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Abstract

We study approaches for compressing the empirical measure in the context of finite
dimensional reproducing kernel Hilbert spaces (RKHSs). In this context, the empiri-
cal measure is contained within a natural convex set and can be approximated using
convex optimization methods. Such an approximation gives rise to a coreset of data
points. A key quantity that controls how large such a coreset has to be is the size of the
largest ball around the empirical measure that is contained within the empirical convex
set. The bulk of our work is concerned with deriving high probability lower bounds on
the size of such a ball under various conditions and in various settings: we show how
conditions on the density of the data and the kernel function can be used to infer such
lower bounds; we further develop an approach that uses a lower bound on the smallest
eigenvalue of a covariance operator to provide lower bounds on the size of such a ball;
we extend the approach to approximate covariance operators and we show how it can
be used in the context of kernel ridge regression. We also derive compression guaran-
tees when standard algorithms like the conditional gradient method are used and we
discuss variations of such algorithms to improve the runtime of these standard algo-
rithms. We conclude with a construction of an infinite dimensional RKHS for which
the compression is poor, highlighting some of the difficulties one faces when trying to
move to infinite dimensional RKHSs.
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1 Introduction

Many methods in machine learning and statistics make use of the empirical measure which
is effectively a representation of the data. Reducing the number of points on which the em-
pirical measure is supported, while preserving most of the information that is necessary for
inference, can result in a significant speed-up of algorithms without sacrificing accuracy.
We study the question of how to compress the empirical measure while preserving infor-
mation in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs). To
give an overview of our results it is useful to introduce the key objects of our investigation.
We are generally concerned with data taking values in some set X'. Often we will assume
this set to be compact. We then look at a kernel function £ defined on X’ and the corre-
sponding RKHS H. For various results, it is useful to assume that the functions in ‘H are
continuous or even Lipschitz-continuous. Our main interest lies in the unknown distribu-
tion P of data X, ..., X,, where we assume throughout that X, ..., X,, are independent
and identically distributed. We adopt a common convention from the empirical process
theory literature and will denote by Pf the integral { f(z) dP(z) whenever f € L}(X, P).
Since P is unknown it is common to use the empirical measure P, as a surrogate, where
P.f = (1/n) >, f(X;). There is a useful interplay between the measures P and P,



and RKHSs. Whenever k(X1, ) is Bochner-integrable with respect to P we can define
m = {k(z, ) dP(x) € H and it follows that

{(m,hy = Ph, forall h € H.

Similarly, by defining m,, = (1/n) >, k(X;, -) we have that (m,,, h) = P,hforall h € H.
Our aim in this paper is to find an element m,, such that

[, —m | ~ [jmy, —m]

to guarantee that |[m,, — m| is of the same order as |m,, — m|| and m,, can be used in place
of m,, without sacrificing significant accuracy in applications.

To gain such an approximation m,, we make use of another fortunate circumstance.
The element m does not only lie in H but within the convex set

C =cch{k(z, ) :ze X},

where cch denotes the closed convex hull. This is useful because the extremes of C' are
contained within the set {k(x,-) : = € X'} and often we can reduce the study of C' to
studying the interaction between k(z, -) and functions h € #H. For instance, the width of C
in a direction h € H, |h| = 1, is

width ,(C) = suplk(z, ), h) — inf(k(x,-), h) = sup h(z) — inf h(z).

rzeX TEX reX reX
The set {k(z,-) : © € X'} is usually infinite and not directly useful for algorithms. However,
when using m,,, we have another convex set in H that is usable, that is the empirical convex
set C,, = ch{k(X;, ) : ¢ < n} which contains m,. The extremes of C,, are contained
within the finite set {k(X},-) : i < n}.

Standard techniques like the conditional gradient method or the kernel herding algo-
rithm are directly applicable to approximate m,, by convex combinations of {k(X;,-) : i <
n}. The kernel herding algorithm generates an approximation of the form (1/7) 22:1 k(X,,")s
where ¢ : {1,...,{} — {1,...,n} is some selection of data points and [ < n. The data
points X, (1), ..., X, themselves can be seen as a coreset for the data set. This approach
is visualized in Figure [T}(i). The conditional gradient method does not provide such an
average but an arbitrary convex combination of the points k(X, ), ..., k(X,, ) and can-
not be used directly to find a coreset. However, a coreset is often not necessary and many
algorithms can work directly with an approximation of m or related quantities; we demon-
strate this in Section [I.5]and Section[5| The advantage of the conditional gradient method
when compared to the kernel herding algorithm is that it usually leads to a vastly superior
compression of the data.

Crucially, the performance of these techniques depends on the size of the largest ball
in C), that can be centered at m,,. The existence of such a ball is in itself already of major
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Figure 1: (1) The figure depicts how a subset or coreset of the sample is selected: the data
is embedded in H by using the kernel function of H. An approximation algorithm is then
applied to the convex polytope in ‘H to find an approximation of m that uses only a few
extremes of the convex polytope. The pre-images of these extremes are the sample points
that are selected as the coreset. (i1) For most statistical problems approximating m itself
is insufficient and one has to approximate closely related quantities. In the case of least-
squares regression, one has to approximate the operator €, ,, € H © H (see Section and
Section [3for the definitions), which is closely related to the empirical covariance operator,
and a ‘weighted’ mean embedding m, ,, € R'®%H. Itis often of interest to approximate &, ,,
and m, ,, simultaneously, for instance, when building a coreset for least-squares regression.

This can be achieved by considering the direct sum (’H/Ct)\?‘—[) @ (R"® H) and a ‘direct
sum’ of the convex polytopes in the two spaces. The relation between the extremes of the
convex polytopes is highlighted in the figure through the dotted lines; i.e. an algorithm will
select a pair that is connected by a dotted line and by selecting such a pair of extremes the
approximation of both the covariance and mean element will change.

importance for the performance of the techniques and is known as Slater’s condition. In
this paper, our main focus lies on the derivation of high probability lower bounds on the
size of such a ball around m,, within C,,. Figure[2outlines our approach. In (i) the setting is
shown with m,, € C,, € C and the largest ball around m,, in C), is drawn. One of the main
difficulties is that both m,, and C), are stochastic and change with the sample. We sidestep
this difficulty by analyzing C' and m, and relating the empirical quantities C,, and m,, to C'
and m. Standard techniques from empirical process theory suffice to control the deviations
between the empirical versions and their population limits (Figure2](iv)). There are at least
two useful approaches to control the size of the largest ball around m within C. The first
approach is sketched in (ii) and (iii): first, we lower bound the width of C' uniformly over a
range of ‘directions’ h in H (Figure 2](ii)). Then we determine how centered m lies within
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Figure 2: The figure summarizes some of the key questions we address in this paper: (i)
This is the central question in this paper; ‘how large a ball exists within the empirical
convex set C), around m,,?’ (ii) This question can be addressed by first controlling the width
of C itself in different directions A, ho, ... € H. The width in such a direction A is the size
of the projection of C' on the span of the function i € H. Lower bounds on the width that
hold simultaneously for all relevant A translate to the existence of a ball in C; furthermore,
the size of the ball is directly related to the lower bounds on the width. (iii) We need not just
any ball in C' but one that is centered at m. Now, generally, m can lie close to the boundary
and no large ball around it might exist. However, under certain natural conditions, it can be
ruled out that m will lie too closely to the boundary. In particular, under these conditions,
we can control the ratio of a/b for the segments shown in the figure. Controlling this ratio
for all relevant h € H allows us to show that there exists a ball around m in C. (iv) To
translate this back to C), and m,, we are making use of empirical process theory to control
the convergence of C;, — C and m,, — m which allows us to lower bound the size of a
ball around m,, in C,, with high probability. Similarly to (ii) we control the convergence
per direction h and then use high probability guarantees that hold simultaneously for all
relevant h.

C in each direction h (Figure [2}(iii)). Combining these two arguments, we can derive a
lower bound on the size of the largest ball around m in C. The second approach is quite
different in that it does not try to control the width of the set C' explicitly. Instead, it uses
the spectrum of the covariance operator to derive lower bounds on the largest ball around
min C. In particular, a simple argument using the Paley-Zygmund inequality goes a long
way and leads to lower bounds that are controlled by the smallest non-zero eigenvalue of
the centered covariance operator.



1.1 Lower bounding the width of '

When trying to control the width of C' the first thing one notices is that we seem to know
relatively little about C'. Even the RKHS H itself is usually only accessed through k£ and
we do not have easy access to a basis of H. So it might come as a surprise that there is a
relatively simple way to access the width of C'. The key to bounding the width is that

width,, (C) = Qinlg |h — 1|oo,
ce

where h € H,||h|| = 1, and 1 is the constant function that is equal to 1 everywhere. This
relationship holds because

suph, gy — inf(h, gy = suplh, k(x,-)) — inf(h, k(x,-)) = sup h(z) — inf h(x).

geC geC reX zeX TzeX TzeX
The relevance of this equality is that it reduces the problem of measuring the width to the
problem of measuring how well constant functions can be approximated by functions in
the RKHS. The question of how well certain functions can be approximated by RKHS
functions is well understood when the RKHS is infinite dimensional. In particular, the
K-functional is a common tool to control the approximation quality, and results about the
K-functional can be brought to bear to provide bounds on the width of C'. However, in
the finite dimensional setting, these results are of limited use. We develop for this case
a simple approach to measure how well constant functions can be approximated: if the
constant functions do not lie in the RKHS H then we can construct a new RKHS H* by
introducing the kernel function k* = k + 1 ® 1, where k is the kernel of . The RKHS
H™ then contains the constant functions and H < H™'. In fact, we have an isometric
embedding of #H into HT. Now, in H™ it is easy to measure how well constant functions
can be approximated by functions in the unit sphere of H. In detail,

inf inf||h — 1+ = 1.
heH,|h]=1 ceR

There are different ways to move from the norm of #* to | - |, which we summarize in
Lemma on p. One of these approaches applies if k™ is a Mercer kernel and \zy; > 0
is the smallest eigenvalue in the series expansion. In this case

202 < widthy, (C),

forall h e H,|h| = 1.

If the constant functions lie already in H then a different approach is necessary. Let
us mention that we only need to control the width of C' within the affine subspace that is
spanned by it. Since (k(z,-),1) = 1 for all x € X we can observe that the space spanned
by 1 is perpendicular to the affine subspace of C. To get a lower bound on width,(C') for
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functions % in the affine subspace we can consider the kernel £~ = k — [1]?1 ® 1 and
the corresponding RKHS H~. The constant functions do not lie in H~ and H~ can be
isometrically embedded in H. Most importantly the functions h € H~ of norm |h[y- =1
are exactly the directions in which we need to bound the width of C'. Now, with an approach
analogous to the one involving H and H* we get a lower bound of the form

202 < widthy,(C),

for all h € H~, |k = 1, and with \; being the smallest eigenvalue of the Mercer
decomposition of the kernel k. Proposition (1| on p. contains these results and results
about related approaches to bound the width.

1.2 Locating m within C'

Controlling the width of C' alone is insufficient since m might lie in the boundary of C'. We
need to complement the lower bounds on the width with results that tell us how centered
m lies. This can be achieved by controlling the ratio a/b and b/a of the segments along
any function / from m to the boundary as depicted in Figure [2](iii). An observation that
is useful in this context is the following: if we have a probability measure on R which has
a mean value of zero and there exists some measurable set B with inf B > ¢ > 0 and
P(B) > 0, then there will be probability mass on the negative axis since otherwise

0=deP=J a:dP)fdeZeP(B)>0.
R [0,00) B

A similar argument applies to C' and m. For instance, if we have a uniform distribution
on the boundary of the ellipse shown in Figure [2](iii), then m cannot lie in the boundary:
otherwise, there would exist a function h € H, ||h| = 1, such that (h, k(z,-)) = (h,m) for
all x € X and an € > 0 such that A = {z : (h,k(z,-) — m) > €} has non-zero measure.
Hence,

0= J(h, k(z,-) — mYdP(z) = eP(A) > 0.

Combining this argument with a Lipschitz assumption on the kernel function and a lower
bound on the density allows us to show that m has to lie away from the boundary. How far
away it has to lie is made precise in Proposition 2] on p. [52]

1.3 Convergence of C, to C

To transfer the results about C' and m to C), and m,, we use VC and Rademacher arguments
to bound the difference between C,, and C', and m,, and m. For controlling [m, — m| a



standard argument suffices. However, it is less clear how to best control the difference
between C,, and C.

The approach that we are taking is the following. We consider indicators x{(k(X, ) —
m, hy < —c} where X is a random variable with the same distribution as X1, ..., X,, and ¢
is a constant that we vary. Observe that whenever

PY{¢k(X,") —m,h) < —¢} > 0

then there is a point x € X, such that (k(x,-) — m,h) < —c¢, or in other words, there is
a point which lies ¢ away from m along h. A VC argument allows us to control all these
indicators simultaneously over all A in the unit ball of H and to show that for any such £,

|PnX{<k(X’ ) -m, h> < _C} - PX{<k(X7 ) —m, h> < _C}|7

is small for sufficiently large n. This allows us to show that C',, converges along h towards C'
with a certain rate and since we have guarantees that hold uniformly over the unit ball in ‘H
we can derive a rate of convergence of C,, to C'. A similar approach works for Rademacher
complexities with the main difference being that we have to approximate the indicator
functions with continuous functions.

Both approaches rely on a lower bound on the probability that A(X) attains values
below a threshold. We use two different approaches to get such lower bounds: the first
approach uses an assumption on the the density (lower bounded away from zero) and a
Lipschitz assumption on the functions in H. The second approach uses assumptions on the
covariance operator. The second approach is more general in the sense that assumptions on
the density imply a certain behavior of the covariance operator but our density assumption
is certainly not the only way to control the covariance operator. On the other hand, the
assumption on the covariance operator is quite abstract while the density assumption is in
a sense very concrete.

Combining these different arguments allows us to control the size of the ball around
m,,. In particular, our first theorem combines the Rademacher approach with a density
assumption (Theorem [I] on p. [60). This approach brings together some of the results on
the width of C, the location of m and the convergence results to show that for large enough
n there is with high probability a ball of a certain radius around m,, in C,,. In detail, there
exists a ball of size § with the dominant term of § being

25;\((;“)/25;
I+ 1)L’

where X = [0,1]', L is the Lipschitz constant, A4 the smallest eigenvalue of the Mercer
decomposition of k, ¢ > 0 is a lower bound on the density of the law of X; on X and f; is
the Lebesgue measure of the [-dimensional unit ball in R'.

9



With probability ¢ € (0, 1) there then exists a ball of radius /4 around m,, in C,
whenever n is greater than

. (m + 96kréé2/5>2 § <4kréé2 + 3m>

&3(6/SL)! 5/

We can observe that ¢ is strongly dependent on the dimension [ of the space X. This
stems from our approach: we identify a point xy € X which corresponds to an element
k(xo,-) € H that lies far away from m. We then identify a second point z; such that k(zy, -)
lies in the opposite direction of k(zg, -) with respect to m. If the space is low dimensional
then k(z1, -) needs to lie far from m to counter the mass that is accumulated around k(xo, -)
and, thus, m lies reasonably centered between k(x¢,-) and k(z1,-). However, when the
space is high dimensional then no single point k(z1, -) has to lie far away from m because
the mass accumulated around k(z, -) can be countered by ‘many points’ that lie close to
m and m can lie significantly closer to the boundary.

To contrast this worst-case bound with the best-case scenario, observe that there is a
point in C' such that a ball of radius 25\3/ ? lies around it within C.. The factor 5\;/ ? itself
is in all likelihood tight and reflects the fact that the convex set C' is very small in certain
directions.

1.4 Assumptions on the spectrum of the covariance operator

An alternative approach to controlling the width of C' in different directions h» € H and
then determining how centered m lies in each direction is to use assumptions on the covari-
ance operator. In fact, the argument that involves the covariance operator is considerably
simpler: when

ER*(X)) — E*(h(X)) = A >0

for some positive A then |h(X )| must attain large enough values with some non negligible
probability. Furthermore, when £ is a bounded function then both (A (X)— E(h(X)))" and
(h(X) — E(h(X)))~ must be large with a non-negligible probability. A simple argument
involving the Paley-Zygmund inequality suffices to make these statements precise. To get
a lower bound on the largest ball around m in C' we have to control all 4 in the unit ball
with this approach. In terms of the spectrum of the covariance operator this means that we
have to use the smallest non-zero eigenvalue of the covariance operator as ).

Another advantage of the covariance operator approach is that it adapts nicely to set-
tings where the distribution has support S that is not equal to X. Effectively, algorithms
like the CGM or kernel herding work implicitly with a subspace of  that is isometric to
an RKHS Hg with kernel £ S x S (the restriction of k to S x .S) and for Hg we have
a covariance operator that has the same non-zero eigenvalues as the covariance operator

10



for 7. Hence, we can use the same ) for Hg as for H and we can control the largest ball
around mg in Hg through this argument. Theorem [2]on p. [62]is based on that argument.

1.5 Adapting the approach to concrete statistical problems

Most methods for inference do not use m itself but related quantities. For example, in
the least squares problem, where we try to fit observations Y; through f(X;) with some
function f in an RKHS, we have

n

%Zn:(f(Xi) —Y;)? = %Zn:@f@f,k(xi, )@ k(Xi, e — %iﬁ%k(&-, D+ %Z}/;Z

i=1
1 & 9
= <f ® f, €n>H®H + 2<f, my,n> + E iil Y; ,

where we denote by H ©® H the tensor space H & H when the functions are restricted
to the diagonal A = {(z,z) : x € X}, €, = (I/n) X" | k(X;,) ® k(X;,-) | A and
my, = (1/n) 2L, Yik(X;, ).

There are significant similarities between the problem of compressing m,, and that of
compressing &, or m,, ,,. We discuss these in Section (3| Let us highlight a few results.

The empirical covariance operator €,, can be dealt with quite easily by associating it to
the element (1/n) Y | k(X;, ), where k(z,y) = k*(x,y). This way one can apply all the
results we developed for m,, to €,,, one only has to substitute « for k.

Dealing with the element m,,, is more challenging and there is a certain degree of
freedom of how to phrase the compression problem. A natural and simple choice is to
consider Y;k(X;,-) as the random elements which attain values in H. A first indicator
that things are more complicated is that when Y; is unbounded then we run into serious
problems when trying to define a bounded convex set that contains (1/n) " | Yik(X;, ).
Things simplify if we assume boundedness of the Y; and make some natural assumptions
about how the data is generated. In particular, if we assume that X;,..., X, are 1i.d.
and Y; = fo(X;) + €;, where fy is some bounded measurable function, the ¢;’s are i.i.d.,
centered, independent of X1, ..., X,, and bounded by |¢;| < b a.s., then m,,, converges to

my = Jf(](Xl)k(Xl, ) dP e H
and m,, is contained in the convex set
Cy = cch{(fo(z) £ b)k(z, ) : v € X}.

In this setting there is also a simple relationship between the width of C, and C: consider
some h € H, |h| = 1, then

width, (C,) > bwidthy,(C)

11



and results on widthy, (C') are applicable. The downside of this approach is that the con-
vergence of the empirical convex set towards C,, can be very slow since the |¢;| might only
have a low probability of attaining values close to b. This problem can be circumvented
by using an alternative approach. Instead of considering the convergence of the empirical
convex set to a suitable population limit we can directly work with the empirical convex
set and analyze how deep the empirical mean element lies within that set. We develop
this approach in Section [3.3.1] The discussion in that section cumulates in Proposition [2]
which provides lower bounds on the radius of a ball that is centered on the empirical mean
element m,,,, and which is contained within the empirical convex set.

We extend this approach to the case of unbounded Y; by using random variables Y;
that are capped at a certain, n dependent, threshold. There are a variety of technical chal-
lenges that have to be overcome to make this approach work. In particular, one has to
verify that the empirical mean element corresponding to the capped random variables is
close the empirical mean element of the original variables when the threshold of the cap is
selected appropriately. Also, one has now to work with a family of covariance operators
corresponding to the different thresholds and the corresponding capped random variables.
We show that the lowest eigenvalues of these covariance operators are close the the lowest
eigenvalue of the original covariance operator if the threshold for the cap is set in the right
way. Proposition [3] contains the details of that result.

Simultaneous approximation. Up to now we considered the approximation problems in
isolation but it also makes sense to try to approximate &, simultaneously to m, , by se-
lecting elements Y;k(X;, -) that reduce the approximation error for both elements. Quite a
different set of techniques are needed to deal with this simultaneous approximation prob-
lem. In Section[3.4]we develop an approach based on direct sums of Hilbert spaces to deal
with this problem. The analysis is much more intricate and interesting than for the indi-
vidual approximation problems. In Figure[I](ii) the high level approach is visualized. The
space ?:[6\7{ is the space of functions H®H when trivially extended from X to R x A and
the space R’ ® #H is an RKHS with kernel function ((y1, z1), (y2, 22)) — {y1, y2)rk(z1, T2)
which is also defined on R x &'. The convex sets we introduced above have natural ana-
logues in H ® H and in R” x H. By taking the direct sum of these spaces we also get a
sort of direct sum of these convex sets and we are trying again to control quantities like
the width of that set. The particular problem of approximating &,, simultaneously to m,,,
is benefiting from the fact that HOH N (R"® #H) = {0}. This allows us to define an
RKHS that is isometrically isomorphic to the direct sum. The analysis of the simultaneous
approximation problem then breaks down to studying the empirical mean element and the
empirical convex set within that RKHS.

The situation that the two Hilbert spaces that we combine through the direct sum are not
overlapping is rather special. For instance, if we try to approximate m and ¢ simultaneously
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then the Hilbert spaces overlap, which adds another layer of difficulties. We are developing
for this case a quotient space approach that factors out the intersection between the two
Hilbert spaces. An interesting finding in this context is that the direct sum cannot be related
directly to an RKHS but, like in the case of approximating m and € simultaneously, the
affine subspace spanned by the convex set can be isometrically isomorphic to an RKHS
which then allows us to use results we developed for RKHSs (see Lemma 3] p. [95).

When we apply the conditional gradient method to the above RKHSs then we will not
end up with a coreset of data points but with elements in 7-[/@\7-{, R'®H or 7-/[’®\7-I, ®R'®
‘H). However, that is not a major obstacle and it is for various problems quite easy to adapt
the algorithms to deal with these approximations; we highlight that approach for kernel
ridge regression in Section [3]

1.6 Implications for algorithms

The various results that we derived to control the size of the largest ball around m,, in C,,
can be translated directly to results for algorithms like the CGM. In particular, we can give
high probability guarantees on the approximation error when the CGM is being run for ¢
iterations and we can give guarantees on the expected size of a coreset when the kernel
herding algorithm is used with a stopping criterion that is an error of below n~'/2. The
corresponding results are contained in Section ]

One problem with these algorithms is that they require an upfront computation of order
O(n?) which is too high for large-scale data. Standard approaches to scale the CGM to
large-scale problems do not seem to yield direct computational advantages but there are
some interesting directions to explore. In particular, a divide-and-conquer approach has
some intriguing features. The performance of the approach depends to a large extent on the
bias of the algorithms (CGM or kernel herding). Section {4| contains a detailed discussion
of these ideas.

1.7 Slow rate of convergence in infinite dimensions

It was observed in [3] that the proof technique used to derive fast rates of convergence
for the kernel herding algorithm and the conditional gradient method cannot be applied to
compact sets in infinite dimensional RKHSs since compact sets in such spaces do not con-
tain norm balls. It was later found that there are general limits to how well the representer
of the empirical measure can be approximated. In particular, [27, Thm.3.1] states that there
exists a set of n points z1, . . ., 7, in R%, for large enough d and n > d, such that for any set
of points ¥, ...,y with [ < \/%/ 2 it holds that

n

l
1 1 .
I7 k(i) = 3 kil > '™
i=1
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under mild assumptions on the kernel. This implies that for this particular set of elements
1, ..., T, there cannot be any significant compression of the element m = (1/n) >7" | k(x;, ).
The argument in [27] is not stochastic and is not concerned with draws of samples X, ..., X,
from a distribution, but it seems likely that the argument can be extended to provide restric-
tions on how well m,, can be approximated by a core-set of points in high probability
(over the values that m,, attains). Nevertheless, there is hope to circumvent the barries
erected by this theorem. First of all, the construction uses approximations of the form
(1/1) 22:1 k(y;, ) and not arbitrary convex combinations of the elements k(y;,-),7 < [. A
greedy algorithm to find such a core-set of points y1, . . ., y; requires generally significantly
more points than algorithms that approximate m,, with convex combinations of elements
k(y;,-). An interesting question is therefore if there exists an inherent limitation for ap-
proximating with core-sets that can be avoided by more general convex combinations, or if
this difference in performance is simply due to the algorithms (kernel herding vs. CGM).
There is a simple argument that hints at the former: consider the set X = [0, 1]% for
some positive dy € N and a continuous kernel function k£ : X x X — R whose corre-
sponding RKHS is infinite dimensional and separable. The set C' is then compact and for
any orthonormal basis {e;};>1 of H it holds that sup.<e;, f) — infyec{g, €;) converges
to zero as ¢ — co0. The rate with which this series converges is in all likelihood of crucial
importance for determining how well m,, can be approximated. Therefore, let us introduce

d<PU¢C> C) = iug HPsz - fH7

where U; is the subspace spanned by e, ..., e; and P, is the orthogonal projection onto
this subspace. Now, Caratheodory’s theorem tell us that for 7 > 1 there exists a convex
combination m; of i + 1 elements k(z1,), ..., k(x;1,-) such that

[, —m,] < d(Py,C, C).

In other words, when d(Py,C, C) is of order i~ for some v > 0, and if we are aiming for
an approximation error of n~"/2 then we need approximately n'/2* many points. Further-
more, when d(Py,C, C) falls exponentially fast, say with order exp(—i), then log(n) many
points suffice.

Another important aspect of the compression problem that is not captured by the the-
orem is the dependence of the compression problem on the distribution of the data. For
example, in [3] a lower bound on the density of the distribution was crucial for deriving
fast rates of convergence in certain settings. This is because such properties of the density
translate directly to geometric properties of the approximation problem (the existence of
a ball around m,, in C),). Similarly, in this paper, we use the size of the largest non-zero
eigenvalue of the covariance operator to control the rate of convergence. One might won-
der if such properties also influence the compression performance in infinite dimensional
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Figure 3: The figure shows lower bounds on [{e,,, w)| in dependence of the first element
a,, that has not yet been chosen. The shaded area is a lower bound on ||w| when m =
10%°. The norm of w goes to infinity in m which implies that the kernel herding algorithm
converges with a rate that is slower than 1/¢.

RKHSs. To this end, we provide an example that shows that an assumption on the density
alone will in all likelihood be insufficient. The example we construct is not universal in
the sense that we show that the kernel herding algorithm does not achieve its fast rate of
1/t of approximation in this example. As in the example from [27], we construct a par-
ticular target m and do not consider the empirical version m,,. However, our construction
incorporates properties of the underlying probability measure and might serve as a start-
ing point for more refined analyses that use properties of the distribution of the data. The
counter-example is constructed for the kernel herding algorithm and not the conditional
gradient methods since the behavior of the kernel herding algorithm is easier to control
but we strongly suspect that similar problems will also occur with the conditional gradient
method.

