommack, K.E. 628 

2008. Global-scale processes with a nanoscale drive: the role of marine viruses. The ISME Journal. 629 

2(6), pp.575–578. 630 

Burton-Johnson, A., Black, M., Fretwell, P.T. and Kaluza-Gilbert, J. 2016. An automated methodology for 631 

differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock 632 

outcrop map and area estimation for the entire Antarctic continent. The Cryosphere. 10(4), pp.1665–633 

1677. 634 

Carrasco, J.F., Bozkurt, D. and Cordero, R.R. 2021. A review of the observed air temperature in the 635 

Antarctic Peninsula. Did the warming trend come back after the early 21st hiatus? Polar Science. 28, 636 

p.100653. 637 

Carrivick, J., Heckmann, T., Fischer, M. and Davies, B. 2019. An Inventory of Proglacial Systems in Austria, 638 

Switzerland and Across Patagonia In: T. Heckmann and D. Morche, eds. Cham: Springer International 639 

Publishing, pp.43–57. 640 

Carrivick, J.L., Heckmann, T., Turner, A. and Fischer, M. 2018. An assessment of landform composition and 641 

functioning with the first proglacial systems dataset of the central European Alps. Geomorphology. 642 

321, pp.117–128. 643 

Carvalho Júnior, O.A., Guimarães, R.F., Gillespie, A.R., Silva, N.C. and Gomes, R.A.T. 2011. A new approach 644 

to change vector analysis using distance and similarity measures. Remote Sensing. 3(11), pp.2473–645 

2493. 646 

Chasmer, L., Mahoney, C., Millard, K., Nelson, K., Peters, D., Merchant, M., Hopkinson, C., Brisco, B., 647 

Niemann, O., Montgomery, J., Devito, K. and Cobbaert, D. 2020. Remote Sensing of Boreal Wetlands 648 



 

Stringer et al., confidential manuscript in review 

27 

 

 

2: Methods for Evaluating Boreal Wetland Ecosystem State and Drivers of Change. Remote Sensing. 649 

12(8), p.1321. 650 

Chen, W., Li, X. and Wang, L. 2019. Fine Land Cover Classification in an Open Pit Mining Area Using 651 

Optimized Support Vector Machine and WorldView-3 Imagery. Remote Sensing. 12(1), p.82. 652 

Chinn, T. and Mason, P. 2016. The first 25 years of the hydrology of the Onyx River, Wright Valley, Dry 653 

Valleys, Antarctica. Polar Record. 52(1), pp.16–65. 654 

Clapperton, C.M. (Chalmers M. 1971. Geomorphology of the Stromness Bay-Cumberland Bay area, South 655 

Georgia . London: British Antarctic Survey. 656 

Collins, N.J. 1969. The effects of volcanic activity on the vegetation of Deception Island. British Antarctic 657 

Survey Bulletin. 21, pp.79–94. 658 

Conovitz, P.A., Mcknight, D.M., Macdonald, L.H., Fountain, A.G. and House, H.R. 2013. Hydrologic 659 

Processes Influencing Streamflow Variation in Fryxell Basin, Antarctica In: Ecosystem Dynamics in a 660 

Polar Desert: the McMurdo Dry Valleys, Antarctica, J.C. Priscu (Ed.)., pp.93–108. 661 

Convey, P. and Smith, R.I.L. 2007. Responses of terrestrial Antarctic ecosystems to climate change In: J. 662 

Rozema, R. Aerts and H. Cornelissen, eds. Plants and Climate Change. Dordrecht: Springer 663 

Netherlands, pp.1–12. 664 

Costa, A., Molnar, P., Stutenbecker, L., Bakker, M., Silva, T.A., Schlunegger, F., Lane, S.N., Loizeau, J.L. and 665 

Girardclos, S. 2018. Temperature signal in suspended sediment export from an Alpine catchment. 666 

Hydrology and Earth System Sciences. 22(1), pp.509–528. 667 

Cox, S.C., Smith Lyttle, B., Elkind, S., Smith Siddoway, C., Morin, P., Capponi, G., Abu-Alam, T., Ballinger, M., 668 

Bamber, L., Kitchener, B., Lelli, L., Mawson, J., Millikin, A., Dal Seno, N., Whitburn, L., White, T., 669 

Burton-Johnson, A., Crispini, L., Elliot, D., Elvevold, S., Goodge, J., Halpin, J., Jacobs, J., Martin, A.P., 670 

Mikhalsky, E., Morgan, F., Scadden, P., Smellie, J. and Wilson, G. 2023. A continent-wide detailed 671 

geological map dataset of Antarctica. Scientific Data. 10(1). 672 

Cui, M., Sun, Y., Huang, C. and Li, M. 2022. Water turbidity retrieval based on UAV hyperspectral remote 673 

sensing. Water. 14(1), p.128. 674 

Davies, B.J., Carrivick, J.L., Glasser, N.F., Hambrey, M.J. and Smellie, J.L. 2012. Variable glacier response to 675 

atmospheric warming, northern Antarctic Peninsula, 1988-2009. Cryosphere. 6(5), pp.1031–1048. 676 

Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L. and Nývlt, D. 2013. Landscape 677 

evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic 678 

Peninsula. Geological Society, London, Special Publications. 381(1), pp.353–395. 679 

Davies, B.J., Hambrey, M.J., Glasser, N.F., Holt, T., Rodés, A., Smellie, J.L., Carrivick, J.L. and Blockley, S.P.E. 680 

2017. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite 681 

Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula. Quaternary Science 682 

Reviews. 177, pp.189–219. 683 

Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. and Lyons, W.B. 2002. Valley floor 684 

climate observations from the McMurdo dry valleys, Antarctica, 1986-2000. Journal of Geophysical 685 

