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We study an adaptive estimation procedure called the Goldenshluger–Lepski method in the context of reproducing
kernel Hilbert space (RKHS) regression. Adaptive estimation provides a way of selecting tuning parameters for
statistical estimators using only the available data. This allows us to perform estimation without making strong as-
sumptions about the estimand. In contrast to procedures such as training and validation, the Goldenshluger–Lepski
method uses all of the data to produce non-adaptive estimators for a range of values of the tuning parameters. An
adaptive estimator is selected by performing pairwise comparisons between these non-adaptive estimators. Apply-
ing the Goldenshluger–Lepski method is non-trivial as it requires a simultaneous high-probability bound on all of
the pairwise comparisons. In the RKHS regression context, we choose our non-adaptive estimators to be clipped
least-squares estimators constrained to lie in a ball in an RKHS. Applying the Goldenshluger–Lepski method in
this context is made more complicated by the fact that we cannot use the L2 norm for performing the pairwise
comparisons as it is unknown. We use the method to address two regression problems. In the first problem the
RKHS is fixed, while in the second problem we adapt over a collection of RKHSs.

Keywords: Adaptive estimation; Goldenshluger–Lepski method; RKHS regression

1. Introduction

In nonparametric statistics, it is assumed that the estimand belongs to a very large parameter space in
order to avoid model misspecification. Such misspecification can lead to large approximation errors
and poor estimator performance. However, it is often challenging to produce estimators which are
robust against such large parameter spaces. An important tool which allows us to achieve this aim is
adaptive estimation. Adaptive estimators behave as if they know the true model from a collection of
models, despite being a function of the data. In particular, adaptive estimators can often achieve the
same optimal rates of convergence as the best estimators when the true model is known.

In this paper, we study an adaptive estimation procedure called the Goldenshluger–Lepski method in
the context of reproducing kernel Hilbert space (RKHS) regression. The Goldenshluger–Lepski method
works by performing pairwise comparisons between non-adaptive estimators with a range of values for
the tuning parameters. As far as we are aware, this is the first time that this method has been applied in
the context of RKHS regression. The Goldenshluger–Lepski method, introduced in the series of papers
[16–18,20], is an extension of Lepski’s method. While Lepski’s method focusses on adaptation over a
single parameter, the Goldenshluger–Lepski method can be used to perform adaptation over multiple
parameters.

The Goldenshluger–Lepski method operates by selecting an estimator which minimises the sum of
a proxy for the unknown bias and an inflated variance term. The proxy for the bias is calculated by
performing pairwise comparisons between the estimator in question and all estimators which are in
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some sense less smooth than this estimator. A key challenge in applying the Goldenshluger–Lepski
method is proving a high-probability bound on all of these pairwise comparisons simultaneously. This
bound is called a majorant.

We now describe the RKHS regression problem studied in this paper. We denote our covariate space
by S and we assume that the regression function lies in an interpolation space between C(S), the space
of continuous functions equipped with the supremum norm, and an RKHS. Depending on the setting,
this RKHS may be fixed or we may perform adaptation over a collection of RKHSs. The non-adaptive
estimators we use in this context are clipped versions of least-squares estimators which are constrained
to lie in a ball of predefined radius in an RKHS. These estimators are discussed in detail in [32].
Constraining an estimator to lie in a ball of predefined radius is a form of Ivanov regularisation (see
[31]). One advantage of these estimators is that there is a clear way of producing a majorant for them,
especially when the RKHS is fixed. This is because we can control the estimator constrained to lie in
a ball of radius r by bounding quantities of the form rZ for some random variable Z which does not
depend on r .

When the RKHS is fixed, the only tuning parameter to be selected is the radius of the ball in which
the least-squares estimator is constrained to lie. Estimators for which the radius is larger are considered
to be less smooth. In order to provide a majorant for the Goldenshluger–Lepski method, we must prove
regression results which control these estimators for all radii simultaneously. When we perform adap-
tation over a collection of RKHSs, we must prove regression results which control the same estimators
for all RKHSs and all ball radii in these RKHSs simultaneously. We demonstrate this approach for
a collection of RKHSs with Gaussian kernels. Estimators for which both the width parameter of the
Gaussian kernel is smaller and the radius of the ball in the RKHS is larger are considered to be less
smooth. These results extend those of [32].

Our main results are Theorems 4 (page 2248) and 9 (page 2253). These show that a fixed quantile of
the squared L2(P ) error of a clipped version of the estimator produced by the Goldenshluger–Lepski
method is of order n−β/(1+β). Here, n is the number of data points and β parametrises the interpolation
space between C(S) and the RKHS containing the regression function. We use C(S) when interpolat-
ing so that we have direct control over approximation errors in the L2(Pn) norm. Theorem 4 addresses
the case in which the RKHS is fixed and Theorem 9 addresses the case in which we perform adaptation
over a collection of RKHSs with Gaussian kernels. The order n−β/(1+β) for the squared L2(P ) error
of the adaptive estimators matches the order of the smallest bounds obtained in [32] for the squared
L2(P ) error of the non-adaptive estimators. In the sense discussed in [32], this order is the optimal
power of n if we make the slightly weaker assumption that the regression function is an element of
the interpolation space between L2(P ) and the RKHS parametrised by β . In particular, for a fixed
β ∈ (0,1), Steinwart et al. [38] show that there is an instance of our problem such that the following
holds. For all estimators f̂ of g, for some ε > 0, we have

‖f̂ − g‖2
L2(P )

≥ Cα,εn
−α

with probability at least ε for all n ≥ 1, for some constant Cα,ε > 0, for all α > β/(1+β). This implies

that for all estimators f̂ of g, we have

E
(

‖f̂ − g‖2
L2(P )

)

≥ Cα,εεn
−α

for all n ≥ 1, for all α > β/(1 + β). In this sense, our expectation bound in this setting is optimal
because it attains the order n−β/(1+β), the smallest possible power of n.

Under further assumptions on the effective dimension of the RKHS faster rates of convergence can
be obtained. For instance, in Steinwart et al. [38] optimal rates of convergence under assumptions on
the effective dimension are attained and our rates correspond to their worst-case rates. Also see [10,28]
for results on estimating the effective dimension from data.
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1.1. Literature review

Lepski’s method was introduced in the series of papers [24–26] as a method for adaptation over a
single parameter. It has since been studied in, for example, [6] and [15]. Lepski’s method selects the
smoothest non-adaptive estimator from a collection, subject to a bound on a series of pairwise compar-
isons involving all estimators at most as smooth as the resulting estimator. The method can only adapt
to one parameter because of the need for an ordering of the collection of non-adaptive estimators.

Lepski’s method has been applied to RKHS regression under the name of the balancing principle.
However, as far as we are aware, Lepski’s method has not been used to target the true regression
function, but instead an RKHS element which approximates the true regression function. In [13], the
authors note the difficulty in using Lespki’s method to control the squared L2(P ) error of an adaptive
version of a support vector machine (SVM). This difficulty arises because Lepski’s method generally
requires the norm we are interested in controlling to be known in order to perform the pairwise com-
parisons. However, P is unknown in this situation. The authors of [13] get around the problem that
P is unknown as follows. Lepski’s method is used to control the known squared L2(Pn) error and
squared RKHS error of two different adaptive SVMs. The results of these procedures are combined to
produce an adaptive SVM whose squared L2(P ) error is bounded. The above alteration is also noted
in [27]. Furthermore, the authors show that it is possible to greatly reduce the number of pairwise com-
parisons which must be performed to produce an adaptive estimator. This is done by only comparing
each estimator to the estimator which is next less smooth.

Lepski’s method is common in the inverse problems literature and is there also known as the bal-
ancing principle. In this context, it is not assumed that the target function lies in a particular RKHS
but within a scale of Hilbert spaces. Scales of Hilbert spaces have been developed in [23] and have
been introduced to the inverse problems literature in [29] and [30]. These scales of Hilbert spaces are
closely linked to interpolation spaces [23]. Adaptation over these scales is typically achieved by com-
bining Tikhonov regularisation with Lepski’s method. This approach achieves in various settings close
to optimal rates of convergence (e.g. [19,35]).

The Goldenshluger–Lepski method extends Lepski’s method in order to perform adaptation over
multiple parameters. The method is introduced in the series of papers [16–18,20]. The first two papers
concentrate on function estimation in the presence of white noise. The first paper considers the problem
of pointwise estimation, while the second paper examines estimation in the Lp norm for p ∈ [1,∞].
The third paper produces adaptive bandwidth estimators for kernel density estimation and the fourth
paper considers general methodology for selecting a linear estimator from a collection.