In detail, the example we construct shows that there exists a continuous kernel on [0, 1],
a Borel probability measure on [0, 1] which assigns positive measure to open subsets of
[0, 1], and an initialization for which the kernel herding algorithm converges with a slower
rate than 1/t when approximating the representer m of the probability measure (Theorem
BJon p. [122)). The construction of this example is somewhat involved since we need to gain
control over the behavior of the kernel herding algorithm. The basic intuition, however, is
rather simple. We start with some infinite dimensional Hilbert space ‘H and an orthonormal
sequence {e, },>1 in it. The construction is best explained when assuming that m = 0 (we
cannot set it exactly to 0 and need later a minor modification). We then construct a compact
convex set that contains elements {a,},>1, {b,}n>1, Where each a,, is a positive multiple
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of e,, and each b,, is a negative multiple of e,,. Furthermore, b, is of significantly smaller
magnitude than a,,. Consider now an initialization of the algorithm with an element c € ‘H
which is of small magnitude compared to the a,, and has a positive inner product with each
a,. Because of this positive inner product the different a,,’s will be chosen one by one
by the algorithm and because the b,,’s are of small magnitude compared to the a,,’s hardly
any weight will be reduced in the directions e,,. This way the element w;, which measures
the approximation error at iteration ¢, builds up mass in the different directions e,, and
its norm grows in t. The construction is more involved than this sketch, but, a suitably
adapted version of this approach allows us to show that so much mass will be added to w;
that its norm diverges to infinity. This effect is visualized in Figure [3| The figure shows
four different w; as inner products with e, (n being shown on the x-axis). The shaded
area continues past the right end of the plot (the limit of the shaded area is given in the
legend: 10° for the black line etc.). One can observe that the right limit of the shaded area
grows significantly from the black line to the red line, i.e. from 10° to 10?°. While the
right limit grows exponentially the left limit hardly changes. This is due to the small scale
of the b,’s. As a result the overall mass in the shaded area, which corresponds to ||w||,
diverges to infinity. This implies then directly that the algorithm cannot converge with the
fast rate of 1/¢ that is achieved under similar assumptions in the finite dimensional setting.
All that then remains to complete the example is to show that there exists a continuous
kernel that gives rise to this setup. We construct first a continuous function ¢ : [0, 1] — H
that goes over all a,, and b,, and we then use this Hilbert space and the continuous function
to construct an RKHS with a continuous kernel function.

1.8 Literature

The concept of a coreset is known for at least two decades and there is a wide range of
literature on its application to machine learning, Bayesian statistics and geometric approx-
imation problems (e.g. [4, |1, 21]). It is natural to apply the conditional gradient method
[17] in that context (e.g. [21]).

The kernel herding algorithm and the conditional gradient method are greedy approx-
imation algorithm as they choose at each stage ¢ an element that minimizes the remaining
error. Greedy algorithms will generally not return the best possible approximation that can
be achieved in ¢ steps but they are easy to compute. This is a big advantage since in the
large data context computational efficiency is paramount. Greedy algorithms for approx-
imating functions have been popular at least since the late nineties. An overview of the
most popular approaches is provided in [32]. The approach is here to make use of a ba-
sis of a function space, say of a Sobolev or Besov space, to approximate elements inside
these function spaces in a greedy fashion. An important generalization is to use so-called
dictionaries which are families of functions that are not necessarily linearly independent,
i.e. there are redundancies in the representation of elements in the function space. These
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approaches are very natural if one has access to a basis or related families of functions. In
contrast to this approach, we are interested in approximating subsets of the function space
that are naturally described by point-evaluators, a kernel function, or, more generally, a set
of extremes of a convex set. Instead of working then with linear subspaces of the func-
tion space we are working with convex subsets of the function spaces and we apply greedy
algorithms to approximate elements inside such convex sets.

The methods we are studying compress the sample into a potentially small subset of the
original sample while retaining optimal, or nearly optimal, rates of convergence. While our
approach is inspired by various optimization methods there are links to sample compres-
sion schemes as introduced in [24, [16]. Sample compression schemes are concerned with
the inference of ‘concepts’, which are indicators x A, A a Borel subset of some topological
space X. In this setting, one has given a set of concepts that contains the concept y A, or
are sufficient to approximate y A in a suitable way, and one likes to infer y A from observa-
tions (z1,41),- -+, (Tn, Yn), x; € X, y; € {0, 1}. A sample compression scheme compresses
these observations into a subset that is sufficient to reconstruct the original labels y; for all
x;, 1 < n, if the observations are consistent with some concept yA’, where yA’ is con-
tained in the predefined set of concepts. Compressibility is directly linked to VC-theory:
in [[16] it is shown that, under some technical conditions, sets with VC-dimension d are
d-compressible, meaning that one can always reduce the sample to a sub-sample of size d
while still being able to reconstruct the sample in the above sense. Furthermore, it is not
possible to compress the sample to less than d-points without losing the reconstructability
property. Our aim is quite different in that we do not care about being able to reconstruct
the original labels. In that sense our approach is more closely related to sufficient statis-
tics which compress the data to facilitate inference. That being said, there are interesting
parallels. For instance, Caratheodory’s theorem tells us that, in our setting, there is a com-
pression of the data down to d + 1-points if we work with a d-dimensional RKHS; such an
RKHS has VC-dimension d.

Naturally, there are a variety of alternative approaches to deal with large scale data in
the RKHS context. In particular, when the RKHS is finite dimensional with dimension
d it is straight forward to represent m,, using a basis expansion: take points X;,..., Xy
such that k(X7, ), ..., k(Xy, ) are linearly independent and apply the Gram-Schmidt or-
thogonalization procedure to gain a basis eq,...,e; of H then m can be written as a
linear combination of eq,...,e; which implies that it can be written as a linear com-
bination of k(X,-),...,k(Xq4,-). In more detail, the coefficients ay, ..., ay, such that
m, = Z?:I a;k(X;, ), can be computed recursively by first computing the basis represen-
tation through

ler,m) = (k(X1, "), m)/k(X1, X1)
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and then to link this back to the coefficients of k(Xi,),...,k(Xq4,-). To perform this
Gram-Schmidt procedure it is necessary to compute k(X;, X;) for all 4,5 < d. In other
words, we need in the order of d*> many kernel evaluations. This is a negligible factor
when d « n. Similarly, one can solve concrete statistical problems, like a linear regression
problem, by using a d x d covariance matrix instead of the kernel matrix; one way to gain
such a covariance matrix is to use again the Gram-Schmidt procedure. Our aim in this
paper is not to compete with these methods in terms of runtime performance in the context
of d « n, but to gain insights into the behavior of greedy algorithms in the absence of
complications that arise in infinite dimensional settings.

The question of how to construct coresets for m has garnered significant attention in
recent years. In [[14]] a good overview is given that covers recent approaches most of which
focus on the infinite dimensional setting. In the context of finite dimensional RKHSs it is
worth mentioning the paper [20] which studies linear kernel functions and shows that under
certain conditions they can achieve a compression down to n'/2.

1.9 Preliminaries

Throughout this paper we will be working with a set X in which covariates or features
attain values and a kernel function k : X x X — R (see [26, Def.2.12]). Recall that such a
kernel function gives rise to an RKHS H [26] Def2.14]. While X does not need a particular
structure to define a kernel on, we are interested in integrals involving k£ and we will assume
for most of our results that X’ is a measureable space and & is a measurable in the sense
that k(z,-) : X — R is measurable for all x € X'. This is equivalent to saying that any
h € H is a measurable function from X to R (see [31, Lem.4.24]). We also use the notation
¢(x) = k(z, ) when this is convenient.

We are making use of empirical process theory in various places and to ease the appli-
cation we will assume that our underlying probability space corresponds to a product space
and the involved random variables are coordinate projections following essentially [13,
Sec.3.1]. In detail, we will usually have a probability space (€2, .4, 1) with independent and
identically distributed random variables X, X7, X, ... attaining values in (X', Ay ), where
X is a topological space and Ay is a o-algebra on X', which are defined on this probability
space. Natural choices for Ay are the Borel-algebra or the domain of a Radon measure.
We usually do not need assumptions on .4y but at various points we need to guarantee that
the support of the law P of X is well defined. In these cases we typically assume that P is a
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T-additive topological measure and Ay is its domain. Alternatively, we could assume that
P is a Radon measure which guarantees that P is a 7-additive topological measure (see [18,
411]). This is for a wide range of spaces not a strong assumption. In particular, if X is a
Polish space then it is a Radon space [18, 434K(b)] and the completion of a Borel measure
on X is a Radon measure [18] 434F(a.iii), 211L]. £ will usually be the product X and for
we X;j(w) =w; e Xforalli > 1, and X(w) = wy. There are multiple natural choices
for the o-algebra A. In [13] Sec.3.1] A is the product o-algebra which is the one that is
generated by the cylinder sets, that is the smallest o-algebra such that all cylinders which
are defined by finite many coordinates are measurable. We use in this paper the completion
of this o-algebra as A. If we have pairs (X;,Y;), where X; attains values in X’ and Y; in
R then we use the same setting but let (X;, Y;)(w) € X x R. We reserve P for the law
of the random variables, e.g. the law of X, and use Pr if we want to state probabilities of
events in A. In particular, h(X) € £1(Q, p) if, and only if, h € L}(X, P) and, in this case,
§h(X)du = § hdP. The empirical measure P, is (1/n) Y, dx,, where d,(A) = 1 when-
ever A € By and x € A; otherwise 0,(A) = 0. It is often useful to associate a measure
space to P, to be able to talk about random variables with law F,,. For this purpose we
will use the measure space (X, By ) and equip it with the random measure P,. A random
variable will be the measurable function X : X — X, X(z) = x. If we want to talk about
a sequence of independent random variables with law F,, we use the product space with the
product measure assigned to it.

Separable processes and Rademacher complexities. There are generally various mea-
surability concerns when working with empirical processes. In this paper these can essen-
tially be avoided by using separability of H to guarantee that suprema are measurable. In
the context of Rademacher complexities we use separability of H typically in the follow-
ing way. Assume we have x1,...,x, € X, let F be the unit ball of H and let ¢4, ... ¢,
be i.i.d. Rademacher variables. The map h — > | €;h(z;) is almost surely continu-
ous on . In particular, sup,.» Y., €;h(x;) is almost surely equal to a supremum over
a countable subset of F and, due to completeness of the probability space, it follows that
SUpPper 2o €:1(X;) is measurable. In particular, the Rademacher process is a separable
stochastic process [[19, Def.4.1.2] and we have

n n
E(supZeih(Xi)) = sup E(supZeih(Xi)). (1)

heF ;5 FcF,F finite heF ;4
When we have i.i.d. variables X7, ..., X,, which are independent of ¢4, . . ., €, we will rep-
resent this probability space as a product space. It is common to condition wrt. X1,..., X,
and to study . (suphEJT Sy eih(XZ-)), where £, denotes Kolmogorov’s conditional ex-
pectation with respect to Xy, ..., X,,. Fubini’s theorem guarantees us in this setting that

we can express F, as an integral wrt. the marginal measure corresponding to €1, . . . , €,.
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Bochner integrals and £”(;, ). We need in various places vector valued integrals. In
particular, we make use of Bochner integrals and Hilbert-space valued L” spaces. Let
(Q, A, 11) be a probability space and X a random variable that attains values in X’ then by
§ f(X)du, f: Q2 — H Bochner integrable, we mean the Bochner integral of the function
f(X) : Q — H with respect to the measure p. The Hilbert space valued £? spaces, where
1 < p < o, corresponding to this measure space are given by

LP(p;H) = {f : @ — R : f Bochner measurable and J|f(w)”p dp(w) < o},

The seminorm on £ (y1; H) is || f[[2 = § | f||P djs. We use bold fonts for the LP(y; H) semi-
norms throughout this paper. As usual there are corresponding spaces L? of equivalence
classes with norms | - |, under which these L spaces are complete. The space L*(P;H)
is a Hilbert space with the inner product corresponding to the bi-linear function ¢, -); on
L2(p; H) given by (f, g2 = {(f(w), g(w)) du(w) whenever f, g € L?(u; H). Of particular
importance to us is the Bochner integral { k(X -) du € H which is well defined whenever
k(X,-) € L' (u; H) and H is separable. We will denote this integral by m. Finally, we have
the following important relation between the inner product in H and Bochner integrals:
whenever f € £'(u; H) and h € H then according to [12, Thm.6,p.47],

[ raw = [<wan

In rare occasions we will make statements about equivalence classes and not functions
itself. We use the notation f* to denote the equivalence class corresponding to f, i.e. if
f € L2(p) then f* € L?(u) and, similarly, for Hilbert space valued functions.

Tensor products. In various parts of this paper we make use of the fensor product of
two Hilbert spaces H, and H,. One way to define this tensor product is to first define an
algebraic tensor product of the vector spaces H; and Ho; given that we are only working
with Hilbert spaces of functions it is natural to define the algebraic tensor product as

n

{f: XxY->R: f(z,y) = Zgi(w)hi(y),gi € Hy, h; € Ha,n € N},

i=1

where we assume that functions in 7; map from X to R and functions in 45 from ) to R.
That this is a tensor product for 4, and H, can be verified by applying Criterion 2.3 in [[11].
Next, we equip the algebraic tensor product with the inner product (g1 ® hi, g2 ® ha)g =
(g1, h1)1{ga, h2 )2, €.g. [25] Thm.6.3.1], and complete the resulting pre-Hilbert space. In the
case where 1, and H, are RKHSs with kernels k; and k5 we have bounded point evaluators
for elements in the pre-Hilbert space, i.e. (h1 ® ho, k1 (2, ) ® ka(y, -))e = hi(x)hs(y) for
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allz € X,y € Y, hy € Hy and hy € H,y. Due to [2, second theorem on p.347] there is
then a unique functional completion of the algebraic tensor product and we will use this
completion when working with RKHSs. We do not use the algebraic tensor product itself
and, in the following, will reserve the notation (H; ® Ha,{:, )g) for the above defined
tensor product of the two Hilbert spaces, that is H; ® H, is a Hilbert space with inner
product (-, -)g, and, whenever H; and H, are RKHSs, H; ® H, is a Hilbert space of
functions. In fact, in the latter case H; ® M is an RKHS with kernel k( (1, 1), (22, 12)) =
k1(x1,y1)ka(z2, y2). See also [26, Thm.5.11].

When XY are independent random variables under the measure p attaining values in
X1, Xo, ki1, ko are kernel functions on Xl and X5 respectively, g € Hy,h € Ho, and the
Bochner integrals § k1 (X, ) dp, § k2(Y, -) dp, § k1 (X, ) @ k2 (Y, -) dp are well defined then

G, [ k() @Y. ) dis = [COMY)dy = [ g0 di [ 1)
~ (g | X dnth, [ RV di = @b, [ (X i [[ha(.) dide,

Since this holds for all g ® h, g € H1, h € Ho,

flﬁ(Xa )@ ka(Y, ) dp = Jkl(Xv ) dp® JkQ(K ) dy. (2)

There is another natural way to define a tensor product for two RKHSs 7, and 7 that
is often of use. Here, we identify the tensor product with a rank one operator mapping from
‘H, to Ho. To distinguish it from the above definition we will use g@h, g € Hi,h € Ho,
to denote this tensor product. Whenever f, g € Hi, h € H,, the tensor product is defined
by (9®h)(f) = {g, f>u,h € H,. Furthermore, we can define an inner product on this
tensor space by letting (f1®fa, 1®ha)g = (f1, b)r,{f2, ha)rs, f1, a € Hi, fa, ha € Ha.
Using Parseval’s identity one can observe that is just the usual inner product of the space
HS(H,,H;) of Hilbert-Schmidt operators and span {g&®h : g € H1, h € Hs} lies dense in
HS(Hy,Hs). Tt is therefore natural to use HS(#1, H2) as the completion of the algebraic
tensor product defined in terms of rank one operators. We will therefore denote the inner
product between such tensors by (-, ) yrg.

Covariance operators. A first application of this tensor product leads us to covariance
operators. The covariance operator € : H — H, given by (&g, h) = E(g(X)h(X)), is
linear ((¢(c.f +9),h) = aBE(f x h) + E(g x h) = (a€(f) + €(g),h) forall h € H
and, therefore, €(af + g) = a€(f) + €(g) whenever f, g € #,a € R) and is bounded
whenever H can be continuously embedded in LZ(fY ,P), i.e. for )
c|h| for all h € H, since then |€[|,, = sup;_; [€f]| = supp_q supy =y [<€f, h)| =
SUP| =1 SUPpy=1 | E(f x h)| < supj = supyy=; | fll2llh]2 < ¢ In fact it is a Hilbert-
Schmidt operator whenever H is separable and k(X, X) € L£?(u) because then for any
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orthonormal basis {e, }nen of H, D), oy [(Cen, emdl? < E((X, o [en (X, )[?)?) =
E(k*(X, X)) due to Beppo Levi’s theorem. In this case € is also self-adjoint and the
spectral theorem applies. Furthermore, we can write the covariance operator as a Bochner-
integral of the tensors k(z, )®k(z, ), i.e. € = {k(z,-)®k(z,-)dP. This Bochner in-
tegral is well defined and attains values in HS(H) whenever § Hk (z, )®k(z, )||gs dP =
{k(z,2)dP < oo and H is separable. Separability of  is important in this context be-
cause it implies that H.S(H) is separable and Bochner measurability, that is necessary for
the Bochner integral above to be well defined, is not a restrictive assumption [[11, App.B12].

Observe that there is close relationship between the eigen- decomposition of € and the
expansion of the integral operator T}, : L2(P) — L*(P), (Tx f)(y) = § f(x)k(z,y) dP(x).
Whenever H is infinite dimensional and Mercer’s theorem apphes there ex1sts an orthonor-
mal sequence {e!};~; in L?(P) and corresponding values {);};>; in R such that e, are
eigenfunctions of 7}, with eigenvalues )\; and {5\3/ 2ei}i>1 is an orthonormal basis for H.

Furthermore, (Ce;, ¢;) = E(e;(X)e;(X)) = e, €j)r2(p) = 6;; and )\}/Qel,/\épe% ... are
the eigenvectors of € with corresponding eigenvalues Aq, /\2, .... Also notice that for all
ye X, (Ti1)(y) = (k(y,z)dP = {(k(y,-),m) = m(y) Whenever the Bochner integral

Sk -)dP is Well defined. Slnce T3 1 and m are real valued functions defined on X’ that
are equal for all y € X it follows that T}, 1 =

The covariance operator as described above is g1v1ng us the second moments but not the
covariance itself. The centered version ¢, = € — m@m gives us the covariance itself, i.e.
E((f(X) = B(f(X))(9(X) — BE(g9(X)))) = (€.f,g) for any f, g € H. This operator is
also self-adjoint under suitable conditions on the kernel and has a spectral decomposition.

Direct sum. Another construction that we need is the direct sum of two Hilbert spaces
‘H; and H,. The direct sum H; @ Hs is the Cartesian product {(g,h) : g € Hi,h € Hs}
equipped with the inner product {(g1,h1), (g2, h2))e = {g1,92)1 + {h1, h2)2 [28, p.40,
Ex.5]. We do not assume here that H; N Hy = {0}.

2 Approximating convex sets and locating m and m,,

We start this section with a discussion of a simple approach for approximating convex sets
using e-nets. We will find that such an approximation is of very limited use only which
motivates the remainder of the paper. In this remainder we analyze a stochastic approach at
length where we consider the random convex set which is induced by the sample. In detail,
we control the difference between the empirical convex set C, corresponding to the sample
and its population limit C' using VC-theory and Rademacher complexities in Section
Such tools are not necessary for the finite dimensional setting but the question of conver-
gence of the empirical convex set to its population limit can easily be developed for the
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infinite dimensional setting. In particular, the approach based on Rademacher complexities
applies directly to infinite dimensional RKHSs. In Section [2.3] we study the width of the
convex set C'. We link here lower bounds on the width of C' to how well constant functions
can be approximated within the unit ball of the RKHS. Building up on these sections we
study how deep m lies within C' in Section We also look in this section at an approach
based on covariance operators which adapts automatically to the support of the unknown
measure. Finally, in Section[2.5|we translate these findings to m,, and we provide our main
theorems in this section which give high probability bounds on the size of balls within the
empirical convex set which are centered at m,,.

2.1 Approximation based on c-nets.

Let H be an RKHS of real-valued functions acting on X = [0, 1]¢ with kernel function
k being bounded by 1. Furthermore, let ¢ : X — H be the map ¢(x) = k(x,-) and

m, = =>7"  ¢(x;) for certain points x1,...x, € X. For e > 0 there exists an e-net

n
for [0, 1] that consists of N. 4 = [d%?/e?] many closed balls that are centered at points
Y1, -, Y., in [0,1]% This e-cover of [0, 1]¢ gives rise to a ce®-cover of ¢[X] = S if ¢
is a-Holder continuous with Lipschitz constant c¢. Let s; = ¢(x;) for all i < n and s, the
closest point to s; in ¢[{y1,...,yn.,}]. Then the approximation m/, = £ > | s/ of m,,
which can be written as a sum over at most /V, ; many terms, achieves an approximation

error of |
o — | < = 3 s — sif) < e
i=1
If we want to achieve an approximation error of at most n~"/? then we need to include
[d¥/?(c*n)%(2*)] many balls in the cover. If ¢ > 1 then we can only represent m,, with less
than n-points if d = 1 and « > 1/2. The Lipschitz constant c is here only of limited help if
we choose our kernel independent of 7.

We can also observe that a fine cover is necessary for good approximation if we do not
impose assumptions on the measure and on m. For instance, consider again X = [0, 1]¢
and a kernel & such that k(z, z) = 1 for all z € X’ and such that 1 — k(x,y) < ¢||x — y| for
some constant ¢ > 0 and any x,y € X'. Furthermore, assume that we have a cover centered
at [? points x1, ...,z then there exists a point 2o with min;<; |zo — ;| = 1/21. If we
consider now the measure with unit mass on xg, i.e. m = k(zo, ), then the error, when
approximating the expected value of the norm one function i = k(z, -), is

l
[, 1) = g, ] = [ = ) ek, 70) > 2.
=1

Hence, to attain an approximation error of order n~/2 we need a cover consisting of at
least n%/> many points.
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2.2 Empirical convex sets

In the following, let H be a separable RKHS and let C,, = ch{¢(X;) : ¢ < n} be the
set valued random variable determined by X1, ..., X,,. The variable C,, attains values in
the closed convex subsets C(#H) of H. There exists various natural topologies on C(H)
(see [[7]). We equip C(H) with the Vietoris topology and the corresponding Borel-Effron
o-algebra. The random variable C), is then well defined as a measurable map from (2 to
C(H). The random variable C,, tends to C' = cch {¢(x) : x € X'} as n tends to infinity. We
aim to quantify how similar C,, is to C. We do so by framing the question of convergence
in the context of empirical process theory. In the following discussion we assume that & is
compact, H is finite dimensional with dimension d, and the corresponding kernel function
k is continuous. In particular, k;HééQ =: b is finite.

Observe that we can reduce the question of convergence of C), to C' to the question of
how fast the projection of ), on some direction u € H, |u| = 1, converges to the projection
of C' on u. More specifically, if we can control the convergence uniformly over all such
u then we have control of the convergence of C), to C. Furthermore, since C,, and C' are
convex we only need to control the end points of the projections; these points correspond to
projections of extremes of C,, and C' onto span {u}. With this aim in mind, let us introduce
the functions f,.(z) = x{u(z) < ¢}, fuc: X = R, foru € H,|ju| = 1, and with ¢ going
through the interval {(u, h) : h € C'} = ch{u(z) : x € X'} or a superset of this interval.

The importance of the functions f, . is that P f,, . > 0 if, and only if, there is an element
h € C such that (h, uy < c (given that there is non-zero mass on that element or the mass of
all elements whose projection falls below c is strictly greater than zero). For instance, if C
contains the origin then we could vary negative c’s to explore the extension of the projection
of C in direction u. Since the extremes of C' are a subset of S := {¢(x) : x € X'} and the
probability measure is concentrated on .S it is sufficient to work with elements in S instead
of all of C. This setup is depicted in part (i) and (ii) of Figure 4]

The situation is similar for the empirical convex set. The empirical convex set will con-
tain an element which lies ¢ away from the origin in direction u if, and only if, Pn(u(f( <
¢) > 0, with X being a random variable with law P, (see the preliminaries in Section .

Notice that the condition P, (u(X) < ¢) > 0 is equivalent to min;<, u(X;) < c.

VC-theory. To be able make use of this approach to quantify the difference between C'
and C;, we need to control the convergence of P, f, . to P f, . simultaneously over all these
fu.c. One simple way to do this is to use VC theory. Since we are working here with finite
dimensional RKHSs this is rather straight forward. In detail, whenever u € H, |ul = 1,
then |u(z)| < b and we can use [—b, b] as the interval over which we vary c¢. Hence, let

F={fuc:ueH,|u|=1,-b<c<b}.
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We want to show that F is a VC-subgraph class of functions. In fact, it is convenient
to work with a countable dense subset of F to sidestep measure theoretic complications
relating to the empirical process. To this end, let # be a countable dense subset of A such
that H n {u : |u| = 1,u € H} lies dense in {u |u|| = 1,u € H} and define the countable
setf—{fuc.ueH||u\|—1ce(@m[ b)) v {— bb}}c]:

The family F is a VC-subgraph class and 1ts VC-dimension is upper bounded by d + 1:
consider the family of function G = span (Hu{cl : ¢ € R}). The dimension of G is at most
d+ 1and ¢ — u(x) € G forevery u € H, —b < ¢ < b. Applying [13], Theorem 4.6, shows
that the VC dimension of Pos(G) = {pos(g) : g € G}, where pos(g) = {z : g(x) = O}, is
at most d + 1. Furthermore, the family G’ of sets of the form {(z,¢) : x € pos(g),t < 1},
g € G, has the same VC-dimension. But G’ is a family of subgraphs that contains all the
subgraphs of functions in F and the claim follows. Since F < Fitalso follows that F is
a VC-subgraph class with VC-dimension at most d + 1.

The family F has the measurable envelope y X’ and, due to [19, Thm3.6.9], its covering
numbers can be bounded by

N(F,L2(Q),e) < 4(8/eH)*? v ¢,

where ¢ can be chosen as max{m € N, : logm > m"(@*D+2)1 and whenever Q is a
probability measure on X'. Be aware that the v-index as defined in [19] is equal to one plus
the VC-dimension when using the definition of [13]] for the VC-dimension.

Now, applying Holder’s inequality,

5 ~
J(6) = L Sup \/log IN(F, £2(Q),e) de < 8 (log(28) v (1 + 2(d + 2)))"2.

In particular, J(1) < /log2¢v 4/1 + 2(d + 2). By Remark 3.5.5 and Theorem 3.5.4 from
[19] we can conclude that

E(sup |P,f — Pf]) < 12J(1)n~Y2.
feF
We use now Bousquet’s version of Talagrand’s inequality to move to a high probability
bound (e.g. [19], Theorem 3.3.9). For simplicity, we will denote the supremum over u, c,
such that f, . € F, by sup, . in the following. Let S,, = sup,, .| 27" (fuc(Xi) = Pfuc)| =
nsup,, . | Py fue— P fuel. Observe that | Pf, .~ fucllw < 1and ES,, = nE(sup, . | Py fu.c—
Pf..|). Applying Talagrand’s inequality yields

e =Pr (maxS ES, +1/2x(2ES,, +n) + x/3>

Jj<n

for all z > 0. In particular, with probability at least 1 — exp(—x),

SUD | Py fue — Pfuel <12J(1)n~ Y2 + n_l/Q\/2$(24J(1)n—1/2 +1)+x/3n.  (3)
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Rademacher complexities. As is usually the case with metric entropy based bounds, the
constants are loose and n needs to be large to gain useful results. Tighter bounds can often
be attained by using Rademacher complexities (see [, [19]). While the resulting bounds
are generally tighter it is not possible to work directly with the indicator functions f, , but
we need a continuous approximation of these. Also, in the Rademacher approach that we
develop it is beneficial to center the functions & € C' by movingto C. = {h —m: he C}.

