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gruenew@gmail.com

Azadeh Khaleghi

azadeh.khaleghi@ensae.fr

Abstract

We propose methods to estimate the individual β-mixing coefficients of a real-valued geometrically

ergodic Markov process from a single sample-path X0, X1, . . . , Xn. Under standard smoothness condi-

tions on the densities, namely, that the joint density of the pair (X0, Xm) for each m lies in a Besov space

Bs
1,∞(R2) for some known s > 0, we obtain a rate of convergence of order O(log(n)n−[s]/(2[s]+2)) for

the expected error of our estimator in this case1. We complement this result with a high-probability bound

on the estimation error, and further obtain analogues of these bounds in the case where the state-space is

finite. Naturally no density assumptions are required in this setting; the expected error rate is shown to be

of order O(log(n)n−1/2).

1 Introduction

Temporal dependence in time-series can be quantified via various notions of mixing, which capture how

events separated over time may depend on one another. The dependence between the successive observations

in a stationary sequence implies that the sequence contains less information as compared to an i.i.d. sequence

with the same marginal distribution. This can negatively affect the statistical guarantees for dependent sam-

ples. In fact, various mixing coefficients explicitly appear in the concentration inequalities involving depen-

dent and functions of dependent sequences, making them looser than their counterparts derived for i.i.d. sam-

ples, see, e.g. (Ibragimov, 1962; Viennet, 1997; Rio, 1999; Samson, 2000; Rio, 2000; Dedecker and Prieur,

2005; Bertail et al., 2006; Bradley, 2007; Kontorovich and Ramanan, 2008; Bosq, 2012) for a non-exhaustive

list of such results. Thus, in order to be able to use these inequalities in finite-time analysis, one is often re-

quired to assume known bounds on the mixing coefficients of the processes. Moreover, the quality of the

assumed upper-bounds on the mixing coefficients directly translates to the strength of the statistical guaran-

tees involving the sequence at hand. Therefore, one way to obtain strong statistical guarantees for dependent

data, is to first estimate the mixing coefficients from the samples, and then plug in the estimates (as op-

posed to the pessimistic upper-bounds) in the appropriate concentration inequalities. Estimating the mixing

coefficients can more generally lead to a better understanding of the dependence structure in the sequence.

In this paper, we study the problem of estimating the β-mixing coefficients of a real-valued Markov chain

from a finite sample-path, in the case where the process is stationary and geometrically ergodic. We start by

recalling the relevant concepts.

β-mixing coefficients. Let (Ω,F, µ) be a probability space. The β-dependence β(U ,V) between U and V
is defined as follows. Let ι(ω) 7→ (ω, ω) be the injection map from (Ω,F) to (Ω×Ω,U ⊗V), where U ⊗V is

the product sigma algebra generated by U ×V . Let µ⊗ be the probability measure defined on (Ω×Ω,U ⊗V)
1We use [s] to denote the integer part of the decomposition s = [s] + {s} of s ∈ (0,∞) into an integer term and a strictly positive

remainder term {s} ∈ (0, 1].
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obtained as the pushforward measure of µ under ι. Let µU and µV denote the restrictions of µ to U and V
respectively. Then

β(U ,V) := sup
W∈σ(U×V)

|µ⊗(W )− µU × µV(W )| (1)

where µU×µV is the product measure on (Ω×Ω,U⊗V) obtained from µU and µV . This leads to the sequence

β := 〈β(m)〉m∈N of β-mixing coefficients of a process X, where β(m) is given by supj∈N
β(σ({Xt :

1 ≤ t ≤ j}), σ({Xt : t ≥ j + m})). A stochastic process is said to be β-mixing or absolutely regular if

limm→∞ β(m) = 0.

Geometrically ergodic Markov chains. In this paper, we are concerned with real-valued stationary Markov

processes that are geometrically ergodic. Recall that a process is stationary if for every m, ℓ ∈ N the marginal

distribution on R
m of (X1+ℓ, . . . , Xm+ℓ) is the same as that of (X1, . . . , Xm). In the case of stationary

Markov processes, the β-mixing coefficient β(m), m ∈ N can be simplified to the β-dependence between

the σ-algebras generated by X1 and Xm respectively, i.e. β(m) = β(σ(X1), σ(Xm)) (Bradley, 2007, vol.

1 pp. 206). A stationary Markov process is said to satisfy “geometric ergodicity” if there exists Borel func-

tions f : R → (0,∞) and c : R → (0,∞) such that for ρ-a.e. x ∈ R and every m ∈ N, it holds that

supB∈B(R) |pm(x,B) − ρ(B)| ≤ f(x)e−c(x)m where pm(x,B) defined for x ∈ R and B ∈ B(R) is the

regular conditional distribution of Xm given X1 and ρ denotes the marginal distribution of X1 (Bradley,

2007, vol. 2 Definition 21.18 pp 325). It is well-known - see, e.g. (Bradley, 2007, vol. 2 Theorem 21.19 pp.

325) - that a stationary, geometrically ergodic Markov process is absolutely regular with β(m) → 0 at least

exponentially fast as m → 0. This means that in this case the process has β-mixing coefficients of the form

β(m) ≤ ηe−γm for some η, γ ∈ (0,∞) and all m ∈ N.

Overview of the main results. Our first result involves the estimation of β(m) for each m = 1, 2, . . . , of a

real-valued geometrically ergodic Markov chain from a finite sample path X1, . . . , Xn. Our main assumption

in this case is that the joint density fm of the pair (X0, Xm) lies in a Besov space Bs
1,∞(R2) ; roughly

speaking, this implies that fm has [s] many weak derivatives. As discussed above, for a geometrically ergodic

Markov chain, β(m) is of the form η⋆e−γ⋆m; we assume the true parameters η⋆ and γ⋆ to be unknown. Given

(potentially loose) upper-bounds η and γ on η⋆ and γ⋆ we show in Theorem 3 that

E|β(m)− β̂N (m)| ∈ O(log(n)n− [s]
2[s]+2 ), for all m . (logn)/γ

where, β̂N is given by (6) with N ≈ γn/ logn (given in Condition 2). Moreover, there exists a constant

ζ > 0 such that with probability 1− ζ log(n)n− [s]
2[s]+2 it holds that

|β(m)− β̂N (m)| ∈ O(log2(n)n− [s]
2[s]+2 ).