Another popular approach to model selection is to use a training and validation set. The training set
is used to produce a collection of non-adaptive estimators for a range of different values for the tuning
parameters and the validation set is used to select the best estimator from this collection. This selection
is performed by calculating a proxy for the cost function that we wish to minimise. An example of
using training and validation to perform adaptation over a Gaussian kernel parameter for an SVM
can be found in [14]. The procedure produces an adaptive estimator of a bounded regression function
from a range of Sobolev spaces. This estimator is analysed using union bounding, as opposed to the
chaining techniques used to analyse the Goldenshluger–Lepski method in this paper. The training and
validation approach is studied in a more general context in [11] using inverse problem techniques. One
important advantage of the Goldenshluger–Lepski method in comparison to training and validation is
that it uses all of the data to calculate the non-adaptive estimators. This is because it does not require
data for calculating a proxy cost function. However, the Goldenshluger–Lepski method does require us
to calculate a majorant, as discussed above, which is often a challenging task.

There are various other approaches to gain adaptive estimators. For instance, in [2] regression under
random design is studied. The estimators are chosen adaptively from a family of finite dimensional
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subspaces of L2(ν), where ν is a known measure on the covariate space. The estimation approach se-
lects a member of the family of subspaces by minimising a linear combination of the best least-squares
error that can be achieved within the class and a penalty term which penalises model complexity. In
contrast to Lepski’s method the model class is selected based solely on this value and no pairwise com-
parison between model classes is performed. Model selection based on penalised least-squares values
is a well-studied area, in particular, in the Gaussian noise case. To mention but a few references, in [8]
a versatile framework for model selection under a penalised least-squares criterion is developed and in
[9] the role of the penalty term in this framework is analysed in depth. Closely related are earlier works
[3,7] where penalty terms are used in conjunction with sieves to produce adaptive estimators.

We perform in this paper adaptation over a family of kernel functions. This approach touches on the
topic of multiple kernel learning (MKL) where a family of kernels is given and a regressor is chosen
from the corresponding family of RKHSs. Early MKL papers like [1,12] focus on the optimisation
aspect of the problem, i.e. how to efficiently find a suitable kernel within a large family of kernels
to gain small empirical errors. In [21] a broad overview of MKL techniques up to the year 2011 is
given. A more recent overview is contained in [34]. Much of the MKL literature focuses solely on
the optimisation problem and not on controlling the risk of estimators. To the best of our knowledge,
the risk has not been studied in the MKL literature under our assumption that the unknown regression
function can lie outside of all the involved RKHSs.

2. Problem definition

We give a formal definition of the RKHS regression problem. First, recall that an RKHS H on S is
a Hilbert space of real-valued functions on S such that, for all x ∈ S, there is some kx ∈ H such that
h(x) = 〈h, kx〉H for all h ∈ H . The function k(x1, x2) = 〈kx1 , kx2〉H for x1, x2 ∈ S is known as the
kernel and is symmetric and positive-definite.

For a topological space T , let B(T ) be its Borel σ -algebra. Let (S,S) be a measurable space and
(Xi, Yi) for 1 ≤ i ≤ n be i.i.d. (S × R,S ⊗ B(R))-valued random variables on the probability space
(�,F,P). We assume Xi ∼ P and E(Y 2

i ) < ∞, where E denotes integration with respect to P. We
have E(Yi |Xi) = g(Xi) almost surely for some function g which is measurable on (S,S) (Section A3.2
of [40]). Our goal is to estimate g from the data (Xi, Yi), 1 ≤ i ≤ n. Since E(Y 2

i ) < ∞, it follows that
g ∈ L2(P ) by Jensen’s inequality. We consider the quadratic loss with the corresponding risk function
for an estimate ĥ given by

E
(

ĥ(X) − Y
)2

,

where the pair (X,Y ) has the same distribution as (X1, Y1) and is independent of (Xi, Yi),1 ≤ i ≤ n.
Furthermore, ĥ is assumed measurable with respect to (Xi, Yi),1 ≤ i ≤ n, and to attain values in an
RKHS or in a collection of RKHSs.

We assume throughout that

(g1) ‖g‖∞ ≤ C for C > 0.

We also need to make an assumption on the behaviour of the errors of the response variables Yi for
1 ≤ i ≤ n. Let U and V be random variables on (�,F,P). We say U is σ 2-sub-Gaussian if

E
(

exp(tU)
)

≤ exp
(

σ 2t2/2
)

for all t ∈R. We say U is σ 2-sub-Gaussian given V if

E
(

exp(tU)|V
)

≤ exp
(

σ 2t2/2
)
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almost surely for all t ∈ R. We assume

(Y ) Yi − g(Xi) is σ 2-sub-Gaussian given Xi for 1 ≤ i ≤ n.

3. Regression for a fixed RKHS

We continue by providing simultaneous bounds on our collection of non-adaptive estimators for a fixed
RKHS. Our results in this section depend on how well the regression function g can be approximated
by elements of an RKHS H with kernel k. We make the following assumptions.

(H ) The RKHS H with kernel k has the following properties:

• The RKHS H is separable.
• The kernel k is bounded.
• The kernel k is a measurable function on (S × S,S ⊗ S).

We define

‖k‖diag = sup
x∈S

k(x, x) < ∞.

We can guarantee that H is separable by, for example, assuming that k is continuous and S is a sepa-
rable topological space (Lemma 4.33 of [37]). The fact that H has a kernel k which is measurable on
(S × S,S ⊗ S) guarantees that all functions in H are measurable on (S,S) (Lemma 4.24 of [37]).

Let BH be the closed unit ball of H and r > 0. We define the estimator

ĥr = arg min
f ∈rBH

1

n

n
∑

i=1

(

f (Xi) − Yi

)2

of the regression function g. We make this definition unique by demanding that ĥr ∈ sp{kXi
: 1 ≤ i ≤ n}

(see Lemma 3 of [32]). We also define ĥ0 = 0. Lemma 11 on page 11 states that this estimator is well
defined.

Since we assume (g1), that g is bounded in [−C,C], we can make ĥr closer to g by constraining it
to lie in the same interval. As in [32], we define the projection V :R→ [−C,C] by

V (t) =

⎧

⎪

⎨

⎪

⎩

−C if t < −C,

t if |t | ≤ C,

C if t > C,

for t ∈R. For a function f : S →R we write Vf for the composition of V and f .
We now prove a series of result which allow us to control ĥr for r ≥ 0 simultaneously, extending the

results of [32] while using similar proof techniques. This is crucial in order to apply the Goldenshluger–
Lepski method to these estimators. The results assign probabilities to events which occur for all r ≥ 0
and all hr ∈ rBH . These events are measurable due to the separability of [0,∞) and rBH , as well as
the continuity in r of the quantities in question, including ĥr by Lemma 11. By Lemma 2 of [32], we
have

‖ĥr − hr‖
2
L2(Pn)

≤
4

n

n
∑

i=1

(

Yi − g(Xi)
)(

ĥr(Xi) − hr(Xi)
)

+ 4‖hr − g‖2
L2(Pn)
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for all r > 0 and all hr ∈ rBH . We can remove ĥr in the first term on the right-hand side by taking
a supremum over rBH . After applying the reproducing kernel property and the Cauchy-Schwarz in-
equality, we obtain a quadratic form of sub-Gaussians which can be controlled using Lemma 36 of
[32]. See Lemma 22 in [33] on page 1 for details.

It is useful to be able to transfer a bound on the squared L2(Pn) error of an estimator, including the
result above, to a bound on the squared L2(P ) error of the estimator. By using Talagrand’s inequality,
we can obtain a high-probability bound on

sup
r>0

sup
f1,f2∈rBH

1

r

∣

∣‖Vf1 − Vf2‖
2
L2(Pn)

− ‖Vf1 − Vf2‖
2
L2(P )

∣

∣

by proving an expectation bound on the same quantity. By using symmetrisation (Lemma 2.3.1 of
[39]) and the contraction principle for Rademacher processes (Theorem 3.2.1 of [15]), we again obtain
a quadratic form of sub-Gaussians, which in this case are Rademacher random variables. The result is
stated in Lemma 24 in [33] on page 3.