In the following, let F' = {(u,c) :ue H,|u| =1,-b<c<b}and F = {(u,c): u e
H, |u| = 1,c€ ([~b,b] n Q) U {~b,b}}. Furthermore, consider the function 1, : R — R,
with v > 0, defined by

1 r < -,
Yy(x) =< —x/y —y<z<0,
0 0<u.

Then f,.(h) = x{{u,h) < ¢} = ¥, ({u,h) — ¢) for any u,h € H and —b < ¢ < b.
The function 1., is depicted in part (iii) of Figure 4, Importantly, ¢»(0) = 0 and |4, (z) —
¥, (y)] < |z —y|/v, that is ¢, (+) is a contraction vanishing at zero (see [19, Thm3.2.1] or
[23, Thm4.12]).

We have that P, fy ciumy = Pty ((u, ¢(-) —m)—c). The proof of [19, Thm3.4.5] gives
us a high probability lower bound on the latter term (in the notation of the book, combine
Sp < ES, 4+ +/2x/n with ES,, < 2E5’n). In detail, with probability 1 — p, simultaneously
forall u e H,|u| = 1, and ¢ € ([—b,b] N Q) U {—b, b}, we have have the following lower
bound on P, ((u, ¢(-) —m) — ¢),

1 o 2log(2/p
P 0() —m) o) 28( swp |23 e (o) —m) - ) — 2B
(w,c)eF " i=1
where ¢; are 1.1.d. Rademacher variables that are independent of X3, ..., X,,. Because y1),
is a contraction vanishing at zero
1 N / / 2 1 N / /
E( sup |- et (), ¢(Xy)—my—d)|) < ZE( sup |~ &, p(X;)—m)y—c)|).

(el V5 (el Vi

Applying [5) Thml12 (7) and Lem22] and using that the Rademacher complexity for the
constant functions (u’,m) + ¢, (v', ) € F, where [(u/,m) + /| < b+ |/| < 2b, is upper
bounded by 4bn /2,

1 n n
E( sup |- Z a((u, Xy — d)|) < 4bn~Y2 E((Q/n)(z k(X;, Xi))l/Q) < 6bn =12
(w.)eF i3 i—1
and simultaneously for all (u, ¢) € F with probability 1 — p,

Pty (Cu, §(-) = m) =€) = P (Cu, 6(-) = m) — ¢) — (v/210g(2/p) + 24b/)n "2,
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" (il (iii)
span {u} Graph of ¢, (u(z) — c)

C p(u()) . c—7
| | | EO
| u(x) ‘

Figure 4: (i) The figure show C' as a subset of . The diagonal (blue) line is the span {u}
for some function u € H, ||u| = 1, The short lines connecting this line to the ellipse indicate
the projection of C' on span {h}. In particular, the distance between the two short lines is
width,,(C'). The long line which is orthogonal to span{u} (red) indicates a threshold;
the interest is here if C' extends past this threshold. (ii) The question if C' extends past the
threshold is rephrased in this figure by focusing on span {u} and considering the probability
that values u(x) are attained that lie beyond the threshold. In this figure, we assume for
simplicity that the measure on C' induces a density function p(y) through the projection
on span {u}, where y goes over the range of u. The threshold is in this figure set to —c
and C' extends past the threshold if the density function is non-zero to the left of —c. (iii)
To link this construction to the empirical measure we use the function ¢, whose graph
is plotted in this figure against u(x). The motivation is here to appromxiate the indicator
function corresponding to the event u(X) < —c from below by a continuous function. The
parameter v controls the approximation and for v — 0 the function v, converges to the
indicator function.

The VC and Rademacher bounds allow us to control the size of the empirical convex
set in terms of Pf, . and P, ((u, ¢(-) — m) — c). In either case we need to get a handle
on P to move further. In particular, we need to understand how P concentrates around the
extremes of C'. We are now looking at a few examples to get a better understanding of how
P concentrates and what this implies for the convergence of the empirical convex set to C'.
Of major importance is how smooth ¢ : X — H is and how the distribution of X, ..., X,
on X looks like. We start with a couple of simple examples and discuss links to stochastic
geometry before addressing typical settings that one faces in practice.

2.2.1 Example 1: Unit circle

Consider the unit circle in R? with the uniform distribution on it. What can we say about
the interior of ), as a function of n? In particular, what can be said about the size of
C,, in direction u € R?, ||u| = 1? Due to the symmetry of the unit sphere and because
the uniform distribution is used it is sufficient to consider the vector v = (1,0)". The
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probability that a samgle point, when we sample just once, lies to the right of cu, with
ce[-1,1],is (1/2m) §;" x{<u, (cos 0,sin ) ") > ¢} = arccos(c)/m, using here that arccos
is a monotonically decreasing function. Similarly, the probability that a sample point lies
to the left of cu is 1 — arccos(c)/m. Furthermore, if we draw n independent samples then
the probability to see at least one sample point to the right of cu is 1 — (1 — arccos(c) /7)™
and that at least one sample point lies to the left of cu is 1 — (arccos(c)/m)"™. Moving on
to the distribution of the length of the interval, which corresponds to the projection of C,
onto u, that is the distribution of width (u, C,,), we can observe that width (u, C,,) attains
values in [0, 2] and that width (u, C,,) = max; cosf; — min; cos ;, where we denote with
0; independent and uniformly distributed random variables on [0, 27). We could now try
to calculate the distribution of width (u, C},) by controlling the maximum and minimum.
Since we are interested in getting a better understanding of the VC and Rademacher ap-
proach we use instead the uniform guarantees on P, f,, .. Let X be the unit circle and let
the kernel function be k(x,y) = (x,y)ge. This way H becomes the dual space (R?)" of
R?: recall that a basis of (R?)’ is given by {e1, - gz, (€2, - )r2, Where ey, e, is the standard
basis in R?, and for any ¢, j € {1,2}, ((e;, -)r2, {€;, )r2 )2y = {€i, €;)r2. Since ey, e, lie in
X it holds for any i, j € {1, 2}, ({e;, - )r2,{e;, )r2)r2y = {k(ei, "), k(ej,)) and the claim
follows.

Associate to u € R? the function & € H given by @(z) = (u, 2)g2. Let 7 be a countably
dense subset of 7 such that {u : u € H, ||u| = 1} lies dense in the unit sphere of . Define
F={ficiueM |ul=1,-1<c<1land F = {fac:ueH,|u| =1,-1<c<1},
where fi.(r) = x{u(z) < ¢} = x{u,x) < c¢}. The family of functions F is a VC-
subgraph class and on an event of probability at least p it holds simultaneously for all
fac € F that

Pnfa,c = Pfﬁﬁ - nil/Zgn =1- aI"CCOS(C)/ﬂ' — 7171/257”

where &, = 12J(1) +4/21log(1/p)(24J (1)n=1/2 + 1) + log(1/p)n~"/2/3. We use here that
the uniform distribution on the unit circle is invariant under rotations, i.e. for a given u let
A be the rotation matrix for which Au = (1,0)". Then,

27 L
Pfac= LJ x{(Au, A(cos(0),sin(0)) ") < ¢} = lf x{cos(f) < c}.
’ 21 ) T Jo

In other words, on an event of probability p, whenever n is such that n~Y 2, <1 /2, and
for any ¢ > cos((1 — n~Y/2¢,)n), there will be a sample point which has an inner product
with u which is smaller than c. To be exact, let ¢y < 0 be a real number strictly larger than
cos((1 — n~Y2¢,)m) and let the above event be denoted by B. It holds that P(B) > p and
for any w € B, min;<,{u, X;(w)) < co. In fact, the VC-argument shows that B can be
chosen such that P(B) > p and for all w € B,

sup  min{u, X;(w)) < co.
ueM,|ul|l=1 i<n
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From this we can infer that a ball centered at the origin and of radius c; is contained in
the empirical convex set C,,(w), whenever w € B: consider without loss of generality the
vector v = (co,0)" and an element w € B. There exist elements X; such that X;(w) lies
on the unit circle and (—v, X;(w)) < 2, thatis (v, X;(w)) = |v|]*. Let X;(w) be such an
element which also attains the maximum of the map j — (v, X;(w)).

Assume that X;(w) does not lie in spanv and that X;(w) lies north of spanw, i.e.
(X;(w),(0,1)") > 0. Consider the lines between X;(w) and the elements X;(w),j <
n,j = i. There will be an index jo < n,jo = ¢, such that the line between X;(w) and
X, (w) intersects with spanv. Consider the vector w = (0, —co)". There will be a sam-
ple point X, (w) such that {w, X;, (w)) > ||w|? and the line between X;(w) and X, (w)
crosses spanv. Order the samples according to how large the inner product between the
point of intersection of the line between the sample and X;(w) and v is. Let X, (w) be the
maximum in this ordering. Assume that (X, (w),v) < |v|?, that is the intersection lies
to the left of v. Let v be the point on the circle with radius ¢y for which the line between
X;(w) and X, (w) is tangent and which lies to the right of the line. There is now a point
X, (w) on the sphere such that (X, (w), vy = |0[*. The point X, (w) cannot lie north of
v since this would contradict the maximality of X;(w). However, if X, (w) lies south of
v then the line between X, (w) and X;(w) crosses span v further to the right than the line
between X, (w) and X;(w) which contradicts the maximality of X, (w).

Hence, we have either two points to the right of v, one on the north side and one on
the south side of the sphere, or the point (1,0)" is contained in the sample. By the same
argument, either (—1,0) " is contained in the sample or there are two points left of —v, one
on the north side and one on the south side. The convex hull of these points is a subset of
C\(w) and contains v.

To provide a concrete example, let p = 0.9 and observe that the ¢ which appears in
the bound of J(J) can be chosen as 10?!. Then J(1) < 8 v 3 = 8 and &, < 96 +
1/210g(10)(192n-1/2 + 1) + n~"/21og(10)/3. Hence, a ball of radius 0.2 exists around the
origin inside the empirical convex set with probability p for n being about 52000 or larger.

As expected n needs to be large to guarantee the existence of the ball or radius 0.2.
Using Rademacher complexities we can attain significantly tighter bounds in this setting.
Building up on our discussion and using m = 0 we can see that

P, ((u, -y —¢) = Py, ({u, ) — ¢) — (\/21og(2/p) + 12/5)n~2.

Finally, by using a rotation of v and with ¢, = (¢ — 7) v —1 it follows that

1 (" arccos(c 1 favecos(er)
PUCuny =) = 1 [Confeostt) —o) 1= 2 e os(t)
_ ., arccos(cy) o _carccos(c) 1 — .
=1 — (1—c/7) B + 7W(\/1 2 —7/1—=c2).
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For instance, with v = 1 and ¢ < 0 this leads to

/ 2
P,y ((u, ) — ¢) = ¢(1 — arccos(c)/m) + 17T < (r/21og(2/p) + 12)n~ 2.

The bound guarantees in this case the existence of a ball of radius 0.2 around the origin
within the empirical convex set with probability at least 0.9 when n is about 5000, a 10-
fold improvement in the constant over the VC-bound. While the bound is significantly
better it does not come close to capture the right magnitude: even a number as small as
n = 10 suffices in experiments for the empirical convex set to contain a ball of radius 0.2
with high probability.

2.2.2 Example 2: Polytopes with finitely many extremes

Let us consider next a simple polytope. Let # = R¢ with the usual inner product and

k(z,y) = x'y. Furthermore, consider C' = ch{x; : i < m} with zy,..., 7, € R? and
such that the random variable X attains values in {z1,...,2,,} and Pr(X = ;) > a > 0
for all i < m. Then for all u € H, [ul| = 1,|¢| < |k|%* either Pf,c.=0o0r Pf,. > a.

Hence, we have that P, f,, . > 0 with probability at least 1 — e~V™ whenever
n > (12J(1) + /2(24J(1) + 1) + 1/3)?/a?.

In other words, for n that large the empirical convex set equals C' on an event of probability
atleast 1 — e~ V™,

If each of the z; is an extreme then we can compare this probability to the probability
that in n independent trials all m extremes are drawn: the probability that element ¢ is not
drawn in n independent trials is 1 — Pr(X = x;)" and the probability that at least one
element 7 is not drawn is upper bounded by

Pr([J (X = 2:}) < DL (1= Pr(X = )" <m(l — )" = mexp(—fn).

i<m j<n <m

where f = —log(1 — «). In other words, instead of 1 — e~ V™ we get a probability of
1 — mexp(—/fn) that the empirical convex set matches the convex set C.

Consider now the special case of the d-dimensional simplex ch S, with S = {0,eq, ..., ¢4}
and ey, ..., e4 being an orthonormal basis in R%. Furthermore, assume that each x € S has
probability 1/(d + 1) to be sampled. The interior of the empirical convex set C,, is empty
unless all points have been sampled. Hence, in this example either int C,, = Jor C,, = C'
and the interior of n does not grow slowly in size as n increases but changes abruptly.

As a final example consider a rhombus given by C' = ch{ej, —ej,rey, —res} where
e1, e are orthonormal vectors in R? and r € (0,1). Furthermore, let X be uniformly
distributed on the boundary of C'. We can again consider the functions f; . to measure the
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interior of the empirical convex set. However, in contrast to the unit circle the measure in
direction u that lies ¢ apart from the origin is not the same for all « but depends strongly
on the direction. For instance, for direction —e; and ¢ € (0, 1) it holds that Pf_; _. =
2p(1 — ¢)v/1 + r2, where p denotes here the density of the uniform distribution on the
boundary, while for —ey we get Pf_;, v = 2p(1 — ¢/r)v/1+ 72, for ¢ € (0,r). In
particular, for ¢ = 0.9, ¢ = 0.9r the probabilities Pf_z, _. and Pf_;, _. are equal and the
probability Pf_; _., which is spread out over an interval of length 0.1 in direction ey, is
contained in an interval of length 0.17 in direction e, irrespective of how small 7 is.

2.2.3 Example 3: Image of a Lipschitz-continuous kernel function

Let us go back to the setting that we discussed at the beginning of the section. In detail, let &
be a continuous kernel function on compact set X that is upper bounded by b. Furthermore,
let us assume that the corresponding feature map ¢(z) = k(z, -) is L-Lipschitz continuous
with Lipschitz constant L > 0 and the law of Xy,..., X,, has a density on X which is
lower bounded by b’ > 0. We are now aiming to quantify the extension of the convex set
in a direction u after centering the convex set around m. In detail, for u € H, |u| = 1, let
x, € X be a point at which ¢ := (u, ¢(x,) — m) = mingcy{u, p(x) — m). As before, for
ce R, let f,. = x{{u,#(-) — m) < ¢} and observe that [{u, ¢(x,) — ¢(z))| < L]z, — z|.
Therefore, with r, = (¢ — ¢*)/L and whenever ¢ > ¢,

Pfuc= J V' x x{{u, d(x) —m) < c}dx > J V' = b vol(B(zy,14) N X).
X B(zu,ru)nX

For example, when X' = [0, 1], u any element in # with ||u| = 1 and ¢ > ¢} such that
z, — (¢ — c&)/L = 0, it follows that vol(B(xy,r,) n X) = r, and Pf,. = Ur, =
b'(c—c)/L.

This lower bound on Pf, . can directly be combined with a metric entropy bound.
If we want to use instead a Rademacher complexity bound then we have to apply v, to
{u, ¢(+) —m) — c. Under the above Lipschitz assumption for any u, |u| = 1, and whenever
C’:kl, < cC— 'Y,

1 =¢,((u,p(x) —my—c) < c—vy={u,¢(x) —m)

= =7 = =W o) - ¢(xu)) = c—y—c; =Lz -z
Also, 1., ((u, p(x) — m) — ¢) is strictly positive whenever L||z — z,| < ¢ — ¢.

Letr,; = (c—y—ck)* /L. For x € B(x,,1,,1) we have that ¢, ((u, p(x) —m)—c) = 1
which gives us right away the following lower bound

P¢7<<u7 ¢() - m> - C) = b/V01<X N B(xm Tu,1>>‘ (4)
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This bound can now be combined with the Rademacher complexity bounds. However, to
say anything concrete about the size of the empirical convex set some knowledge of ¢
is required. In the Section [2.3] we derive approaches to measure the width of C' in any
direction, then we derive lower bounds on c}. We combine these bounds in Section @]
with the above bound.

2.2.4 Example 4: Data attaining values in a subset

Working with empirical convex sets has the advantage that the empirical convex set is
adapted to the support of the distribution, if P has support S on X" then C), converges to
cch{k(x,-) : x € S} (see [18, Def.411N] for the defintion of support). Instead of showing
this under a density and Lipschitz assumption we are using an assumption on the covariance
operator.

A simple way to deal with S is to consider the space Hg = {h | S : h € H} which is
again an RKHS with kernel kg = k [ .S x S. We discuss H g and how covariance operators
are naturally adapted to .S at length in Section For the moment it is sufficient to note
that for all h € H, 3 3

(€ch, by = (€3N TS, I T S,

where €, is the centered covariance operator and @f the corresponding operator for the
RKHS Hgs. In Section[2.4.3|we also show that H ¢ is naturally linked to the affine subspace
spanned by k(z,-),x € S and that statements about the behavior of C,, can be derived
by analyzing Hg. In particular, the eigenfunctions of ¢. which have eigenvalue zero are
almost surely constant on S and are all mapped to the same one dimensional subspace
of Hg. Important for the analysis later on are the eigenfunctions which have non-zero
eigenvalues and are therefore not constant on S. Let u € Hg be an eigenfunction of @Zf
with eigenvalue ). Let ¢g be the feature map corresponding to kg and mg the corresponding
mean embedding. The function » has by definition norm one and for v > 0,c € R, and X
a random variable with law P,

Py ((u, 65() — s — €) > Pr(—(u(X) — E(u(X))) = —y - ¢).

In the following, let Z = —(u(X) — E(u(X))) and write Z = Z* — Z~ where Z* = Z x
X{Z =0}, Z = Z x x{Z < 0}. Since Z has mean zero we have that £(Z") = E(Z").

Whenever | k|, < o0 we also have that E((Z+)?) < |k|%*E(Z*+)and E(Z*) = E(Z~) >
E((Z7)?)/||k||%*. Furthermore,

A= E(Z%) = B(Z*)) + E(Z7)") < BU(Z")) + |k} B(Z") < 2k }2B(Z").

Consider now 7, ¢ such that 0 < —v — ¢ < A/2|[k|%* < E(Z*) then the Paley-Zygmund
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inequality yields

(E(Z*) = (=y = 0)?
E(Z2*)?)

= (M2lklleo = (=7 = )/IK[1:4)*.

Pr(Z>=-v—¢)=Pr(Z" =2—y—0¢) =

_ Q20— (= = 0))?

=

oo
In particular, when —y — ¢ = /_\/8Hk|\§c/2,
Py, (Cu, 9s() = ms)ug =€) = X*/8][k|eo. (5)

2.3  Width of the convex set ('

The width of a convex set plays an important role when trying to control the convergence
behavior of various convex approximation algorithms. By the width of the convex set
C' = cch{¢p(x) : = € X}, where X is as usual a measurable space and ¢ is a feature
map, we mean the size of the projection of C' on a function of norm one within the RKHS
corresponding to ¢,

width, (C) := suph, ¢(x)) — inf{h, ¢(z)) = sup h(z) — inf h(z),
rzeX zeX reX reX
where h € H, |h| = 1.

There is a simple relationship between the width of the convex C' in direction & and
how close h is to a constant function. In the following, let 1 denote the function that is
equal to one for all z € X and let | f|, = sup,cr |f(2)| for any function f : X — R,
allowing for | f||o, = o0. Forany h € H, |h| = 1,

width, (C) = 2inf |1 — 1] (6)

In particular, & is a constant function if, and only if, width;, (C') = 0.

Small widths of C' in any direction h are a concern when trying to approximate m
because various performance bounds of algorithms discussed in later sections depend on a
lower bound on the width; the higher this lower bound the faster the convergence. To be
precise, the set C' can lie in an affine subspace that is not all of H and the algorithms we
study depend only on the affine subspace. Denote the closure of the affine span of C' by
aff C. In other words, aff C' is the closure of {a1hy + ... + auh, :n € N hj € C,q; €
R for all i < n} which is a closed affine subspace. Furthermore, let Ux = aff C' — f, where
f is any element of C, then U is a closed subspace of H. Observe that the dimension of
U is at most one since for h € UZ it holds that h(x) = (h, ¢(z)) = (h, é(y)) = h(y) for
all x,y € X, and, hence, only constant functions can lie in Ué.
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The key quantity which influences the behavior of the algorithms is now

inf  width,(C).
heUc,|h|=1
If 1 lies in the RKHS then 1, and all constant functions, lie in Ué and we do not have to
worry about them. The important question is now, how closely can an h € U, |h| = 1,
approximate a constant function.

Before leveraging Equation (6) for controlling the width of C' we recall some topo-
logical properties. If X is compact and ¢ is continuous then ¢[X] is compact [15, Thm.
3.1.10]. Due to Mazur’s Theorem C' = cch¢[X] is then also compact [12, Thm. 12,
p-51]. This implies, in particular, that there exists no norm ball inside ¢[X],ch ¢[X] or
cch @[ X'] whenever H is infinite dimensional because a closed norm ball inside the com-
pact set cch ¢[X'] would be compact [15, Thm. 3.1.2]. However, closed norm balls in
infinite dimensional Hilbert spaces are not compact [33, S. 1.2.7]. Similarly, there exist no
norm ball B such that B n aff C lies inside C.

Furthermore, whenever H is infinite dimensional, C' is compact, (e,),>; is an or-
thonormal sequence in H and ¢ > 0, it holds that for only finite many of the e, the
width width,, (C') can be greater than €. Assume otherwise and let / : N — N be an
enumeration of all the elements e,, for which the width is greater than e. Furthermore,
assume w.l.o.g. that C is centered in the sense that for all n € N, sup,.o{u,erm)) +
inf ,co(u, ey = 0. Since C'is compact sup,.{u, (1)) is attained at some point u; € C.
Inductively, we can select a countably infinite sequence of points (u,),>1 in C' such that
|tn, — um|| = €/4 > 0 whenever n = m: given points uy, ..., u, there exists m € N
such that max;<y |[(ui, eromny)| < €/4 for all m' = m. Let u,,, be a point in C' such that
€/2 < sup e ermy) = (Unst, €1a)). Then |[u, 1 — u;| = €/4 for all i < n. Hence,
we have countably infinitely many points with distance at least €¢/4 between them. These
points give rise to an open cover of C' that does not contain a finite sub-cover, contradicting
the compactness of C.

This last statement implies that whenever H is infinite dimensional, C' is compact and
|kllsw < oo then for any € > 0 there are infinitely many orthonormal elements hy, ho, . . .
in H such that for each i, sup,. h;(x) — inf,ex h;(x) < e. Furthermore, at most one of
the h;’s can be constant, because if h; and h;, ¢ = j, were both constants then they clearly
would not be orthogonal.

2.3.1 Interpolation spaces

Interpolation spaces are useful when trying to quantify the width of C' because we can
use them to measure how well the constant functions can be approximated. Consider 1 as
an element of C'(X) and let H be an RKHS that is continuously embedded in C'(X); for
simplicity we will treat { as a subset of C'(X’). Furthermore, define for 6 € (0, 1) the inter-
polation space Hy := (C(X),H)o = {f : | f|o < o0}, where || f|¢ = sup,~o K(f,t)/t? and
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K : C(X)x(0,0) — Ris the K-functional defined by K (f,t) = infep (| f — hlloo + [ 1]).
If 1 € Hy then for any r > O there exists an element » € H, |h| < r, such that
11— hfp < 1))/ "P#~20/0=0) In particular, for any ¢ > 0 there exists an r and
h e H,|h| < r,suchthat |1 — h, < €. Therefore, with ¢ = 1/|h| and h* = h/|h|, i.e.
|h*|| = 1, it holds that |c1 — h*||,, < € and width«(C) < 2e. If 1 itself does not lie in H
then h* lies in the affine span of C and is a problematic direction.

In the finite dimensional case the situation is simpler. If H is finite dimensional and if
the constant function is not in ‘H then it is also not in any of the interpolation spaces since
Hy is a subset of the closure of H in C'(X'). But because # is finite dimensional the closure
of H is equal to H, i.e. Hy = H for all § € (0,1). The K-functional can be used in this
case to quantify how well 1 can be approximated.

The K-functional has a few useful properties with regard to the constant function. Ob-
serve that K(1,1) < |1 — 0, = 1, which does not need any conditions on the kernel
function. When |k|lso < 1 then we also have for any i € H that

[ =1 + [0l = (1 = [[A]) + 2] =1

since [[h], < Hk:H%QHhH < |h|. Hence, K(1,1) = 1 whenever |k|,, < 1. It is straight
forward to generalize this to any ¢ € R whenever | k|, < o0, i.e.

K(c1, [k]2?) = )

Also, for any c € R, t > 0 we have the trivial bound K (c1,t) < c. Fort < |k|"/? the value
K(c1,t) can be smaller than c. If K(c1,t) < c then for any € > 0 there exists a function
h € H, h = 0, such that

K(cl,t) + €= |cl — hlle + t|A],
and the norm of such an element / is bounded by
c— K(cl,t) — ¢

- K(cl,t) +e€
iES

<< ==

Furthermore,
K (e,t) = |e| inf (1 = /el + tl/c]) = |el K (1,2)

and a minimizer exists for K (1,t) if, and only if, there exists a minimizer for K(c1,1).
The relation between these minimizers is straight forward: A* is a minimizer of K'(1,t) if,
and only if, ch* is a minimizer of K (c1,t).

When H is finite dimensional and ||k|,, < oo then there exists a minimizer of the K-
functional. For any c € R, ¢ > 0,

K(c1,1) = inf el =l + ] = min et — bl + ¢h],
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where A = {h: he H,|h| < (¢/t) A (1 + K(c1,t)/t)}. This holds because A is compact
and h — |lc1 — h|, + t|h| is continuous whenever |k|, < co. The norm of such a
minimizer h{ . is bounded by (c A K(c1,t))/t (the additional one in the definition of A is,
in fact, unnecessary as the above argument shows that the infimum is attained). Hence, we
have that .
1—K(1,t) - (low - 1A K(l,t).
Lk ¢ !

In fact, we can say more about the norm of %; . in the finite dimensional case. Notice
first that |7} [l < 2c since otherwise 0 would be a better approximation of c1. Since the
RKHS is finite dimensional this implies an upper bound on the RKHS-norm of /; . as the
next lemma shows. The lemma is actually of major importance in this paper and we develop
it further than what is needed for the current discussion. In particular, the second part of
the Lemma is concerned with the relation between ||, and || when Mercer’s theorem
(e.g. [31, Thm.4.49]) applies. Recall that Mercer’s theorem provides us under certain
conditions with orthonormal elements €3, . .., €% in L?(X, 1), p being a Borel measure on
X, where ey, ..., eq4 are continuous functions and such that ¢; = /N\iei for all i < d, where
5\1 > ... = 5\d > 0, lie in the RKHS H and are an orthonormal basis of 7. The kernel
function has to be continuous for Mercer’s theorem to hold. There are various forms of
Mercer’s theorem together with a variety of assumptions for the theorems to hold. Instead
of making such assumption the following lemma assumes directly in its second part that
the ey, ..., e4 exist and have the above properties.