Research Atmospheres. 107(24), p.4772. 686 

Doran, P.T., Wharton, R.A. and Lyons, W.B. 1994. Paleolimnology of the McMurdo Dry Valleys, Antarctica. 687 

Journal of Paleolimnology. 10(2), pp.85–114. 688 



 

Stringer et al., confidential manuscript in review 

28 

 

 

Engel, Z., Láska, K., Kavan, J. and Smolíková, J. 2023. Persistent mass loss of Triangular Glacier, James Ross 689 

Island, north-eastern Antarctic Peninsula. Journal of Glaciology. 69(273), pp.27–39. 690 

Engel, Z., Láska, K., Nývlt, D. and Stachoň, Z. 2018. Surface mass balance of small glaciers on James Ross 691 

Island, north-eastern Antarctic Peninsula, during 2009-2015. Journal of Glaciology. 64(245), pp.349–692 

361. 693 

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., 694 

Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, 695 

D. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics. 45(2), p.RG2004. 696 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, X. 2010. 697 

MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. 698 

Remote Sensing of Environment. 114(1), pp.168–182. 699 

Frohn, R.C., Reif, M., Lane, C. and Autrey, B. 2009. Satellite remote sensing of isolated wetlands using 700 

object-oriented classification of Landsat-7 data. Wetlands. 29(3), pp.931–941. 701 

Galera, H., Znój, A., Chwedorzewska, K.J. and Wódkiewicz, M. 2021. Evaluation of factors influencing the 702 

eradication of annual bluegrass (Poa annua L.) from Point Thomas Oasis, King George Island, 703 

Maritime Antarctica. Polar Biology. 44(12), pp.2255–2268. 704 

Gao, L., Zhao, Y., Yang, Z., Liu, J., Liu, X., Zhang, S.H. and Pei, J. 2018. New Paleomagnetic and 40Ar/39Ar 705 

Geochronological Results for the South Shetland Islands, West Antarctica, and Their Tectonic 706 

Implications. Journal of Geophysical Research: Solid Earth. 123(1), pp.4–30. 707 

GCOS 2010. Implementation plan for the global observing system for climate in support of the UNFCCC 708 

(2010 update). , p.186. 709 

Gerrish, L., Fretwell, P., & Cooper, P. 2021. Medium resolution vector polygons of the Antarctic coastline 710 

(Version 7.4) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK Research & 711 

Innovation. 712 

Gerrish, L., Fretwell, P. and Cooper, P. 2020. High resolution vector polygons of Antarctic rock outcrop 713 

(7.3) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK Research & 714 

Innovation. 715 

Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B., Yang, J., Zhang, W. and Zhou, Y. 2020. 716 

Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of 717 

Environment. 236, p.111510. 718 

Gooseff, M.N., McKnight, D.M., Doran, P., Fountain, A.G. and Lyons, W.B. 2011. Hydrological Connectivity 719 

of the Landscape of the McMurdo Dry Valleys, Antarctica. Geography Compass. 5(9), pp.666–681. 720 

Grimes, M., Carrivick, J.L., Smith, M.W. and Comber, A.J. 2024a. Land cover changes across Greenland 721 

dominated by a doubling of vegetation in three decades. Scientific Reports. 14(1), p.3120. 722 

Grimes, M., Carrivick, J.L., Smith, M.W. and Comber, A.J. 2024b. Land cover changes across Greenland 723 

dominated by a doubling of vegetation in three decades. Scientific Reports. 14(1), p.3120. 724 

Harangozo, S.A., Colwell, S.R. and King, J.C. 1997. An analysis of a 34-year air temperature record from 725 

Fossil Bluff (71°S, 68°W), Antarctica. Antarctic Science. 9(3), pp.355–363. 726 

Heywood, R.B., Fuchs, V.E. and Laws, R.M. 1977. A limnological survey of the Ablation Point area, 727 

Alexander Island, Antarctica. Philosophical Transactions of the Royal Society of London. B, Biological 728 

Sciences. 279(963), pp.39–54. 729 



 

Stringer et al., confidential manuscript in review 

29 

 

 

Howat, I.M., Porter, C., Smith, B.E., Noh, M.-J. and Morin, P. 2019. The Reference Elevation Model of 730 

Antarctica. The Cryosphere. 13(2), pp.665–674. 731 

Hrbáček, F. and Uxa, T. 2020. The evolution of a near-surface ground thermal regime and modeled active-732 

layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006–2016. Permafrost and 733 

Periglacial Processes. 31(1), pp.141–155. 734 

Hughes, K.A., Pescott, O.L., Peyton, J., Adriaens, T., Cottier-Cook, E.J., Key, G., Rabitsch, W., Tricarico, E., 735 

Barnes, D.K.A., Baxter, N., Belchier, M., Blake, D., Convey, P., Dawson, W., Frohlich, D., Gardiner, 736 

L.M., González-Moreno, P., James, R., Malumphy, C., Martin, S., Martinou, A.F., Minchin, D., Monaco, 737 

A., Moore, N., Morley, S.A., Ross, K., Shanklin, J., Turvey, K., Vaughan, D., Vaux, A.G.C., Werenkraut, 738 

V., Winfield, I.J. and Roy, H.E. 2020. Invasive non-native species likely to threaten biodiversity and 739 

ecosystems in the Antarctic Peninsula region. Global Change Biology. 26(4), pp.2702–2716. 740 

Humlum, O., Instanes, A. and Sollid, J.L. 2003. Permafrost in Svalbard: a review of research history, climatic 741 

background and engineering challenges. Polar Research. 22(2), pp.191–215. 742 

Jennings, S.J.A., Davies, B.J., Nývlt, D., Glasser, N.F., Engel, Z., Hrbáček, F., Carrivick, J.L., Mlčoch, B. and 743 

Hambrey, M.J. 2021. Geomorphology of Ulu Peninsula, James Ross Island, Antarctica. Journal of 744 