To capture how well g can be approximated by elements of H , we define

I∞(g, r) = inf
{

‖hr − g‖2
∞ : hr ∈ rBH

}

for r ≥ 0. We use this measure of approximation as it is compatible with the use of the bound

‖hr − g‖2
L2(Pn)

≤ ‖hr − g‖2
∞

in the proof of Lemma 22. It is easy to show that I∞(g, r) is continuous in r under Assumption (H ).
We obtain a bound on the squared L2(P ) error of V ĥr by combining Lemmas 22 and 24. To state

this result we need the following events

A1,t =

{

‖ĥr − hr‖
2
L2(Pn)

≤
20‖k‖

1/2
diagσrt1/2

n1/2
+ 4‖hr − g‖2

∞, for all r ≥ 0

}

,

A2,t =

{

sup
f1,f2∈rBH

∣

∣‖Vf1 − Vf2‖
2
L2(Pn)

− ‖Vf1 − Vf2‖
2
L2(P )

∣

∣

≤
97‖k‖

1/2
diagCrt1/2

n1/2
+

8‖k‖
1/2
diagCrt

3n
, for all r ≥ 0

}

.

Theorem 1. Assume (g1), (Y ) and (H ) and let t ≥ 1. On the set A1,t ∩ A2,t ∈ F , for which P(A1,t ∩

A2,t ) ≥ 1 − 2e−t , we have

‖V ĥr − g‖2
L2(P )

≤
2‖k‖

1/2
diag(97C + 20σ)rt1/2

n1/2
+

16‖k‖
1/2
diagCrt

3n
+ 10I∞(g, r)

simultaneously for all r ≥ 0.

3.1. The Goldenshluger–Lepski method for a fixed RKHS

We now produce bounds on our adaptive estimator for a fixed RKHS. Lemma 12 (p. 2255), which is a
simple consequence of Lemma 22, can be used to define the majorant of the non-adaptive estimators.
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This motivates the following definition of the adaptive estimator used in the Goldenshluger–Lepski
method.

Let R ⊆ [0,∞) be closed and non-empty. The Goldenshluger–Lepski method defines an adaptive
estimator using

r̂ = arg min
r∈R

(

sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2

)

(1)

for tuning parameters τ, ν > 0. The supremum of pairwise comparisons can be viewed as a proxy for
the unknown bias, while the other term is an inflated variance term. Note that the supremum is at least
the value at r , so

sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2
≥

2ντr

n1/2
. (2)

The role of the tuning parameter ν is simply to control this bound. In fact, the parameter ν only affects
the constants and not the rate of convergence in Theorem 4 and Theorem 9. The parameter τ controls
the probability with which our bound on the squared L2(P ) error of V ĥr̂ holds. Lemma 13 on page
2255 shows that the estimator r̂ is well-defined by Equation (1).

It may be that r̂ is not a random variable on (�,F) in some cases, but we assume

(r̂) r̂ is a well-defined random variable on (�,F)

throughout. Later, we assume that R is finite, in which case r̂ is certainly a random variable on (�,F).
If r̂ is a random variable on (�,F), then ĥr̂ is a (H,B(H))-valued measurable function on (�,F) by
Lemma 11.

By Lemma 12, the supremum in the definition of r̂ is at most 40I∞(g, r) for an appropriate value
of t . The definition of r̂ then gives us control over the squared L2(Pn) norm of ĥr̂ − ĥr when r̂ ≤ r .
When r̂ ≥ r , we can control the squared L2(Pn) norm of ĥr̂ − ĥr using Lemma 12. However, we must
control a term of order r̂/n1/2 using (2) and the definition of r̂ . In both cases, this gives a bound on
the squared L2(Pn) norm of V ĥr̂ − V ĥr . Extra terms appear when moving to a bound on the squared
L2(P ) norm of V ĥr̂ − V ĥr using Lemma 24. However, these terms are very similar to the inflated
variance term, and can be controlled in the same way. Applying

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V ĥr̂ − V ĥr‖
2
L2(P )

+ 2‖V ĥr − g‖2
L2(P )

leads to Theorem 14 (p. 2256). Combining it with Theorem 1 gives us the following main result.

Theorem 2. Assume (g1), (Y ), (H ) and (r̂). Let τ ≥ 80‖k‖
1/2
diagσ , ν > 0 and

t =

(

τ

80‖k‖
1/2
diagσ

)2

≥ 1.

On the set A1,t ∩ A2,t ∈ F , for which P(A1,t ∩ A2,t ) ≥ 1 − 2e−t , we have

‖V ĥr̂ − g‖2
L2(P )

≤ inf
r∈R

((

1 + D1τn−1/2)(D2τrn−1/2 + D3I∞(g, r)
))

for constants D1,D2,D3 > 0 not depending on τ , r or n.
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We can obtain rates of convergence for our estimator V ĥr̂ if we make an assumption about how
well g can be approximated by elements of H . Such assumptions are typically stated in terms of
interpolation spaces between a Banach space (Z,‖·‖Z) and a dense subspace (V ,‖·‖V ) (see [5]). The
K-functional of (Z,V ) is

K(z, t) = inf
v∈V

(

‖z − v‖Z + t‖v‖V

)

for z ∈ Z and t > 0. We define

‖z‖β,q =

(∫ ∞

0

(

t−βK(z, t)
)q

t−1 dt

)1/q

and ‖z‖β,∞ = sup
t>0

(

t−βK(z, t)
)

for z ∈ Z, β ∈ (0,1) and 1 ≤ q < ∞. We then define the interpolation space [Z,V ]β,q to be the set of
z ∈ Z such that ‖z‖β,q < ∞. The size of [Z,V ]β,q decreases as β increases. The following result is
Lemma 1 of [32], which is essentially Theorem 3.1 of [36].

Lemma 3. Let (Z,‖·‖Z) be a Banach space, (V ,‖·‖V ) be a dense subspace of Z and z ∈ [Z,V ]β,∞.
We have

inf
{

‖v − z‖Z : v ∈ V,‖v‖V ≤ r
}

≤
‖z‖

1/(1−β)
β,∞

rβ/(1−β)
.

Results like this have a long history in inverse problem theory [4,22]. From the above, when H is
dense in C(S), we can define the interpolation spaces [C(S),H ]β,q . We set q = ∞ and work with the
largest space of functions for a fixed β ∈ (0,1). We are then able to apply the approximation result in
Lemma 3.

Let us assume

(g2) g ∈ [C(S),H ]β,∞ with norm at most B for β ∈ (0,1) and B > 0.

The assumption (g2), together with Lemma 3, give

I∞(g, r) ≤
B2/(1−β)

r2β/(1−β)
(3)

for r > 0. In order for us to apply Theorem 2 to this setting, we need to make an assumption on R. We
assume either

(R1) R = [0,∞)

or

(R2) R = {bi : 0 ≤ i ≤ I − 1} ∪ {an1/2} and ρ = an1/2 for a, b > 0 and I = ⌈an1/2/b⌉.

The assumption (R1) is mainly of theoretical interest and would make it difficult to calculate r̂ in
practice. The estimator r̂ can be computed under the assumption (R2), since in this case R is finite.
We obtain a high-probability bound on a fixed quantile of the squared L2(P ) error of V ĥr̂ of order
t1/2n−β/(1+β) with probability at least 1 − e−t when τ is an appropriate multiple of t1/2.

Corollary 4. Assume (g1), (g2), (Y ) and (H ). Let τ ≥ 80‖k‖
1/2
diagσ , ν > 0 and

t =

(

τ

80‖k‖
1/2
diagσ

)2

≥ 1.
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Also assume (R1) and (r̂), or (R2). On the set A1,t ∩ A2,t ∈ F , for which P(A1,t ∩ A2,t ) ≥ 1 − 2e−t ,
we have

‖V ĥr̂ − g‖2
L2(P )

≤ D1τn−β/(1+β) + D2τ
2n−(1+3β)/(2(1+β))

for constants D1,D2 > 0 not depending on n or τ .

From the high probability bound we obtain a bound on the expected squared L2(P ) error.

Corollary 5. Assume (g1), (g2), (Y ), (H ) and either (R1) and (r̂), or (R2). We have

E
(

‖V ĥr̂ − g‖2
L2(P )

)

≤ Dn−β/(1+β)

for constant D not depending on n.

4. Regression for a collection of RKHSs

In this section, we again provide simultaneous bounds on our collection of non-adaptive estimators.
Our results still depend on how well the regression function g can be approximated by elements of an
RKHS. However, this RKHS now comes from a collection instead of being fixed. Let K be a set of
kernels on S × S. We make the following assumptions.

(K1) The covariate set S and the set of kernels K have the following properties:

• The covariate set S is a separable topological space.
• The set of kernels (K,‖·‖∞) is separable.
• The kernel k is bounded for all k ∈K.
• The kernel k is continuous for all k ∈K.

Since (K,‖·‖∞) is a separable set of kernels, we have that K has a countable dense subset K0. For all
ε > 0 and all k ∈K, there exists k0 ∈ K0 such that

‖k0 − k‖∞ = sup
x1,x2∈S

∣

∣k0(x1, x2) − k(x1, x2)
∣

∣ < ε.