Lemma 1. Let X be a set, k a kernel on X such that the corresponding RKHS H is d-
dimensional. For any c € R, {h : |h|o < ¢} is a compact subset of H. Furthermore, for
h € H and any points x, . . ., x4 for which k(z1,-), ..., k(zq,-) are linearly independent,

(Aa/d)* )] < [l

where \y is the smallest eigenvalue of the kernel matrix for the points x1, . .., x4
Whenever X is a topological space, k is a continuous kernel function on X and there

exist continuous functions e; : X — R i < d, and a Borel probability measure 1 on X

such that €}, . .., ey are orthonormal in L*(X, 1), and {é;}i<q is an orthonormal basis of

H where €; = Xg/zei, forall v < d, and A > Aa...=Ag >0, then

MR < ]os.

Proof. (a) For the first statement let z1, ..., z; be such that k(zy,-), ..., k(xg,-) are lin-
early independent. Observe that such points always exist: assume that d < d points
xy,...,Ze exist such that any k(z,-) lies in the span of k(xy,),..., k(zs,). Now any

h € H of the form Zjvzl a;k(z;,-) with coefficients «; and z; € X’ can be written as a sum
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Zf/:l Bik(z;, -) with suitable coefficients ;. The family of functions h that can be written
this way lies dense in H, that is, span {k(x;,-) : i < d'} is a dense subspace of H. But this
subspace is closed and therefore equal to 7. Hence, H is d’-dimensional contradicting our
assumption about H.

Consider the linear operator A : H — RY, defined for any f € H by

Af = (f(lj), .- '7f(xd))—r = (<fuk(l‘17 )>7 S 7<f’k($d’ )>)T

The operator is bounded since | Af|2, < | f|* 20, k(z;, x;) and 1A, < S k(g x).

A is also injective. One way to see this is by means of Gram-Schmidt orthogonalization
through which we gain an orthonormal basis ey, . . ., e of H from k(z1,-), ..., k(xq, ) and
for any f, g € H it holds that f = ¢ if, and only if, {e;, f) = {e;, g) for all i < d if, and
only if, (k(x;,-), f) = {k(x;,-), g) forall i <d.

Since A is injective and the dimension of H is d it follows that A is surjective and
invertible. By the open mapping theorem A~! is continuous and A~![{v : v € R?, v, <
c}] is a compact subset of H.

(b) Let K be the kernel matrix corresponding to the points x1, . .., z4. The rows of the
kernel matrix are linearly independent since they are the images of the linearly independent
elements k(x1, ), ..., k(zq, -) under the isomorphism A. Hence, K is invertible and for any
y e RY witha = K1y,

ai(k(xg, z1), ... k(xy, xd))T = Ka=y.

Mm

d
A(Z aik(zi,+)) =

i=1

In particular, for f = 3¢ | a;k(x;, -), with o; € R, it follows that o« = K~ A(f). We have
a useful inner product on R? given by {(z,y)x—1 = x" K~'y. For arbitrary f,g € H with

f =X Bik(s, ) and g = 3L, k(i ),
(frg)=B"Ka=(K"Af) K(K™"Ag) = (Af, Ag)x-1.
Applying this to h,
|hl]* = (AR)"K~H(AR) = tr (K™ (AR)(Ah)")
< K op(AR) T (AR) < d Ko | 2%
(c) Now assuming that £ is continuous and the ey, . . . , ¢; have the assumed properties,
we can write any h € Has h = 3.7 &, 3¢ a? = |h|? and

d
|15 = > a?xi = Ad| .
i=1

Since ||hlly = S\d~ |h| and p is a probability measure, there has to be some point z € X at
which |h(z)| = Aa|h/. O
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Example 1. Consider the space X = {1 ,d} with kernel function k(x,y) = lifz =y
and zero otherwise. Then |h|> = Y, \h( )\2 and if h(i) = ¢ > 0 for all i < d then
|R|| = V/d||h||.c which matches the bound if we use 1 = 1, ... x4 = d.

Coming back to the case of H being d-dimensional, |k|, < o0 and z1,..., x4 € X be
any points such that k(x1,-), ..., k(zg, ) are linearly independent and the kernel matrix is
full rank. Furthermore, let \; be the smallest eigenvalue of the kernel matrix. Consider
the map ¢(h) = |1 — h|4. By a similar argument as above we can infer that there exists
a minimizer of 1». However, the minimizer is usually not unique. Consider, for example,
X = [—1,1] and the RKHS consisting of linear and quadratic functions such that z — x
and x — 22 both have norm 1. Then both of these functions minimize the distance to 1
as does 0. Any minimizer h of ¢) has norm ||, < 2 and, therefore, according to Lemma
it has an RKHS norm | k|| < (4d/A\q)Y? =: r. In particular, all minimizers of 1/ are
included in the compact ball B = {h : h € H,|h| < r}. Let A be the set of all minimizers
of ¢ then A is a compact set: if A is finite then this follows right away. Otherwise, take
a convergent sequence {h,},en in A and denote the limit by h. Since for all z € X,
|h(z) — 1| = lim, o |hy(z) — 1| < mingey |1 — hll and . € A. Finally, consider
the norm as a function on A. The norm is continuous and the image of the compact set
A under the norm is a compact subset in R. Hence, there exists an element ~A* in A of
maximal norm. Let us assume first that 2* = 0. For such an element h* let b = 1/||h*|
and note that|[bl — bh*|, = inf.er ming, — [|c1 — h|e. Otherwise, there is an element
h,|h| = 1, and a ¢ such that ||c1 — k||, < |b1 — bh*|. The constant ¢ cannot be equal
to b since then |1 — h/b|, < |1 — A*| in contradiction to our assumption on h*. It also
cannot be larger than b because then |1 — h/c|,, < (b/c)|1 — h*|, < |1 — h*|,, which is
again in contradiction to h* being a best approximation of 1. But ¢ can also not be smaller
than b; whenever |c1 — k., is minimal it follows that |1 — //c|, is minimal and equal to
11 — h*||... However, |h/c| = 1/¢ > 1/b = |h*|| in contradiction to the assumption that
|h*| has maximal norm within A. Therefore,

P_r)réK(bl, t) = ||b1 — bh™ | = mf min |cl — hf, = (1/2) inf width,(C)

RA[=1 Inl=1

and, since K (b1,t) = bK(1,t) = (1/r)K(1,t), it follows that

1/2
(%) lg% K(1,t) < Hlﬁlil width ;,(C). (8)
If h* = 0 then lim; o K (1,¢) = |1||c = 1 but also forany c € R, h € H, |c1 — hlls, >
|c1] since otherwise h/c would be a minimizer of norm greater than zero, contradicting
the assumption that »* = 0 is the minimizer with the largest norm. For h € H, there is
a sequence of points x1, xo, ... such that lim,,_,,, h(z,) converges and |h(z,)| — ||h/ -
Fix one such sequence and let o(h) be the sign of all but finitely many elements of this
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sequence h(z1), h(za),..., e.g. if o(h) is positive and A attains maxima then there is a
point x such that h(z) = ||h/,. By another application of Lemma (1| it follows for any
h e H, |h| =1, that

. M\
width(C) = lonil ~ Ml > [l > (%) i K10

and

AL 2
inf width,(C) > [ — lim K (1,¢).
b= +C) < d ) g K0

We can set in the above derivation r to (4/ S\d)l/ 2 when Mercer’s theorem applies, where Ay
is the d-th eigenvalue of 7). The bound then becomes

A2 lim K(1,¢) < inf width,(C).
=0 IR=1
These results are only meaningful if 1 is not in the RKHS. In the next section we discuss

an approach to remove constants from an RKHS which allows us, among other things, to
extend these results to RKHSs that contain constants.

2.3.2 Adding and removing constants

It is sometimes useful to be able to remove constant functions from an RKHS or to add
constant functions to an RKHS. There is an efficient way to do this by manipulating the
kernel function.

In the following let X be some topological space and consider the p.s.d. functions
k: X x X — R that lie in £2>(X x X) and denote these by K. Furthermore, consider the
partial order on K given by £ > [ if, and only if, k — [ is p.s.d. where k,[ € K. Also note
that K is not a lattice, i.e. for k,[ € K the infimum k A [ and the supremum £k v [ will
generally not be defined.

For a function f : X — R we let f ® f be the function that maps (z,y) to f(z)f(y)
for any x,y € X. There is a simple criterion which tells us if f € H, for a kernel function
k € K. Assume that f ® f € L2(X x X), then f € Hy, if, and only if, there exists a ¢ > 0
with ¢’k > f ® f. In case that f € H,, it holds that | f||, = inf{c: *k > [ ® f}.

This observation motivates the following definitions. For an RKHS 4 with kernel &k
that does not contain 1 let

kTt :=k+1®1 and H' = H-. 9)

The function £ is a kernel function being the sum of the kernel functions k£ and 1 ® 1 and
H* is well defined. We denote the norm of H* by | - |; and we can observe that

] =inf{c: Ak +1®1)>1®1} < 1.
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In fact, ||1]|; = 1 because otherwise there exists a ¢ < 1 such that

2
k> (1-A1e1 >k21®1 ~ 1e?d

C
: S —
<ﬂ@
We also have that H < H™, since k < k%, and for h € H,
Al < [A]. (10)

When the RKHS # is finite dimensional then |A |, is actually equal to |A[. To show this
we make use of the following lemma which is a simple extension of [26, Sec5.3].

Lemma 2. Let hy, ..., hq be linearly independent functions mapping from some topologi-
cal space X to R and let ay, ... ,aq > 0 then Kk = Zle a;h; ® h; is a kernel function, the
functions h; lie in ‘H, and are orthogonal in H,. Furthermore, the dimension of H, is d

and ||hs||,. = 1/ /a;.

Now, let d < oo be the dimension of H, choose orthogonal functions hy, ..., hg € H,
hi,...,ha = 0, and define the kernel & = >*  (1/|h;|*)hi ® h;. Then k = r. This
follows because, according to the above lemma, both spaces consist of span{hy, ..., hy},

IRl = || hillx, for all ¢ < d, and the h;’s are orthogonal in both spaces, i.e. H;, = H, which
implies that £ = k. The importance of this statement is that it shows that we can write the
kernel as a finite sum of weighted tensor products.

From this description of x we also gain that k* = Zle a;h; ®h; + 1®1 and, because 1
is not in the original RKHS 7, it follows that 1 is linearly independent of A4, ..., hy which
implies that 1 is orthogonal to hy, ..., hgin H™.

Consider now one of the h;’s. We like to show that |h;||. > ||h;|| which then implies,
together with (10)), that | ;| = ||h|| and ||| = ||h|| for all h € H; the h;’s are orthogonal
in both # and H*. Letl = k* — (1/||h;|?)h; ® h; so that h; ¢ H;. Furthermore, consider
any c such that 0 < ¢ < |hg|. If |h;] . = c then

thQ
L Y S WY

Rt = hi@hi = = (1= )i @ hi =

which is impossible and, therefore, |h;| . = | k.
Similarly, for an RKHS A that does contain 1 and is not of dimension 1 let
k" =k—c*1®1, wherec = inf{¢: &k > 1®1}, and H :=H, . (11)

It follows right away that 1 ¢ H_ and because, £~ < k we know that H~ < H and
|h||- < ||h| for all A € H~. Next, notice that we can write k = Zf:_ll ah; @ hi + *1® 1
where hq, ..., hg 1,1 are orthogonal in H and a4, ...,as_1 > 0. Due to the orthogonality
it follows that the hq, ..., hg_1 are linearly independent elements in 4~ and H™ is d — 1
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dimensional. Lemmatells us furthermore that hy, . . ., hy_ are orthogonal in ™. Finally,
for all i < d — 1 we have that |h;|_ = |h;|; assume ¢ = 1 and observe that in this case
(H7)* = M and due to the above results for 7+ we can conclude that |[h;]|- = |[h]|-, =
|h:||. The above argument for H* does not rely on ||1| = ¢ = 1 and we can generalize this
result right away to any ¢ > (. Because the norm of the h; does not change and since the
h; are orthogonal we can conclude that |hl_ = ||| forall h e H_.

We summarize these results for the case when H is finite dimensional in the following
lemma.

Lemma 3. If H is a finite dimensional RKHS with dimension d, kernel k € IC, and which
does not contain 1 then H*, as defined in (9), is d + 1 dimensional, H < H*, 1 € H
with 1| = 1, {g,h); = {g,h) for all g,h € H, and 1 is orthogonal in H* to all
h € ‘H. Similarly, if H is a finite dimensional RKHS with dimension d > 1, kernel k € K,
and which does contain 1 then H~, as defined in (11)), is d — 1 dimensional, H~ < H,
1¢ H {g,hy_ ={g,h)forall g,h € H which are orthogonal to 1.

2.3.3 Lower bounds on the approximation error in finite dimensions

In finite dimensions we can now provide lower bounds on the approximation error of any
function f : X — R. Before specializing to constant functions we take a short detour
and discuss the general technique. The approach to get lower bounds is the following:
let k = Zle a;h; ® h; for linearly independent Ay, ..., hy and a; > 0. If f is linearly
dependent on the h;’s then f € H. Otherwise, we can move to the kernel function k' =
27:1 a;h; ® h; + f ® f and the corresponding RKHS H’. The function f is orthogonal
to hi,...,hg in H'. That means that the lowest approximation error, when approximating
f by functions in the subspace corresponding to #, is given by the projection onto this
subspace. Due to the orthogonality the projection of f onto this subspace is just the origin
and the approximation error is | f| = 1 when measured in the RKHS norm of H’. If we
consider the constraint that the approximation has to lie in 4 and has to have norm ||h| = 1
then the best approximation error of f is v/2, i.e.

inf |f — e = V2.

heH,||h||=1

To gain a lower bound on the approximation error in | - ||, we use Lemma[I| which shows
that

heH,||hl|=1 d+1

where we get d + 1 since we use the RKHS H’ which has dimension d + 1. The constant
Ad+1 18 the smallest eigenvalue of a kernel matrix corresponding to points x1, . . ., £4.1 such
that &'(z1,-), ..., k'(x441, -) are linearly independent. Notice, that this approximation error

A\ 1/2
inf f—hloo>\/§< ) ,
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depends implicitly on the particular function f through the kernel matrix and the smallest
eigenvalue. The bound can become loose when | f | is significantly larger than | h; |, but
observe that we can always replace f by cf for some constant ¢ < 1 to rescale the infinity
norm. In the following, let & = 3% a;h; ® h; + (¢f) ® (cf) and treat H as a subset of
H" := Hyr. Such a rescaling leads to a problem in the constraint ||| = 1 because

inf —hl, = inf — ..
he;ﬂ%wlecf oo Cheﬂjﬁw:uc”f oo

We can compensate for this by using the constraint |k = c. Since ||cf]|z» = 1,

«ﬁ+@(mﬂ>m

d+1

1
inf  |f—hly =~ inf |ef —hly =
herd =1 1£ = Al c heHl,rthuzc lef =l =

where A\, 1 is again the smallest eigenvalue of a kernel matrix but now for the kernel £”.

Example 2. Let X = {0,1} and h : X — R be given by h(0) = 1,h(1) = 0, and let
f X — R be defined by f(0) = 0,f(1) = r forr > 0. Let H be the RKHS with
kernel h® h which consists of span {h}. The smallest approximation error of f by elements
in H which have norm 1 is attained by —h and h and is equal to |h — f|o = r v 1.
Considering now the bound: let the kernel of the RKHS H' be k = h®h+ f® f. Consider
x1 = 0,29 = 1 and the corresponding kernel matrix

b= (h(8)2 f(?)Q) } ((11 O)

which has minimal eigenvalue 1 A r®. The corresponding lower bound is

1 A2\ Y2
inf ||gf|go>\/§< 5 ) =1Ar

g€M,|lg=1

which is exact when || f| . = 1 but degrades for r away from 1.
Scaling f by ¢ = 1/|/f|w = 1/r gives us the kernel k' = h® h + (1/r)*f ® f and a

kernel matrix )
S A R

which has minimal eigenvalue 1. The bound becomes

14 r?
nf g —flo =

1 =>1Ar.
geH,|gll=1 2
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Coming back to the approximation of constant functions. When H does not contain the
constant functions then an approach to calculate lower bounds is to use the kernel &, and
the corresponding RKHS #H*. The norm of c1 in this RKHS, where ¢ € R, is |c| and for
any such c,

. I+ ’C|2 Ad+1 12 Ad+1 1/2
f ||h—clle = = | —
he?{lﬁ\lhnﬂ I = el || d+1 d+1

with d being the dimension of H and Az, the lowest eigenvalue of a kernel matrix corre-
sponding to points 1, ..., 4.1 for the kernel k*. Using the right hand side as the lower
bound has the advantage that we only deal with one RKHS, i.e. with %", and we only need
Aa+1 for that kernel. Scaling of the function 1 in dependence of which constant c1 we want
to approximate might improve the lower bounds but then A, ; has to be calculated for the
individual scalings.
When Mercer’s theorem applies we gain the bound
11/2

: : B -
inf heyl,lulifu:1 Ih=elleo = Adii,

where \g. 1 is the (d+1)-th eigenvalue of Tj+. For Mercer’s theorem to apply it is important
that £ is continuous. But when £ is continuous then so is k™.

If H already contains the constant functions then we are interested in determining
the width of the convex set in the affine subspace spanned by C. In particular, because
(k(x,-),1) = 1 for all x € X, there exists a subspace S of H that is orthogonal to
1 and a ¢ = 0 such that affC = aff{k(z,:) : v € X} = 1 + 5. In fact, ¢ =
argming g ||k(z, ) — 1|, where we can use an arbitrary x € X and S = H~. This is
exactly the same situation that we faced above with {* and a lower bound on the width of
the convex set in the affine space spanned by it can be gained through

inf inf |h—clle, = <—> :
ceR ||h|_=1 d

where d is the dimension of H and \; the smallest eigenvalue of any kernel matrix for
kernel k. If we can use Mercer’s theorem then we also gain the lower bound
T1/2

inf inf |h—clf, >\
inf inf | |h—clleo = A/,

where S\d is the d-th eigenvalue of 7.

We can also extend the results from Section [2.3.1{ on the application of K-functionals.
We summarize in the following proposition these results together with a variety of results
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on the width of C' that we derived up to now. We use the notation K_(1,¢) for the K-
functional corresponding to _. We hope that the use of the letter K for both the K-
functional and the kernel matrix does not lead to confusion. To streamline the statement
of the following proposition let us say that k£ has a Mercer decomposition with lowest
eigenvalue A if k is a continuous kernel function on X’ and there exist continuous functions
e; : X — R,7 < d, and a Borel probability measure ;2 on X such that e}, ..., e} are
orthonormal in L2(X, 1), {€;};<q is an orthonormal basis of H, where & = (\;)"/2¢;, for
all 7 < d, and 5\1 > 5\2 - 5\d > (. Notice that the Mercer decomposition based results
in the following proposition do not seem to have a dependence on d beyond the eigenvalue
Aq but this is somewhat misleading as the discussion in Section demonstrates.

Proposition 1. Let X be a measurable set and k € K a kernel function defined on X. The
following holds.

1. If 'H is infinite dimensional, X is compact and k is continuous, then for every ¢ > (
there exist infinitely many orthonormal elements (e,,),>1 in H such that sup,,», width . (C') <
€.

If H is finite dimensional with dimension 1 < d then the following hold.

2. If1 € Hqforsome O € (0, 1) then there exists h € H, |h| = 1, such that width ,(C') =
0.

3. If 1 ¢ H then for any x1,...,x4,1 € X and corresponding kernel matrix K+ =
(k™ (x4, %) )i j<d+1 with smallest eigenvalue \g1,

mfmmh«n>2<M“)m
= mrEs\av1)

4. If 1 ¢ H, |k|oo < o0, then for any x4, ..., x4y € X and corresponding kernel matrix
K = (k(z4,x;))i j<a with smallest eigenvalue )y,

INE
inf width,(C) > <Ed) lim K'(1,1).

Ih=1 =0

5. If 1 € Hand 2 < d, then for any 1, ... x4 € X with corresponding kernel matrix
K = (k(x;,2;))i j<a and with the smallest eigenvalue of K being A4,

Ay 1/2
inf width,(C) =2 (2%) .
i w(C) (d)
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6. If 1 € H, 2 < d, then for any x1,...,x4_1 € X with corresponding kernel matrix
K~ = (k(z4,2;))i j<d—1 and with the smallest eigenvalue of K~ being A\q_1,

. A1\
thur}f:1w1dthh(0) > (d— 1) 11_1)%1(,(1,15).

In the following, let X be a compact space and k a continuous kernel function on X. The
following hold.

7. If k* has a Mercer decomposition with smallest eigenvalue 5\d+1 and 1 ¢ H then

H}ilIHlf width ,(C) = 2257
=1

8. If k has a Mercer decomposition with smallest eigenvalue Mg and 1 ¢ H then

: . 121,
”ﬁl:flwmthh(C’) >\ Ilfl_I)IQlK(l,t).

9. If k has a Mercer decomposition with smallest eigenvalue Mg and 1 € H then

Jint width ,(C) = 2)Y?.
_=1

10. If H is d = 2 dimensional, k™ has a Mercer decomposition with smallest eigenvalue
Ai_1 and 1 ¢ H then

St width ,(C) = A}, lim K (1, 1).

Example 3. Consider the kernels kq(x,y) = Y°_ a*y*, with z,y € [~1,1], which cor-
responds to polynomials of order 1 to 4 but without the constant functions. To test the
kernel matrix based lower bound in a simple experiment we are calculating upper bounds
on inf e infrep nj=1 | — 1| in the following way: the functions x* and ¥ are orthog-
onal in the corresponding RKHSs whenever u = v and have norm 1. Therefore, functions
of the form (1/+/d) 22:1 " have norm 1. To get a good approximation of constant func-
tions we use such functions for d = 3,4, with signs adjusted so that the different terms
cancel each other as well as possible. In detail, for d = 1 we use the function hi(x) = x
which has approximation error 1 when approximating the (constant) function 0; for d = 2
we use hy(x) = x%; for d = 3 we use hs(x) = (1/v/3)(x + 2? — 23); and for d = 4,
hy(x) = (1/vV/4)(—x + 2% + 2° — 2. The functions for d = 2,3 and 4 are shown in Figure
in the left three plots in blue. The constant that are best approximated by these functions
are shown in orange. In the right plot the corresponding approximation error in |- |, norm
is plotted against d (top curve; orange). The blue curve in the right plot corresponds to the
lower bound where we use —1 = x1 < ... < xq = 1 with equidistant spacing to get full
rank kernel matrices.
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Figure 5: The three plots on the left show in blue polynomials of degree 2, 3 and 4 respec-
tively. The orange lines correspond to the constant functions that are best approximated
by these polynomials. The right most plot shows the corresponding approximation error in
| - | (orange curve) and our lower bound on the approximation error (blue curve). Note
that the approximation error is calculated for the three curves in the left plots and is only
an upper bound for the best approximation error that can be attained.

2.3.4 Quantifying the width of the empirical convex set C',

The above techniques can also be applied to the empirical convex set C,. An easy way
to do so is to identify the subspace spanned by C,, with a new RKHS. In particular, the
subspace spanned by the empirical convex set C,, can be identified with an RKHS in a
similar way to how we dealt with measures that attain values in a subspace in Section
2.2.4} see also Section for a more detailed discussion. For an experiment w € {2 let
So = {Xi(w), ..., X, (w)} be the support of the empirical measure for the realization w. If
k is our original kernel function then let &, be k]S, x S, and let H,, be the corresponding
RKHS. The empirical convex set C),, as an element of H, has then a corresponding convex
set C,, = ch{k,(X;(w),-) : i < n} within H,,. For ease of notation fix an w € {2 and let
T1,...,x, € Xbex; = Xj(w),...,x, = X,(w) for the rest of this section.

Importantly, there is a linear map ¢ : H — H,, defined in the following way: if h € H
is of the form > ! | a;k(z;,-) for some o; € R then let ¢(h) = > | aiks(x;, ). Also,
let U = span {k(z;,) : i < n} be the subspace of H corresponding to these functions
h. For functions g € U™, define ¥)(g) = 0, and extend ¥ to all of H by linearity. The
function ¢y : ‘H — H,, defined in this way has the following properties: for all g, h €
span {k(X;(w), "), ..., k(Xn(w), )} = H we have (g,h) = (¥(g),¥(h))y, (this follows
right away from the kernel expansion of g, h because k and kg are equivalenton x1, ..., ;)
and ¢ (f) = 0if f is orthogonal to the subspace spanned by the data. In other words, v is
a partial isometry between H and H,, and an isometry between U, with the inherited inner
product, and H,,.

Beside this natural link between H and H,, there is also the linear map A that we
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considered in Lemma |l We have to adapt the approach from Lemma |1| slightly to make
use of it in this new context. First, observe that if H, is d, -dimensional then we have
the operators A, : H,, — R% defined by A,f = (f(z,1)),..., [(z,a,)))" for a given
injective function ¢ : {1,...,d,} — {1,...,n} such that the matrix (k(x,u), Z,(j)))i,j<d.
has full rank. This dimension can obviously depend on w and will always be upper bounded
by the dimension dy; of H. Consider now the kernel matrix K, = (k(z,z), .(j)))i,j<d., and
equip R% with the inner product (a,b),—1+ = a' K 'b, a,b € R*™. As in the proof of
Lemmait follows that (g, hyy,, = (Ag, Ah), 1 forall g, h € H,, and A, : H, — R™ is
an isometry.

We have the following commutative diagram summarizing the relationship between the
three spaces.

\ /

Furthermore, when U = span {k(xz1,-),..., k(x,,-)} is the subspace of H induced by the
data it follows that the following three spaces are isometric isomorphic

(U7<'7 >) = (Hw7<'7 >Hw) = (Rdw><'7 '>K;1)'

In particular, A,, o ¢ is an isometry between U and R% . This isometry has takes a simple
form: let h = " | a;k(z;,-) then

(A o lp Z 331, L(l) k(:cl-, a:L(dw)))T = (h(a:b(l)), e h(:CL(dw)»T.