The constants hidden in the O-notation are included in the full statement of the theorem. An important

observation is that neither η nor γ affect the rate of convergence. However, a factor 1/γ appears in the

constant, and a pessimistic upper-bound on the mixing coefficients (i.e. a small γ) can lead to a large constant

in the bound on the estimation error. Theorems 4 and 5 are concerned with a different setting where the

state-space of the Markov chains is finite. In this case, we do not require any assumptions on the smoothness

of the densities, and the rates obtained here match that provided in Theorem 3 if we let s → ∞. For the

estimate β̂N (m) given by (8) with N ≈ (logn)/γ and every m . (logn)/γ we have,

E|β̂N (m)− β(m)| . |X |2
γ

log(n)n−1/2. (2)

Moreover, Pr(|β̂N (m) − β(m)| ≥ ǫ) . |X |2n−1/2 + |X |2 exp
(
− γnǫ2

|X |4 logn

)
for ǫ > 0. We refer to the

statement of Theorem 4 for the explicit constants. Observe that we have a factor |X |2/γ in (2). In other
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words, γ has the same effect here as in the bound provided in Theorem 3, and the constant increases quadrati-

cally in the size of the state-space. In this setting, apart from estimating the individual mixing coefficients we

can also simultaneously estimate β(m) for m up to some k† . (logn)/γ (see the full statement of Theorem 5

for a specification). The analysis relies on a VC-argument in place of a union bound which leads to tighter

error bounds. We obtain,

E( sup
m≤k†

|β̂N (m)− β(m)|) . 1

γ
log(n|X |)|X |2n−1/2,

and, Pr(supm≤k† |β̂N (m)− β(m)| ≥ ǫ) . |X |2 log(n|X |)n−1/2 + |X |2 exp
(
− γnǫ2

|X |4 logn

)
for all ǫ > 0.

Note that the parameter k† does not explicitly appear on the right hand side of the above bounds as it has

already been substituted for in the calculation.

Related literature. Research on the direct estimation of the mixing coefficients is relatively scarce. In

the asymptotic regime, Nobel (2006) used hypothesis testing to give asymptotically consistent estimates of

the polynomial decay rates for covariance-based mixing conditions. Khaleghi and Lugosi (2023) proposed

asymptotically consistent estimators of theα-mixing and β-mixing coefficients of a stationary ergodic process

from a finite sample-path. Since in general, rates of convergence are non-existent for stationary ergodic

processes (see, e.g. Shields (1996)), their results necessarily remain asymptotic and no rates of convergence

can be obtained. An attempt at estimating β-mixing coefficients has also been made by McDonald et al.

(2015). Despite our best attempts, we have been unable to verify some of their main claims and have particular

reservations about the validity of their rates. More specifically, their main theorem (Theorem 4) suggests a rate

of convergence of order log(n)n−1/2 for their estimator, independently of the dimension of the state-space

and under the most minimal smoothness assumptions on the densities. Given that under these conditions a

density estimator is known to have a dimension-dependent rate of about n−1/(2+d) even when the samples

are iid (Giné and Nickl, 2021, pp. 404), it is highly unlikely that a dimension-independent rate would be

achievable for an estimator of the β-mixing coefficient. We would like to point out that an interesting body

of work exists for a different, yet related problem, concerning the estimation of the mixing times of finite-

state Markov chains (Hsu. et al., 2019; Wolfer and Kontorovich, 2019; Wolfer, 2020). We believe that the

techniques developed in this line of work may have strong links to the estimation of the α-mixing (as opposed

to the β-mixing) coefficients of finite-state Markov chains.

2 Preliminaries

In this section we introduce notation and provide some basic definitions. We denote the non-negative integers

by N := {0, 1, 2, . . .}. If s ∈ (0,∞), then we let s = [s] + {s} be decomposed into its integer part [s] ∈ N

and a strictly positive remainder term {s} ∈ (0, 1]. In particular, if s = i for any i > 0 ∈ N then, [s] = i− 1
and {s} = 1. As part of our analysis in Section 3.1, we impose classical density assumptions on certain

finite-dimensional marginals of the Markov chains considered. The densities satisfy standard smoothness

conditions as controlled by the parameters of appropriate Besov spaces.

Besov Spaces Bs
p,∞(Rd). For an arbitrary function f : Rd → R and any vector h ∈ R

d let ∆hf(x) :=
f(x+ h)− f(x) be the first-difference operator, and obtain higher-order differences inductively by ∆r

hf :=
(∆h ◦ ∆r−1

h )f for r = 2, 3, . . . . Denote by Lp(R
d), p ≥ 1 the Lp space of functions f : Rd → R. For

s > 0 the Besov space Bs
p,∞(Rd) is defined as

Bs
p,∞(Rd) := {f ∈ Lp(R

d) : ‖f‖Bs
p,∞(Rd) < ∞} (3)

with Besov norm ‖f‖Bs
p,∞(Rd) := ‖f‖1 + sup0<t<∞t−s sup|h|≤t ‖∆r

hf‖1 where |v| :=
∑d

i=1 |vi| for

v = (v1, . . . , vd) ∈ R
d, and r is any integer such that r > s (Bennett and Sharpley, 1988). Denote by
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W r
p (R

d), r ∈ N the Sobolev space of functions f : Rd → R. We rely on the following interpolation result

concerning W r
p (R

d) and Bs
p,∞(Rd).

Remark 1. As follows from (Bennett and Sharpley, 1988, Proposition 5.1.8 and Theorem 5.4.14) for any

r0, r1 ∈ N and ς := (1− θ)r0 + θr1, θ ∈ (0, 1) it holds that

W r0
p (Rd) ∩W r1

p (Rd) →֒ Bς
p,∞(Rd) →֒ W r0

p (Rd) +W r1
p (Rd). (4)

If r0 < r1, then the left and right hand sides of (4) reduce to W r1
p (Rd) and W r0

p (Rd) respectively. Further-

more, in this case we have ‖f‖Bς
p,∞(Rd) ≥ ‖f‖W r0

p (Rd). To see this consider the K-functional

K(f, t;W r0
p (Rd),W r1

p (Rd)) := inf{‖f0‖W r0
p (Rd) + t‖f1‖W r1

p (Rd) : f = f0 + f1}

and observe that by (Bennett and Sharpley, 1988, Theorem 5.4.14 and Definition 5.1.7) we have ‖f‖Bς
p,∞(Rd) =

supt>0 t
−θK(f, t;W r0

p (Rd),W r1
p (Rd)) ≥ K(f, 1;W r0

p (Rd),W r1
p (Rd)) ≥ inf{‖f0‖W r0

p (Rd)+‖f1‖W r0
p (Rd) :

f = f0+f1} ≥ ‖f‖W r0
p (Rd). In particular, consider the Besov spaceBs

1,∞(Rd) for some s ∈ (0,∞) and take

θ = {s}/2, r0 = [s] and r1 = [s] + 2 for the above convex combination. Then ‖f‖Bs
1,∞(Rd) ≥ ‖f‖

W
[s]
1 (Rd)

.