Maps. 17(2), pp.125–139. 745 

Kaplan Pastíriková, L., Hrbáček, F., Uxa, T. and Láska, K. 2023. Permafrost table temperature and active 746 

layer thickness variability on James Ross Island, Antarctic Peninsula, in 2004–2021. Science of the 747 

Total Environment. 869, p.161690. 748 

Kavan, J. 2021. Fluvial transport in the deglaciated Antarctic catchment–Bohemian Stream, James Ross 749 

Island. Geografiska Annaler, Series A: Physical Geography. 104(1), pp.1–10. 750 

Kavan, J., Ondruch, J., Nývlt, D., Hrbáček, F., Carrivick, J.L. and Láska, K. 2017. Seasonal hydrological and 751 

suspended sediment transport dynamics in proglacial streams, James Ross Island, Antarctica. 752 

Geografiska Annaler: Series A, Physical Geography. 99(1), pp.38–55. 753 

Kirkby, M.J. and Statham, I. 1975. Surface Stone Movement and Scree Formation. The Journal of Geology. 754 

83(3), pp.349–362. 755 

Klaar, M.J., Kidd, C., Malone, E., Bartlett, R., Pinay, G., Chapin, F.S. and Milner, A. 2015. Vegetation 756 

succession in deglaciated landscapes: implications for sediment and landscape stability. Earth Surface 757 

Processes and Landforms. 40(8), pp.1088–1100. 758 

Kňažková, M., Nývlt, D. and Hrbáček, F. 2021. Slope processes connected with snow patches in semi-arid 759 

ice-free areas of James Ross Island, Antarctic Peninsula. Geomorphology. 373, p.107479. 760 

Lea, J.M. 2018. The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification 761 

Tool (MaQiT) – simple tools for the rapid mapping and quantification of changing Earth surface 762 

margins. Earth Surface Dynamics. 6(3), pp.551–561. 763 

Lee, J.R., Raymond, B., Bracegirdle, T.J., Chadès, I., Fuller, R.A., Shaw, J.D. and Terauds, A. 2017. Climate 764 

change drives expansion of Antarctic ice-free habitat. Nature. 547(7661), pp.49–54. 765 

Łepkowska, E. and Stachnik, Ł. 2018. Which Drivers Control the Suspended Sediment Flux in a High Arctic 766 

Glacierized Basin (Werenskioldbreen, Spitsbergen)? Water. 10(10), p.1408. 767 

Li, X., Wang, N. and Wu, Y. 2022. Automated Glacier Snow Line Altitude Calculation Method Using Landsat 768 

Series Images in the Google Earth Engine Platform. Remote Sensing. 14(10), p.2377. 769 



 

Stringer et al., confidential manuscript in review 

30 

 

 

Lu, D., Mausel, P., Brondízio, E. and Moran, E. 2004. Change detection techniques. International Journal of 770 

Remote Sensing. 25(12), pp.2365–2401. 771 

Maat, D.S., Visser, R.J.W. and Brussaard, C.P.D. 2019. Virus removal by glacier-derived suspended fine 772 

sediment in the Arctic. Journal of Experimental Marine Biology and Ecology. 521, p.151227. 773 

Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, Michał, Nowakowski, A., 774 

Wojtkowski, C., Krupiński, Marcin, Krätzschmar, E. and Schauer, P. 2020. Automated Production of a 775 

Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sensing. 12(21), p.3523. 776 

Marchant, D.R. and Head, J.W. 2007. Antarctic dry valleys: Microclimate zonation, variable geomorphic 777 

processes, and implications for assessing climate change on Mars. Icarus. 192(1), pp.187–222. 778 

Martin, P.J. and Peel, D.A. 1978. The Spatial Distribution of 10 m Temperatures in the Antarctic Peninsula. 779 

Journal of Glaciology. 20(83), pp.311–317. 780 

Mink, S., López-Martínez, J., Maestro, A., Garrote, J., Ortega, J.A., Serrano, E., Durán, J.J. and Schmid, T. 781 

2014. Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) 782 

from quantitative analysis of the drainage system. Geomorphology. 225, pp.4–24. 783 

Mlčoch, B., Nývlt, D. and Mixa, P. 2020. Geological map of James Ross Island–Northern part 1: 25,000. 784 

Mohd Hasmadi, I., Pakhriazad, H.Z. and Shahrin, M.F. 2009. Evaluating supervised and unsupervised 785 

techniques for land cover mapping using remote sensing data. Malaysia nJournal of Society and 786 

Space. 5(1), pp.1–10. 787 

Molina-Montenegro, M.A., Carrasco-Urra, F., Rodrigo, C., Convey, P., Valladares, F. and Gianoli, E. 2012. 788 

Occurrence of the Non-Native Annual Bluegrass on the Antarctic Mainland and Its Negative Effects 789 

on Native Plants. Conservation Biology. 26(4), pp.717–723. 790 

Mulvaney, R., Abram, N.J., Hindmarsh, R.C.A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L.C., Alemany, O. 791 

and Foord, S. 2012. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf 792 

history. Nature. 489(7414), pp.141–144. 793 

Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M. and Elster, J. 2013. Freshwater lakes of Ulu Peninsula, James 794 

Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical 795 

limnology. Antarctic Science. 25(3), pp.358–372. 796 

Nývlt, D., Fišáková, M.N., Barták, M., Stachoň, Z., Pavel, V., Mlčoch, B. and Láska, K. 2016. Death age, 797 

seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, 798 

Antarctic Peninsula. Antarctic Science. 28(1), pp.3–16. 799 

Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., Liu, E.J., Sanjurjo, J. and Vieira, G. 800 