This relation allows us to apply the techniques we developed for measuring the size of C' to
the empirical convex set C,,. For example, if H,, does not contain constant functions then
using the kernel k¢ and denoting the corresponding RKHS by ', we can lower bound
the width of C,,. The RKHS 7} has dimension d,, + 1 and there exists an injection ¢ :
{1,...,du+1} — {1,...,n}suchthat k& (z,(1), ), ..., k& (2,a,+1), -) are linearly indepen-
dent. Then, as above, A} : H — Ré%*! defined by Af(h) = (h(z,1)),- .. h(Zya,+1))"
is an isometry between H_ and R% ™! when the latter is equipped with the inner product
@, b)), forall a, b € R%*1 and K is the kernel matrix corresponding to the points
Ty(1)s - - - s Ty(d,+1)- From this we can infer a lower bound on the width of C,, within H,,.
Alternatively, we can apply directly Proposition[I|to #,, to get this lower bound. Since we
have an isometry between U and H,, these lower bounds translate directly to lower bounds
on the width of C,, within U.
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There is another point worth noting. The lower bound on the width of C), depends on
the choice of .. Finding the subset of points z1, ..., x, that maximizes this lower bound
seems like a hard problem. Therefore one might wonder if there is a simpler way to op-
timize the lower bound. In particular, there seems hope to get the largest smallest eigen-
value \;, when using the full kernel matrix. To that end, let K = (k(z;,x;)); j<n be the
kernel matrix corresponding to all the data. Since the subspace spanned by the data has di-
mension d,, it follows that there are exactly d,, non-zero eigenvalues A7, ..., A} .There
is a useful interplay between K and the following linear operator A : H, — R”
given by A*(h) = (h(zy),...,h(x,))". First note that for h = > | a;k(z;,-), with
suitable ; € R, we have that A*(h) = K «. Also observe that A* in injective be-
cause if A%(f) = (f(z1),..., f(xa)" = (9(x1),...,9(x,))" = A%(g) for two func-
tions f,g € Hy, f: S — R,g: S — R, then f and g are equal on S and are there-
fore the same function. While A’ is injective there are generally for a given h € H,
many « € R” such that A*(h) = K}« and K is not invertible. Therefore, consider the
Moore-Penrose pseudo-inverse (K?)', and observe that with of = (K*)TA*(h) we get
Krap = K5(K2)TAL(R) = Az (h) since A*(h) lies in the range of K [9, Def.1.1.2(a)].
In particular, for f, g € H,,

(g = (o) Ko = (AL () T(K)TKL(KL) AL (g) = (AL(N)) T (K)TAL(9).
From this relation we get a lower bound on the supremums norm of a function h € H,,,

1P, = (AL T (EE)TAL(S) = tr (KL AL (AL )
< D) Nop(ALN) AL < nl(BE) opl %

The term |[(K%)"| o, is equal to 1/} but, unfortunately, instead of the constant d,, we have
now the constant n.

In Proposition |1| seemingly no price had to be paid for the dimension of H when using
a Mercer decomposition. Since intuitively K is closely related to the integral operator
that appears in Mercer’s theorem when the underlying measure is the empirical measure
P, one might wonder if the constant d,,, or n, can be removed by following that route.
Unfortunately, this approach does not, in fact, remove the constant: consider the integral
operator

0 = [ H@h(e v dPi (o),

for f € £?(S, P,) where S = {xy,...,x,}. Observe that £*(S, P,) is the same set of
functions as H,, but the £2-inner product does not have to be equal to the inner product of
H,,. Then for f € L2(S,P,) =H,and j < n

(Tf I] =

§I>—‘

Z ki, ;) = n" ((AL(S) KL,
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and for f, g € L%(S, P,),

(Tof )2 = n"*(AL(f)) ' KLAL(g).

The eigenfunctions of T;, are closely related to the eigenvectors of K. Letq,...,q, € R"
be the eigenvectors of K and let \], ..., A be the corresponding eigenvalues. Observe
that g1, .. ., qq, lie in the range of A’ since for any i < d,, ¢; = A/ K q; = A’ (e;) where
e = 211 Al (i) k(x5 -). Also, it follows directly that n'/?e;, ..., n'/?eq,, are an orthonor-
mal basis in £2(S, P,) as (n"2e;,n'2e;) = A’(e;)"A%(e;) = ¢ q; and L2(S, P,) is
d,-dimensional. Furthermore, n'/?ey, ..., n'/?e,, are the eigenfunctions of T},
n(Tueisejps = n""q) Kiq; = (X;/n)q] 4;
and the corresponding eigenvalues of T;, are AT /n, ..., A} /n.

To summarize, we discussed two approaches in this section to get a lower bound on
the width of the empirical convex set. The first approach uses a selection of d,, sample
points and the eigenvalues of the kernel matrix corresponding to these points. It is unclear
if there is an efficient way to optimize over this subset selection. The second approach uses
instead the full kernel matrix, which sidesteps the problem of selecting sample points, and
leads to a larger eigenvalue but then the constant degrades significantly if n » d,,. There
is a third way which ‘interpolates’ between the two approaches. For instance, it might be
reasonable to use 2d,, many points to help with the subset selection problem while keeping
the constant small.

There are multiple hurdles to using these approaches in practice. First off, it is not just
the width that needs to be controlled but also how centered m,, lies within C,. Furthermore,
the current approach is only applicable in the small sample regime since we need the small-
est eigenvalue of the kernel matrix to control the width. This eigenvalue can be computed
by applying the power iteration method. The power iteration returns the largest absolute
value of a matrix. A standard way to find )\; is the following: apply the power iteration to
K to find \;; then move to matrix B = K — A I, which is negative definite, and apply the
power iteration to get \; — A;. Each iteration of the power iteration relies on a multiplica-
tion of an n x n matrix with a vector. This makes this method prohibitively costly to apply
in the large sample regime. We come back to these issues in Section ] where we study,
among other things, algorithms which split the data into small batches. In such settings it
becomes possible to control the width of the empirical convex sets that correspond to the
small batches of data.

2.4 Locating m

For various convex approximation methods the distance from m to the boundary of the
convex set characterizes the rate of convergence: the larger the distance the faster the rate
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of convergence. A crude way to measure the distance is to consider the largest ball that
fits within the convex set around m. Having a closed ball of size 6 > 0 around m in C' is
equivalent to

inf suplh, k(z,-) —m) =9, (12)

|h|=1 zeX
and similarly for affine subspaces. This can be seen in the following way: clearly when
there exists a closed ball around m with the stated properties then for any h, |h| = 1,
some extreme of the convex set must fulfill (I2). On the other hand, C' — m is equal to the
intersection of the closed half-spaces tangent to it [29, Thm18.8]. To each of these half-
spaces there exists a normal h € H, h = 0, and an «, € R such that (g, h) < oy, whenever
g lies in the half-space. In particular, for any such normal {g, h) < «;, whenever g € C' —m.
Without loss of generality we can assume that the normals have norm one and by assuming
that (12)) holds we know that for any such normal h, o, = §. If there would not exist a ball
of size § around m in C' then there would be an element g ¢ C' — m, |g| < J. But then
(h,gy < dforall h e H,|h| = 1, and g would lie in the intersection of the half-spaces and
then also in C' — m due to [29, Thm18.8] which cannot be.

In the previous section we quantified the width of the set C'in direction h, i.e. width ,(C')
sup,cy h(x) —inf,ex h(z). The width tells us how large a ball around m can be in the ideal
case where m lies centered within C, however, we do not know how centered m lies within
C. Obviously, m can lie in the boundary for instance when m = k(z,-) and k(z,-) is an
extreme of C, and assumptions on the distribution of the data are needed to guarantee the
existence of a ball around m. Our aim in this section is to show how natural assumptions on
the probability distribution translate to statements of how centered m lies. In the following,
we are studying two such conditions: (1) a lower bound on the density of the law of X
together with a Lipschitz condition on ¢ : X — H; (2) an assumption on the covariance
operator ¢.. We finish this section with a look at the case where the law of X; does not
have full support in X

Before looking at these conditions let us add a short comment about the relation be-
tween the extremes of C' and m. For the convex set C' = cch {¢(z) : x € X'} the extremes
of C' which are close to m are images under ¢ of points x which lie close to each other. In
detail, consider a kernel function with k(x, z) = 1 for all z € X'. Whenever |¢(z) —m/| < €
and |¢(y) — m|| < € for some € > 0 then 4¢* > |p(z) — ¢ (y)|* = 2(1 — k(z,y)). In other
words, if there exists an extreme ¢(x) of C' that lies € close to m then all the extremes of
C' that are € close to m are contained in

O{y : k(zo,y) > 1 —2€¢"}].

Obviously, the case that we have an extreme ¢(x() close to m is rare since this means that
for all functions h € H,||h|| < 1, the expected value E(h(X)) ~ h(zg) and H cannot
distinguish between P and a probability measure that puts mass one on x.
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2.4.1 Assumptions on the density

In [3]] it was observed that when the probability measure corresponding to m has a density
on X which is bounded away from 0 and H is finite dimensional then it is at least guaran-
teed that some open ball exists around m in C'. This result can be strengthened and turned
into a quantitative statement by using a simple observation.

Consider first the Lebesgue integral on R. If we have a (non-atomic) probability mea-
sure on R which has a mean value of 0 and there exists some measurable set B with
inf B > € and P(B) > 0, then there will be probability mass on the negative axis to
counter the “pull” from B since otherwise

O—deP—J de>deP>eP(B)>O.
R [0,00) B

This argument can also be applied to m. Consider the set X = [0, 1], an RKHS # with con-
tinuous kernel function k(x,y) and assume that k(z,-) € £'(P;H) with Bochner-integral
m and the probability measure P has a density function that is bounded away from 0. For
every y € X with k(y, -)—m = 0 there exists an z € X such that (k(y, ) — m,k(z,:) —m) <
0. Otherwise, let e = ||k(y,-) —m|*/2 then B = {z : (k(y,-) —m, k(z,-) —m) > €}
is non-empty as y € B and contains an open interval [ of X, with P(I) > 0. Hence,
P(B) > 0 and because |m|* = {, (m, k(xz,-)) dP(z),

0= L (k(y, ) — m, k(z, ) — mydP(z) > L (k(y, ) — m, k(z, ) — mydP(z)
> eP(B) > 0.

This implies that we have on both sides of m (with respect to the direction k(y, ) — m)
elements of cch {k(z, ) : x € X} = C.

To provide lower bounds on the radius of a ball around m in C' we need more. Ideally,
we like to have assumptions on the kernel function and the measure which guarantee the
existence of some strictly positive function ¢ : (0,00) — (0,00) such that for any h €
H,||h|| <1,z e X, if (h, k(x,-) —m) > 0 then

Inf <hy k(y, o) —m) < —p(Chs K(z, ) —m)).

Under a Lipschitz assumption on the functions in H we can provide such a function /. The
Lipschitz assumption we are using is that any h € H fulfills

() = h(z')|

r=1' |z — 2|

< AL, (13)

where L > 0 is the Lipschitz-constant. When the space X is a compact subset of R
this Lipschitz assumption is often fulfilled. For instance, when a polynomial or Gaussian
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kernel is used. In fact, whenever we have a well behaved domain X’ like [0, 1]¢, h lint X' €
C(int X), h € C(X) and | D,hl,p < ||| L (compare to [31, Cor.4.36]) then the condition
is fulfilled.

In the following, 3; denotes d-dimensional Lebesgue measure of the unit ball in R? and
1tq denotes Lebesgue measure.

Proposition 2. Let X = [0,1]¢ and let H be an RKHS such that for all h € H and
(x) — h(z")| < L|h||xz — 2'|. Furthermore, let P be a probability measure
on X and assume that P has a density p with inf,cy p(z) = ¢ > 0. Then for any h € H,

Rl <1,

d+1

maX<_h7 k(y7 ) - m> = a Bd'
yeX

(d+1)(2L)4
whenever there exists an x € X such that {h,k(z,-) —m) >~ > 0andv/L < 1

Proof. Fix any h in the unit ball of H and let f(z) = (h,k(z,-) —m). Let 2* € X
be a point at which f(z*) = (h,k(z*,-) —m) > ~. The function f is also Lipschitz
continuous with Lipschitz-constant ||h|L < L and f is therefore non-negative on the set
A={y:|y—a"| <v/Lyye X} Let B = {y: |y| < /L,y € X} then P(A) >

citg(A) = cuq(B) because B minimizes the volume of the intersection of X' with a ball of
radius /L. Furthermore, p4(B) = (v/2L)%fy; this is the volume of a d-dimensional ball
of radius /L scaled by 2~%. Now, integrating over A and using [18} 265G, 265H] again

f f@ﬂdf1$)>\[ o(f(z*) — Lfz])d f f(a®) = L|z| dz
A Az
eyttt od A cy? d
> b~ L2 dd+1Ld+1ﬁd (2L)dﬁ (1 Tdr 1)'

Since . f(x)dP(x) = 0 there must be a point y € X’ such that

o<~ (i)

]

Under the conditions of the proposition we can state a lower bound on the size of
a ball included in C' around m. Let h € H, |h| = 1, and assume w.l.o.g. that s :=
sup,ex{h, k(z, ) —m) = —inf,cx(h, k(x,-) —m) =: 7. Then s > (1/2)width ,(C') and

P> Lﬁd > c((1/2)width ,(C))4*!
(d + 1)(2L)" ESIEL

Ba- (14)
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If we have a lower bound b on width ,(C') for all such & then we can conclude that there
exists a ball of radius
c(b/2)"*" Ba

d = min{(b/2), m}

around m in C.

2.4.2 Assumptions on the covariance operator

Let us start with a useful relationship between 1 and m whenever 1 lies in the RKHS. For
any measure P, with corresponding element m we have that (1,m) = 1. Also, for any
re X, {k(x,-),1) = 1and C lies within the closed affine subspace {h € H : (h,1) = 1},
where closure follows from h +— (h, 1) being a continuous function and {1} being closed.
Also, since 1 = (m, 1) < |1|/|m] it has to hold that |m| > 1/||1||. An upper bound on |1|
is therefore giving us a lower bound on |m|. For instance, we can get a lower bound on
|m| by inspecting the kernel function & of the RKHS in the sense that

lm| = 1/inf{c: Pk = 1®1}. (15)

One might be tempted to move to H ™ whenever 1 does not lie in the RKHS #; recall that
‘H* has the kernel £ + 1 ® 1. Since H can be regarded as a subspace of H* we have
that [m|| = |m[,; however, only for h € H do we have that {hdP = {(m,h), since
1 € H' by construction. But there is then an element m* € H . for which P;m* = m and
(I — Py)m*™ = (1,m") = 1, where P is the orthogonal projection onto the subspace H
and [ the identity operator. Now, 1 = (1,m"), < |[m*|; = 1 + |m| and we only learn
from this the trivial fact that 0 < |m].

An alternative approach gives us more insight. Whenever there is a function 1 € #
such that [1 — 1||, < 8 < 1thenl— 3 <{(m,1)< 1+ and

[m| = (1= 8)/I1] = (1 - B)/inf{c: k> 1@ 1}. (16)

In the following we will make use of the covariance operator € (see Section to
determine the location of m. Before exploring the relation between the covariance operator
and the location of m we note the following adaptation of the above discussion: If 1 € ‘H
then (¢1,1) = 1 and whenever 1 € A fulfills |1 — 1|, < § < 1 then

€1,1) = (1 - 3?1 = (1 - B)?*/inf{c: k = 1®1}. (17)

Coming now to the problem of locating m within C' we can take note of the following
fundamental relationship. Whenever # is d-dimensional, |k|, < oo and € has an eigen-
decomposition with smallest eigenvalue A\, then for any h € H, |h| = 1, with (b, m) = 0,
it follows that { h(x) dP = 0 and

f<<h, Kz, ) —my)? dP = j V() dP > Sy
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Since sup,. v |h(z)| < |k|%* and { h(z) dP = 0, a short calculation shows that
A
T(m7 h) Z — 7,
LS

where with h € H,

r(m,h) := (suplh, k(z,-) — m)) A (— inf{h, k(z, ) — m)).
reX zeX

In detail, it is sufficient to consider the case of a discrete measure where with probability
p the function {h, k(x,-) — m) attains value a and with probability 1 — p attains value b,
with a < 0 < b, and a®p + b*(1 — p) = 4. The condition (h,m) = 0 then implies that
ap + b(1 — p) = 0. For a particular value of a we get that p = b/(b — a) and b = \y/(—a).
The value b is minimized by maximizing —a but —a = {h, k(z,-)) for some x € X and
—a = |a| < |k[¥*. By symmetry we get that (—a) A b > /_\d/HkHy.

The remaining direction we have to take care of is h* = m/|m| The distance of m
to the boundary in direction ~2* can be lower bounded away from zero when the smallest
eigenvalue of the covariance operator is sufficiently large since

[t btz — ) ap = [(m ko) P = ] = Emm) ]

and
J(<h*, k(z,-) —m))?dP = (€h*, h*) — |[m|* = Xq — |m]*.

Also, (4, k(z,-) — m)| < k(. )] + |m] < 2[k[::" and

Yo — 2
r(m, h*) > d ’1172‘
2||k ot

For this approach to yield a useful bound )\, has to be strictly greater than |m|>. How-
ever, \q can even be smaller than [m|2. A better bound can be gained by using an eigen-
decomposition of €, = € — m@m. In the following let A1, Xo, . . . be the eigenvalues of €.
then by the same argument as for &€, whenever h € H, ||h|| = 1, is such that (h, m) = 0, it
follows that {((h, k(x,-) — m))2dP = (€.h, h) = A4, where )\, is the smallest eigenvalue

of ¢,, and r(m, h) > j\d/HkHio/Q. For h* = m/|m| we get now that

f (h* k(. ) — my)? dP = (" 1% = Ay

and r(m, h*) > S\d/QHngz. Also notice that when 1 € 7 then (€,1,1) = 0 and Ay = 0.
We summarize these finding in the following proposition.
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Proposition 1. Ler (X, A, P) be some probability space with measurable kernel function
k defined on it and such that the corresponding RKHS H has dimension d < co. Further-
more, assume that |k < oo and that the centered covariance operator €, has an eigen-
decomposition with smallest eigenvalue \g > 0. Then 1 ¢ H and for any h € H, ||h|| = 1,
Ad
z —.
" S

The dimension dependence is in this result not as obvious as in Proposition [2 but ob-
serve that when X is the d-dimensional unit sphere, d = 2] + 1 for some [ € N, P is the
Lebesgue measure restricted to X and normalized, k(z,y) = (x, y)ra for any z,y € X and
‘H is the corresponding RKHS which is of dimension d, then any h € H, |h| = 1, is of the
form (x, - )pa for some x € X, ||x||ge = 1 and for such an h

(Eh,hy = ;" f W(y) dP(y) = 67" f<a:, y)? dP(y)
=B, _1<x, J)* pra—1(Ba—1 (V1 = §2)) dp(i)

e _ . U B 187 (F . .
=B, 871 21 — ) d _ d 2(141) 4
Ba-15; J_ly (1 —77) du(y) NCES J_ly 1(7)
21184187 B (20 + 1)! 1

(T, (2i + 1)1 +3/2) 12+ (], (2i + 1)1 +3/2) d+2

where 11,1 denotes here the d — 1-dimensional Lebesgue measure and 3;_; the Lebesgue
measure of the d — 1-dimensional unit sphere. Hence, the eigenvalues of ¢ shrink to zero
as the dimension d increases.

If 1 € H then we get a similar result with \; being replaced by A\;_;.

Corollary 1. Let (X, A, P) be some probability space with measurable kernel function k
defined on it and such that the corresponding RKHS H has dimension d < o0 and 1 € H.
Furthermore, assume that |k| o, < oo and that the centered covariance operator €. has an
eigen-decomposition with eigenvalue \g_y > 0. Then for any h € H, |h| = 1,{h,1) =0,
A1
’f’(m, h) = IR
2[k]:)

Proof. First note that (¢,1,1) = 0 and for any h € H st. (h,1) = 0, (€1,h) =

(€.h,1) = E(h) — E(h) = 0. In particular, .1 = 0 and for any h € H, |h] = 1,(h, 1) =
0,{€.h,h) = Ag_1. Now, for h € H,||h| = 1,{h,1) =0,

J(<h, k(z,-) —m)2dP = (C.h,h) = Ag_y
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and the lower bound follows by the same argument as in Proposition

2.4.3 Data attaining values in a subset

Unless i € H is constant on the support of P it holds that E((h — E(h))?) > 0 and by the
above arguments it follows that 7(m, ~) > 0. But m can certainly lie in the boundary, for
example, when m = k(z, ) and k(z, -) is an extreme of C. Therefore, there must be some
direction & in which r(m, h) = 0. The point is that when m is an extreme or lies in a face of
the convex set C' and this face has extremes {k(z, ) : z € S < X'} then P(X € X\S) =0
has to hold. Furthermore, there then exists a normal h* to this face and A* is constant on
the support of P which implies that (€.h*, h*) = 0.

This observation suggests that m will either be an extreme or there will be a ball in
an affine subset of H{ around m within a face of the convex set. Furthermore, we can
hope that this affine subspace is directly related to the non-zero eigenvalues of ¢, and that
these eigenvalues characterize a lower bound on the width of this ball. Alternatively, it
is natural to consider the space Hg = {h|S : h € H} where S is the support of P
[18, Def.411N]. The space Hg is again an RKHS with kernel ks = k1.5 x S and norm
|hllks = inf{|ul : w1 S = h,u € H} [26, Cor.5.8]. In the proposition below we show
that the covariance operator QNSE corresponding to PP and Hg characterizes the ball around
m within the affine subspace spanned by C'.

Proposition 3. Let (X, A, P) be a probability space with P being a topological T-additive
probability measure which has support S and let k be a continuous kernel function k de-
fined on X such that the corresponding RKHS H has dimension d < oo. Furthermore,
assume that |kl < oo, and that the centered covariance operator ¢. has an eigen-
decomposition with eigenvalue such that (i) \; > 0 = X1 for some | < d or (ii) A\qg > 0.
It follows that Hg has dimension | + 1 and éﬁf has eigenvalues )Y = \; for all i < 1
and N}, = 0 under (i), and Hs has dimension d and the eigenvalues of ¢S are the same
eigenvalues as of éfc under (ii). Furthermore, under condition (ii) there exists a closed
ball B centered at m with radius Xd/2||kH<1X§2 inside C. If \y = 0 and there are no two
points x,y € X such that k(z,z) = k(y,y) = k(z,y) then S consists of a single ele-
ment and P = k(x,-) for some v € X. If \y > 0 then m lies in the relative interior of
F = cch{k(x,-) : © € S}. In particular, under condition (i) there exists a closed ball B

centered at m such that B n aff F' < F and B has radius /_\1/2Hk|\¥2.

Proof. (a) When \; > 0 it follows that F(h?(X)) > E(h(X))%forall h € H,h = 0. In
particular, let eq, ..., eq € H be linearly independent and fix any ag, ..., as € R such that
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ay, ..., aq are not simultaneously equal to zero. Consider e [.5, . . ., e4[S then

E((i1 aieifS)Q) = E((i1 aiei)Q) > 0.

Since this holds for all such ay, ..., a4 it follows that e; [ S,...,e4 S are linearly inde-
pendent and Hg is d-dimensional. Similarly, when \; > 0 and \;;; = 0 it follows that
there is an hy; € Hg which is almost surely equal to 1S and [ linearly independent func-
tions e; [.S,..., ¢ 1S € H which are also linearly independent of h; (for any non-trivial
linear combination of e; [S,..., e S it follows that the second moment is strictly larger
than the squared expected value and therefore these linear combinations are not equal to a
constant function). In fact, h; is equal to 1S since by assumption the kernel function is
continuous: Assume that h; is not equal to 1, take a « € S such that h;(z) = 1 and let
¢ = |hi(z) — 1|. Take a function h € H such that A1 S = hy and ||h| < |hallns + €/4.
The set A = h'[{y : |y — ha(x)| < €/4}] is open and has non-empty intersection with .S.
Also, hy is different from 1 on all of A. Due to [18] 411N] it follows that P(A) > 0 and 1
is not almost surely equal to h; which is impossible. By the same argument it follows that
the other eigenfunctions of ¢, with zero eigenvalues are constant on S and therefore lie in
the span of h; and the dimension of Hg is [ + 1.

(b) In case (ii), let eq, ..., e4 be orthonormal in H then, due to (a), the functions e; |
S,...,eq!S are linearly independent. Also |le; S|, = |e;| for all i < d, because for any
given i < d, e; 1S does not lie in the linear subspace spanned by {e;S},-;. Similarly, for
any i,j < d, [e;!S + e;1S|us = lles + ej] and [le; 1S + e;1S[3, = lles1S[34 + llej 1S3,
Hence, {e; | S}i<q is an orthonormal basis of Hg. In particular, when ey, ..., e, are the
eigenfunctions of QEC then e[S, ..., e4]S are the eigenfunctions of éﬁf since for 7 = 7,

<Q~:f€1 TS, 6]' fS>7.[S = <Q~:c€i, €j> =0

and for any i < d, (€5¢;, e;) = \;.

By the same argument it follows that in case (i) that e; .S, ..., ¢;[.S,11S/|11S]x, is
an orthonormal basis of Hg. Hence, if ey, ..., e; are the first [ eigenfunctions of éc then
e[S, ..., elS are the eigenfunctions of @f and the eigenvalues match.

(c) When \; = 0 it follows that Hg = span {1]S} and (mg, c1)y, = ¢ = (Mg, 1 )p
for all c € R where mg and mg, are just m and m,, when the kernel is restricted to .S. Also,
every function i € H is constant on S and (m, h) = {(m,,, hy = {h,k(z,-)) forall x € S.
In particular, if S does not consist of a single element it follows that k(x,y) = k(x,z) =
k(y,y) forall z,y € S. Reversing this statement leads to the claim made in the proposition.

(d) Let U = aff F' be the affine subspace spanned by k(z,-),x € S. The element m
lies within U since for any h € #H for which (k(z,-),h) = ¢ for all x € S and for some
¢ € R it follows that (m,h) = {(k(z,-),h)dP = c. In other words, if m would not
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lie in U then there would be an h, ||| > 0, that stands perpendicular on U and such that
m = h +argmin,; |g — m|, and (m, h) = (k(z,-),h) forallz € S.

(e) Under condition (ii) the constant functions are not in { and the conditions of Propo-
sition|l|are fulfilled and the existence of the ball with the specified radius follows directly.

Under condition (i) the constant functions are contained in g and there exists a func-
tion hg € H such that ho(x) = 1 for all z € S. Consider inf{|h| : h(z) = 1forallz €
S} < |ho|. Since h — |h] is continuous and {h : |h| < ||hol|} is compact it follows that
the infimum is attained at some h* € H. Also, || 11S|y, = inf{|h| : RS = 1S} = ||h¥
and 115 = h*]S.

Let U = aff {k(z,) : x € S} ¢ Hand V = U — U be the subspace parallel to U. For
any h € U thereexists m € N, A\y,... ) A\, e R, Ay + ...+ N\, =landxy,...,2,, € S
such that h = >}, N\;k(z;, -). In particular, if g € H is constant on S and attains value c,
then (g, h) = ¢ ", \; = c. This implies that g is orthogonal to V since (g, hy — hs) =
0 for all Ay, he € U. Due to assumption (i) there are d — [ eigenfunctions ¢;,1,...,¢eq
of @C which are constant on S, that is e, 1, ..., ey are orthonormal and each of them is
orthogonal to V. Also, any function A that is orthogonal to V' has to be constant on S
since h(x) = (k(x,-),h) = {k(y,-),h) = h(y) for all z,y € S. Since the eigenfunctions
ey, ..., e have corresponding eigenvalues which are strictly greater than zero it follows
that ey, .. ., e; cannot be constant and V' has dimension /. Also, note that U cannot be equal
to V, or better, U cannot be a subspace but only an affine subspace: assume otherwise then
0 € U and if h is constant on S, attaining value ¢ = 0, then 0 = (h, k(z,-)) = h(z) = ¢
for all x € S. In other words there cannot be functions that are constants on S in A, but we
know already that there are functions which are constant on .S in H.