3 Problem formulation and main results

We are given a sample X0, X1, . . . , Xn−1 generated by a stationary geometrically ergodic Markov chain

taking values in some X ⊆ R. As discussed in Section 2 such a process is known to have a sequence of

β-mixing coefficients of the form

β(m) ≤ η⋆e−γ⋆m, m ∈ N

for some unknown constants η⋆, γ⋆ ∈ (0,∞). The mixing coefficient β(m) and its rate are unknown, and

our objective is to estimate its rate parameters η⋆ and γ⋆. We focus on two different settings, depending

on the state-space. First, in Section 3.1, we consider the case where the process is real-valued and its one

and two-dimensional marginals have densities with respect to the Lebesgue measure. Next, in Section 3.2,

we consider the case where X is finite. In this setting we do not require any density assumptions, and are

able to control the estimation error simultaneously for multiple values of m. This is stated in Theorem 5.

The following notation is used in both settings. For each m ∈ N, denote by Pm the joint distribution of the

pair (X0, Xm) so that for each U ∈ B(X 2) we have Pr({(X0, Xm) ∈ U}) = Pm(U). By stationarity,

Pr({(Xt, Xm+t) ∈ U}) = Pm(U), t ∈ N.

3.1 Real-valued state-space

We start by considering the case where X is any subset of R. We assume that Pm has a density fm :
R

2 → R
2 with respect to the Lebesgue measure λ2 on R

2. Denote by P0 the marginal distribution of

Xt, t ∈ N whose density f0 : R → R with respect to the Lebesgue measure λ on R can be obtained

as f0(x) =
∫
R
fm((x, y))dλ(y) for x ∈ R. It follows that β(m) = 1

2

∫
R2 |fm − f0 ⊗ f0|dλ2. For

some fixed k ∈ m + 1, . . . , ⌊n/8⌋ let N = N(k, n) := ⌊ n−k
2(k+1) ⌋ and define the sequence of tuples

Zi = (X2i(k+1), X2i(k+1)+m), i = 0, 1, 2, . . . , N − 1. Define the Kernel Density Estimator (KDE) of

fm as

f̂m,N(z) =
1

Nh2
N

N∑

i=1

K

(
z − Zi

hN

)
(5)

with kernel K : R2 → R and bandwidth hN > 0. Marginalizing we obtain an empirical estimate of f0, i.e.

f̂0,N(x) :=
∫
R
f̂m,N (x, y)dλ(y). We define an estimator of β(m) as

β̂N(m) =
1

2

∫

R2

|f̂m,N − f̂0,N ⊗ f̂0,N |dλ2 (6)
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where ⊗ denotes the tensor product. Note that to simplify notation in (5) and (6), we have omitted the

dependence of N on the choice k. An optimal value for k, denoted, k∗ is provided in Condition 2. In our

analysis we make standard assumptions (see, Condition 2 below) about the smoothness of fm and the order

of the kernel K in (5). Recall that a bivariate kernel is said to be of order ℓ if

1. cℓ(K) :=
∑

i,j∈N

i+j=ℓ

∫

z=(z1,z2)∈R2

|z1|i|z2|j |K(z)|dλ2(z) < ∞

2.

∫

z∈R2

K(z)dλ2(z) = 1 and

∫

z=(z1,z2)∈R2

zi1z
j
2K(z)dλ2(z) = 0 for all i, j ∈ N, i+ j < ℓ

Condition 2. The density fm ∈ Bs
1,∞(R2) for some s > 1 and ‖fm‖Bs

1,∞(R2) ≤ Λ for some Λ ∈ (0,∞). It

is further assumed that the ℓth moments of the pair (X1, Xm) are finite for ℓ = 1, . . . , ⌈s⌉, and
∫
R2 f(z)(1 +

‖z‖2)dλ2(z),
∫
R2 K

2(z)(1+ ‖z‖2)dλ2(z) < ∞. While the parameters η⋆ and γ⋆ are unknown, some lower-

bound γ ≤ γ⋆ and some upper-bound η ≥ η⋆ are given. The estimator β̂N (m) given by (6) for m =
1, . . . , k∗ is obtained via

i. a convolution kernel K of order [s] such that c0 :=
∫
R2 |K(z)|dλ2(z) < ∞.

ii. and a bandwidth of the form hN = (cΛ)−
[s]

[s]+1

(
[s]−1

2

)− [s]
2[s]+2

n− 1
2[s]+2

where, c :=
c[s](K)

[s]!
and N = ⌊ n−k∗

2(k∗+1)⌋ with k∗ = 1
γ

(
log γη

8C + (3[s]+2
2[s]+2 ) logn

)
, and C := (2 +

c0)(L1)
[s]

[s]+1 (cΛ)
1

[s]+1 with L2
1 := 2

s−1

∫
R2 f(z)(1 + ‖z‖2)dλ2(z)

∫
R2 K

2(z)(1 + ‖z‖2)dλ2(z).

We are now in a position to state our main result, namely, Theorem 3 below which provides bounds on the

estimation error of β̂N given by (6), when the assumptions stated in Condition 2 are satisfied. Note that

this condition is fulfilled by a number of standard models. For instance, consider the stationary, geometri-

cally ergodic AR(1) model Xt+1 = aXt + ǫt, t ∈ N, where ǫt ∼ N (0, σ2) for some σ > 0 and where

X0 ∼ N (0, σ2/(1 − a2)) for some a ∈ R with |a| < 1. All of the finite-dimensional marginals of this

process are Gaussian; in particular, its marginal and joint densities f0 and fm, m = 1, 2, . . . , being infinitely

differentiable, lie in any of the Besov spaces that we consider in this paper.

Theorem 3. Under the assumptions stated and with the parameters defined in Condition 2, for each m ∈
1, . . . , k∗ we have

E|β(m) − β̂N(m)| ≤ 8Cn− [s]
2[s]+2

γ

(
1 + log

γη

8C
+ 2 logn

)

Moreover, with probability 1−
(
2 + 8C log

(
γη
8C + 3

2 logn
))

n− [s]
2[s]+2 it holds that

|β(m)− β̂N (m)| ≤ 64
(
1 +

c0
2

)
(C1 + C2 log(n) +

6‖K‖1
γ

log2(n))n− [s]
2[s]+2 .

where

C1 =
1

γ
log
( γη
8C

)

3(L1)

[s]
[s]+1 (cΛ)

1
[s]+1 + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


 ,

C2 =
4‖K‖1

γ
log
( γη
8C

)
+

3

2γ


3(L1)

[s]
[s]+1 (cΛ)

1
[s]+1 + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


 .

See Section 4 for a proof.
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3.2 Finite state-space

In the special case where the state-space X of the Markov chain is finite, we can relax the density assump-

tions and obtain an empirical estimate of β by counting frequencies. More specifically, in this case, for each

t ∈ N the σ-algebra σ(Xt) is completely atomic with atoms {Xt = s}, s ∈ X . Therefore, by (Bradley,

2007, vol. Proposition 3.21 pp. 88) we have

β(m) =
∑

u∈X

∑

v∈X

|Pm({(u, v)})− P0({u})P0({v})| (7)

where as before, Pm and P0 are the joint and the marginal distributions of (X0, Xm) and X0 respectively.