2016. The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the 801 

dating of lake sedimentary records. Geomorphology. 261, pp.89–102. 802 

Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J. and Trigo, R. 803 

2017. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the 804 

cryosphere. Science of the Total Environment. 580, pp.210–223. 805 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V, Woodcock, C.E. and Wulder, M.A. 2014. Good 806 

practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment. 807 

148, pp.42–57. 808 



 

Stringer et al., confidential manuscript in review 

31 

 

 

Olofsson, P., Foody, G.M., Stehman, S. V and Woodcock, C.E. 2013. Making better use of accuracy data in 809 

land change studies: Estimating accuracy and area and quantifying uncertainty using stratified 810 

estimation. Remote Sensing of Environment. 129, pp.122–131. 811 

Pannewitz, S., Green, T.G.A., Scheidegger, C., Schlensog, M. and Schroeter, B. 2003. Activity pattern of the 812 

moss Hennediella heimii (Hedw.) Zand. in the Dry Valleys, Southern Victoria Land, Antarctica during 813 

the mid-austral summer. Polar Biology. 26(8), pp.545–551. 814 

Pazúr, R., Huber, N., Weber, D., Ginzler, C. and Price, B. 2022. A national extent map of cropland and 815 

grassland for Switzerland based on Sentinel-2 data. Earth System Science Data. 14(1), pp.295–305. 816 

Petford, N. and Mirhadizadeh, S. 2017. Image-based modelling of lateral magma flow: the Basement Sill, 817 

Antarctica. Royal Society Open Science. 4(5), p.161083. 818 

Phiri, D. and Morgenroth, J. 2017. Developments in Landsat land cover classification methods: A review. 819 

Remote Sensing. 9(9), p.967. 820 

Raup, B., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R. and Arnaud, Y. 2007. The GLIMS geospatial 821 

glacier database: A new tool for studying glacier change. Global and Planetary Change. 56(1–2), 822 

pp.101–110. 823 

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J.P. 2012. An 824 

assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS 825 

Journal of Photogrammetry and Remote Sensing. 67(1), pp.93–104. 826 

Roman, M., Nedbalová, L., Kohler, T.J., Lirio, J.M., Coria, S.H., Kopáček, J., Vignoni, P.A., Kopalová, K., 827 

Lecomte, K.L., Elster, J. and Nývlt, D. 2019. Lacustrine systems of Clearwater Mesa (James Ross Island, 828 

north-eastern Antarctic Peninsula): geomorphological setting and limnological characterization. 829 

Antarctic Science. 31(4), pp.169–188. 830 

Rosa, K.K. da, Perondi, C., Veettil, B.K., Auger, J.D. and Simões, J.C. 2020. Contrasting responses of land-831 

terminating glaciers to recent climate variations in King George Island, Antarctica. Antarctic Science. 832 

32(5), pp.398–407. 833 

Rosado, B., Fernández-Ros, A., Berrocoso, M., Prates, G., Gárate, J., de Gil, A. and Geyer, A. 2019. Volcano-834 

tectonic dynamics of Deception Island (Antarctica): 27 years of GPS observations (1991–2018). 835 

Journal of Volcanology and Geothermal Research. 381, pp.57–82. 836 

Salvatore, M.C. 2001. Geomorphological sketch map of the Fossil Bluff area (Alexander Island, Antarctica) 837 

mapped from aerial photographs. Antarctic Science. 13(1), pp.75–78. 838 

Salvatore, M.R., Barrett, J.E., Fackrell, L.E., Sokol, E.R., Levy, J.S., Kuentz, L.C., Gooseff, M.N., Adams, B.J., 839 

Power, S.N., Knightly, J.P., Matul, H.M., Szutu, B. and Doran, P.T. 2023. The Distribution of Surface 840 

Soil Moisture over Space and Time in Eastern Taylor Valley, Antarctica. Remote Sensing. 15(12). 841 

Salvatore, M.R., Mustard, J.F., Head, J.W., Marchant, D.R. and Wyatt, M.B. 2014. Characterization of 842 

spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, 843 

Antarctica: weathering, alteration, and magmatic processes. Antarctic Science. 26(1), pp.49–68. 844 

Secretariat of the Antarctic Treaty 2022. ASPA 140: Parts of Deception Island, South Shetland Islands. 845 

Smellie, J.L. 2013. Geological Map of James Ross Island 1 . James Ross Island Volcanic Group. BAS GEOMAP 846 

2 Series, Sheet 5, British Antarctic Survey, Cambridge. 847 



 

Stringer et al., confidential manuscript in review 

32 

 

 

Smellie, J.L., Lopez-Martinez Geomorphological, J., Lopez-Martinez, J., Serrano, E., Rey, J., Headland, R.K., 848 

Hernandez-Cifuentes, F., Maestro, A., Millar, I.L., Somoza, L., Thomson, J.W. and Thomson, M.R.A. 849 

2002. Geology and geomorphology of Deception Island. British Antarctic Survey. 850 

Smellie, J.L. and Martin, A.P. 2021. Chapter 5.2a Erebus Volcanic Province: volcanology. Geological Society, 851 

London, Memoirs. 55(1), pp.415–446. 852 

Smith, R.I.L. 1988. Botanical survey of Deception Island. British Antarctic Survey Bulletin. (80), pp.129–136. 853 

Smith, R.I.L. 2005. The thermophilic bryoflora of Deception Island: Unique plant communities as a criterion 854 

for designating an Antarctic Specially Protected Area. Antarctic Science. 17(1), pp.17–27. 855 

Soenen, S.A., Peddle, D.R. and Coburn, C.A. 2005. SCS+C: A modified sun-canopy-sensor topographic 856 

correction in forested terrain. IEEE Transactions on Geoscience and Remote Sensing. 43(9), pp.2148–857 

2159. 858 

Sroková, S. and Nývlt, D. 2021. Bedload geochemical and petrophysical signature of the Algal and 859 