(f) We claim that W = span (V' U {h*}), when equipped with the inner product of #,
is isometric isomorphic to Hg, U < W and (span {h*}) n U = ¢J. We start with the latter
claim. Since U is not a subspace it follows that the orthogonal projection of 0 onto U is not
0 itself. In detail, take any « € S and let P, the projection onto the subspace V' then the
orthogonal projection onto U is the operator defined by Pyh = k(x, ) + Py(h — k(x,-)).
Now P;0 = k(x,-) — Pvk(x,-) = 0 and, Py0 is orthogonal to V. But that means the P;;0
is constant on S and lies in the span of ;. 1, ..., e4. In particular, there is function that is
constant on .S which lies in U. Notice that for any function /& which is constant on S there
exists an element in U that lies in the span of A if |h| = sup, [(h, 9)|/]g]. Recall that

a function g € U can be written as g = ».* | \ik(x;,-) forsome m € N, zy,...,2,, € S
and such that \; + ... + Ay = 1. Hence, (h,g) = c if h attains value c and h € U if
|h|| = |c|sup,err 1/]lg]. Consider now a function  that is constant on .S’ and attains value

1 then ||| = sup ey 1/]g|l. For 0 < e < |[h*| take g € U such that ||h]| < e + 1/||g

[<A*, 9)l [<h, gl _ Kh*, )l _ Kh*, g)
7] [l =e =€~ h*] e

, then

< lg| <
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In other words,
<h*, 9)] <h*, g)]
gl gl

and sup ;s [{g, h*)[/|[h*| = |h*| which implies that (span {h*}) " U = Jand U ¢ W

Let ¢ : W — Hg be the function that associates with h € W the function A ]S € Hg.
The function ¢ is linear since (af +¢)!S = a(f|S)+ g[S forall f,g € W, a € R. We have
seen already that ¢»(h*) = 11S and |¢)(h*)|xs = |h*||. Also any h € U lies in the span
of {k(z,-) : € S} and, since H is finite dimensional, / can be written as 3. | a;k(z;, -)
for some ay,...,aq € Rand z1,...,24 € S. Hence, any g,h € U < W can be written as
h = ijl aik(z;,-), g = Zle bik(y;, -), with some a;, b; € R, x;,y; € S for all i < d, and

< R < +€

(g, h) = Zaz‘bﬂf(l‘u yj) = Zaibij(xz‘a y;) = ¥(g), ¥(h))ns-

But this implies that for any g,h € V, that is in the subspace parallel to U, there exists
g,heUandz e Ssuchthatg = g — k(x,-),h = h —k(z,-) and
(g, By = (G — k(@,), b — k(z,-))
— ((G), W (R)ns — (G), ks (@, ) mg — W), ks(e, s + ks(e,)
= (g = k(. ), (b — k(@ ))us
= ((9), ¥ (h))ns,

since ¥ (k(x,-)) = kg(x,-) for any x € S. Finally, for any g € V, write g = g — k(z, -) for
some x € S, g € U then

(g, h*) =g, h*) = k(, ), h*) = 0 = (W(g) = ks(x, ), L1)ns = W(9), (A7) ns,

since h* is constant on S, ¥(§) = >.°, a;tp(k(x;,-)) for some m € N, zy,..., 2, € S
and aj, ..., a, such that 3" a; = 1, and (¢)(g),11S)3, = 1. Hence, ¢ is an isometry
and since Hg and span (V' U {h*}) have the same it follows that they are isometric isomor-
phic. The existence of the ball around m of the specified radius follows now directly from
Corollary O

Notice that Hg does not have to be equal to H when Ag > 0. For instance, when #
consists of the quadratic functions on [—1, 1] and has therefore dimension 1. If the measure
P is discrete with P({—1}) = P({1}) = 1/2then A\; > O but S = {—1,1} and Hgs = H.

2.5 Locating m,, within the empirical convex set

We are now combining the various results we have derived. Section allows us to refer
the size of a ball within C' around m back to the question of the width of C'. In Section[2.3|

59



we derived various ways to lower bound the width of C'. We also know that C, converges
to C'. Section contains various results on that. These results combine Rademacher or
VC bounds with lower bounds onP., ((u, ¢(-) — m) — c and Pf, .. These lower bounds
are closely related to the bounds in Section [2.4] since in both settings we need to measure
how much probability mass lies in various directions behind some threshold. To get now
high probability bounds for the existence of ball of a certain size around m,, within C,, we
also need to control the convergence of m,, to m. But that is easy to do with another VC
or Rademacher argument. The following two theorems combine these results under some
natural conditions. The first result applies when X' = [0, 1]5, ‘H is finite dimensional, that
functions in ‘H are Lipschitz continuous and that we have lower bound on the density of the
law of X;,..., X, on X. We also assume that 1 € H but the result can easily be adapted
to the case of 1 ¢ H.

Theorem 1. Let X = [0,1]',1 > 1, and k a continuous kernel function on X such that
the corresponding RKHS H is d-dimensional, 1 < d < oo, functions h € H are Lipschitz
continuous in the sense of (13) with Lipschitz constant L > 0, and 1 € H. Furthermore, let
Xi,..., X, bei.id. random variables defined on some probability space and such that the
law P of X1 has a denszty pon X and inf,cx p(x) = ¢ > 0 for some constant c. Mercer’s
theorem applies to k. Let Ay be the smallest eigenvalue of the Mercer decomposition. There
exists a ball of radius

2eAITD2 g,

I+ 1)L}

around m in C'in the affine subspace spanned by C. Furthermore, for any q € (0,1) and
whenever

5225\2/2 A

2 2
(Wog (6/2) + 9] ]2*/0 ) , <4\k!¥2+3«ﬁ2log<3/q>>

c3(6/SL)! 5/4

then with probability 1 — q there exists a ball of radius 0/4 around m,, in C,, within the
affine subspace spanned by C'.

Proof. The existence of the ball around m in C' has already been derived at the end of
Section [2.4.1{ and the bound on the width in terms of the lowest eigenvalue of the Mercer
decomposition has been stated in Proposition

(a) We start with high probability bounds for ||m,, — m| being small using Rademacher
complexities. Let F be a countable dense subset of the unit ball of _ then for any o € R,

Pr(jm, —m|>a) = <Sup! 1/n) Y F(X:) = Pf| = )

heF i=1
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since, |m,, —m| = sup,,.z(h, m, —m). In particular, for any ¢ > 0 and o = 4n~2| k|, +
3+/2log(1/q)n~"/? we can infer from [5, Lem.22] and [[19, Thm.3.4.5] that,

Pr (Jm, —m| > (41K + 3y/2log(1/g))n %) < g (18)

(b) Next, we expand the argument from Section to control the difference between
Cy, and C. Let ¢ = —9/2 then for any v > 0 and with probability 1 — ¢ simultaneously for
allu e F,

Poty (Cu, 6(-) —m)y — ) (19)
> P, ((u, ¢() —my — ) — (v/21og(2/q) + 24[ k| 4?/7)

Chose v = §/4 and let zy € X be a point such that (u, ¢(xg) — m) < —4d. Then,
Py ((u, o) —m)y — ) = Pr((u, ¢(X1) —m) < —y + ).

As in the proof of Proposition 2]let A = {y : |y — xo| < 0/4L,y € X'} and B the
translation of A to the origin, B = {y : |y| < d/4L}. Then the Lebesgue measure of B is
w(B) = (6/8L)'3; and Pr(X; € A) > cuy(B). Hence,

Pr({u, (X1) —m) < —y + ) = Pr(X, € B) = cB(6/8L)".

For a given ¢ let

v (V21os/a) + 961K/
I cB1(6/8L)

then whenever n > N, with probability 1 — ¢ there is a ball of radius 6/2 around m in C,,.
(c) Finally, we transfer the lower bound that we have for a ball within C, around m to

m,,. For ¢ € (0,1) let
N <4|yk\1/2 +34/210g(1/q) )
L=

5/4

Then for any n > N, with probability at least 1 — ¢, [m,, — m| < 6/4.
Bringing this together, with probability 1 — ¢ there is ball of size /4 in C', around m,,
whenever n > N3 v Nys.

]

The second result uses an assumption on the centered covariance operator instead of
an assumption on the density. For this result we actually do not need to use the results
on the minimal width of C'. We forumlate this result directly for the case where P is
allowed to attain values in a strict subset of X’. A fortunate circumstance in that setting is
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that the empirical convex set converges to the intersection of C' with the minimal face that
contains m and algorithms that work with the empirical convex set adapt automatically to
the structure of the covariance operator. The result relies on the existence of the support
of the measure P. A weak assumption to guarantee this existence is that P is a 7-additive
topological measure [18, 411N].

Theorem 2. Let (X, A, P) be some probability space with P being a topological measure
that is T-additive, and with measurable kernel function k defined on X such that the cor-
responding RKHS H is finite dimensional. Furthermore, let X1, ..., X, be i.i.d. random
variables attaining values in X and with law P and assume that ||k|,, < oo, and that
the centered covariance operator ¢, has an eigen-decomposition with smallest non-zero
eigenvalue being \y. There exists a ball of radius § = S\d/ZHk:H%Q around wm in C within the
affine subspace spanned by C. Furthermore, for any q € (0, 1) and whenever n is (strictly)
greater than

(8|k:||oo<\/2 log(6/4) + 192||koo/xd>>2 y (16||k|é42 + /288 1og<2/q>>2

2 5

then with probability 1 — q there exists a ball of radius 6/4 around m,, in C,, within the
affine subspace spanned by C.

Proof. (a) The existence of the ball with radius o follows directly from Proposition
Furthermore, the same high probability bound for ||m,, — m| as in the proof of Theorem
[T] applies. The bound for ), also runs along the same line as in Theorem|[I] Consider in
the following the RKHS Hg. Let v = 6/4 and ¢ = —0/2 then Equation () tells us that
P, ((u, ds(+) — mg)us — ) = A2/8|k|, whenever u € Hg has unit norm. Hence, with
probability 1 — ¢ and simultaneously for all u € F, where F is countable dense subset of
the unit ball of Hg,

Py (Cuy ¢() = m) — &) = N3/8|[kloo — (v/2108(2/q) + 192][K|oo/Aa)n ",

(b) For a given ¢ € (0,1) let N, = ((16]k|%* + 124/210g(1/q))/8)? then for any
n > N, |m, — m| < §/4 with probability 1 — ¢. Similarly, with probability 1 — ¢ for
n > N, there is a ball of radius 0/2 around m in C,, (as a subset of the affine subspace
spanned by ('), where

N,

q

_ G4Jk[5,(v/210g(2/g) + 192|k]0/Aa)?
¥ |

]

The convergence of the empirical mean embedding and empirical convex set are both
unproblematic in the large sample case in both theorems. The bottleneck of the approach
is rather the size of the convex set C' itself.
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3 Related approximation problems

When confronted with a concrete statistical problem it is typically insufficient to only ap-
proximate m. For example, the least-squares error, when a regressor f from an RKHS H
with kernel & is used, is

n n

) Y = ST ® kX @K e~ - D Vik(X0, ) YV

i=1

Looking at the right hand side we can note that we have to deal with multiple approxima-
tion problems. There are two high level approaches to addressing multiple approximation
problems. We can either solve each approximation problem individually or we can solve
them simultaneously. In terms of finding core-sets this means that we will get three differ-
ent core-sets when solving the approximation problems individually and a single core-set
when we solve the approximation problems simultaneously. Before getting back to this
discussion, let us have a look at the individual terms in the above least-squares problem.

The third term on the right hand side is rather unproblematic since it does not depend
on f and can be summarized by a single real number. In particular, if we approximate each
term individually then we can compress this term down to a single real number. The first
term on the right hand side corresponds to an empirical covariance and can be treated in a
similar way to the empirical measure, i.e.

1 n

=Y k(X ) @ k(X )

i3

attains values in H ® H. It fact, since we are only interested in the terms f?(X;), there is
an RKHS that is better suited for our purposes than H @ . Due to [26, Thm.5.16] there
exists a function g € H © H such that f?(X;) = g(X;), where H © H is the RKHS that

corresponds to the kernel function x(z,y) = k*(z,y). The empirical covariance, when
restricted to {(h, h) : h € H}, can be identified with

n

ZK(X’LH ) € HQHv

i=1

¢, =

S|

i.e. forany h € H,

1 < 1 &
(Co Womon = — D PA(X) = — 3 (X, ) @ k(X5 ), h @ hyg.
=1 1=1

The random element €,, attains values within the empirical convex set

Con = cch{r(X;, ) 1 i < n}.
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The corresponding population covariance element is given by

¢ J K(z, ) dP(z) (20)
EY
which is contained in the convex set
Co = cch{k(z,-) : z e X}.

In Section we used the covariance operator € : % — 7. Notice that € and € are
closely related since for any h € H, (€h, h) = E(h*(X)) = (€, h*)pon-

The second term in the above sum is more difficult to deal with than the other two due
to the elements Y;. We are looking at two approaches in Section In the first approach
we consider m,,,, = (1/n) " | Yik(X;,-) as a subset of cch {Y;k(X;, ) : ¢ < n}. That
approach works well when we consider the approximation problem in isolation, but it does
lead to complications when trying to approximate m,, ,, simultaneously to €,,. In the second
approach we incorporate the Y;’s into the kernel by using (Y}, )r ® k(X;,-) as a kernel
function and by mapping f € Hto {1, ) ® f(-) e R' ® H, i.e. fori < n,

L Or® f(4),Ye, r @ k(Xy,  ))wen = Yif (Xi) = (f, Yik(X5, ).

In this approach we are aiming to approximate

1 n
m® = =YY, e @k(X;, ) = (1, ) @m,,.
i=1

n “

In the least-squares problem we might like to use the same points X; with the same weights
w; to approximate &, and m,,, simultaneously. As we mentioned above this approach is
facilitated by incorporating the Y;’s and by moving to m?n. Similarly, it is useful to extend
the functions in H © H to R x X by setting h(y,z) = h(z) for h € H © H. We denote
the resulting space by 7@ which is again a Hilbert space when using the inner product
My aan = My uown, for any g, h € H O H. In fact, it is an RKHS with kernel function
ky((y1, 21), (Y2, 72)) = K(21, 22), since

Sy by ((9,0), Vg = <o i@, ))ymen = hix) = hly, ).

The empirical covariance operator now becomes €, ,, = (1/n) > | k,((V;, X;), -).

One way to achieve a simultaneous approximation of &€, ,, and m?n 1s to use a direct
sum G = (HOH) @ (R'® H) and consider the convex set

Con = cch {(k((Y:, Xi),-), (Y5, )r®@Kk(X;,-)) :i <n} cG.
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The element that we like to approximate is in this context (€, ,,, m ') which lies in Cg .
Let (€, ,, m?, ) be some element in G, then

1€y, 09,) — €y, P )G = 1€y — Cynllimy, + 95, — P [Rrgny

and a good approximation in G guarantees good approximations of ¢, ,, and mgfn simulta-
neously.

3.1 Assumptions

There are some minimal assumptions that we need to impose on €, m, and variations
thereof to be well defined. Generally, we assume that we have independent pairs of ran-
dom variables (X, Y), (X1,Y]),... defined on some probability space (€2, A, u). For € to
be well-defined it suffices to assume that (Y, -) € L' (u; H © H) and, similarly, for m,, it
suffices to assume that Y € £?(u) and k(X -) € L£*(u; H) since then § [YE(X, )| dp <
[V |2]k(X, )2 < o0 and m, = (YE(X )due?—[.

Some further assumptions are useful to facilitate the following analyses. In particular,
in the least-squares setting it is natural to assume that Y = fo(X) + €, where fj is a
suitable function, € is a zero mean real-valued random variable representing measurement
noise, and X and e are independent. When making this assumption we are assuming that
¢ is a random variable that is defined on the probability space (€2, .A, 1). To guarantee that
Y € £2(p) it is enough to assume that fo(X) € £%(1) and € € L2(p).

3.2 Covariance operators

Since Equation tells us that the covariance operator € can be treated like a mean
element after changing the kernel, it follows immediately that the techniques we developed
for approximating m,, and m can be applied to the covariance operator € and its empirical
version €,,. One might also wonder if the approximation problems for m,, and &, are related
and if any information that we might deduce about C;, and m,, can give us insights into the
approximation problem for €,,. For instance, can we say anyhting about the width of the
convex set in H,, based on the width of the convex set in H? Or, does an assumption on the
variance of functions in H translate to statements about the variance of certain functions
in H,? Unsurprisingly, this seems to be impossible to do in general. However, for certain
functions in H,, we can infer statements about the width and the variance. Similarly, under
very stringent assumptions on certain eigenvalues we can say something about the width of
the convex set with respect to any function in H,. Before looking into these questions we
start by taking a closer look at the RKHS H © H.

Note that the space H © H is not just the RKHS corresponding to the kernel x(x,y) =
k%(z,y) but it is also closely related to the tensor product H ® H. In particular, h € H O H
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if, and only if, there exists u € H ® H such that h(z) = u(z,x) for all x € X, and then
[h|nen = inf{|u|xew : h(z) = u(z,x) forall z € X'} [26, Thm.5.16]. Observe that for
any he HOHtheset A, := {ue H®H : h(xz) = u(x,x) forall x € X'} is a convex
subset of H ® H. Define the linear operator 7' : H ® H — H O H by T'u = u o 1) where
P : X — X xX,9¢(x) = (x,x), and observe that T"is bounded since | Tu|yon < |u|nen-
Hence, A, = T~ '[{h}]is closed. Also, observe that when h = (f®g)ot for some f, g € H
then there exists functions f1, fo, f3 € H suchthath = (1/2)(f1® fi— fo® fo— f3s® f3) oth
and [f®gle = |/1® fi + [2® [2 + [3® f3]g: choose fi = (f —g), fo = [, f3 = g then

f®I+g®f=([+9@([+9)—(fRf)—(4®9) =HOfr—[r®fo— [3® [3

and, since (f ® g) o = (g ® f) o 1, the first statement follows. In terms of the norm

observe that |[f ® g + g ® fllo = [/1® fr = f2 ® fo = [3® fs|e < 2| fllg] = 2] f ® glle-
Also, note that

1/2)f®g+9® flg = fI71gl” + Kf. pI? = |f ®glg + Kf, (< 21 f @ g]*),

where the expression in the bracket follows from the Cauchy-Schwarz inequality. Hence,
when f and g are orthogonal, we have that

AR~ ®fr— [ file = V2|f ®dle-

The point is that for any tensor f ® g we can express (f ® g) o ¢ as a linear combination
of ‘symmetric’ tensor elements applied to ¢ without increasing the tensor norm.

Let us next consider the closed subspace U = span {k(z, - )®k(z,-) :x € X} < HQH
and the orthogonal projection P onto it. For any u € H ® H we have that Pyu lies in the
subspace spanned by k(zx,-) ® k(x,-) and | Pyulg < |u|g. In fact, for any x € X,

uo 1/}(1:) = <u7 k(l‘, ) ® k(‘r7 )>® = <u7 PU(k(xv ) ® /{J(ZE, ))>®
= (Pyu, k(z,") ® k(z,)e = (Pyu) o (x).

In other words, for h € H O H, if we can show that the infimum will be attained over A,
then there exists an element v in U such that h = w0 ¢, |u|g = ||h]e, and for any v ¢ U
that fulfills v o ¢ = h it follows that ||v|g > |u.

When H is finite dimensional and the kernel function is bounded it follows that A;, N U
is compact: the tensor space H ® H is finite dimensional since H is finite dimensional.
Also, h is bounded since the kernel function is bounded. For € > 0 consider the centered
closed ball B of radius |h| o + € within # ® H. The intersection B n A, N U is non-empty
and compact and the infimum is attained within this compact set.
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3.2.1 Lower bound on the width of Cj

How can this tensor product characterization of H © H be used to characterize the width
of Cn? Let us first consider tensors of the form f ® f, f € H, |f ® f| = 1 = | f||. The
width of Cg in direction h, where h = (f ® f) o ¢, is

width ,Cg = sup h(x) — inf h(x)

rzeX zeX
= sup f*(x) — inf f3(z).
zeX zeX

If X is path connected, k is continuous and, hence, f is continuous, then we can relate
width ,C to width ;(C'): whenever there exist z, 2’ € X’ such that f(z) > 0 > f(2’), then
there also exists an € X with f(Z) = 0 due to the mean value theorem. In this case,

width ,Cg = (sup f(z) v — inf f(z))? = ((1/2)width ;(C))2.

reX reX

If there is no z such that f(x) = 0, that is f attains only positive or only negative values,
then we can argue in the following way. W.l.o.g. assume that f attains only positive values.
Since for a,b = 0, a = b, a®> — b*> = (a — b)?, it also follows in this case that

width ,Cg > ((1/2)width ((C))>.

This lower bound can fail to hold when the assumptions about k and X are not fulfilled.
Consider X = {—1,1} with k(z,y) = J,, and the function f = k(1,-) — k(—1, ) which
lies in the RKHS. For this function f,

sup f*(z) — inf f*(z) = 0 < 1= ((1/2)(sup f(x) — inf f()))".

zeX reX zeX zeX
The factor 1/2 in the lower bound is redundant when f attains only positive or negative
values since a? — b*> > (a — b)? whenever a and b have the same sign. More importantly,
the bound becomes loose when inf ., f2(z) is large since a® — b? — (a — b)? = 2b(a — b)
whenever a > b > 0.

Moving on to other directions h € H ® H, ||h|g = 1, we can first observe that the
arguments are not as straightforward as elements in U are of the form Zf;l aik(zi, ) ®
k(x;,-) forsome d € N, o; € R and x; € X for i < d, and, when considering the supremum
over x € X, the different terms o; k> (x;, x) can potentially cancel each other; in particular,
there is no reason why the «; should all be positive.

Alternatively, we can consider the set S = {k(xz, ) ®k(z, ) — (k(z, ) ®k(z, - )dP(z) :
x € X'} and the convex hull of S. This convex hull is closely related to C. Note that ch S is
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a subset of H®%H and contains the origin. Fix now any u € span S, |u|g = 1, then span {u}
intersects ch S. In fact, span {u} nch S consists of more than a single point since otherwise
k(z,) @ k(z, ), wye = (k(y, ) ® k(y,-),uyg for all z,y € X and {(u, s)g = 0 for any
s € S which would imply that u = 0. Consider the two points at which span {u} intersects
with the boundary of ch S and let d be the dimension of span S. Each of these points can be
expressed as a convex combination of [ < d + 1 points in S due to Carathéodory’s theorem.
Hence, u = a/|u|| where @ = Zﬁ;l aik(x;, ) ® k(x;, -) for some strictly positive a;’s that
sum to one and suitable points z1, . .., x;. We can note right away that

1/2
inf k(xz,z)/(d+1) <Z ook xz,xj)) = ||t]lg < supk(zx,x). (21)

zeX
ij=1 reX

Also, when k(x,y) is a non-negative function an application of Jensen’s inequality yields
further results. In detail,

sup (. 2) = iy-) = sup D001 1) = (i )

z,yeX T yeX .
> sup < Z aik(x;, ) — inf Z a;k xl,
zeX yeX

In the following, let ¢ = inf, width ,(C'), where the infimum is taken over {g : g € H, |g| =
1}. When c is large, k is non-negative and ||k|,, < 1, then this simple argument might be
of use: since k(z;,y) < 1 it follows that k(z;,y) > k*(z;,y) and

!
sup(Zakxl, ) 1nf2042 (i, y 22}3(2&%(%, > 1nf20¢Z iy Y

reX yEXz 1
Furthermore, (3 _, c;k(z;,9))? = Y, aik(x;,y) — 1/4 and

sup (z,x) — uly,y) = c—1/4.
T,yeX

This is only useful for large c. If, in fact, ¢ > 1/4, we can proceed and

—1/4
up u(z,7) - u(y,y) > —-—L

> —FF——=c—1/4.
z,yeX SUP ey l{?(l’,l’) /

3.2.2 Lower bounds on the fourth moments

Instead of controlling the width of Cg we can also aim to control the covariance operator
corresponding to the kernel . Effectively, this corresponds to bounds on the fourth mo-
ments. A bound on the non-centered fourth moment is, in fact, easy to derive: let € be
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the covariance operator (now interpreted as a linear operator) corresponding to the kernel
k. We need to control E((h(X) — E(h(X))?) for a function h € H,. Choosing again a
suitable u € H ® H such that h = u o 1), we find that

E(h*(X)) = E((uo $(X))?).

If U is d-dimensional then, as above, we can write u = u/| 4| where @ = 2221 aik(zi, ) ®

k(x;,-) for some positive «, Zf:ll «; = 1, and suitable points x; € X with [ < d + 1.

Given this representation of v and assuming that the smallest eigenvalue of ¢ is A,

la|*E(n*(X Z iy B((k(as, X)k(25, X)) = ) iy [(Ch(as, X), (s, X))l

2,j=1 i,7=1

Za

In particular, when k(x,z) = 1 for all z € X then

A A

EONX) 2 GraE 2 11

follows from Eq. (21).

However, to say something about the largest ball that lies around € within C we need
a lower bound on the variance of h € H,. This is not straight-forward and will need, in
all likelihood, some stringent assumptions: consider the variance of an arbitrary functions
h € H,, when H, has dimension d < 0. By the above argument, there exists a u = @/|u/,
where @ = Zd+11 a;k(z;, ) ® k(z;, -) for some non-negative «; that sum to one and points
x; € X. Hence,

E((h(X) = E(M(X)))*) = E((uo ¥(X) — E(uo$(X)))*)
d+1
= a7 Y awe E((k (i, X) — E(K (i, X)) (K (2, X) = E(K (25, X)))).

i,7=1

There is no reason why the sum over the off-diagonal elements

Zaz% (K (2, X) = E(K* (s, X))) (K (27, X) — B(k*(2;, X))))

should be positive or should be of considerably smaller magnitude than the sum over the
diagonal elements.
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3.3 Weighted mean embedding

There are different ways to address the term Y; f(X;), i < n, that occurs in the least squares
problem and there are a variety of natural assumptions under which one can study the
corresponding compression problem. Let us first have a look at how Y; f(X;) can be lifted
into the RKHS so that we can apply the compression techniques. A first approach to do so
was introduced at the beginning of Section [3| where we wrote Y; f(X;) = {f, Yik(X;,")).
Using this representation we can try to approximate (1/n) > " | Y;k(X;,-) € H. A second
approach is to map the Y;’s to linear functionals, that is to elements in the dual space R,
and to consider the tensor products

<)/i7 '>R X k(Xlﬂ )

We still would like to work with an inner product similarly to {f, k(X;, -)) and we can do
so if we work with (1, -)r ® (f,-) instead of f. In particular,

Both approaches are natural when the Y;’s are bounded but various issues arise when they
are not. In particular, for the latter approach the elements (Y, -)r ® k(X;,-) are not con-
tained with probability one in a ball in the corresponding tensor product space. We there-
fore discuss the case where the Y;’s are bounded first before moving on to the unbounded
case. Finally, it is often natural to impose an assumption on the relation between X; and
Y, like

Yi = fo(X0) + e (23)

with fo € £?(P), ¢; independent of X;, F/(¢;) = 0, and the X; and ¢; are i.i.d.