Given a sample X0, . . . , Xn−1, we can obtain an empirical estimate of β(m) in (7) as follows. Fix a lag

of length k ∈ 1, . . . , n (an optimal value for which will be specified in Proposition 4). Define the sequence

of tuples Zi = (X2ki, X2k(i+1)), i = 0, 2, . . . , N − 1, with N = N(k, n) := ⌊ n−k
2(k+1)⌋. For each pair

(u, v) ∈ X 2 let P̂m,N ((u, v)) = 1
N

∑N−1
i=0 1{(u,v)}(Zi). Similarly, for each u ∈ X we can obtain an

empirical estimate of P0(u) as P̂0,N (u) := 1
2N

∑2N
i=0 1{u}(Xki). Define

β̂N (m) :=
∑

u∈X

∑

v∈X

|P̂m,N ({(u, v)})− P̂0,N ({u})P̂0,N({v})| (8)

Theorem 4. Consider a sample of length n ∈ N of a stationary, geometrically ergodic Markov chain

with finite state-space X . Define N(k, n) = ⌊ n−k
2(k+1) ⌋, n, k ∈ N. Let k⋆ := 1

γ log
(

ηγn3/2

√
8|X |2

)
and

N = N(k⋆, n), n ≥ max

{
2|X |3

(
eγ

ηγ

)2/3
,
(

ηγ
|X |2

)2/3}
. For every m = 1, . . . , k⋆ and β̂N (m) given

by (8) we have,

E|β̂N (m)− β(m)| ≤
√
32|X |2n−1/2

γ

(
1 + log

(
ηγ√
8|X |2

)
+

3

2
logn

)

Moreover, for ǫ > 0 it holds that

Pr(|β̂N (m)− β(m)| ≥ ǫ) ≤
√
2|X |2n−1/2

log( ηγn3/2
√
8|X |2 )

+ 4|X |2 exp{− γnǫ2

48|X |4 logn}

The proof is provided in Section 4.

In this setting, we are also able to simultaneously control the estimation error for all m = 1, . . . , k† where

k† is specified in the statement of Theorem 5. The proof relies on a VC argument which helps replace a factor

of k† (which would have otherwise been deduced from a union bound) with a factor of log k†.

Theorem 5. Consider a sample of length n ∈ N of a stationary, geometrically ergodic Markov chain
with finite state-space X . Define N(k, n) = ⌊ n−k

2(k+1) ⌋, n, k ∈ N. Let N = N(k†, n) with k† :=

1
γ log

(
ηγn3/2

8
√
2|X |2 log(n|X |)

)
and n ≥ max

{
8
√
2|X |3eγ
ηγ , ηγ

8
√
2|X |

}
. For β̂N given by (8) we have,

E[ sup
m∈1,...,k†

|β̂N (m)− β(m)|] ≤ 8
√
2|X |2n−1/2 log(n|X |)

γ

(
1 + log

(
ηγn1/2

8
√
2|X |2 log(n|X |)

))

Furthermore, for ǫ > 0 the probability Pr(supm∈1,...,k† |β̂N (m)− β(m)| ≥ ǫ) is at most

4
√
2|X |2 log(n|X |)n−1/2

log( ηγn3/2

8
√

2|X |2 )
+ 16|X |2 log

(
3|X |
2γ

log(η2/3
γ
2/3

n)

)
exp

{
− γnǫ2

3072|X |4 log n

}

The proof is provided in Section 4.
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4 Proofs

In this section we provide a proof for our theorems. A common ingredient in all three proofs is a coupling

argument for time-series, which allows one to move from dependent samples to independent blocks. This

is facilitated by Lemma 6 below, which is a standard result based on, commonly used in the analysis of

dependent time-series, see e.g. (Levental, 1988; Yu, 1994; Arcones and Yu, 1994). For completeness, we

provide a proof of this lemma, which in turns relies on a coupling Lemma of Berbee (1979) stated below.

Lemma 6. Let Xi, i ∈ N be a stationary sequence of random variables with β-mixing coefficients β(j), j ∈
N. For a fixed k, ℓ ∈ N let Yi = Xi(k+ℓ), . . . , Xik+(i+1)ℓ for i ∈ N. There exists a sequence of independent

random variables Y ∗
i , i ∈ N taking values in R

ℓ and have the same distribution as Yi such that for every

i ∈ N we have,

Pr(Y ∗
i 6= Yi) ≤ β(k).

Lemma 7 (Berbee (1979)). Let X and Y be two random variables taking values in Borel spaces S1 and

S2 respectively. Denote by U a random variable uniformly distributed over [0, 1], which is independent of

(X,Y ). There exists a random variable Y ∗ = g(X,Y, U) where g : S1 × S2 × [0, 1] → S2 such that Y ∗ is

independent of X and has the same distribution as Y , and that Pr(Y ∗ 6= Y ) = β(σ(X), σ(Y )).

Proof of Lemma 6. Let Uj , j ∈ N be a sequence of i.i.d. random variables uniformly distributed over [0, 1]
such that each Uj is independent of σ({Yi : i ∈ N}). Set Y ∗

0 = Y0. By Lemma 7 there exists a random

variable Y ∗
1 = g1(Y

∗
0 , Y1, U1) where g1 is a measurable function from R

ℓ ×R
ℓ × [0, 1] to R

ℓ such that Y ∗
1 is

independent of Y ∗
0 , has the same distribution as Y1 and Pr(Y ∗

1 6= Y1) = β(σ(Y ∗
0 ), σ(Y1)). Similarly, there

exists a random variable Y ∗
2 = g2((Y

∗
0 , Y

∗
1 ), Y2, U2) where g2 is a measurable function from (Rℓ)2 × R

ℓ ×
[0, 1] to R

ℓ such that Y ∗
2 is independent of (Y ∗

0 , Y
∗
1 ), has the same distribution as Y2 and Pr(Y ∗

2 6= Y2) =
β(σ(Y ∗

0 , Y
∗
1 ), σ(Y2)). Continuing inductively in this way, at each step j = 3, 4, . . . , by Lemma 7, there exists

a random variable Y ∗
j = gj((Y

∗
0 , Y

∗
1 , . . . , Y

∗
j−1), Yj , Uj) where gj is a measurable function from (Rℓ)j ×

R
ℓ × [0, 1] to R

ℓ such that Y ∗
j is independent of (Y ∗

0 , Y
∗
1 , . . . , Y

∗
j−1), has the same distribution as Yj and that

Pr(Y ∗
j 6= Yj) = β(σ(Y ∗

0 , Y
∗
1 , . . . , Y

∗
j−1), σ(Yj)). It remains to show that β(σ(Y ∗

0 , Y
∗
1 , . . . , Y

∗
j−1), σ(Yj)) ≤

β(k) for all j ∈ N. To see this, first note that Y ∗
0 = Y0 by definition, and that for each i ∈ N, it holds that