Let Hk be the RKHS with kernel k for k ∈ K. Since k is continuous and S is a separable topological
space, we have that Hk is separable by Lemma 4.33 of [37]. Hence, the assumption (H ) holds for Hk .
We use the notation ‖·‖k and 〈·, ·〉k for the norm and inner product of Hk .

Let Bk be the closed unit ball of Hk for k ∈ K and r > 0. We define the estimator

ĥk,r = arg min
f ∈rBk

1

n

n
∑

i=1

(

f (Xi) − Yi

)2

of the regression function g. We make this definition unique by demanding that ĥk,r ∈ sp{kXi
: 1 ≤

i ≤ n} (see Lemma 3 of [32]). We also define ĥk,0 = 0. Since we assume (g1), that g is bounded in

[−C,C], we can make ĥk,r closer to g by clipping it to obtain V ĥk,r . Lemma 26 ([33], p. 6) shows

that ĥk,r is a well-defined estimator.
Let

L =
{

k/‖k‖diag : k ∈ K
}

∪ {0}
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and

D = sup
f1,f2∈L

‖f1 − f2‖∞ ≤ 2.

We include 0 in the definition of L so that, when analysing stochastic processes over L using chaining,
we can start all chains at 0. Note that (L,‖·‖∞) is separable since L \ {0} is the image of a continuous
function on (K,‖·‖∞), which is itself separable. Let N(a,M,d) be the minimum size of an a > 0
cover of a metric space (M,d). The following quantity is key to quantifying the complexity of our
collection of kernels,

J =

(

162

∫ D/2

0
log

(

2N
(

a,L,‖·‖∞

))

da + 1

)1/2

.

Using J we upper bound the empirical L2-distance between the estimator ĥk,r and hk,r in Lemma 29
([33], p. 9). Instead of one quadratic form of sub-Gaussians as in Lemma 22, we obtain a supremum
over K of quadratic forms of sub-Gaussians. This can be controlled by chaining using Lemma 28 of
[33].

It is again useful to be able to transfer a bound on the squared L2(Pn) error of an estimator to a
bound on the squared L2(P ) error of the estimator. Lemma 31 ([33], p. 11) allows us to do such a
transfer. The result is proved using the same method as Lemma 24, although we obtain a supremum
of quadratic forms of sub-Gaussians which are controlled using chaining. The event in the result is
measurable by Lemma 30 of [33].

To capture how well g can be approximated by elements of Hk , we define

I∞(g, k, r) = inf
{

‖hk,r − g‖2
∞ : hk,r ∈ rBk

}

for k ∈ K and r ≥ 0. We obtain a bound on the squared L2(P ) error of V ĥk,r by combining Lemmas 29
and 31. In the following, let A3,t ∈F be an event such that P(A3,t ) ≥ 1 − e−t and on which

‖ĥk,r − hk,r‖
2
L2(Pn)

≤
21J‖k‖

1/2
diagσrt1/2

n1/2
+ 4‖hk,r − g‖2

∞

simultaneously for all k ∈ K, all r ≥ 0 and all hk,r ∈ rBk . By Lemma 29 in [33] such an A3,t exists.
Furthermore, let

A4,t =

{

sup
f1,f2∈rBk

∣

∣‖Vf1 − Vf2‖
2
L2(Pn)

− ‖Vf1 − Vf2‖
2
L2(P )

∣

∣

≤
151J‖k‖

1/2
diagCrt1/2

n1/2
+

8‖k‖
1/2
diagCrt

3n
, for all k ∈K and all r ≥ 0

}

.

With these definition in place the following holds.

Theorem 6. Assume (g1), (Y ) and (K1). Let t ≥ 1 and recall the definitions of A3,t and A4,t from

Lemmas 29 and 31. On the set A3,t ∩ A4,t ∈ F , for which P(A3,t ∩ A4,t ) ≥ 1 − 2e−t , we have

‖V ĥk,r − g‖2
L2(P )

≤
2J‖k‖

1/2
diag(151C + 21σ)rt1/2

n1/2
+

16‖k‖
1/2
diagCrt

3n
+ 10I∞(g, k, r)

simultaneously for all k ∈ K and all r ≥ 0.
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4.1. The Goldenshluger–Lepski method for a collection of RKHSs with

Gaussian kernels

We now apply the Goldenshluger–Lepski method again in the context of RKHS regression. However,
we now produce an estimator which adapts over a collection of RKHSs with Gaussian kernels. We
make the following assumptions on S and K.

(K2) The covariate set S and the set of kernels K have the following properties:

• The covariate set S ⊆R
d for d ≥ 1.

• The set of kernels

K =
{

kγ (x1, x2) = γ −d exp
(

−‖x1 − x2‖
2
2/γ

2) : γ ∈ Ŵ and x1, x2 ∈ S
}

for Ŵ ⊆ [u,v] non-empty for v ≥ u > 0.

Recalling the definitions from the previous section, we have

L =
{

fγ (x1, x2) = exp
(

−‖x1 − x2‖
2
2/γ

2) : γ ∈ Ŵ and x1, x2 ∈ S
}

∪ {0}.

The assumption (K2) implies the assumption (K1). This is because Lemma 33 of [33] shows that
(L,‖·‖∞), and hence (K,‖·‖∞), is separable. We change notation slightly. Let Hγ be the RKHS with
kernel kγ for γ ∈ Ŵ, let ‖·‖γ and 〈·, ·〉γ be the norm and inner product of Hγ , and let Bγ be the closed

unit ball of Hγ . Furthermore, we write ĥγ,r in place of ĥkγ ,r and I∞(g, γ, r) in place of I∞(g, kγ , r).
The scaling of the kernels is selected so that the following lemma holds. The result is immediate from

Proposition 4.46 of [37] and the way that the norm of an RKHS scales with its kernel (Theorem 4.21
of [37]).

Lemma 7. Assume (K2). Let γ,η ∈ Ŵ with γ ≥ η. We have Bγ ⊆ Bη.

By Lemma 33 of [33], the function F : Ŵ → L\{0} by F(γ ) = fγ is continuous. Hence, the function
G : Ŵ → K by G(γ ) = kγ is continuous. Lemma 34 ([33], p. 15), which follows directly from Lemma
26, now states that the estimator is well-defined.

Recall the definition of J from the previous section. Lemma 36 ([33], p. 15) provides us with a bound
on J . Furthermore, Lemma 15 on page 2259 can be used to define the majorant of the non-adaptive
estimators and is a simple consequence of Lemma 29. This motivates the definition of the adaptive
estimator used in the Goldenshluger–Lepski method.

Let R ⊆ [0,∞) be non-empty. The Goldenshluger–Lepski method creates an adaptive estimator by
defining (γ̂ , r̂) to be the minimiser of

sup
η∈Ŵ,η≤γ

sup
s∈R,s≥r

(

‖ĥγ,r − ĥη,s‖
2
L2(Pn) −

τ(γ −d/2r + η−d/2s)

n1/2

)

+
2(1 + ν)τγ −d/2r

n1/2
(4)

over (γ, r) ∈ Ŵ ×R for tuning parameters τ, ν > 0. Again, the supremum of pairwise comparisons can
be viewed as a proxy for the unknown bias, while the other term is an inflated variance term. Note that
the supremum is at least the value at (γ, r), which means the above is at least

2ντγ −d/2r

n1/2
. (5)
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u

v

(r̂, γ̂ )

(r1, γ1)

(r2, γ2)

(r̂ ∨ r1, γ̂ ∧ γ1)

(r̂ ∨ r2, γ̂ ∧ γ2)

r

γ

Figure 1. A demonstration of the parameter comparisons made in the proof of Theorem 16.

Again, the role of the tuning parameter ν is simply to control this bound. The parameter τ controls the
probability with which our bound on the squared L2(P ) error of V ĥγ̂ ,r̂ holds. It may be that γ̂ is not
a well-defined random variable on (�,F) in some cases, but we assume

(γ̂ ) γ̂ is a well-defined random variable on (�,F)

throughout. Later, we assume that R and Ŵ are finite, in which case γ̂ and r̂ are certainly well-defined
random variables on (�,F). If γ̂ and r̂ are well-defined random variables on (�,F), then ĥγ̂ ,r̂ is an
(C(S),B(C(S)))-valued measurable function on (�,F) by Lemma 34.