This leaves us with a total of eigth different settings. But not all of these settings
are useful for deepening our understanding. In particular, little can be said without the
assumption Eq. and we assume in the following, up to short discussions, that Eq.
holds. Beyond that we focus on three settings: the first setting uses the assumption
that Y; is bounded and we use the form Y;k(X;,-). We then move on to translate the
results to the approach where we model Y; f(X;) through the tensor product as in Eq. (22).
Finally, we lift the assumption that Y; is bounded and study the problem in the context of
the assumptions Eq. and Eq. (23). We assume throughout that the X;’s are i.i.d. and
that k(X;,-) € L2(P;H).

3.3.1 Firstsetting: Bounded Y;’s & Y, f(X;) = (f, Yik(X;,"))

There are few natural question when working with the empirical estimate m,,,, = (1/n) >." | V;k(X;, -):
what is a natural convex set which contains m,,, and over which we can optimize effi-
ciently? Do we have suitable population limits of the empirical quantities? What can be
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said about the diameter of the empirical convex set, about how centered m,, ,, lies within the
set and are assumptions on the covariance operator of use? In terms of an empirical convex
set which contains m,,,, it is natural to consider the set

Cyn = cch{Yik(X;,-) 1 i < n}

and optimization over this set is possible since we have control over the extremes of it.

Under the assumption that the Y;’s are of the form fy(X;) + ¢;, there are natural expres-
sions for the population limits m, and the convex set C,. For concreteness, we assume in
the following that X is a Borel space, H is separable, f, and the feature map ¢ : X — H
are measurable, fj, the kernel function k and the ¢;’s are bounded, ¢; is independent of X,
and E(¢;) = 0. We can define the population limit of m,,, through

m, = f folw)k(, ) dP(z),

where P is the law of X;. The element m, lies in H: The function fo x ¢ : X — H is
weakly measurable since when h € H, then (fo(z)p(x), h) = fo(z)h(z) is the product of
two Borel measurable functions and is therefore Borel measurable. Because H is separable
it follows that fy x ¢ is Bochner measurable Furthermore I fo(z)p(2)|| < | fo(2)|EY?(z, x)
is a bounded function of = and m, = { fo(2)¢(x) dP is well defined and lies in H.

Controlling |m, , —m,[l. We can quantify the deviation of m,, ,, from m, in the following
way. Let F be a countable dense subset of the unit ball of H and using that dual elements
can be moved through the Bochner integral, we get for a > 0,

Pr(Hmy —my, nl| = a)

= Pr(sup(h, | fal XY du——ZYk X, )= a)
heF

< Pr(sup | AolX0)h(X) u——Zfo W(X) = a/2)
heF

+ Pr<sup ! Meh(x,) > a/2). (24)

her T

The latter term can be bounded by means of Theorem 3.3 in [? ] which is a Bernsteintype
theorem for Banach spaced valued random variables. Note that the theorem statement in [?
] contains and error which is corrected in [? ]. The bound is the following,

n n

sup == h(X) = |- 3" p (X))

heF i=1 i=1
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and v, = Z?zl e;¢0(X;) attains values in H. The sequence vy, ..., v, is a martingale se-
quence in H with regard to the filtration F; = o(Xy,..., Xy, €1,...,6), t < n, since
E(w|Fi—1) = E(e0(X4)) + vi—1 = v,—1 (a.s.) for 2 < ¢ < n due to the independence be-
tween ¢; and X;. Furthermore, let vy = 0 and Fy = {F, Q} so that E(v,|Fy) = E(v1) = vy
a.s. We can continue the sequence by letting v; = v,, and F; = F,, for all ¢ > n, which
preserves the martingale property. To apply [? ? , Thm.3.3] we need the following moment
bounds; for all m > 2,

n

Z (leed(X) ™ Fi) < n(elk]o)™  (as.),

where c is an upper bound on |¢;|. This implies that we can set I' = ¢| k|, B = n'/?c|k|
in [? ? , Thm.3.3] and

2

1 = no

—Z H/—)<2exp<— >

nio dclkloo (el Kl + a + +/c2[[E[3, + aclk]e/n)

(25)

The first term can be controlled with a standard Rademacher argument after changing the
kernel. Define the kernel [ = fy® f; and consider the product kernel [ x &k : X' x X — R with
RKHS H, . For h € H it follows that fo x h € H,«y; for an h of the form > " | a;k(z;, )
one can write down the representation explicitly as fo x h = >, o, fo(x)k(xi,z) =
Do (ag/ folx)) (1 x k) (x4, ), whenever fo(z;) = 0 for all i < m. We can thus write

Pr Supffo (X1)h(X4) dﬂ——Zfo i)>a/2>
heF
= Pr( sup fg(Xl) dp — — Zg(Xi) > a/2), (26)
9E€FIxk i3

where J{"lx « 1s dense subset of the unit ball of ;.. The Rademacher argument that we are
using in can now be applied.

Population limit of ', ,,. The next question to address is how to define the population
limit of Cy ,. Under the boundedness assumption of Y; we can characterize the limit of C,, ,
in the following way. Letb = inf{b: be R, ¢; <bas.},b= —sup{b:be R, ¢ > bas.}
and let

C, = cch ({(fo(z) + 0)k(x,-) : v € X} U {(fo(x) — b)k(z, ) : x € X}).

Note that for any = € X, (fo(x) + b)k(x,-) and (fo(z) — b)k(x,-) lie in H and C,, < H.
Furthermore, ¢; € [—b,b] (a.s.) and for i < n, (fo(X;) + €)k(X;,-) is almost surely a
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convex combination of (fo(X;) + b)k(X;,-) and (fo(X;) — b)k(X;, ). Therefore, C,,,, is
almost surely contained within C,.

While C,, is a natural limit of C,, ,,, we face the problem that the convergence towards C,
can be arbitrarily slow since ¢; can have a low probability of attaining values close to b or
b. Assumptions on the distribution of ¢; are one way to address this problem. Alternatively,
we can work directly with C, ,, and study how deep m,,,, lies in C ,, by controlling events of
the form (h, Yk(X,-) —m,) < ¢, where (X,Y) has law P,, and by comparing the random
variables (h, Yk(X,-) —m,) and (h, YE(X,-) —m,,,). We follow this latter approach and
we use Rademacher complexities to control these events uniformly over the unit ball of H.
In the Rademacher approach, we control such events by lower bounding terms of the form

Poths (Ch, k(&) = myn) — ) (= J%Kh, k(Z,7) = myn) — ¢) dPu(, 7))

for suitable ¢,y € R and all unit norm elements /& € H. The element m, ,, converges to m,,
and, because 1, is 1/v-Lipschitz continuous, it follows that

| Pty (Chs GR(E, ) — my ) — ) — Ppapy (Chy G(Z, 1) — my) — ¢
< Pu(1/)[Khymy = my)| < (1/9)|my —my |, (as.) (27)

where the P,, term becomes redundant since no variables ¢ and & are present in the last
line.

Next, we consider the convergence of P, ((h, §k(Z,-) — m,) — ¢) to its population
limit P (4., ({h, yk(z, -) —m,)—c)) uniformly over the unit ball of 7. The convergence can
be controlled by using Rademacher complexities. Because € is used in this section to denote
the noise terms we will use ¢ to denote Rademacher variables. Since 1), is continuous and
is applied to a subset of R we can note that

3G (Vh(X) ~ BOYR(X)) o

is well defined. Also, 1), is a contraction vanishing at zero [19, Sec.5.2.1] and for any
finite subset [ of the unit ball of H it follow that

Be (sup 3 Gi(v/2) (Vi (X) = E(VA(X)) = 0))

< E¢ (SUPZ Cz'Yih(Xi)) < E¢ (iu}v)’Z CiY;h(Xi)D (as.),
& i=1

heF ;=

from [19, Thm.5.2.1, Eq.5.50]. Note that, conditional on Y;, the probability laws of (;Y;
and (;|Y;| are the same. In particular,

E(sup] > GYih(X5)|) = E (iug\zglmmxi)\) (as.).
€ i=1

heF ;3
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Recall that Rademacher complexities are stable under taking absolute convex hulls. Let
Cp = {(INilh(X1), ..., Vol h(Xn)) - h e F}and Cp = {([Y ] 0h(X1), .., [Y][h(X0)) :
h € F'} then abs conv Cr < abs conv C'r. Furthermore,

B¢ (sup| > GIYilA(X:)]) = Ee( Sup\z@t\ awp (3G
heF i—1 Cp im1 teabs conv Cp im1
< B¢( ) = HYHooEg(sup\Zcih(Xi)). (a.s.)
teabs conv Cp =1 heF 12y

In summary, we have shown that

supzcz% (VH(X) — BOVROX) — ) < (/)Y B (sup Y GHX)]. - @s)

heF i=1

A simple variation of the above argument gives us a bound on the absolute value. In detail,
B (sup|2 Gi(1/2)t(YVib(Xi) = E(Yh(X)) = c)])

sup\Z GYR(X)]) + sup |EOYR(X)) = el B3 ¢)

heF

< Yoo B (fle’E Gh(X)|) + (Y [lk[? + [c)V2mn,  (as.) (28)
&8 =1

where the last inequality follows from integrating a Hoeffding bound on Pr(| > | ;| = t).
Since this holds for all finite /" we can take the supremum over finite sets F' on both sides
and move to F (see (T])).

Lower bounds. With the Rademacher argument we control the difference between the
empirical and population value. To make use of this bound we need a lower bound on the
population value. This can be attained in the following way. Let p = Pr(e; = 0) A Pr(e; <
0). Because F(e;) = 0 it holds that p > 0. Using the towering rule for conditional
expectations and that ), is monotonically decreasing, we can now argue in the following
way for the population limit and any h € H,

By ((h, YE(X, 1) —my) — ¢))
= By ((h, YR(X,-) —my) — ¢) x x{eh(X) < 0})
= By ((hy fo(X)R(X,-) —my) — )
(E(x{e < 0}X) x x{h(X) = 0} + E(x{e = 0}[X) x x{h(X) < 0}))
= pE(y,(Ch, fo(X)R(X, ) —my) — ¢)). (29)
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The final expectation term can be dealt with in the usual way after moving to the kernel
function [ x k, where [ = fy ® fy. We demonstrate this for the case that we work with a
covariance operator assumption and we derive high probability lower bounds on the radius
of a ball centered on m, ,, which lies within C,, ,,.

Assumptions on the covariance operator. We denote the centered covariance operator
for the kernel [ x k by €.;.;. As usual, we need an assumption on the smallest non-zero
eigenvalue of this operator. Recall that | fo||; = 1 and

Ifo % Blloxe = minflulpen, : fo(2)h(x) = uz,) forall 2 & X},

In particular, || fo X hfixi < [ fo ® hllxemn, = [h]x- In fact, this can be tightened by using
[26, Prop5.20]: the RKHS H, ., is the set {fo x h : h € H} and for any g, h € H we have
that (fo x g, fo X hyixk = {g, h). In particular, all eigenfunctions of éc,lxk are of the form
fo x h for some h € H, | h|| = 1. Therefore, our bounds will depend on

1nf{<€cl><kf0 X h fO X h>l><k Hh” =1 f() x h € (ker thlxk) } (30)

As before, it is beneficial to move to the RKHS H, . ¢ corresponding to the kernel function
= (I x k)I'S x S, where S is the support of X. Observe that

(X k1S xS = (1S x5) x (k15 x 5) = ((fol S) ® (fol 5)) x (k'S x5).

Using [26, Prop5.20] again shows that H;xxs = {(fo! S) x h : h € Hg}, where Hg is
defined as before. Furthermore, for g, h € Hg,

{(fol S) x g, (fol S) x B)ixr,s =g, h)s-

Let us also introduce myyj s = § x(x, ) dP(x), where P is the law of X, and which is well
defined whenever (I x k)(X, -) is Bochner integrable. For h € H,

haw) = [ G fol@)i(a. ) dPG@) = | (51 )0 $)(a) dP ()

=JS< 1S, (fol S)(@) (kIS x S)(z,-))s dP(x)

= | {(fol §) x (h1S), (fol S) x (fol S)(@) (kIS x S)(, ) ix,s dP(x)

JS

JS<(fofS) x (h1S), (I x k)I'S x S) (@, ) )ixk,s dP(z)
= {(fol S) x (h]S), Myxr,s)ixk,s-
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The key observation is now the following, for any A € ‘H and almost surely

Chy fo(XDE(X, ) —my) = (RES)(X)(fol S)HX) —{(fol S) x (RIS), Mysk,s)ixk,s
= {(fol 8) x (h]S),r(X,-) — mlxk,S>l><k,S-

This leads directly to a first result. Under suitable assumptions and with § = \,/2[(f, ®
fo) x /<:||<1X§2 v = 0/4 and ¢ = —0/2, Equation (5] shows that for any h € #, such that
[l S]ls = 1,

E(4, (Chy fo(X)R(X, ) —my) —¢))
= B, ({(fol ) x (R S), 6(X, ) = Mixis)ixks — €))
> A2/8)|(fo ® fo) * Klloo- (1)

Combining the various steps above leads to the following proposition, which is an adapta-
tion of Theorem

Proposition 2. Let (X x R, A, P) be some probability space, let P be a topological mea-
sure that is T-additive, and let k be a measurable kernel function defined on X s.t. the cor-
responding RKHS H is finite dimensional. Furthermore, let (X1,Y1),...,(X,,Y,) bei.id.
random variables attaining values in X x R, with law P, and of the form'Y; = fo(X;) + €;
where €1, . . ., €, are centered i.i.d. random variables which are independent of X1, ..., X,
and such that |e;| < c. (a.s.), and fy € L*(P). Assume that |(fo® fo) x k| < o0, and that
the centered covariance operator éc,lx k. has an eigen-decomposition with smallest non-zero
eigenvalue being \,. Let & = \./2|(fo ® fo) x kH}x{? and p = Pr(e; = 0) A Pr(e; < 0).
For any q € (0, 1) and whenever n is (strictly) greater than

1024] o ® fo x k|2
f;2>\4§(; | (16(8Hf0 ® fo x k|w + 64/210g(3/q))”

v 16(4c k| Log(6/q) + (423, + /T + ¢2[k]2) log(6/9))"/*)?
v (07/210g(6/q) + 1621 (([| folloo + co) [K] 27 +6/2) + 32k ( folloo + ce)>2)

then, with probability at least 1 — q, there exists a ball of radius 0 /4 around m,,, in Cy,,
within the affine subspace spanned by C,, ,,.

Proof. (a) Since fo ® fo x k is a bounded kernel function we can apply and conclude
fory = d/4and ¢ = —§/2 that E(¢, ((h, fo(X)E(X, ) —my,)—c)) = A2/8|[(fo® fo) X k| w
and from (29) it follows that

E(r(Ch, YE(X, ) = my) — ¢) = pA/8|(fo ® fo) x Kl
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(b) Next, we have to incorporate a few triangle inequalities. First, we fill in the details
in (24). From (26) it follows that for p; € (0,1) and a1 = Sn™Y2|fo @ fo x k|w +
64/21log(1/p1)n=""2,

Pr(suprO X h—P,foxhz= a1/2) = Pr( sup |Pg— P,g| = a1/2> < p1.
heF 9 Fixk

Also note that we can simplify (23) to

nao’

1 & Qs
Pr(|— ) eo(Xy)| = =) < 26Xp<— )7
02, ) Ac. k] (cel Koo + az + A/T + E[K]Z)

=1

whenever n > asc||k| . Hence, for such n, for p; € (0, 1) and

1/2
o, Lkl log(2/p2) <<4czrku30 /1 czkrzoﬂog(z/m))

n n

it follows that
1 n
Pr (”ﬁ Z ao(Xi)| = ) <po.
i=1
In particular, for a3 = a1 v @y and whenever n = ascc | k| oo,

Pr(fm, —my,| > a12) < p1 + po.
(c) From (27)) we can infer that almost surely
P, (Chyyk(z, ) — my> —¢) = Py, (Chy k(25 0) —my ) — )
<y myn — my |+ Py (Chyyk(z, ) = my) — ¢) = Pty (Chy GR(E, ) — my) — c).

The same inequality holds almost surely if we consider the supremum over F. Therefore,
withy = /4 and a > 0,

PY(SUI} P¢’Y<<h’> yk(x7 ) - my> - C) - Pn¢7(<h’v gk(jjv ) - my,n> - C) = 20&)
heF

< Pr(fmy, —my[ = 0a/4)

+ Pr(sup Py, (Ch, yk(z, ) —my) — c) — Puaby (Chy gh(2, ) —my) —¢) = ).
heF

The latter term can be dealt with by a Rademacher argument when using (28)). In detail, for
any p3 € (0, 1), with probability 1 — p3 simultaneously for all h € F,

By (Ch, GR(T, -) = wy) — ) =Py (Chy yk(, ) —my) — ¢) = +/210g(2/ps)/n

— 2F (sup\% 2, G (Yih(Xs) = B(YR(X) = ¢)])

heF i=1
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follows from [19, Thm3.4.5]; also see p. [26] Substituting leads to the following lower
bound on the P, term,

Py (Chy yk(x, ) = my) — ) — v/ 21og(2/ps)/n

— (@Yl B (Sup\% 2L GRXD]) + (Y oo 1L + lel)y/2m /).

heF i=1

Filling in 7, ¢, the upper bound on |Y| and the Rademacher complexity of F, reduces the
lower bound to

_ V/2108Cp) | 16V (ol + eDIFIE +6/2)  320k14*(follo + <)
T NG NG

and

Pr(sup Pon (Ch, yk(z, -) —my) — ¢) — Pty (Chy GR(E, ) — my) — ¢) = a3) < ps.
heF

(d) Combining these bounds we can derive a lower bound on P, ((h, §k(Z, -) —m, ,,)—c).
In detail, let p; = ps = p3 = ¢/3 and set
. 40[12
o = Vv O3

J

then with probability 1 — ¢ simultaneously for all h € F,

Poths (Ch, k(&) = myn) — ) = pAY/8|(fo ® fo) X koo — 20",
To guarantee that the right hand side is strictly positive we can choose the n which is
provided in the statement of the proposition. ]
3.3.2 Second setting: Bounded Y;’s & Eq. (22)

In this section we map h € H to h = (1, -)r ® h(-) and we work with the kernel function

p((y1, 21), (Y2, 22)) = (Y1, Yo rk (71, 22).

In the introduction to this section we denoted the RKHS #, by R’ ® H. We will use in the
following the more compact notation #,,, | - |, etc.

Compared to the approach in the previous section, using H, offers a dramatic sim-
plification of the analysis and leads to improved bounds. As usual, we are interested in
approximating a mean element. In the current context, this is m$ = § p((y, z),-) dP(z,y)
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and there is a straight forward relation to the element m, that was used in the previous
section,

m? - J<y7 >R®k<x7) dP(I,y) = <17 >R®Jyk(l‘, )dP(]?,y) = <17‘>R®my7

using (2). The element m$ lies in R’ ® H whenever Y?k(X,X) € L'(x). Under our
assumption that Y = fy(X) + ¢, X and e independent random variables, the representation
of m& simplifies to

= E(fo(X)1, Ye @ k(X, ) + (E(e), > ® E(k(X,"))

m® = E((fo(X) + ¢, o @ k(X))
)
= (L, r @ E(fo(X)k(X, ),

where we used (2) in the second and in the last equality. This is again just (1, -)g ® m,,.
If P is 7-additive as a measure on X x R then the support S of P is well defined and
we have a natural population limit

0339 = cch {<y7 '>R ® k(iL‘, ) : (x>y) € S}
of the empirical convex set
CE, = cch {{Y;, )r @ k(X;,-) - i < n}.

These are just the convex sets associated with the kernel function p acting on R x & and
mg), mgfn are the corresponding mean and empirical mean elements. In fact, we can apply
right away Theorem 2] Our sample space is then [—| fo|o — ¢, [ follo + cc] x X, where c.
is a constant such that |Y'| < ¢, a.s. The kernel function is p restricted to the sample space
and

|15 % Slloo < ([ folloo + ce) 5] co-

In this formulation it might not be directly obvious how assumptions on the distribution of
Y enter. Using a Rademacher argument we can control the difference between P and P,
when acting on indicator functions. To do so we do do not need any assumption on the
distribution of Y beside boundedness. But, if you recall our earlier arguments, you will
notice that we used lower bounds on P when applied to indicator functions to control the
size of C;?n. This lower bound on P depends on the distribution of Y. In particular, with
the covariance operator approach, it depends on the variance of Y.

Let 5:? be the centered covariance operator corresponding to kernel p then for g, h € H,

PN
~
®
v%(
>
~
he)
I
».<
V]
=
s
=

X)) = E(Yg(X))E(Yh(X))
= E(fg(X)g(X)h(X)) + e*E(g(X)h(X)) — E(fo(X)g(X)E(fo(X)h(X)),
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where o is the variance of e. We can also relate this expression back to the covariance
operator discussed in the earlier approach, for h € H,

(€%g, h>p = <éc,l><kf0 ® g, fo ® Byxi + 02 E(g(X))E(h(X)).

Recall that for g, h € H, (g, h) = {fo % g, fo X h)xx and note that (g, ﬁ>p = {g,h). In
particular, )
12l = TAle = 1fo > Al (32)

forall h € H. If h € H,|h| = 1, is such that fo x h is an eigenfunction of €, with
eigenvalue \ and o2 is the variance of ¢ then
<Q~i§ﬁ, ﬁ>p =\ +?E(h*(X)).
Furthermore, if fy x h is an eigenfunction of éc,lxk and ¢ is such that (g, h) = 0 then
€2h, §)p = (Cepxrfo x hy fo X s + 0*E(g(X))E(h(X)) = 0*E(g(X)) E(h(X)).

There is no reason why the latter term should be zero and the two operators will generally
not have the same eigenfunctions (in the sense that h is an eigenfunction of €% iff fo®h is
an eigenfunction of €. ;. ).

Remark 1. Ifv = inf{ E(h*(X)) : h € H,||h| = 1} > 0 then €& has no eigenvalue below
o?v. This can help with the compression, but notice that larger values of o* are related to
larger values | p||o, which hinders the compression.

Lower bounds on the width. We could also look at the width of the convex set C’y® by
means of the kernel function p. While this is a useful exercise we only want to highlight
here a simple relation between the width of sz? and the width of usual convex set C's (as a
subset of Hg). For h € H, |[h]| = 1,

width ;(C) = sup (y — fo(2))<h, k(z,-)) + h(z) fo()

(z,y)esS
— inf ((¢' — fo(2)(h, B(2', ) + h(2) fo(2"))
(x/7y/)es
> sup sup (y —y')h(x) = sup sup (y —¢)|h(x)],
z€Xs y,y' €Sy 2€Xs y,y'€Sy

where Xs = {z : (z,y) € S}and S, = {y : (z,y) € S}. Also, note that

sup |h(x)] = (1/2)width ,(Cs)

xEXS

and we have a lower bound on width E(Cf?) which is a product of the width of C's and the
spread of e.
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3.3.3 Third setting: Unbounded Y;’s & Eq.

If Y is unbounded then one way to approach the approximation problem is to cap the
observations Y; and to control the cap as a function of n. We demonstrate this for the case
that we have the model stated in (23)), f; is bounded and measurable, and € is sub-Gaussian
with variance factor v (see [? , Sec.2.3]) but is not necessarily bounded. The natural
sample space is now R x X. The kernel p is well defined on R x A" but is unbounded.
When f; is bounded, £ is measurable and bounded, and ¢ is sub-Gaussian, we have that
Y, rk(X,-) € L?(u,H,) since

E(|KY, )=k(X,)|7) = E(V?R(X, X)) < [kl E(Y?)

and the latter term is finite since Y is sub-Gaussian. Let {r,},>1 be a non-negative and
non-decreasing sequence, and let Y = (Y A (7, + | follw)) v — (0 + | folloo)- The | foloo
can obviously be replaced by an upper bound on the norm, but as the argument is devel-
oped such a bound is needed to control the error introduced by capping the observations
Y;. Define M2, = (1/n) ST (P Spk(X;, ). In this section our aim is to derive a suit-
able adapted version of Theorem [2 for this setting where € is sub-Gaussian. We start by
investigating the effect of the capping of Y.

Bounding |m?, —m? [. A simple expansion yields
anlly

k(X

)(Y; — VI E(XG X).

§|,_. 3|,_.

i

Due to the independence of the observations and by using the Cauchy-Schwarz inequality,

E(|m,, — @3,17) 2 E(Y; = V") k(X X))
+ EZ KE((Y: = Tk ), B((Y; = ¥)R(X, )
e >y - 2 gy - ()

i=1

- —1 -
\\kH Z v, - Yn) ( )||k\|ooE2(m_Y1<n>|)‘

n
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Let A denote the law of €. Noting that € is sub-Gaussian and using [? , Sec.2.3] together
with [18, 2520] and [[13} Prop2.5(a)], we obtain

BOYVi= 7)< [ (=) % xde > rabar) + [ (6= ) x a1 2 n} i

0

0 o0
<J /\{t:t>s—|—7’n}ds—|—f Mt:—t=s+r,}ds
0 0
o0
< QJ eI ds < A 2mve (33)
Similarly,
_ 0 0
E(Y - 9)2 < J (= 1) % y{t = o} dA() +f (—t— 1) %yt = 1} dA()
0 —00

o0 0
<J )\{tit>\/§+rn}ds+f Mt t < —+/s—r,}ds

0 0

0
< Qe_ri/zyf e~/ ds = dpe /2. (34)
0

Combining these yields
B(Im, ~ @,12) < 20 blne 4% (2/n + me-ri/)
and

2wk (2/n + 7re_”2l/2”>
2 .

In other words, if we have an upper bound on || fo| . and cap the observations as described
above then with probability 1 — ¢ for any ¢ € (0, 1),

/2

1
[, = &, |, < V20 k]2 (2 4 memr2) T (35)

Spectrum of the covariance operator. In Remark [I| we observed that no eigenvalue of
¢® can be lower than o?v, where o2 is the variance of € and v = inf{E(h*(X)) : h €
H,|h| = 1}. There is a peculiar detail that we have to be careful about: if hy, hy € H
are linearly independent but h; | Xs = hy [ Xg, where Xs = {x : (z,y) € S}, then there
exists an A € H of norm one for which F(h?(X)) = 0. Furthermore, the corresponding
functions Bl, ﬁg in H, are not constant on S but some linear combination of ﬁl and Bg
is zero on S (at least when the involved functions are continuous). To make use of the
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lower bound o?v it makes therefore sense to move right away to functions restricted to
S ={(y,z) : (x,y) € S} or Xs.