Y ∗
i ∈ σ((Y ∗

0 , Y
∗
1 , . . . , Y

∗
i−1), Yi, Ui), we have

σ(Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1) ⊆ Uj ∨ Vj (9)

where Uj = σ(U1, . . . , Uj−1) and Vj = σ(Y0, Y1, . . . , Yj−1). Take any U ∈ Uj and W ∈ σ(Yj). We almost

surely have,

P (U ∩W |Vj) = E (1U1W |Vj)

= E (E (1U1W |Vj ∨ σ(Yj)) |Vj) since Vj ⊆ σ(Yj) ∨ Vj

= E (1WE (1U |Vj ∨ σ(Yj)) |Vj) since W ∈ σ(Yj)

= E (1WE (1U ) |Vj) since Uj is independent of σ(Y0, . . . , Yj)

= P (U)P (W |Vj)

= P (U |Vj)P (W |Vj) since Uj is independent of Vj

Therefore, and Uj , Vj and σ(Yj) form a Markov triplet in the sense of (Bradley, 2007, Vol. 1 Definition 7.1

pp. 205). Thus, as follows from (Bradley, 2007, Vol. 1 Theorem 7.2 pp. 205) we obtain,

β(Uj ∨ Vj, σ(Yj)) = β(Vj , σ(Yj)). (10)

In light of (9) and (10), and noting that by construction β(Vj , σ(Yj)) ≤ β(k) we obtain

β(σ(Y ∗
0 , Y

∗
1 , . . . , Y

∗
j−1), σ(Yj)) ≤ β(Uj ∨ Vj , σ(Yj)) ≤ β(Vj , σ(Yj)) ≤ β(k).
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Proof of Theorem 3. Given the sample X0, . . . , Xn, consider the sequence Zi = (X2i(k+1), X2i(k+1)+m)

with i = 0, 1, 2, . . . , N − 1 where N = N(k, n) := ⌊ n−k
2(k+1) ⌋ for some fixed k ∈ m+1, . . . , ⌊n/8⌋. (As part

of the proof, we propose an optimal choice for k, see (24).) Enlarge Ω if necessary in order for Lemma 6 to

be applicable. As follows from Lemma 6 there exists a sequence of independent random variables Z∗
i , i =

0, 1, . . . , N − 1 each of which takes value in R
2 and has the same distribution as Zi, i = 0, 1, . . . , N − 1,

with the additional property that

Pr ({∃i ∈ 0, . . . , N − 1 : Z∗
i 6= Zi}) ≤ Nβ(k) (11)

Define the KDE of fm through Z∗
i , i = 0, . . . , N − 1

f̂∗
m,N(z) =

1

Nh2
N

N∑

i=1

K

(
z − Z∗

i

hN

)

with the same kernel K : R2 → R and bandwidth hN > 0 as in (5) and let

β̂∗
N(m) =

1

2

∫

R2

|f̂∗
m,N − f̂∗

0,N ⊗ f̂∗
0,N |dλ2 (12)

where f̂∗
0,N(x) :=

∫
R
f̂∗
m,N(x, y)dλ(y).

‖f0 ⊗ f0 − f̂∗
0,N ⊗ f̂∗

0,N‖1

=

∫

x

∫

y

|f0(x)f0(y)− f̂∗
0,N (x)f̂∗

0,N (y)|dλ(x)dλ(y)

=

∫

x

∫

y

|f0(x)f0(y)− f̂∗
0,N (x)f0(y) + f̂∗

0,N (x)f0(y)− f̂∗
0,N (x)f̂∗

0,N (y)|dλ(x)dλ(y)

≤
∫

y

f0(y)

∫

x

|f0(x)− f̂∗
0,N (x)|dλ(x)dλ(y) +

∫

x

|f̂∗
0,N (x)|

∫

y

|f0(y)− f̂∗
0,N (y)|dλ(y)dλ(x)

≤ (1 + c0)‖f0 − f̂∗
0,N‖1 (13)

where c0 =
∫
R2 |K(z)|dλ2(z) as specified in the theorem statement. It follows that

|β(m)− β̂∗
N (m)| = 1

2

∣∣∣∣
∫

|fm − f0 ⊗ f0|dλ2 −
∫

|f̂∗
m,N − f̂∗

0,N ⊗ f̂∗
0,N |dλ2

∣∣∣∣

≤ 1

2

∣∣∣∣
∫ (

|fm − f̂∗
m,N |+ |f0 ⊗ f0 − f̂∗

0,N ⊗ f̂∗
0,N |

)
dλ2

∣∣∣∣

=
1

2

∫
|fm − f̂∗

m,N |dλ2 +
1

2

∫
|f0 ⊗ f0 − f̂∗

0,N ⊗ f̂∗
0,N |dλ2

=
1

2
‖fm − f̂∗

m,N‖1 +
1

2
‖f0 ⊗ f0 − f̂∗

0,N ⊗ f̂∗
0,N‖1

≤ 1

2

(
‖fm − f̂∗

m,N‖1 + (1 + c0)‖f0 − f̂∗
0,N‖1

)
(14)

where (14) follows from (13). Next, it is straightforward to check that if fm ∈ Bs
1∞(R2) with ‖f‖Bs

1∞(R2) ≤
Λ, then f0 =

∫
R
fmdλ ∈ Bs

1∞(R) with ‖f‖Bs
1∞(R) ≤ Λ. Moreover, observe that, as follows from Remark 1,

for all f ∈ Bs
1∞(R) and g ∈ Bs

1∞(R2) we have ‖f‖
W

[s]
1 (R)

≤ ‖f‖Bs
1,∞(R) and ‖g‖

W
[s]
1 (R2)

≤ ‖g‖Bs
1,∞(R2).

Therefore, with the choice of bandwidth h specified in the theorem statement, by (Giné and Nickl, 2021,

Proposition 4.1.5 and Proposition 4.3.33) and an argument analogous to that of (Giné and Nickl, 2021, Propo-

sition 5.1.7), we obtain,

sup
f0:‖f‖Bs

1∞
(R)≤Λ

E‖f̂∗
0,N − f0‖1 ≤ C̃N− [s]

2[s]+2 (15)
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where C̃ = 2(L1)
[s]

[s]+1 (cΛ)
1

[s]+1 . Similarly, by (Giné and Nickl, 2021, pp. 404) we have,

sup
fm:‖f‖Bs

1∞(R2)≤Λ

E‖f̂∗
m,N − fm‖1 ≤ C̃N− [s]

2[s]+2 (16)

Set C := (2 + c0)C̃/2. Define the event E := {Z∗
i = Zi, i ∈ 0, . . . , N − 1}. We obtain,

E|β(m)− β̂N (m)| ≤ E|β(m)− β̂∗
N (m)|+ E[|β̂∗

N (m)− β̂N (m)| |Ec] Pr(Ec) (17)

≤ E|β(m)− β̂∗
N (m)|+ 2Nβ(k) (18)