Bohemian streams, James Ross Island, Antarctic Peninsula. Czech Polar Reports. 11, pp.203–214. 860 

Staines, K.E.H., Carrivick, J.L., Tweed, F.S., Evans, A.J., Russell, A.J., Jóhannesson, T. and Roberts, M. 2015. A 861 

multi-dimensional analysis of pro-glacial landscape change at Sólheimajökull, southern Iceland. Earth 862 

Surface Processes and Landforms. 40(6), pp.809–822. 863 

Strother, S.L., Salzmann, U., Roberts, S.J., Hodgson, D.A., Woodward, J., Van Nieuwenhuyze, W., Verleyen, 864 

E., Vyverman, W. and Moreton, S.G. 2015. Changes in Holocene climate and the intensity of Southern 865 

Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic 866 

South Georgia. The Holocene. 25(2), pp.263–279. 867 

Syvitski, J.P.M. 2002. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar 868 

Research. 21(2), pp.323–330. 869 

Tejedo, P., Benayas, J., Cajiao, D., Albertos, B., Lara, F., Pertierra, L.R., Andrés-Abellán, M., Wic, C., 870 

Luciáñez, M.J., Enríquez, N., Justel, A. and Reck, G.K. 2016. Assessing environmental conditions of 871 

Antarctic footpaths to support management decisions. Journal of Environmental Management. 177, 872 

pp.320–330. 873 

Tejedo, P., Benayas, J., Cajiao, D., Leung, Y.-F., De Filippo, D. and Liggett, D. 2022. What are the real 874 

environmental impacts of Antarctic tourism? Unveiling their importance through a comprehensive 875 

meta-analysis. Journal of Environmental Management. 308, p.114634. 876 

Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A. and Fisher, P.F. 2015. A critical synthesis of remotely 877 

sensed optical image change detection techniques. Remote Sensing of Environment. 160, pp.1–14. 878 

Tichit, P., Brickle, P., Newton, R.J., Convey, P. and Dawson, W. 2024. Introduced species infiltrate early 879 

stages of succession after glacial retreat on sub-Antarctic South Georgia. NeoBiota. 92, pp.85–110. 880 

Torres-Mellado, G.A., Jaña, R. and Casanova-Katny, M.A. 2011. Antarctic hairgrass expansion in the South 881 

Shetland archipelago and Antarctic Peninsula revisited. Polar Biology. 34(11), pp.1679–1688. 882 

Váczi, P. and Barták, M. 2022. Multispectral aerial monitoring of a patchy vegetation oasis composed of 883 

different vegetation classes. UAV-based study exploiting spectral reflectance indices. Czech Polar 884 

Reports. 12(1), pp.131–142. 885 

Váczi, P., Barták, M., Bednaříková, M., Hrbáček, F. and Hájek, J. 2020. Spectral properties of Antarctic and 886 

Alpine vegetation monitored by multispectral camera: Case studies from James Ross Island and 887 

Jeseníky Mts. Czech Polar Reports. 10(2), pp.297–312. 888 



 

Stringer et al., confidential manuscript in review 

33 

 

 

Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., 889 

Pudsey, C.J. and Turner, J. 2003. Recent Rapid Regional Climate Warming on the Antarctic Peninsula. 890 

Climatic Change. 60(3), pp.243–274. 891 

Walker, D.A., Daniëls, F.J.A., Matveyeva, N. V, Šibík, J., Walker, M.D., Breen, A.L., Druckenmiller, L.A., 892 

Raynolds, M.K., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, H.E., Ermokhina, K., Fosaa, A.M., 893 

Hei∂marsson, S., Heim, B., Jónsdóttir, I.S., Koroleva, N., Lévesque, E., MacKenzie, W.H., Henry, G.H.R., 894 

Nilsen, L., Peet, R., Razzhivin, V., Talbot, S.S., Telyatnikov, M., Thannheiser, D., Webber, P.J. and 895 

Wirth, L.M. 2018. Circumpolar Arctic Vegetation Classification. Phytocoenologia. 48(2), pp.181–201. 896 

Walshaw, C. V., Gray, A., Fretwell, P.T., Convey, P., Davey, M.P., Johnson, J.S. and Colesie, C. 2024. A 897 

satellite-derived baseline of photosynthetic life across Antarctica. Nature Geoscience. 17(8), pp.755–898 

762. 899 

Wang, J.A., Sulla-Menashe, D., Woodcock, C.E., Sonnentag, O., Keeling, R.F. and Friedl, M.A. 2020. 900 

Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and 901 

climate forcing. Global Change Biology. 26(2), pp.807–822. 902 

Wilkes, M.A., Carrivick, J.L., Castella, E., Ilg, C., Cauvy-Fraunié, S., Fell, S.C., Füreder, L., Huss, M., James, W., 903 

Lencioni, V., Robinson, C. and Brown, L.E. 2023. Glacier retreat reorganizes river habitats leaving 904 

refugia for Alpine invertebrate biodiversity poorly protected. Nature Ecology and Evolution. 7(6), 905 

pp.841–851. 906 

Xu, R., Lin, H., Lü, Y., Luo, Y., Ren, Y. and Comber, A. 2018. A Modified Change Vector Approach for 907 

Quantifying Land Cover Change. Remote Sensing. 10(10), p.1578. 908 

  909 

 910 

 911 

 912 



1. Methods 

1.1. Choice of K-means values 

To produce our land classification map, we used a K-means clustering algorithm to split each image 

into 75 (K value = 75) discrete clusters. Unsupervised approaches, such as K-means do not require 

training datasets, and instead use the structure of an image to identify spectrally homogeneous 

pixels, based on a user-defined number of clusters; this is particularly useful for sites with little field 

information (Duda and Canty, 2002; Mohd Hasmadi et al., 2009), such as those analysed in this 

study. 