By Lemma 15, the supremum in the definition of (γ̂ , r̂) is at most 40I∞(g, γ, r) for an appropriate
value of t . The definition of (γ̂ , r̂) then gives us control over the squared L2(Pn) norm of ĥγ̂ ,r̂ −

ĥγ̂∧γ,r̂∨r . We can control the squared L2(Pn) norm of ĥγ̂∧γ,r̂∨r −hγ,r using Lemma 15. In both cases,

we use the boundedness of Ŵ when controlling the squared L2(Pn) norm before clipping the estimators
using V . Extra terms appear when moving from bounds on the squared L2(Pn) norm to bounds on the
squared L2(P ) norm using Lemma 31. We must then control terms of order γ̂ −d/2r̂/n1/2 using (5)
and the definition of (γ̂ , r̂). Combining the bounds gives a bound on the squared L2(P ) norm of
V hγ̂ ,r̂ − V hγ,r . Applying

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V hγ̂ ,r̂ − V hγ,r‖
2
L2(P )

+ 2‖V hγ,r − g‖2
L2(P )

leads to Theorem 16 on page 2260. Comparisons between (r̂, γ̂ ), (r, γ ) and (γ̂ ∧ γ, r̂ ∨ r) are demon-
strated in Figure 1 for two different values of (r, γ ).

We now combine Theorems 6 and 16.

Theorem 8. Assume (g1), (Y ) and (K2). Let τ ≥ 84Jσ , ν > 0 and

t =

(

τ

84Jσ

)2

≥ 1.

On the set A3,t ∩ A4,t ∈F , for which P(A3,t ∩ A4,t ) ≥ 1 − 2e−t , we have

‖V ĥγ,r̂ − g‖2
L2(P )

≤ inf
γ∈Ŵ

inf
r∈R

((

1 + D1τn−1/2)(D2τγ −d/2rn−1/2 + D3I∞(g, γ, r)
))

for constants D1,D2,D3 > 0 not depending on τ , γ , r or n.
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We can obtain rates of convergence for our estimator V ĥγ̂ ,r̂ if we make an assumption about how
well g can be approximated by elements of Hα for α ∈ [u,v]. Let us assume

(g3) g ∈ [C(S),Hα]β,∞ with norm at most B for α ∈ [u,v], β ∈ (0,1) and B > 0.

The assumption (g3), together with Lemma 3, give

I∞(g,α, r) ≤
B2/(1−β)

r2β/(1−β)
(6)

for r > 0. In order for us to apply Theorem 8 to this setting, we need to make assumptions on Ŵ and R.
We assume either (R1) and

(Ŵ1) Ŵ = [u,v],

or (R2) and

(Ŵ2) Ŵ = {uci : 0 ≤ i ≤ L − 1} ∪ {v} for c > 1 and L = ⌈log(v/u)/ log(c)⌉.

The assumptions (R1) and (Ŵ1) are mainly of theoretical interest and would make it difficult to cal-
culate (γ̂ , r̂) in practice. The estimator (γ̂ , r̂) can be computed under the assumptions (R2) and (Ŵ2),
since in this case R and Ŵ are finite. We obtain a high-probability bound on a fixed quantile of the
squared L2(P ) error of V ĥr̂ ,γ̂ of order t1/2n−β/(1+β) with probability at least 1 − e−t when τ is an

appropriate multiple of t1/2.

Corollary 9. Assume (g1), (g3), (Y ) and (K2). Let τ ≥ 84Jσ , ν > 0 and

t =

(

τ

84Jσ

)2

≥ 1.

Also assume (R1), (Ŵ1), (r̂) and (γ̂ ), or (R2) and (Ŵ2). On the set A3,t ∩A4,t ∈ F , for which P(A3,t ∩

A4,t ) ≥ 1 − 2e−t , we have

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤ D1τn−β/(1+β) + D2τ
2n−(1+3β)/(2(1+β))

for constants D1,D2 > 0 not depending on n or τ .

From the high probability bound we obtain a bound on the expected squared L2(P ) error similarly
to Corollary 5.

Corollary 10. Assume (g1), (g3), (Y ), (K2) and either (R1), (Ŵ1), (r̂) and (γ̂ ), or (R2) and (Ŵ2). We

have

E
(

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

)

≤ Dn−β/(1+β)

for constant D not depending on n.

5. Discussion

In this paper, we show how the Goldenshluger–Lepski method can be applied when performing regres-
sion over an RKHS H , which is separable with a bounded and measurable kernel k, or a collection of
such RKHSs. We produce an adaptive estimator from a collection of clipped versions of least-squares
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estimators which are constrained to lie in a ball of predefined radius in H . Since the L2(P ) norm
is unknown, we use the L2(Pn) norm when calculating the pairwise comparisons for the proxy for
the unknown bias of this collection of non-adaptive estimators. When H is fixed, our estimator need
only adapt to the radius of the ball in H . However, when H comes from a collection of RKHSs with
Gaussian kernels, the estimator must also adapt to the width parameter of the kernel. As far as we are
aware, this is the first time that the Goldenshluger–Lepski method has been applied in the context of
RKHS regression. In order to apply the Goldenshluger–Lepski method in this context, we must pro-
vide a majorant by controlling all of the non-adaptive estimators simultaneously, extending the results
of [32].

By assuming that the regression function lies in an interpolation space between C(S) and H

parametrised by β , we obtain a bound on a fixed quantile of the squared L2(P ) error of our adap-
tive estimator of order n−β/(1+β). This is true for both the case in which H is fixed and the case
in which H comes from a collection of RKHSs with Gaussian kernels. The order n−β/(1+β) for the
squared L2(P ) error of the adaptive estimators matches the order of the smallest bounds obtained in
[32] for the squared L2(P ) error of the non-adaptive estimators. In the sense discussed in [32], this
order is the optimal power of n if we make the slightly weaker assumption that the regression function
is an element of the interpolation space between L2(P ) and H parametrised by β .

For the case in which H comes from a collection of RKHSs with Gaussian kernels, our current
results rely on the boundedness of the set Ŵ of width parameters of the kernels. This is somewhat
limiting as allowing the width parameter to tend to 0 as n tends to infinity would allow us to estimate a
greater collection of functions. We hope that in the future the analysis in the proof of Theorem 16 can
be extended to allow for such flexibility.

The results in this paper warrant the investigation of whether it is possible to extend the use of the
Goldenshluger–Lepski method from the case in which H comes from a collection of RKHSs with
Gaussian kernels to other cases. The analysis in this paper relies on the fact that the closed unit ball
of the RKHS generated by a Gaussian kernel increases as the width of the kernel decreases. It may be
possible to apply a similar analysis to other situations in which H belongs to a collection of RKHSs
which also exhibit this nestedness property. If the RKHSs did not exhibit this property, then a new form
of analysis would be necessary to apply the Goldenshluger–Lepski method. In particular, we would
need a new criterion for deciding on the smoothness of the non-adaptive estimators when performing
the pairwise comparisons.

Appendix A: Proof of the Goldenshluger–Lepski method for a fixed

RKHS

This section is composed of two subsections: in Section A.1 we derive a number of auxiliary results
and in Section A.2 we provide proofs for our main results.

A.1. Auxiliary results

The following combines parts of Lemmas 3 and 32 of [32].

Lemma 11. Assume (H ). We have that ĥr is a (H,B(H))-valued measurable function on (� ×

[0,∞),F ⊗ B([0,∞))), where r varies in [0,∞). Furthermore, ‖ĥr − ĥs‖
2
H ≤ |r2 − s2| for r, s ∈

[0,∞).
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We bound the distance between ĥr and ĥs in the L2(Pn) norm for s ≥ r ≥ 0 to prove the following
Lemma.

Lemma 12. Assume (Y ) and (H ). Let t ≥ 1 and recall the definition of A1,t . On the set A1,t ∈ F , for

which P(A1,t ) ≥ 1 − e−t , we have

‖ĥr − ĥs‖
2
L2(Pn)

≤
80‖k‖

1/2
diagσ(r + s)t1/2

n1/2
+ 40I∞(g, r)

simultaneously for all s ≥ r ≥ 0.

Proof. By Lemma 22, we have

‖ĥr − ĥs‖
2
L2(Pn)

≤ 4‖ĥr − hr‖
2
L2(Pn)

+ 4‖hr − g‖2
L2(Pn)

+ 4‖g − hs‖
2
L2(Pn)

+ 4‖hs − ĥs‖
2
L2(Pn)

≤
80‖k‖

1/2
diagσ(r + s)t1/2

n1/2
+ 20‖hr − g‖2

∞ + 20‖hs − g‖2
∞

for all r, s ≥ 0 and all hr ∈ rBH , hs ∈ sBH . Taking an infimum over hr ∈ rBH and hs ∈ sBH gives

‖ĥr − ĥs‖
2
L2(Pn)

≤
80‖k‖

1/2
diagσ(r + s)t1/2

n1/2
+ 20I∞(g, r) + 20I∞(g, s).