≤ CN− [s]
2[s]+2 + 2Nβ(k) (19)

≤ CN− [s]
2[s]+2 + 2Nηe−γk (20)

≤ C

(
4k

n− 4k

) [s]
2[s]+2

+
n

k
ηe−γk (21)

≤ C

(
8k

n

) [s]
2[s]+2

+
n

k
ηe−γk (22)

≤ 8Ck

n
[s]

2[s]+2

+ ηne−γk (23)

where (17) follows from triangle inequality and observing that under E the estimators β̂N and β̂∗
N are equal,

(18) follows from (11), (19) follows from (14),(15) and (16), (20) follows from observing that β(k) ≤ 1 and

the geometric ergodicity of the chain, and (21) and (22) follow from the definition of N and the fact that

2 ≤ k ≤ ⌊n/8⌋. Optimizing (23) for k we obtain

k⋆ =
1

γ

(
log

γη

8C
+

(
3[s] + 2

2[s] + 2

)
logn

)
(24)

which in turn leads to

E|β(m) − β̂∗
N(m)| ≤ 8Cn− [s]

2[s]+2

γ

(
1 + log

γη

8C
+ 2 logn

)
(25)

This completes the proof of the bound on the expected error. For the high probability bound observe that

(Giné and Nickl, 2021, Theorem 5.1.13) states that for all t > 0,

Pr
(
N‖f̂∗

m,N − E(f̂∗
m,N )‖1 ≥ (3/2)NE‖f̂∗

m,N − E(f̂∗
m,N )‖1 +

√
2Nt‖K‖1 + t5‖K‖1

)
≤ e−t. (26)

Furthermore, E(f̂∗
m,N) = KhN ∗ fm, where Kh(x) = (1/h)K(x/h) for h > 0, x ∈ R

2. Hence,

‖f̂∗
m,N − fm‖1 ≤ ‖f̂∗

m,N − E(f̂∗
m,N )‖1 + ‖KhN ∗ fm − fm‖1. (27)

The latter term can be bounded by using (Giné and Nickl, 2021, Proposition 4.3.33),

‖KhN ∗ fm − fm‖1 ≤ h
[s]
N ‖fm‖

W
[s]
1 (R2)

, (28)

Note that there is a typo in (Giné and Nickl, 2021, Proposition 4.3.33) which states the result as in the one-

dimensional case. The inequality (28) relies on the remainder term of a Taylor series. The remainder term in

‖ · ‖1-norm is upper bounded by (Minkowski inequality for integrals)

[s]h
[s]
N

∑

|α|=[s]

1

α!

∫ 1

0

(1 − u)[s]−1‖Dαfm‖1 du ≤ [s]h
[s]
N

∫ 1

0

(1 − u)[s]−1du‖fm‖
W

[s]
1 (R2)

,
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where α = (α1, α2) is multi-index of dimension 2, α! = α1!α2!, the integral [s]
∫ 1

0 (1− u)[s]−1 is equal to 1,

and Dαfm is a weak-derivative of fm : R2 → R. Hence,

N‖f̂∗
m,N − fm‖1 ≤ N‖f̂∗

m,N − E(f̂∗
m,N )‖1 +NΛh

[s]
N

and with probability at least 1− e−u,

N‖f̂∗
m,N − fm‖1 ≤ NΛh

[s]
N + (3/2)NE‖f̂∗

m,N − E(f̂∗
m,N )‖1 +

√
2Nu‖K‖1 + u5‖K‖1.

Recall that ‖fm‖
W

[s]
1 (R2)

≤ ‖fm‖B2
1,∞(R2) and, therefore, from (16) it follows that for any fm such that

‖fm‖B2
1,∞(R2) ≤ Λ, with probability 1− e−u we have,

‖f̂∗
m,N − fm‖1 ≤ Λh

[s]
N + (3/2)C̃N− [s]

2[s]+2 +
√
2u/N‖K‖1 + u5‖K‖1/N.

Substituting hN as stated in Condition 2.ii, yields that with probability 1− e−u,

‖f̂∗
m,N − fm‖1

≤


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2 +
√
2u/N‖K‖1 + u5‖K‖1/N.

Similarly, we can bound the difference between f̂∗
0,N and f0 in high probability; for u > 0, with probability

1− e−u, it follows from (13) that

‖f0 ⊗ f0 − f̂∗
0,N ⊗ f̂∗

0,N‖1/(1 + c0) ≤ ‖f̂∗
0,N − f0‖1

≤


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2 +
√
2u/N‖K‖1 + u5‖K‖1/N.

Substituting this into (14) gives that with probability at least 1− 2e−u,

|β(m) − β̂∗
N (m)|/(1 + c0/2)

≤


(3/2)C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2 +
√
2u/N‖K‖1 + u5‖K‖1/N.

Furthermore, with probability

1−Nβ(k∗) ≥ 1− 8C log
( γη
8C

+
3[s] + 2

2[s] + 2
logn

)
n− [s]

2[s]+2

f̂∗
0,N = f̂0,N and f̂∗

m,N = f̂m,N . By setting u = log(n)[s]/(2[s] + 2) we gain that with probability

1−
(
2 + 8C log

( γη
8C

+
3

2
logn

))
n− [s]

2[s]+2

the following bound holds

|β(m)− β̂N (m)|/(1 + c0/2)

≤


3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2


N− [s]

2[s]+2 +

√
[s] log(n)

([s] + 1)N
‖K‖1 +

5[s] log(n)|K‖1
(2[s] + 2)N

.
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Finally, observing that N ≥ (n/4k∗) − 1, and noting that 16N− [s]
2[s]+2 ≥ (N + 1)−

[s]
2[s]+2 whenever N ≥ 2

and [s] ≥ 1, and simplifying, we get,

|β(m)− β̂N (m)|

≤ 16
(
1 +

c0
2

)
(
3

2
C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]− 1

2

)− [s]2

2[s]+2

+

(√
[s]

([s] + 1)
+

5[s]

(2[s] + 2)

)
log(n)|K‖1

)( n

4k∗

)− [s]
2[s]+2

.

Noting that (4k∗)
[s]

2[s]+2 ≤ 4k∗ and letting C1 = 1
γ log

(
γη
8C

)
(

3
2 C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]−1

2

)− [s]2

2[s]+2

)
and

C2 = 4‖K‖1

γ log
(
γη
8C

)
+ 3

2γ

(
3
2 C̃ + Λ(cΛ)−

[s]2

[s]+1

(
[s]−1

2

)− [s]2

2[s]+2

)
, we obtain

|β(m)− β̂N (m)| ≤ 64
(
1 +

c0
2

)
(C1 + C2 log(n) +

6‖K‖1
γ

log2(n))n− [s]
2[s]+2 .