The specific K values were determined through expert judgement and represent values that 

minimised the chance of misclassification. Whilst others have used statistical methods, such as the 

‘Elbow Method’, to determine the number of clusters for analysis (Syakur et al., 2018), we chose to 

use our expert judgement because it allowed us to find a suitable threshold to properly identify the 

different land cover classes as independently mapped (Table 1) and identified in the field. The K 

value chosen ultimately affects the accuracy of the output (Ahmed et al., 2020) and it is, therefore, 

essential to assess the accuracy of the final product using independent datasets. The clusters are 

determined using the spectral information of each image, based on 500,000 randomly selected 

sampling points. We assigned each of these sections a first-order class by visually inspecting the 

image they were derived from. In some cases, we could not easily assign a cluster a first-order class. 

This was usually because a cluster had conflated shadow with dark seawater. To address this, we 

split these clusters using a slope threshold of 3°, with pixels <3° being assigned as water. Where this 

process resulted in obvious misclassification we used a random forest classifier to differentiate 

between water, land and ice. Some pixels were covered entirely by very dark shadows or clouds and, 

therefore, we could not classify them; these were assigned “No data”.  

1.2. No data/land undifferentiated classes 

The largest of these examples are on South Georgia and James Ross Island. To the northwest of 

South Georgia (Cape Alexandra and Bird Island), we classified a large area of land as “no data”, since 

it was entirely obscured by thick clouds in images. Similarly, we classified the southeast of James 

Ross Island (the largest island in the James Ross Archipelago) as “Land (undifferentiated)”. This 

region was covered by thin clouds in the imagery, which allowed us to differentiate land from ice 

and water, but it meant that we could not assign the land a second-order class with any confidence. 

1.3. Use of maps to classify K-means clusters 



Each map used its own nomenclature, but we found different land classes primarily centred on 

vegetation, bedrock outcrops, and landforms made of unlithified sedimentary rocks that are often 

defined by their grain size. Of the proglacial land classes, the two sedimentary classes (coarse/wet 

sediment and fine and dry sediment) are dominant (73 % - 90 % coverage). 

1.4. Change detection 

First, we merged each image pair to create an 18-band image with spectral information from both 

images (i.e. Band1L7, Band1L8, Band2L7, Band2L8 … ). We then added three further bands to describe: i) 

the magnitude of change in reflectance intensity between the images in each image pair, as described 

by the Euclidian distance (ED, Eq. (4)); ii) the change vector direction angle (DA. Eq. (5)); and, iii) the 

spectral angle mapper (SAM, Eq. (6)). 

!" =	%∑ '!"#
!$% , !"	 ∈ 	 [	0,,-.	(!")]   (4) 

 "2 =	 cos&% 6 ∑ (!
"

!

√#∗+,
7 , 8 ∈ 	 [	0, 9]    (5) 

 :2; =	cos&% 6∑ -!∗	/!
"

!

‖-!‖‖/!‖
7     (6) 

Where: 

• !!  is the difference in values for each spectral pair.   

• Xi  represent the spectral information of the first image 

• Yi  represent the spectral information of the second image 

• ‖ ‖ represents the length of each vector 

This 21-band image was then classified via a training dataset. To produce a training data set we 

classified the Landsat 7 image of Byers’ Peninsula using the approach laid out in section 2.2.2 (i.e. K-

means). We chose this site because it had the greatest variety of land classes in the contemporary 

classification. Across this site, we randomly selected 8,500 points and extracted the land cover at each 

point from both time-periods and assigned each a class-to-class (ClTCl) change value based on their 

land cover classification in the Landsat 7 (L7) image and Landsat 8 image (i.e. L7TL8). We removed any 

ClTCl changes that represented less than 1 % of the points to reduce the risk of misclassification. The 

remaining points described 12 ClTCl change classes (Table 2).  

We then extracted band values from the 21-band image at each of these points and used them to 

train a random forest classifier that classified change at each site. The classifier was parameterised to 

have 500 trees because errors are stable around this number (Lawrence et al., 2006; Xu et al., 2018) 



and used to classify the 21 band image at each site. We modified the training dataset for each of our 

five proglacial sites to ensure that only changes between classes present in the modern land 

classification were possible.. As well as representing an absolute change in land cover type, change 

classes also describe processes. For example, the CTT class both describes a change from coarse 

sediment to turbid water, as well as representing a change from land to water. In the case of Alexander 

Island, there is no coarse sediment land cover or turbid water in either land classification. However, 

the CVA identified some pixels of CTT change. Therefore, we did not remove CTT as a possible change 

class as it accurately identified a process that was clearly visible in satellite images (i.e. ponded water 

where land previously was). 



1.5 Confusion matrices 

Confusion matrix for all land cover classes 

 

 

Class Water (1) Ice (4) Bedrock (6) Coarse Sed (7) Fine Sed (8) Veg (9) Total (ni) Total area (km2) Wi Wi2
Water 5 3 0 0 0 1 9 91.75 2E-03 4E-06

Ice 1 2588 0 4 2 0 2595 43395.90 9E-01 8E-01
Bedrock 0 4 11 4 7 1 27 236.49 5E-03 2E-05

Coarse Sed 0 48 0 55 11 0 114 1461.23 3E-02 9E-04
Fine Sed 0 20 3 4 107 0 134 2397.77 5E-02 3E-03

Veg 0 0 0 3 2 5 10 152.66 3E-03 1E-05
Total (nj) 6 2663 14 70 129 7 2889 47735.7975
No data 0 65 1 22 22 3

Class Water Ice Bedrock Coarse Fine Veg Total (p̂ i) Ûi p̂ j
Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.83
Turbid 0.00 0.90 0.00 0.00 0.00 0.00 0.90 1.00 0.97

Bedrock 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.41 0.79
Fine Sed 0.00 0.02 0.00 0.02 0.00 0.00 0.04 0.48 0.79