The result follows. �

Next, we show that the estimator r̂ is well-defined.

Lemma 13. Let r̂ be the infimum of all points attaining the minimum in (1). Then r̂ is well-defined.

Proof. Let K be the n × n symmetric matrix with Ki,j = k(Xi,Xj ). By Lemma 3 of [32], we have
that K is an (Rn×n,B(Rn×n))-valued measurable matrix on (�,F) and that there exist an orthogonal
matrix A and a diagonal matrix D which are both (Rn×n,B(Rn×n))-valued measurable matrices on
(�,F) such that K = ADAT. Furthermore, we can demand that the diagonal entries of D are non-
negative and non-increasing. Let m = rkK and

ρ =

(

m
∑

i=1

D−1
i,i

(

ATY
)2
i

)1/2

,

which are random variables on (�,F). By Lemma 3 of [32], we have that ĥr is constant in r for r ≥ ρ.
Hence,

inf
r∈R

(

sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2

)

= inf
r∈R∩[0,ρ]

(

sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2

)

. (7)
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By Lemma 11, we have

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

is continuous in r for all s ∈ R such that s ≥ r . The supremum of a collection of lower semi-continuous
functions is lower semi-continuous. Therefore,

sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2

is lower semi-continuous in r . Hence, the infimum (7) is attained as it is the infimum of a lower semi-
continuous function on a compact set. By lower semi-continuity, r̂ also attains the infimum and is
well-defined. �

A.2. Main results

We use the Goldenshluger–Lepski method to prove the following theorem.

Theorem 14. Assume (Y ), (H ) and (r̂). Let τ ≥ 80‖k‖
1/2
diagσ , ν > 0 and

t =

(

τ

80‖k‖
1/2
diagσ

)2

≥ 1.

Recall the definitions of A1,t and A2,t . On the set A1,t ∩A2,t ∈F , for which P(A1,t ∩A2,t ) ≥ 1−2e−t ,
we have

‖V ĥr̂ − g‖2
L2(P )

is at most

inf
r∈R

(

max

{

2τr

n1/2
+

(

1

ν
+

97C

80σν
+

Cτ

2400‖k‖
1/2
diagσ

2νn1/2

)(

40I∞(g, r) +
2(1 + ν)τr

n1/2

)

,

4(2 + ν)τr

n1/2
+

97Cτr

40σn1/2
+

Cτ 2r

1200‖k‖
1/2
diagσ

2n

}

+ 80I∞(g, r) + 2‖V ĥr − g‖2
L2(P )

)

.

Proof. Since we assume (Y ) and (H ), we find that Lemma 22 holds, which implies that Lemma 12
holds. By our choice of t , we have

‖ĥr − ĥs‖
2
L2(Pn)

≤
τ(r + s)

n1/2
+ 40I∞(g, r) (8)

simultaneously for all s, r ∈ R such that s ≥ r ≥ 0. Fix r ∈ R and suppose that r̂ ≤ r . By the definition
of r̂ in (1) and (8), we have

‖ĥr̂ − ĥr‖
2
L2(Pn)

= ‖ĥr̂ − ĥr‖
2
L2(Pn)

−
τ(r̂ + r)

n1/2
+

τ(r̂ + r)

n1/2

≤ sup
s∈R,s≥r̂

(

‖ĥr̂ − ĥs‖
2
L2(Pn)

−
τ(r̂ + s)

n1/2

)

+
2τr

n1/2
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≤ sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(2 + ν)τr

n1/2
−

2(1 + ν)τ r̂

n1/2

≤ 40I∞(g, r) +
2(2 + ν)τr

n1/2
.

This shows

‖V ĥr̂ − V ĥr‖
2
L2(Pn)

≤ 40I∞(g, r) +
2(2 + ν)τr

n1/2
,

and it follows from Lemma 24 and our choice of t that

‖V ĥr̂ − V ĥr‖
2
L2(P )

≤ 40I∞(g, r) +
2(2 + ν)τr

n1/2
+

97Cτr

80σn1/2
+

Cτ 2r

2400‖k‖
1/2
diagσ

2n
.

Hence,

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V ĥr̂ − V ĥr‖
2
L2(P )

+ 2‖V ĥr − g‖2
L2(P )

≤ 80I∞(g, r) +
4(2 + ν)τr

n1/2
+

97Cτr

40σn1/2
+

Cτ 2r

1200‖k‖
1/2
diagσ

2n
+ 2‖V ĥr − g‖2

L2(P )
.

Now suppose instead that r̂ ≥ r . Since (8) holds simultaneously for all s, r ∈ R such that s ≥ r ≥ 0,
we have

‖ĥr̂ − ĥr‖
2
L2(Pn)

≤
τ(r + r̂)

n1/2
+ 40I∞(g, r).

This shows

‖V ĥr̂ − V ĥr‖
2
L2(Pn)

≤
τr

n1/2
+ 40I∞(g, r) +

τ r̂

n1/2
,

and it follows from Lemma 24 that

‖V ĥr̂ − V ĥr‖
2
L2(P )

≤
τr

n1/2
+ 40I∞(g, r) +

τ r̂

n1/2
+

97Cτ r̂

80σn1/2
+

Cτ 2r̂

2400‖k‖
1/2
diagσ

2n

=
τr

n1/2
+ 40I∞(g, r) +

(

1

2ν
+

97C

160σν
+

Cτ

4800‖k‖
1/2
diagσ

2νn1/2

)

2ντ r̂

n1/2
.

By (2), the definition of r̂ in (1) and (8), we have

2ντ r̂

n1/2
≤ sup

s∈R,s≥r̂

(

‖ĥr̂ − ĥs‖
2
L2(Pn)

−
τ(r̂ + s)

n1/2

)

+
2(1 + ν)τ r̂

n1/2

≤ sup
s∈R,s≥r

(

‖ĥr − ĥs‖
2
L2(Pn)

−
τ(r + s)

n1/2

)

+
2(1 + ν)τr

n1/2

≤ 40I∞(g, r) +
2(1 + ν)τr

n1/2
.
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Hence,

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V ĥr̂ − V ĥr‖
2
L2(P )

+ 2‖V ĥr − g‖2
L2(P )

≤
2τr

n1/2
+ 80I∞(g, r) +

(

1

ν
+

97C

80σν
+

Cτ

2400‖k‖
1/2
diagσ

2νn1/2

)(

40I∞(g, r) +
2(1 + ν)τr

n1/2

)

+ 2‖V ĥr − g‖2
L2(P )

.

The result follows. �

We assume (g1) to bound the distance between V ĥr̂ and g in the L2(P ) norm and prove Theorem 2.

Proof of Theorem 2. By Theorem 14, we have

‖V ĥr̂ − g‖2
L2(P )

≤ inf
r∈R

((

1 + D4τn−1/2)(D5τrn−1/2 + D6I∞(g, r)
)

+ 2‖V ĥr − g‖2
L2(P )

)

for some constants D4,D5,D6 > 0 not depending on τ , r or n. By Theorem 1, we have

‖V ĥr − g‖2
L2(P )

≤
(97C + 20σ)τr

40σn1/2
+

Cτ 2r

1200‖k‖
1/2
diagσ

2n
+ 10I∞(g, r)

≤ D7τrn−1/2 + D8τ
2rn−1 + 10I∞(g, r).

for all r ∈ R, for some constants D7,D8 > 0 not depending on τ , r or n. This gives

‖V ĥr̂ − g‖2
L2(P )

≤ inf
r∈R

((

1 + D4τn−1/2)(D5τrn−1/2 + D6I∞(g, r)
)

+ 2D7τrn−1/2 + 2D8τ
2rn−1 + 20I∞(g, r)

)

.

Hence, the result follows with

D1 =
D4D5 + 2D8

D5 + 2D7
, D2 = D5 + 2D7, D3 = D6 + 20.

�

We assume (g2) to prove Theorem 4.