Proof of Theorem 4. As in the proof of Theorem 3, we use a coupling argument together with concentra-

tion bounds on independent copies. More specifically, consider the geometrically ergodic Markov sample

X0, . . . , Xn, and define the sequence of tuples Zi = (X2i(k+1), X2i(k+1)+m), i = 0, 1, 2, . . . , N − 1 where

N = N(k, n) := ⌊ n−k
2(k+1) ⌋ for some fixed k ∈ m+1, . . . , ⌊n/8⌋; as in the continuous state-space setting, an

optimal choice for k is specified later in the proof, see (35). As follows from Lemma 6 there exists a sequence

of independent random vectors Z∗
i = (Z∗

i,1, Z
∗
i,2) for i = 0, 1, . . . , N − 1 each of which takes value in X 2

and has the same distribution as Zi such that

Pr ({∃i ∈ 0, . . . , N − 1 : Z∗
i 6= Zi}) ≤ Nβ(k) (29)

Define

β̂∗
N (m) :=

∑

u∈X

∑

v∈X

|P̂ ∗
m,N ({(u, v)})− P̂ ∗

0,N ({u})P̂ ∗
0,N({v})|

where P̂ ∗
m,N ((u, v)) := 1

N

∑N−1
i=0 1{(u,v)}(Z

∗
i ) and P̂ ∗

0,N (u) := 1
N

∑N
i=0 1{u}(Z

∗
i,1). By a simple appli-

cation of Jensen’s inequality and noting that the random variables Z∗
i , i = 0, . . . , N − 1 are iid, for each

z ∈ X × X we have,

E[|P̂ ∗
m,N (z)− Pm(z)|] ≤ 1

N
(

N−1∑

i=0

E(1{z}(Z
∗
i )− E1{z}(Z

∗
i ))

2)1/2 ≤ N−1/2 (30)

where the second inequality is due to Var
(
1{z}(Z

∗
i )− E1{z}(Z

∗
i )
)
≤ 1. Similarly, for each u ∈ X we

obtain E[|P̂ ∗
0,N (u)− P0(u)|] ≤ N−1/2. It follows that

E|β̂∗
N (m)− β(m)|

≤
∑

(u,v)∈X 2

E|Pm({(u, v)})− P̂ ∗
m,N ({(u, v)})|+ 2

∑

u∈X

E|P0({u})− P̂ ∗
0,N ({u})| (31)

≤ 2|X |2N−1/2. (32)
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In much the same way as in the proof of Theorem 3, let E := {Z∗
i = Zi, i ∈ 0, . . . , N − 1}, and observe

that E(|β̂∗
N (m)− β̂N (m)||E) = 0. Moreover, recall that k ≤ ⌊n/8⌋. We obtain,

E|β(m)− β̂N (m)| ≤ E|β(m)− β̂∗
N (m)|+ 2Nβ(k) (33)

≤ 2|X |2
(

4k

n− 4k

)1/2

+ 2nηe−γk

≤ 2|X |2
(
8k

n

)1/2

+ 2nηe−γk

≤
√
32|X |2n−1/2k + 2nηe−γk (34)

where (18) follows from (29). Optimizing (34) we obtain

k⋆ =
1

γ
log

(
ηγn3/2

√
8|X |2

)
(35)

where n is taken large enough so ensure that k⋆ ≥ 1 (see (36) below). This choice of k⋆ and n leads to

E|β̂N (m)− β(m)| ≤
√
32|X |2n−1/2

γ

(
1 + log

(
ηγ√
8|X |2

)
+

3

2
logn

)
.

Take N = N(k⋆, n) = ⌊ n−k⋆

2(k⋆+1)⌋, with k⋆ given by (35) and

n ≥ max

{
2|X |3

(
eγ

ηγ

)2/3

,

(
ηγ

|X |2
)2/3

}
. (36)

Substituting for k⋆ and noting that N ≤ n/k⋆ we have,

Nηe−γk⋆ ≤
√
2|X |2n−1/2

log( ηγn3/2√
8|X |2 )

. (37)

On the other hand, by Hoeffding’s inequality, for any ǫ > 0 and each u ∈ X we have,

Pr(|P̂ ∗
0,N ({u})− P0({u})| ≥

ǫ

2|X | ) ≤ 2 exp

{
− Nǫ2

2|X |2
}

(38)

Similarly, for each (u, v) ∈ X 2 it holds that

Pr(|P̂ ∗
m,N ({(u, v)})− Pm({(u, v)})| ≥ ǫ

2|X |2 ) ≤ 2 exp

{
− Nǫ2

2|X |4
}

(39)

It follows that

Pr(|β̂∗
N (m)− β(m)| ≥ ǫ/2)

≤
∑

u,v

Pr(|Pm({(u, v)})− P̂ ∗
m,N ({(u, v)})| ≥ ǫ

2|X |2 )

+ 2
∑

u

Pr(|P0({v})− P̂ ∗
0,N ({u})| ≥ ǫ

2|X | )

≤ 2|X |2 exp
{
− Nǫ2

2|X |4
}
+ 2|X | exp

{
− Nǫ2

2|X |2
}
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≤ 4|X |2 exp
{
− Nǫ2

2|X |4
}

≤ 4|X |2 exp{− (n− 4k⋆)ǫ2

8k⋆|X |4 } (40)

≤ 4|X |2 exp{− nǫ2

16k⋆|X |4 } (41)

≤ 4|X |2 exp{− γnǫ2

16|X |4
(
log ηγ

|X |2 + 3
2 log2 n

)} (42)

≤ 4|X |2 exp{− γnǫ2

48|X |4 logn} (43)

where, (40) follows from the choice of N = ⌊ n−k⋆

2(k⋆+1)⌋, (41) follows from recalling that in general, k (and

thus also k⋆), is less than ⌊n/8⌋, and finally, (42) and (43) follow from substituting the value of k⋆ as given

by (24) and observing that by (36) we have 3
2 logn ≥ log( ηγ

|X |2 ). Hence, by (29), (37) and (43) we obtain,

Pr(|β̂N (m)− β(m)| ≥ ǫ) ≤ Nβ(k⋆) + Pr(|β̂∗
N (m)− β(m)| ≥ ǫ/2)

≤ Nηe−γk⋆

+ 4|X |2 exp
{
− Nǫ2

2|X |4
}

≤
√
2|X |2n−1/2

log( ηγn3/2√
8|X |2 )

+ 4|X |2 exp{− γnǫ2

48|X |4 logn}

Proof of Theorem 5. As in the proof of Theorem 4, we start by a coupling argument, with the difference that

instead of generating 2-tuples, we generate blocks of length k+1 for an appropriate value of k which we spec-

ify further in the proof. Specifically, givenX0, . . . , Xn define Z̃i = (X2i(k+1), X2i(k+1)+1, . . . , X(2i+1)k+2i), i =