Coarse Sed 0.00 0.01 0.00 0.00 0.04 0.00 0.05 0.80 0.83
Veg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.71

Total (p̂ j) 0.00 0.92 0.00 0.02 0.04 0.00 1.00 3.74 4.92

Class Error adjusted area 95% confidence % Area % error n Overall accuracy 95.92%
Water 99                         46                   0.21% 45.92% 9                

Ice 44,002                   220                  92.18% 0.50% 2,595         
Bedrock 231                        174                  0.48% 75.32% 27              
Fine Sed 2,132                     196                  4.47% 9.19% 134            

Coarse Sed 1,157                     174                  2.42% 15.06% 114            
Veg 116                        56                   0.24% 48.76% 10              
Total 47,735.80              

Reference classes



Confusion matrix of proglacial classes 

 

 

Class Water (1) Ice (4) Bedrock (6) Coarse Sed (7) Fine Sed (8) Veg (9) Total (ni) Total area (km2) Wi Wi2

Water 11 0 0 1 2 1 15 91.75 0.02 0.00
Ice 2 0 3 16 16 1 38 0.00 0.00 0.00

Bedrock 0 0 30 12 3 0 45 236.49 0.05 0.00
Coarse Sed 2 0 14 190 51 0 257 1461.23 0.34 0.11

Fine Sed 0 0 3 28 335 5 371 2397.77 0.55 0.31
Veg 0 0 0 6 9 19 34 152.66 0.04 0.00

Total (nj) 15 0 50 253 416 26 760 4339.899
No data 7 5 84 197 10

Class Water Ice Bedrock Coarse Fine Veg Total (p̂ i) Ûi p̂ j
Water 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.73 0.73

Ice 0.00 0.00 0.00 0.02 0.02 0.00 0.05 0.00 0.00
Bedrock 0.00 0.00 0.04 0.02 0.00 0.00 0.06 0.67 0.60
Fine Sed 0.00 0.00 0.02 0.25 0.07 0.00 0.34 0.74 0.75

Coarse Sed 0.00 0.00 0.00 0.04 0.44 0.01 0.49 0.90 0.81
Veg 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.56 0.73

Total (p̂ j) 0.02 0.00 0.07 0.33 0.55 0.03 1.00 3.60 3.62

Class Error adjusted area km2) 95% confidence % Area % error n Overall accuracy 76.97%

Water 86                               26                   1.97% 30.87% 15             
Bedrock 286                              57                   6.58% 19.86% 45             
Fine Sed 2,376                           107                  54.74% 4.50% 371           

Coarse Sed 1,445                           109                  33.29% 7.53% 257           
Veg 148                              40                   3.42% 26.99% 34             
Total 4,340                           

Reference classes



1.6 Images used during the analysis, including the date of image acquisition and overall cloud cover 

Landsat 8 image Date 
Cloud 

cover % 
Landsat 7 image Date 

Cloud 

cover 

% 

James Ross Island 

LANDSAT/LC08/C02/T2_TOA/LC08_215105_201702

04 

LANDSAT/LC08/C02/T2_TOA/LC08_215105_201602

02 

04/02/2017 

02/02/2016 

6 

6 

LANDSAT/LE07/C02/T2_TOA/LE07_216105_20000221 
21/02/200

0 
15 

Dry Valleys 

LANDSAT/LC08/C02/T2_TOA/LC08_056116_201912

17 
17/12/2019 0 LANDSAT/LE07/C02/T2_TOA/LE07_059115_20011228 

28/12/200

0 
1 

Alexander Island 



LANDSAT/LC08/C02/T2_TOA/LC08_218110_202001

17 

LANDSAT/LC08/C02/T2_TOA/LC08_217111_201911

07 

LANDSAT/LC08/C02/T2_TOA/LC08_216110_201912

18 

17/01/2020 

07/11/2019 

18/12/2019 

0 

1 

0 

LANDSAT/LE07/C02/T2_TOA/LE07_213111_20020104 

LANDSAT/LE07/C02/T2_TOA/LE07_217111_20021202 

LANDSAT/LE07/C02/T2_TOA/LE07_218110_20010104 

LANDSAT/LE07/C02/T2_TOA/LE07_218111_20030211 

LANDSAT/LE07/C02/T2_TOA/LE07_214110_20030130 

LANDSAT/LE07/C02/T2_TOA/LE07_218110_20030211 

LANDSAT/LE07/C02/T2_TOA/LE07_219109_20011229 

LANDSAT/LE07/C02/T2_TOA/LE07_132133_20001123 

LANDSAT/LE07/C02/T2_TOA/LE07_216111_20030112 

LANDSAT/LE07/C02/T2_TOA/LE07_217111_20010214 

LANDSAT/LE07/C02/T2_TOA/LE07_214110_20020127 

LANDSAT/LE07/C02/T2_TOA/LE07_217110_20021202 

LANDSAT/LE07/C02/T2_TOA/LE07_218111_20010104 

04/01/200

2 

02/12/200

2 

04/01/200

1 

11/02/200

3 

30/01/200

3 

11/02/200

3 

29/12/200

1 

23/11/200

0 

12/01/200

3 

1 

1 

1 

1 

2 

2 

2 

3 

3 

3 

4 

4 

4 



14/02/200

1 

27/01/200

2 

02/12/200

2 

04/01/200

1 

Deception Island 

LANDSAT/LC08/C02/T2_TOA/LC08_219104_202002

09 
09/02/2020 21    

Byers Peninsula 

LANDSAT/LC08/C02/T2_TOA/LC08_219104_202002

09 
09/02/2020 21 LANDSAT/LE07/C02/T2_TOA/LE07_219104_20020130 

30/01/200

2 
17 

South Georgia 

LANDSAT/LC08/C02/T1_TOA/LC08_206098_201803

28 

28/03/2018 

04/04/2018 

2 

47 

LANDSAT/LE07/C02/T1_TOA/LE07_206098_20020103 

LANDSAT/LE07/C02/T1_TOA/LE07_206098_20030207 

03/01/200

2 

65 

17 



LANDSAT/LC08/C02/T1_TOA/LC08_207098_201804

04 

07/02/200

3 

 

Images used in accuracy assessment 

Accuracy assessment was conducted using Sentinel-2 MSI images that coincided with the date of image acquisition of the Landsat-8 OLI images used for the 

land class classification. Images with low-cloud images preferentially chosen. The code to collate these images, as well as list of images (in the console) can 

be found here: https://code.earthengine.google.com/6bc925765ad1a42d193d2ef43930f483 . NB: image availability was prioritised over cloud-free images. 