Proof of Corollary 4. If we assume (R1), then r = an(1−β)/(2(1+β)) ∈ R and

‖V ĥr̂ − g‖2
L2(P )

≤
(

1 + D3τn−1/2)(D4τrn−1/2 + D5I∞(g, r)
)

≤
(

1 + D3τn−1/2)
(

D4τan−β/(1+β) +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

for some constants D3,D4,D5 > 0 not depending on n or τ by Theorem 2 and (3). If we assume (R2),
then there is a unique r ∈ R such that

an(1−β)/(2(1+β)) ≤ r < an(1−β)/(2(1+β)) + b
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and

‖V ĥr̂ − g‖2
L2(P )

≤
(

1 + D3τn−1/2)(D4τrn−1/2 + D5I∞(g, r)
)

≤
(

1 + D3τn−1/2)
(

D4τ
(

an(1−β)/(2(1+β)) + b
)

n−1/2 +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

by Theorem 2 and (3). In either case,

‖V ĥr̂ − g‖2
L2(P )

≤ D1τn−β/(1+β) + D2τ
2n−(1+3β)/(2(1+β))

for some constants D1,D2 > 0 not depending on n or τ . �

Proof of Corollary 5. Under the stated assumptions, we can apply Theorem 2. Let D′
1 = 80‖k‖

1/2
diag ×

σD1n
−β/(1+β) and D′

2 = 6400‖k‖diagD2σ
2n−(1+3β)/(2(1+β)) with constants D1, D2 from Theorem 2.

Furthermore, let φ(t) = D′
1t

1/2 + D′
2t then

E
(

‖V ĥr̂ − g‖2
L2(P )

)

=

∫ ∞

0
P
(

‖V ĥr̂ − g‖2
L2(P )

≥ a
)

da

=

∫ ∞

0
P
(

‖V ĥr̂ − g‖2
L2(P )

≥ φ(t)
)(

D′
1t

1/2 + D′
2

)

dt

≤
(

π1/2 + 1
)

D′
1 + 3D′

2,

using the bound on P(‖V ĥr̂ − g‖2
L2(P )

≥ φ(t)) for t ≥ 1. The result follows by letting D = 80(π1/2 +

1)‖k‖
1/2
diagσD1 + 19200‖k‖diagD2σ

2. �

Appendix B: Proof of the Goldenshluger–Lepski method for a

collection of RKHSs with Gaussian kernels

This section is composed of two subsections, one containing auxiliary results (Section B.1) and one
containing the proofs of our main results (Section B.2).

B.1. Auxiliary results

We bound the distance between ĥγ,r and ĥη,s in the L2(Pn) norm for γ,η ∈ Ŵ with η ≤ γ and s ≥ r ≥ 0
to prove the following lemma.

Lemma 15. Assume (Y ) and (K2). Let t ≥ 1 and recall the definition of A3,t . On the set A3,t ∈F , for

which P(A3,t ) ≥ 1 − e−t , we have

‖ĥγ,r − ĥη,s‖
2
L2(Pn)

≤
84Jσ(γ −d/2r + η−d/2s)t1/2

n1/2
+ 40I∞(g, γ, r)

simultaneously for all γ,η ∈ Ŵ such that η ≤ γ and all s ≥ r ≥ 0.
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Proof. By Lemma 29, we have

‖ĥγ,r − ĥη,s‖
2
L2(Pn)

≤ 4‖ĥγ,r − hγ,r‖
2
L2(Pn)

+ 4‖hγ,r − g‖2
L2(Pn)

+ 4‖g − hη,s‖
2
L2(Pn)

+ 4‖hη,s − ĥη,s‖
2
L2(Pn)

≤
84Jσ(γ −d/2r + η−d/2s)t1/2

n1/2
+ 20‖hγ,r − g‖2

∞ + 20‖hη,s − g‖2
∞

for all γ,η ∈ Ŵ, all r, s ≥ 0 and all hγ,r ∈ rBγ , hη,s ∈ sBη . Taking an infimum over hγ,r ∈ rBγ and
hη,s ∈ sBη gives

‖ĥγ,r − ĥη,s‖
2
L2(Pn)

≤
84Jσ(γ −d/2r + η−d/2s)t1/2

n1/2
+ 20I∞(g, γ, r) + 20I∞(g, η, s).

The result follows from Lemma 7. �

B.2. Main results

We use the Goldenshluger–Lepski method to prove the following theorem.

Theorem 16. Assume (Y ) and (K2). Let τ ≥ 84Jσ , ν > 0 and

t =

(

τ

84Jσ

)2

≥ 1.

Recall the definitions of A3,t and A4,t . On the set A3,t ∩A4,t ∈F , for which P(A3,t ∩A4,t ) ≥ 1−2e−t ,
we have

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

is at most

inf
γ∈Ŵ

inf
r∈R

(

320I∞(g, γ, r) +
4vd/2(5 + 2ν)τγ −d/2r

ud/2n1/2

+
302Cvd/2τγ −d/2r

21ud/2σn1/2
+

4Cvd/2τ 2γ −d/2r

1323J 2ud/2σ 2n

+

(

12vd/2

ud/2ν
+

302Cvd/2

21ud/2σν
+

4Cvd/2τ

1323J 2ud/2σ 2νn1/2

)(

20I∞(g, γ, r) +
(1 + ν)τγ −d/2r

n1/2

)

+ 2‖V ĥγ,r − g‖2
L2(P )

)

.

Proof. Since we assume (Y ) and (K2), which implies (K1), we find that Lemma 29 holds, which
implies that Lemma 15 holds. By our choice of t , we have

‖ĥγ,r − ĥη,s‖
2
L2(Pn)

≤
τ(γ −d/2r + η−d/2s)

n1/2
+ 40I∞(g, γ, r) (9)
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simultaneously for all γ,η ∈ Ŵ and all r, s ∈ R such that η ≤ γ and s ≥ r . Fix γ ∈ Ŵ and r ∈ R. Then

‖V ĥγ̂ ,r̂ − V ĥγ,r‖
2
L2(P ) ≤ 2‖V ĥγ̂ ,r̂ − V ĥγ̂∧γ,r̂∨r‖

2
L2(P ) + 2‖V hγ̂∧γ,r̂∨r − V ĥγ,r‖

2
L2(P ).

We now bound the right-hand side. By Ŵ ⊆ [u,v], the definition of (γ̂ , r̂) in (4) and (9), we have

‖ĥγ̂ ,r̂ − ĥγ̂∧γ,r̂∨r‖
2
L2(Pn)

= ‖ĥγ̂ ,r̂ − ĥγ̂∧γ,r̂∨r‖
2
L2(Pn) −

τ(γ̂ −d/2r̂ + (γ̂ ∧ γ )−d/2(r̂ ∨ r))

n1/2

+
τ(γ̂ −d/2r̂ + (γ̂ ∧ γ )−d/2(r̂ + r))

n1/2

≤ sup
η∈Ŵ,η≤γ̂

sup
s∈R,s≥r̂

(

‖ĥγ̂ ,r̂ − ĥη,s‖
2
L2(Pn) −

τ(γ̂ −d/2r̂ + η−d/2s)

n1/2

)

+
τ(γ̂ −d/2r̂ + (v/u)d/2(γ̂ −d/2r̂ + γ −d/2r))

n1/2

≤ sup
η∈Ŵ,η≤γ

sup
s∈R,s≥r

(

‖ĥγ,r − ĥη,s‖
2
L2(Pn) −

τ(γ −d/2r + η−d/2s)

n1/2

)

+
2(1 + ν)τγ −d/2r

n1/2
−

2(1 + ν)τ γ̂ −d/2r̂

n1/2
+

vd/2τ(2γ̂ −d/2r̂ + γ −d/2r)

ud/2n1/2

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

2vd/2τ γ̂ −d/2r̂

ud/2n1/2
.