0, 1, . . . , N − 1 where N = N(k, n) := ⌊ n−k
2(k+1) ⌋ for some fixed k ∈ 1, . . . , ⌊n/8⌋; an optimal choice for

k is specified later in the proof, see (49). By Lemma 6 there exists a sequence of independent random vec-

tors Z̃∗
i = (Z̃∗

i,0, . . . , Z̃
∗
i,k) for i = 0, 1, . . . , N − 1 each of which takes value in X k+1 and has the same

distribution as Z̃i such that

Pr
(
{∃i ∈ 0, . . . , N − 1 : Z̃∗

i 6= Z̃i}
)
≤ Nβ(k). (44)

Define

β̂†
N (m) :=

∑

u∈X

∑

v∈X

|P̂ †
m,N ({(u, v)})− P̂ †

0,N ({u})P̂ †
0,N({v})|

where P̂ †
m,N ((u, v)) := 1

N

∑N−1
i=0 1{(u,v)}(Z̃

∗
i,0, Z̃

∗
i,m) and P̂ †

0,N (u) := 1
N

∑N
i=0 1{u}(Z̃

∗
i,0). As in the proof

of Theorem 4, for each u ∈ X it holds that

E[|P̂ †
0,N (u)− P0(u)|] ≤ N−1/2. (45)

Define the class of indicator functions

Hk = {hm,z : X
k → {0, 1} : z ∈ X × X , hm,z(x) := 1{z}(x0, xm), m = 1, . . . , k}.

It is straightforward to verify that the VC-dimension of Hm is at most log2(|X |k). Therefore, as follows

from (Giné and Nickl, 2021, pp. 217) it holds that,

E[ sup
m∈1,...,k
(u,v)∈X

2

|P †
m,N ((u, v))− Pm((u, v))|] ≤

√
8 log2(|X |k) logN

N
(46)
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By (45) and (46) we have,

E[ sup
m∈1,...,k

|β̂†
N (m)− β(m)|]

≤ E[ sup
m∈1,...k

∑

(u,v)∈X 2

|Pm({(u, v)})− P̂ †
m,N ({(u, v)})|+ 2

∑

u∈X

|P0({u})− P̂ †
0,N ({u})|]

≤ |X |2E[ sup
m∈1,...k
(u,v)∈X

2

|Pm({(u, v)})− P̂ †
m,N ({(u, v)})|] + 2

∑

u∈X

E|P0({u})− P̂ †
0,N ({u})|

≤ |X |2
√

8 log2(|X |k) logN
N

+ 2|X |N−1/2

≤ 2|X |2
√

8 log2(|X |k) logN
N

(47)

Together with the coupling argument given earlier we obtain,

E[ sup
m∈1,...,k

|β̂N (m)− β(m)|] ≤ E[ sup
m∈1,...,k

|β̂†
N (m)− β(m)|] +Nβ(k)

≤ 2|X |2
√

8 log2(|X |k) logN
N

+Nηe−γk

≤ 2|X |2 log(N |X |)
√
8N−1/2 +Nηe−γk

≤ 8|X |2
√

2k

n
log(n|X |) + nηe−γk

≤ 8
√
2|X |2n−1/2 log(n|X |)k + nηe−γk (48)

Optimizing (48) we have

k† =
1

γ
log

(
ηγn3/2

8
√
2|X |2 log(n|X |)

)
(49)

with n ≥ 8
√
2|X |3eγ
ηγ to ensure that k† ≥ 1. This leads to

E[ sup
m∈1,...,k

|β̂N (m)− β(m)|]

≤ 8
√
2|X |2n−1/2 log(n|X |)

γ

(
1 + log

(
ηγn1/2

8
√
2|X |2 log(n|X |)

))
. (50)

Take N = N(k†, n) = ⌊ n−k†

2(k†+1)⌋, with k† given by (49) and

n ≥ max

{
8
√
2|X |3eγ
ηγ

,
ηγ

8
√
2|X |

}
. (51)

It follows that,

Nηe−γk† ≤ 4
√
2|X |2 log(n|X |)n−1/2

log( ηγn3/2

8
√
2|X |2 )

(52)

On the other hand, by Hoeffding’s inequality, for any ǫ > 0 and u ∈ X it holds that

Pr(|P̂ †
0,N ({u})− P0({u})| ≥

ǫ

2|X | ) ≤ 2 exp

{
− Nǫ2

2|X |2
}

(53)
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Furthermore, noting that Hm is a VC-class, by (Devroye et al., 2013, Theorem 12.5) for ǫ > 0 we have,

Pr( sup
m∈1,...,k†

(u,v)∈X
2

|P̂ †
m,N ({(u, v)})− Pm({(u, v)})| ≥ ǫ

2|X |2 ) ≤ 8 log2(|X |k)e−
Nǫ2

128|X |4 (54)

Therefore, for any ǫ > 0 we have,

Pr( sup
m∈1,...,k†

|β̂†
N (m)− β(m)| ≥ ǫ/2)

≤ |X |2 Pr


 sup

m∈1,...,k†

(u,v)∈X
2

|Pm({(u, v)})− P̂ †
m,N({(u, v)})| ≥ ǫ

2|X |2




+ 2
∑

u

Pr

(
|P0({v})− P̂ †

0,N ({u})| ≥ ǫ

2|X |

)

≤ 8|X |2 log(|X |k†) exp
{
− Nǫ2

128|X |4
}
+ 2|X | exp

{
− Nǫ2

2|X |2
}

(55)

≤ 16|X |2 log(|X |k†) exp
{
− Nǫ2

128|X |4
}

≤ 16|X |2 log(|X |k†) exp{− nǫ2

1024k†|X |4 } (56)

≤ 16|X |2 log
(
3|X |
2γ

log(η2/3γ2/3n)

)
exp

{
− γnǫ2

3072|X |4 logn

}
(57)

where, (55) follows from (53) and (54), (56) follows from the choice of N = ⌊ n−k†

2(k†+1)⌋ and noting that in

general all k (and thus also k†) are taken to be less than ⌊n/8⌋, (57) follows from substituting for the value

of k† as given by (49) and observing that by (51) we have n3/2

log(n|X |) ≥ n
|X | ≥

ηγ

8
√
2|X |2 . Hence, by (44), (52)

and (57) we obtain,

Pr( sup
m=1,...,k†

|β̂N (m)− β(m)| ≥ ǫ)

≤ Nηe−γk†

+ Pr( sup
m=1,...,k†

|β̂†
N (m)− β(m)| ≥ ǫ/2)

≤ 4
√
2|X |2 log(n|X |)n−1/2

log( ηγn3/2

8
√
2|X |2 )

+ 16|X |2 log
(
3|X |
2γ

log(η2/3γ2/3n)

)
exp

{
− γnǫ2

3072|X |4 logn

}

and the result follows.
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E. Giné and R. Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2021.

D. Hsu., A. Kontorovich, D. A. Levin, Y. Peres, C. Szepesvári, and G. Wolfer. Mixing time estimation in
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