Any validation point located over cloud cover was discounted from the final accuracy assessment. 

https://code.earthengine.google.com/6bc925765ad1a42d193d2ef43930f483


1.7 Mean spectra 

Spectra:  

 



Comparisons: 

NB: dotted line =  coarse/turbid 

 

 

 

 

 



2. Land classification maps 
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Region blue green red nir swir1 swir2

SG 0.13704 0.086862 0.056441 0.04354 0.019376 0.013345

JRI 0.152812 0.110064 0.078367 0.048222 0.020767 0.017871

BP 0.140738 0.109761 0.066844 0.041494 0.018244 0.004329

DI 0.134944 0.105298 0.063254 0.04017 0.018877 0.005201

AI 0.575288 0.532354 0.350095 0.162037 0.074789 0.004446

DV

Region blue green red nir swir1 swir2

SG 0.201999 0.143707 0.098399 0.053077 0.012557 0.007318

JRI 0.172237 0.148793 0.128677 0.060458 0.012892 0.010266

BP 0.169474 0.146118 0.116789 0.092441 0.046417 0.01833

DI 0.14101 0.113508 0.074265 0.048057 0.02126 0.005916

AI

DV

Region blue green red nir swir1 swir2

SG

JRI 0.330555 0.298386 0.289983 0.246736 0.063194 0.049305

BP 0.193893 0.172299 0.145195 0.135257 0.118506 0.040388

DI 0.175027 0.151391 0.11682 0.101581 0.064914 0.016403

AI 0.372704 0.33559 0.267855 0.235339 0.190599 0.222842

DV 0.412788 0.38517 0.404316 0.401682 0.178636 0.157122

Region blue green red nir swir1 swir2

SG 0.590638 0.547771 0.555629 0.478651 0.03359 0.019005

JRI 0.657738 0.624866 0.63022 0.548382 0.023818 0.031615

BP 0.559984 0.570724 0.555912 0.560019 0.4496 0.009149

DI 0.33295 0.330545 0.315363 0.320545 0.263397 0.012669

AI 0.869529 0.861654 0.791099 0.793005 0.732279 0.051624

DV 0.797303 0.735013 0.760796 0.738944 0.084212 0.088127

Region blue green red nir swir1 swir2

SG

JRI 0.156913 0.138707 0.147702 0.158231 0.14662 0.114591

BP 0.154448 0.128793 0.096384 0.083144 0.087845 0.075143

DI 0.140673 0.113257 0.076984 0.062519 0.04727 0.033018

AI 0.262669 0.22449 0.177962 0.163305 0.139424 0.099994

DV 0.253559 0.220653 0.230089 0.225743 0.132087 0.112062

Region blue green red nir swir1 swir2

SG 0.146383 0.105372 0.086826 0.066113 0.088711 0.063808

JRI 0.146692 0.114031 0.104044 0.101774 0.120692 0.096378

BP 0.158519 0.135498 0.111599 0.107118 0.134188 0.117578

Water

Turbid

Wet Ice

Ice

Bedrock

Coarse



DI 0.142661 0.116641 0.083653 0.073418 0.066911 0.059048

AI

DV 0.207432 0.178076 0.181037 0.173922 0.167391 0.148944

Region blue green red nir swir1 swir2

SG 0.167279 0.137951 0.131029 0.181177 0.173406 0.107326

JRI 0.172702 0.14952 0.147935 0.150416 0.153192 0.13002

BP 0.17106 0.150705 0.132187 0.131646 0.154384 0.136386

DI 0.14311 0.117158 0.083822 0.073154 0.064464 0.056382

AI 0.248993 0.210855 0.159091 0.137949 0.115097 0.030403

DV 0.215206 0.186343 0.191474 0.186543 0.172785 0.153765

Region blue green red nir swir1 swir2

SG 0.172099 0.145411 0.131129 0.303571 0.16034 0.105848

JRI 0.195461 0.159675 0.149284 0.154674 0.164552 0.204832

BP 0.151218 0.124182 0.089762 0.072748 0.101687 0.063436

DI 0.140066 0.114645 0.086451 0.072654 0.119967 0.088167

AI

DV

MeanFine 0.186392 0.158755 0.140923 0.143481 0.138888 0.10238

MeanCoarse 0.160337 0.129924 0.113432 0.104469 0.115579 0.097151

StdevFine 0.035143 0.031061 0.032582 0.037506 0.038493 0.0445

StdevCoarse 0.024144 0.026006 0.035374 0.03814 0.035064 0.033657

MeanWater 0.141383 0.102996 0.066227 0.043356 0.019316 0.010186 Exc AI

MeanTurbid 0.17118 0.138032 0.104533 0.063508 0.023282 0.010458

StdevWater 0.006917 0.009504 0.007943 0.003055 0.000929 0.005661

StdevTurbid 0.021587 0.014272 0.020536 0.017277 0.013805 0.004809

Fine

Vegetation



b1 b2 b3 b4 b5 b6