This shows

‖V ĥγ̂ ,r̂ − V ĥγ̂∧γ,r̂∨r‖
2
L2(Pn) ≤ 40I∞(g, γ, r) +

vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

2vd/2τ γ̂ −d/2r̂

ud/2n1/2
,

and it follows from Lemma 31, our choice of t and Ŵ ⊆ [u,v] that

‖V ĥγ̂ ,r̂ − V ĥγ̂∧γ,r̂∨r‖
2
L2(P )

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

2vd/2τ γ̂ −d/2r̂

ud/2n1/2

+

(

151Cτ

84σn1/2
+

Cτ 2

2646J 2σ 2n

)

(γ̂ ∧ γ )−d/2(r̂ ∨ r)

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

2vd/2τ γ̂ −d/2r̂

ud/2n1/2

+

(

151Cτ

84σn1/2
+

Cτ 2

2646J 2σ 2n

)

(v/u)d/2(γ̂ −d/2r̂ + γ −d/2r
)

= 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

151Cvd/2τγ −d/2r

84ud/2σn1/2
+

Cvd/2τ 2γ −d/2r

2646J 2ud/2σ 2n

+

(

vd/2

ud/2ν
+

151Cvd/2

168ud/2σν
+

Cvd/2τ

5292J 2ud/2σ 2νn1/2

)

2ντ γ̂ −d/2r̂

n1/2
.
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By (5), the definition of (γ̂ , r̂) in (4) and (9), we have

2ντ γ̂ −d/2r̂

n1/2

≤ sup
η∈Ŵ,η≤γ̂

sup
s∈R,s≥r̂

(

‖ĥγ̂ ,r̂ − ĥη,s‖
2
L2(Pn) −

τ(γ̂ −d/2r̂ + η−d/2s)

n1/2

)

+
2(1 + ν)τ γ̂ −d/2r̂

n1/2

≤ sup
η∈Ŵ,η≤γ

sup
s∈R,s≥r

(

‖ĥγ,r − ĥη,s‖
2
L2(Pn) −

τ(γ −d/2r + η−d/2s)

n1/2

)

+
2(1 + ν)τγ −d/2r

n1/2

≤ 40I∞(g, γ, r) +
2(1 + ν)τγ −d/2r

n1/2
. (10)

Hence,

‖V ĥγ̂ ,r̂ − V ĥγ̂∧γ,r̂∨r‖
2
L2(P )

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ −d/2r

ud/2n1/2
+

151Cvd/2τγ −d/2r

84ud/2σn1/2
+

Cvd/2τ 2γ −d/2r

2646J 2ud/2σ 2n

+

(

2vd/2

ud/2ν
+

151Cvd/2

84ud/2σν
+

Cvd/2τ

2646J 2ud/2σ 2νn1/2

)(

20I∞(g, γ, r) +
(1 + ν)τγ −d/2r

n1/2

)

.

Since (9) holds simultaneously for all γ,η ∈ Ŵ and all r, s ∈ R such that η ≤ γ and s ≥ r , we have

‖ĥγ̂∧γ,r̂∨r − ĥγ,r‖
2
L2(Pn) ≤ 40I∞(g, γ, r) +

τ(γ −d/2r + (γ̂ ∧ γ )−d/2(r̂ ∨ r))

n1/2
.

This shows

‖V ĥγ̂∧γ,r̂∨r − V ĥγ,r‖
2
L2(Pn) ≤ 40I∞(g, γ, r) +

τ(γ −d/2r + (γ̂ ∧ γ )−d/2(r̂ ∨ r))

n1/2
,

and it follows from Lemma 31, our choice of t and (10) that

‖V ĥγ̂∧γ,r̂∨r − V ĥγ,r‖
2
L2(P )

≤ 40I∞(g, γ, r) +
τ(γ −d/2r + (γ̂ ∧ γ )−d/2(r̂ ∨ r))

n1/2

+

(

151Cτ

84σn1/2
+

Cτ 2

2646J 2σ 2n

)

(γ̂ ∧ γ )−d/2(r̂ ∨ r)

= 40I∞(g, γ, r) +
τγ −d/2r

n1/2
+

(

τ

n1/2
+

151Cτ

84σn1/2
+

Cτ 2

2646J 2σ 2n

)

(γ̂ ∧ γ )−d/2(r̂ ∨ r)

≤ 40I∞(g, γ, r) +
τγ −d/2r

n1/2

+

(

τ

n1/2
+

151Cτ

84σn1/2
+

Cτ 2

2646J 2σ 2n

)

(v/u)d/2(γ̂ −d/2r̂ + γ −d/2r
)

≤ 40I∞(g, γ, r) +
2vd/2τγ −d/2r

ud/2n1/2
+

151Cvd/2τγ −d/2r

84ud/2σn1/2
+

Cvd/2τ 2γ −d/2r

2646J 2ud/2σ 2n
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+

(

vd/2

2ud/2ν
+

151Cvd/2

168ud/2σν
+

Cvd/2τ

5292J 2ud/2σ 2νn1/2

)

2ντ γ̂ −d/2r̂

n1/2

≤ 40I∞(g, γ, r) +
2vd/2τγ −d/2r

ud/2n1/2
+

151Cvd/2τγ −d/2r

84ud/2σn1/2
+

Cvd/2τ 2γ −d/2r

2646J 2ud/2σ 2n

+

(

vd/2

ud/2ν
+

151Cvd/2

84ud/2σν
+

Cvd/2τ

2646J 2ud/2σ 2νn1/2

)(

20I∞(g, γ, r) +
(1 + ν)τγ −d/2r

n1/2

)

.

Hence,

‖V ĥγ̂ ,r̂ − V ĥγ,r‖
2
L2(P )

≤ 2‖V ĥγ̂ ,r̂ − V ĥγ̂∧γ,r̂∨r‖
2
L2(P ) + 2‖V hγ̂∧γ,r̂∨r − V ĥγ,r‖

2
L2(P )

≤ 160I∞(g, γ, r) +
2vd/2(5 + 2ν)τγ −d/2r

ud/2n1/2
+

151Cvd/2τγ −d/2r

21ud/2σn1/2
+

2Cvd/2τ 2γ −d/2r

1323J 2ud/2σ 2n

+

(

6vd/2

ud/2ν
+

151Cvd/2

21ud/2σν
+

2Cvd/2τ

1323J 2ud/2σ 2νn1/2

)(

20I∞(g, γ, r) +
(1 + ν)τγ −d/2r

n1/2

)

.

We have

‖V ĥγ̂ ,r̂ − g‖2
L2(P ) ≤ 2‖V ĥγ̂ ,r̂ − V ĥγ,r‖

2
L2(P ) + 2‖V ĥγ,r − g‖2

L2(P )

and the result follows. �

We assume (g1) to bound the distance between V ĥγ̂ ,r̂ and g in the L2(P ) norm and prove Theo-
rem 8.

Proof of Theorem 8. By Theorem 16, we have

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤ inf
γ∈Ŵ

inf
r∈R

((

1 + D4τn−1/2)(D5τγ −d/2rn−1/2 + D6I∞(g, γ, r)
)

+ 2‖V ĥγ,r − g‖2
L2(P )

)

for some constants D4,D5,D6 > 0 not depending on τ , γ , r or n. By Theorem 6, we have

‖V ĥγ,r − g‖2
L2(P )

≤
(151C + 21σ)τγ −d/2r

42σn1/2
+

Cτ 2γ −d/2r

1323J 2σ 2n
+ 10I∞(g, γ, r)

≤ D7τγ −d/2rn−1/2 + D8τ
2γ −d/2rn−1 + 10I∞(g, γ, r)

for all γ ∈ Ŵ and all r ∈ R, for some constants D7,D8 > 0 not depending on τ , γ , r or n. This gives

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤ inf
γ∈Ŵ

inf
r∈R

((

1 + D4τn−1/2)(D5τγ −d/2rn−1/2 + D6I∞(g, γ, r)
)

+ 2D7τγ −d/2rn−1/2 + 2D8τ
2γ −d/2rn−1 + 20I∞(g, γ, r)

)

.

Hence, the result follows with

D1 =
D4D5 + 2D8

D5 + 2D7
, D2 = D5 + 2D7, D3 = D6 + 20.

�
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We assume (g3) to prove Theorem 9.

Proof of Corollary 9. If we assume (R1) and (Ŵ1), then α ∈ Ŵ and r = an(1−β)/(2(1+β)) ∈ R, so

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤
(

1 + D3τn−1/2)(D4τα−d/2rn−1/2 + D5I∞(g,α, r)
)

≤
(

1 + D3τn−1/2)
(

D4τα−d/2an−β/(1+β) +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

for some constants D3,D4,D5 > 0 not depending on n or τ by Theorem 8 and (6). If we assume (R2)
and (Ŵ2), then there is a unique γ ∈ Ŵ such that α/c < γ ≤ α and a unique r ∈ R such that

an(1−β)/(2(1+β)) ≤ r < an(1−β)/(2(1+β)) + b.

By Theorem 8, Lemma 7 and (6), we have

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤
(

1 + D3τn−1/2)(D4τγ −d/2rn−1/2 + D5I∞(g, γ, r)
)

≤
(

1 + D3τn−1/2)
(

D4τcd/2α−d/2(an(1−β)/(2(1+β)) + b
)

n−1/2 +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

.

In either case,

‖V ĥγ̂ ,r̂ − g‖2
L2(P )

≤ D1τn−β/(1+β) + D2τ
2n−(1+3β)/(2(1+β))

for some constants D1,D2 > 0 not depending on n or τ . �

Proof of Corollary 10. The proof is identical to the proof of Corollary 5. �

Supplementary Material

Regression results (DOI: 10.3150/20-BEJ1307SUPP; .pdf). We provide the proofs of the results for
the two regression problems, including the majorants, along with some technical results.
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