Before coming back to the lower bound we want to take a paragraph to understand
better H, s,, which is the RKHS corresponding to the kernel function p[ Sy x Sy. First,
notice that there are no (non-zero) constant functions in H, s, if € is not almost surely

zero. In particular, the covariance operator €®  has then only eigenvalues that are strictly
positive. If ¢® has zero eigenvalues then there must be elements /4 which are constant on
S but this means that these elements have to be equal to zero on .S and correspond to the
origin in H, s,. Also notice that H, s, is not the same RKHS as the RKHS with kernel
function (IIRg x Rg) x (k]Xs x Xs), where Rg = {y : (z,y) € S} and [(y,y') = {y, ¥ r
for all y,y’ € R. This follows directly since they have different domains. The latter kernel
is defined for pairs (z,y) in Xs x Rg while the former is defined for pairs (x,y) € S. This
is inconvenient since we like to use E(h*(X)) for h in some RKHS of functions acting on
the support of some measure and it is not directly obvious what this support should be like.
In the following, let Ty be a topology on X, let ¥ be the corresponding product topology
on X x R, and assume that the law P of (X,Y") is a Radon measure with c-algebra A; in
particular, it is a topological T-additive measure and ¥ — A. Then S is well defined as a
subset of X x R. Let us also introduce our probability space (€2, 3, 1), assume that p is
complete and (X,Y) is a well defined random variable in the sense that (X,Y)7![A] € &
for all A € A. Furthermore, consider the o-algebra Ay = {4 : A x R € A} and let
Px = Pony! where the function 7y : X x R — X projects onto the first coordinate. The
o-algebra Ay contains Ty since for O € Ty it holds that O x R is in the product topology
T. Hence, Px is a topological measure. If X is a Hausdorff space then Px is, in fact,
a Radon measure (apply [18, 418I] to 7wy and note that 7wy is continuous). This implies
that the support S’ — X of Py is well defined. Observe that Xs = S’: the projection
Ty 18 a continuous inverse-measure preserving function from X x R to X and, due to
[18, 411N.e], the support of Py is mx[S] = {z: (v,y) € S} = Sy. We also have to
check that X is actually a well defined random variable in the sense that X '[A] € X
for all A € Ay, and that E(h*(X)) = (h*dPx = ((h| Xs)?dPx. The former can
be seen in the following way. Since 7y is a measurable function from (X x R, .A) to
(X, Ay) it follows that X = my o (X,Y) is measurable as a mapping from ({2, ¥) to
(X, Ax) and is a well defined random variable. For the latter, if & is in £2(X, Px) then
{ h* dPx is well defined and obviously equal to {(h1Xs)?>dPx. It remains to show the
E(h*(X)) = {h*dPx. One way to show this is to use [I8, 235E]. This can be applied
since uX '[A] = Pr(X € A,Y € R) = Pr},'[A] = Px(A) forany A € Ay.

We can now define an RKHS of functions that act on the support Xs. For compactness
of notation let S = Xg, let k s=kK 'Sx S and denote the corresponding RKHS by # 5 5. This
RKHS allows us to carry over Remark I to the case where we work with H, 5. Let ¢®:S

be the centered covariance operator that corresponds to H, s,. Since, H, 5, = {h1Sy:he
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H}, it follows that

(CE5h1Sy, hiSpps, = B(f3(X)h*(X)) + UQE(fLQ( )) = E*(fo(X)h(X))
= E(f§(X)h*(X)) + 0*(€h1S, h1S)g — B*(fo(X)h(X)). (36)

When the kernel function k is continuous, then the only function h € Hg for which
E(h*(X)) = 0is h = 0 which has norm zero (otherwise there is an open set on which
h?(X) is bounded away from zero and the intersection of this open set with the support
has measure strictly larger than zero [[18, 411N]). In this case, all the eigenvalues of @S are
strictly positive and also all eigenvalues of Q~:® S are strictly positive, implying that there
is no constant function in Hp s;- Also, note that | ! Slg = A} Sprgf for all h € H:

first observe that g[Sy = h IS¢ if, and only if, g 'S = h!S. If g 'S = h|S then for
(z,y) € S, gly,z) = yg(z) = yh(z) = h(y, ) because z € Xg < S. On the other
hand, if g1.Sy = h 1S then for any © € Xg there exist a point y such that (z,y) € S and
yg(z) = yh(z) which implies g(x) = h(x) if y = 0. In fact, if 0% > 0, there exist at least
two such points and, in particular, there exists a y = 0 such that yg(z) = yh(x). Since
g = h on the dense subset Xg of S and both g, h are continuous (assuming k is continuous)
it follows that ¢ = h on S (e.g. [15, Thm1.5.4] and using that R is a Hausdorff space).

Using (32)),

|P1Sslp,s, = int{[|gl, : 91S; = h1Sy, g € H} = inf{|g] : 9ISy = h1Sy, g € H}
= inf{|g| : g1S = h1S, g € H} = [A1S]3. (37)

This implies that a strictly positive lower bound on the <¢S htS ht S> g 1s given by the
smallest eigenvalue of ¢s (when H is finite dimensional). We can also express this bound
in terms of A since for h € H, (Ch, h) = (¢Sh}S, h 'SYg and || A| = |h1S| 4 it follows that
the smallest eigenvalue of ¢ provides a lower bound on the smallest eigenvalue of ¢S and
this lower bound is strictly positive. We might be tempted to improve this lower bound by
recalling that the eigenvalues of €, tell us the dimension of H § but notice that there is no
reason why the eigenfunctions of ¢, and € should be related since one corresponds to the
variance and the other corresponds to the second moment, and it is not directly obvious of
how to benefit from the additional information that ¢, provides.

A family of covariance operators. The move from Y to ¥ affects the covariance, and
the covariance operator corresponding to (Y, -)rk(X, ) is not the same as the covariance
operator corresponding to (Y™ Spk(X,-), n = 1. Let us denote the covariance operators

corresponding to the ¥’s by the somewhat unwieldy é?’(”) and the covariance operator

corresponding to the support S,, of the law of (X,Y ™) by é?’s’l; we assume that the
laws P of (X,Y () are Radon measures, which guarantees that the support of P
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is well defined. Tt is easy to verify that P™ is a Radon measure if P itself is a Radon
measure and the topology corresponding to P is a Hausdorff topology. Consider the set
A=Xx[=(rn+ |folwo), ™ + || follsw] equipped with the subspace topology which is also
a Hausdorff topology [15, Thm.2.1.6], and the continuous function f : X x R — A given
by f(x,y) = (x,7™), where we mean the same transformation as for the random variable
Y. The push-forward P(") = f#P is a Radon measure according to [18, 418I].

We need lower bounds on the smallest non-zero eigenvalues of the different é?’(”)
operators to use our compression approach. It seems natural to work with an assumption on
the smallest eigenvalue of the covariance operator @?75 , which corresponds to the original
Y, and to relate the eigenvalues of @?’S " back to the eigenvalues of @?’S . As discussed on
the previous page, the covariance operator @?’S does not have an eigenvalue that is zero if
k is continuous. In this case, the smallest eigenvalue Xﬁn) of @?’S" is at least of size \, /2,
where )\, is the smallest eigenvalue of (;:?S , whenever

~ = v
€25 — g2, < ZX,
where (36) tells us that we can choose v either as the smallest eigenvalue of €5 or the
smallest non-zero eigenvalue of éﬁ, and where 0 < 02 < v is the variance of €. Alternatively,
we can obviously also directly impose assumptions on the eigenvalues of @95 . We can
bound the operator norm in the following way,

|€25 — &2,y = sup sup  (C2°h1Sy — € h1Sy, §1S)p,s,
RIS, =1 1615 ],.5, =1

= sup swp E((Y? — (PO))h(X)g(X)) — E(Yg(X)E(YA(X))

[RSIs=195] 5=1

+ E(YMg(X))E(Y™h(X)).

g=1=|gts

Let us first address the second moment term. For A, g such that ||h}S| E

[B((Y? = (V) h(X)g(X)] < [k E(Y? — (Y)?)

= ke [0 =2 = rad O+ e [ (8= ot ) A

o0 o0
<yk||oof /\{t:t>«/s+r3}ds+|k:gofo Mt t< /s T2} ds

0

0¢]
< 2lbl [ 7 s = vl

2
Tn

85



The other term can be controlled in the following way,
[E(Yg(X)EYh(X))— EFMg(X)EY ")h(X))\
< [B((Y = Y™)g(X) E(fo(X)M(X))| + [EF Wg(X))E((Y = ¥ ™)h(X))]
< Koo (2 folloo + ra) E(Y = Y) < V80 |k|oo (2] follo + 7a)e /.

Combining these yields

|€2S — €25, < (VBTV(2| follao + 1) + 40 [K ] /. (38)

In particular, if we use v = 0?2,

koo (12 +1)+8
0')\*75
where 5\*’ g 18 the smallest non-zero eigenvalue of ¢, and let {rn}n>1 be a non-decreasing
sequence then for all n > 1, B
A =), 5/2.

This follows from the argument on the last page and because this choice guarantees that
the right hand side of Equation (38) is upper bounded by o, 5: first notice that 77 /40? >
log ry for any 1 > 1 v 202. Hence,

(V3270 ] follo + 46%) [kl 782" + v/Ber | e rE/27 o8
< (V3270 | follw + 40 [l oe 12" + Vo e
< (V3210 (| folloo + 1) + 407) ko~ "H”.

The same arguments applies to any 7, > r1 and the final display is non-increasing in the
argument. Setting this final display equal to 02)\*7 /2 yields the expression in (39).
Also, notice that r; depends logarithmically on the unknown terms || fo |, and ;\*7 &

Compression in the case of sub-Gaussian noise We have now all the ingredients to state
a proposition for the sub-Gaussian noise case under the assumption that we have an upper
bound on | fo|.c, a lower bound on X, g and some control over the variance term o*. In

particular, we know that when 7y is chosen as in (39) that QZ? S has eigenvalues that are
closely related to the eigenvalues of @?’S and that we can apply our results to compress
m? . Furthermore, we know how to control the difference between @m%, and m¥ . The
following proposition ties these results together.
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Proposition 3. Let (X, %y) be a Hausdorff space, (X x R, %, A, P) be a topological
measure space such that P is a Radon probability measure which has support S, ‘% is the
product topology corresponding to Ty and the standard topology on R, and let k be a
continuous and bounded kernel function defined on X such that the corresponding RKHS
H is finite dimensional. Furthermore, let (X1,Y1),...,(Xn,Y,) be i.i.d. random variables
attaining values in X x R, with law P, and of the form Y; = fo(X;) + €;, where €y, . .. , €,
are centered i.i.d. random variables which are independent of X1, ..., X, and such that
€1 is sub-Gaussian with variance 0 < o2, and fy is a measurable and bounded function.
Let ), & be the smallest eigenvalue of the covariance operator ¢S that corresponds to the

kernel function k 'S x S, where S is the closure of {x : (x,y) € S} in X. Furthermore,
let \, be the smallest eigenvalue of of the covariance operator €® corresponding to the
kernel function p1S x S, p((y1,x1), (y2, 22)) = ylygk(xl,xg)forall T1,29 € X, y1,y2 € R
Given q € (0, 1) define the sequence {r,},>1 in the following way. Define r1 as in (39) and
forn = 2 through

rn =11 v V20 log(n/q).

Under these conditions, for any n > 1, the smallest etgenvalue NG of é?,sn Sulfills A >
A/2 = 0?X, 5/2 > 0 and there exists a ball of radius 5™ = X /2(| folloo + ) 2| k|14
around W$ within the affine space spanned by C, = {p((y, x),-): (z, y)ﬁe Sy} as a subset
of H,, where S, is the support of the law of P™ corresponding to (X, Y ™). Whenever n
is (strictly) greater than

<8(f0<>o 7)o (v/2 108 (12/4) + 192(] folo + rn>||k|oo/ii">>>2
(A)2

2
y (16<fo|oo + ) V2R + /258 log<4/q>)

Q)

with probability 1 — q there exists a ball of radius 6™ /4 around M in an within the
affine subspace spanned by C’p and

”ﬁlg),n - ynHP

Go|lk|L*n”

Proof. We derived the inequalities concerning the eigenvalues earlier in this section. Fur-
thermore, the bound on 6 follows directly when applying Theorem 2| to the random
variables (X, Y () and the kernel function p | S, x S,, noting that ||p | S, x Sp[. <
(|l folles + 7) | %|lsc- The bound on 7 is also taken from Theorem [2| with the only modifi-
cation being that a union bound is used to guarantee simultaneously the existence of the
ball around @®, within C%, and that |[®%, — m®, [, is upper bounded by n~"/2. In detail,
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for the stated ¢ with probability 1 — ¢/2 there exists a ball around ﬁ\l??n and with the given
choice of ,,, with probability 1 — ¢/2

1/2
82, — m, |, < V202 |2 (2 + meri2) g 2) 12

< 20| k|20 20 (202 4 )2 < 3| k|| 2R P,

follows from (35).

3.4 Simultaneous compression

In this section we are interested in compressing different quantities like the covariance op-
erator and the mean element simultaneously, meaning that we want to find a single convex
combination of a subset of the data that allows us to approximate both quantities well.
As mentioned in the introduction, we are utilizing a direct sum approach to approach the
simultaneous compression problem. In this section, we start our exploration with &,, and
m, , for bounded Y, which is in some sense easy to deal with since the RKHSs correspond-
ing to them have intersection {0} (after some minor adjustments of the kernel functions)
which makes the direct sum approach easy to apply. We then explore how we can deal with
RKHSs H,, H, for which the intersection is a non-trivial subspace. This problem is more
challenging and we combine the direct sum approach with a quotient space approach to
deal with it. We conclude this section by applying this approach to approximate simultane-
ously &,,, m, ,, and Z?:l Y;, which allows us to calculate the least squares error for RKHS
functions using only a core set of the data.

3.4.1 Compressing the covariance and weighted mean embedding simultaneously

One of the main challenges when trying to control the approximation error of €, and m, ,,
simultaneously is to determine the size of the convex set that contains (&,,, m, ,,) within the
direct sum of two RKHSs and to locate (¢, m, ,,) within this convex set, or, alternatively,
to analyze the covariance operator corresponding to this new space. These problems would
be easier to handle if we could identify the direct sum space with an RKHS and apply the
techniques that we have developed for RKHSs. When using the first approach for m,, ,,, we
face directly a problem in that we will gain some weighted sum of (k(Xj, ), k(X;,-)) as
an approximation, but we need a weighted sum of (x(Xj, -), Y;k(X;,)). This problem can
be circumvented by incorporating the Y;’s into the kernel as we have done in the second
approach, i.e. for a given kernel function k£ on X let,

p((y1, 1), (Y2, ¥2)) = y1yek(z1, 22) = Ly1, Jr @ k(71,-), (Y2, YR @ k(72,-))g  (40)
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then p is a kernel function on R x X and we move from m,, ,, to m?(fn. It helps to also extend
K to R x X by setting r, ((y1, 1), (32, 22)) = (21, 2). Let h be the extension of i € H,, to
R x X, ie. h(y,x) = h(z) forall z € X,y € R, then HEHM = |h| .. For finite linear com-
binations this follows from || 31" airy, ((yi, ), <)z, = 22y qicvrey ((yi, ), (Y5, 25)) =
|30, ik, -)|2, where n € N, a; € R, z; € X, y; € R for all i < n and extends to all of
‘H,. by a denseness argument. By a similar argument we can see that the extension map is
surjective.

Observe that H O #, that is the RKHS corresponding to x,, and H, = R’ ® H are
linearly independent, i.e. (H/CD\H)m(]R’@)H) = {0}, because ,((y1, 1), (Y2, x2)) does not
depend on the values ¥, y> while p does. Due to this linear independence we have that C =
(HOH) @ (R'® H) is isometrically isomorphic to Hyy+p: LetG = {g+ h:(g,h) € K}
withnorm | f|g = inf{|/(g, h)|x : g+h = f, (g, h) € K}. There exists a surjective isometry
between K and G. Because H O H and R’ @  are linearly independent there is for every
f € G exactly one pair (g, h) € K suchthatg +h = fand | f|g = |(g, h)|x. Furthermore,
we have an inner product on G which is given by {f1, fo)g = {(g1, h1), (g2, h2) )x Whenever
fi = g1+ hiand fo = go + hy. For (g,h) € K we have that g € H,,, and h € H,. By
(2, Thm.,p.353] the kernel x, + p is the kernel of G and, therefore, H,,, is isometrically
isomorphic to .

When P is a Radon measure with support S < X x R then we can look at Kg =
(H/@\H)S@ (R"®H)s, where (’H/@\H)S = {ulSs:ue 7T®\7{} = Hy,15; x5, With norm
|ulwps,xs, = mf{|v] 1 u =v]S;ve HOH}, with Sy = {(y,z) : (z,y) € S}, and
similarly we define (R' ® H)s. If Rg = {y : (x,y) € S} contains at least two elements
then (776\7{)5 N (R'"®H)s = {0} and the above argument shows that Kg is isometrically
isomorphic to H ., p)15 1xS;- We summarize this in the following lemma.

Lemma 4. Let X be a measurable space and k a measurable kernel function on X with
corresponding RKHS H then

HOH® (R QH) = Hy, s

Furthermore, if P is a Radon measure on X x R with support S and Rg contains at least
two elements then

(HOH)s ® (R'®H)s = Hiwy 201555,

In the following, we focus on the case where P is a Radon measure and study the RKHS
H(r,+p)5; x5, For ease of notation let rg = (k, + p) [ Sy x Sy. Similar to before, there is
a natural definition for the convex set that contains our mean element. This convex set is

Crp = cch{rg((y, ), ) : (z,y) € S}
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and the empirical analogue is
Cﬁ@ﬂ = cch {ke((V;, Xi),-) 1 i < n}.

The mean element that we want to approximate is then m,, = §rg((y,z), ) dP(z,y)
when this is well defined, and the empirical analogue is m,.., , = (1/n) > ke ((Yi, X;), ).
In the following, we will assume that Y = fo(X) + € with both fj and € being bounded
and e independent of X.
Covariance operator We denote the covariance operator corresponding to ~g by éﬁ,@.
Because we are dealing with a direct sum one might suppose that it follows directly that
the covariance operator factors into the individual covariance operators corresponding to
ky | Sy x Sy and p [ Sy x Sy. Unfortunately that is not the case: for hy, hy € H,,, there
exists f1, f2 € Heu,1s;xs; and g1, g2 € Hyps; x5, such that h; = f; + g; fori € {1,2}, and
Il = L2, 15, xs, + 9215, s, Hence,

<éﬁ@h17h2>ﬁ@ :<é/@y[5f><5ff17f2>ny[5f><Sf + <Q~:prSf><nglag2>p[Sf><Sf
+ E(f1 % g2) + E(fa x g1)- (41)

The cross-terms do not vanish even if we use the centered covariance operator.

Width of C,, We can apply our standard approach directly to the kernel function kg
(recall that in our definition of this kernel the reduction to the support of P is already
incorporated) to gain insights into the convex set Cl,. Alternatively, we can aim to link
the width of Cl back to the width of the corresponding convex sets corresponding to the
kernel k£ and k. Due to Lemma [4] we have that

width ,Cg = width ,C..,

where u € (HOH)s® (R'@H)s, |u| = 1, h, with || = 1, is the corresponding element
in H,,, and

Co = cch {((k, 1Sy x Sp)((,2), ), (p1Ss x Sp) (@), )} = (HOH)s ® (R' @ H)s.

Hence, we can bound the width of Cg instead of bounding directly the width of C.,. We

can write any u € (@{)s @ (R ®H)s as (§1Sp,v1Sy), where g € H O H, g is the
extension of g to R x X, and v € R’ ® H. Observe that if v is given by a finite linear
combination of elements {y;, - )r ® h;, y; € R, h; € H, then

v =3 0 Jr ®hi) = (1) ® (3, wicih). (42)

=1
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For such finite linear combinations let ¢y : R' @ H — H be ¢(v) = > | y;a;h;. The map
1 is independent of the particular representation of v because if

m

Z <yza >R®h Z <Z,, >R®gz)

i=1

for a suitable m € N and corresponding f3;, z; € R, g; € H for all i < m, then

0= H<1 >R ® Z yzaz % Z ZZ/B’Lgl H2 ” Z yz@z T Z Zzﬁzngz

=1

We can also observe that [v[2 = | 3" | yia:h;*> = [¢(v)|?. Furthermore, 4 is linear and
therefore an isometry. Since the finite linear combinations lie dense in R’ ® H and #, and
both R’ ®H and H are complete, we can extend 1) to a surjective isometry between R’ ® H
and H [[13, Cor.4.3.18]. In particular, any v € R’ ® H can be represented as 1) ! (h) with a
unique h € H.

The width of Cg, can now be lower bounded in the following way: choose o > 0, let
by = sup{b : Pr(e > b) > a and Pr(e < —b) > o} and I = [—b,, b,]. Then

width s, -1 (msp) Ce = sup (9(x) + (fo(x) + 2)h(x)) — inf(g(z) + (fo(z) + 2)h(z))

re€Xg,zel reXg,zel

whenever (§ | Sy, (k) | Sy) has norm one, g € H © H and h € H. In particular, when
choosing the same point z and using z to move to absolute values, we gain

: |h( ) :
width g, y-1(mps;) Ca = 2||R[ba s ST | > by ||h|width /) (Cx ), (43)
x s

where Cly, is the usual convex set for the kernel k[ Xg x Xg.

We need to complement this bound with a bound that is based on g to deal with cases
where | A is small. When | fo|» is smaller than b, then there is a simple way to get a lower
bound that involves g. For two points x1, x5 € X5 and any h € H, we can chose 21, 25 € Rg
such that (fo(x1) + 2z1)h(x1) = 0 = (fo(z2) + 22)h(x2) and, hence,

width (g5, w-1(mps;) Ce = sup g(z) — inf g(z) = |glluon width gjg),,0, Co.  (44)

:EGXS .’JEGXS

We can combine (43)) and (4] to gain a lower bound on the width of Cg in terms of the
widths of C' and Cj,.

The low noise setting. The situation gets more complicated when | fy| attains values
that are significantly larger than b,,. For instance, when there is no noise, i.e. € = 0 (a.s.),
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and there exists some h € ‘H,g € H O H such that h(z) = 0 and fo(x) = —g(x)/h(z)
on Rg, and (g I S¢,v»~"(h) | Sy) has norm one, it holds that width 55, 41 (ays,)Ce = 0.
For fj to be equal or close to —g/h it is necessary that f; attains large values when |A| is
small. For example, when H © H is finite dimensional with dimension d, Ay > 0 is the
smallest eigenvalue of a suitable kernel matrix based on the kernel x, and £ is a bounded
kernel, then fo(z) = —g(x)/h(z) can only happen if

sup | fo(z)| = l9lo > Hg||/\i/2
iy 1Bl = drr2)n) k) L2

For a small value of |A| this implies that | g|| will be close to 1 and | fy| has to attain a large
value at some locations z € X.

Interpolation and another look at the low noise setting We look now at the case
where there is no noise at all, thatis Y = f,(X),

Co = cch{(ky((fo(x), x),-), fol2), ) @ k(z,-)) : € X}
and we are interested in interpolating fj. In particular, we are controlling the width of Cg
depending on how f; is related to 4 and H ©® H. The direct sum approach is useful to gain
a deeper understanding of how well (&, m?) can be approximated. The width of Cg in this
interpolation setting has a simple form. Assume that the support of the marginal measure
is all of X and since there is no noise it then follows that the support of the measure P is
S={(x, folr)):xe X}.Forge HOH,heH,

width (5 y-1(n))Ce = igﬁ(g(x) + fo(w)h(x)) — ;Si (9(z) + fo(x)h(x))

The functions f, x h lie in the RKHS #y, which has the kernel function ko(z,y) =
fo(x)k(z,y) fo(y). According to [26] Prop.5.20] the RKHS H, is equal to { foxh : h € H}
and the inner product on Hy, is given by (fo x hq, fo X ha)s, = {h1,hs) whenever
hi,hy € H. If Hyy 0 (H O H) = {0} then we can embed both H; and H © H in the
direct sum G = (H O H) @ Hy, such that for any f € Hy,h € H O H it holds that
Ifl5 = 10, f)]g and |A|xex = |(h,0)]g. As in Lemmaf]it holds that G =~ H,,,,, and,
therefore, it also holds that || f |k, = || f|lk+r and ||Allzer = | |ky+r- In this case,

width (G.0-1(h) = width (g7f0><h)Cg
whenever g € H O H,h € H, where Cg = cch{(k(z,"), ko(z,-)) : x € X} < G. This
follows directly from
g(l’) + fo(l‘)h(ﬂ]) = <(g7 fO X h)u (KJ(I7 ')7 kO(I7 ))>g

We can now follow the approach from Section and, in particular, apply Proposition
to the RKHS with kernel ks, + . Assumptions on f, imply then lower bounds on the
width.
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3.4.2 Linearly dependent spaces

The setting above where we approximate ¢,, and m?(fn simultaneously is easy to deal with
because the corresponding RKHSs are linearly independent. On the other hand, when
the spaces over which we want to optimize are linearly dependent then the RKHS is not
isometrically isomorphic to the direct product space and the approach needs to be modified.
This can happen, for example, when we try to approximate € simultaneously to m. In this
context the corresponding spaces H © H and H can overlap. For instance, when k is a
polynomial kernel of order two then ‘H and ‘H ©® H are not linearly independent.

Whenever H © H and H are not linearly independent it is natural to identify elements
like (h,0) and (0,h), h € (H® H) n H. One way to do so is to consider the subspace
U={(—=h,h):he (HOH)nH}of K := (HOH)DH. The subspace is closed: let
{(=hn, hy) }nen be a convergent sequence in U. This sequence is also a Cauchy sequence
and for any € > 0 there exists an N € N such that for all n,m > N,

€ > H(_hna hn) - (_hmv hm)”(z@ - Hhm - hn”2 + ”hn - hmH?—L@?—L

and {hy,},en is a Cauchy sequence both in H and H ® H. Hence, it converges in both
spaces. Let f be its limit in H ©® H and g its limit in H then for any x € X there exists an
n € N such that [f(x) — g(z)| < € + |hn(x) — hy(z)] = € and f = g. It also follows right
away that lim,, o |[(—hn, hy) — (—f, 9)|@ = 0 and the sequence has its limit in U.

Consider the quotient space K/U with co-sets f* = f + U, f € K, and the quotient
norm | f*| /s = inf{||f + h|x : h € U}. The space K/U is again a Hilbert space since
U is closed (e.g. [28, Sec.Ill.4]), and it is isometrically isomorphic to the Hilbert space
H O H + H when the latter is equipped with the norm | f[% = inf{||g|3,o, + |A|? : f =
g+ h,g € HOH,h € H}; in particular, a co-set (g,h) + U € K/U is mapped to the
function f = ¢ + h. This map is well defined since if (g1,h1) € (g,h)* then there is
some hy such that g3 + hy = g — he + h + hy = f. Furthermore, by the choice of U,
there are no two elements u*, v* € /U, u® = v°, that are mapped to the same function f.
Assume otherwise, then there is some f such that f = ¢g; + hy = g2 + hs and, therefore,
(92 + 91 — g2, ha — g1 + g2) = (91, h1). Since gy —go€e HOH and g1 —go = h1 —hy e H
it follows that (go, ho)* = (g1, h1)* which contradicts the assumption. Finally, any element
in H ® H + H can be represented this way since if f = g+ h, g € HO H,h € H then
(g, h)* is mapped to f. Using again [2, Thm.,p.353] we can conclude that /U and H,
are isometrically isomorphic.

While K/U and H, . are isometrically isomorphic it does not hold in general that X
and IC/U are isometrically isomorphic to H, . Hence, when mapping an element u € K
to u* € IC/U, then finding an approximation v* of u* in /U, we generally cannot invert
the e operation to gain an approximation of u. Selecting an arbitrary element in v* does
not work either since a small value of |[u® — v*||x/ does not imply that all elements in the
corresponding co-sets have small distances, i.e. there is no reason why sup,,. |u — w|x
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should be small. However, we are no trying to approximate arbitrary elements in X but
only elements
Z Xi, ))

and we are optimizing the approximation over C' = cch {(k(z, "), k(z,-)) : z € X} < K.
The important observation is that for any non-zero element (—h, h) € U, thatis h € (H ©®
H) n H, we have

3IH

<<_h7 h)? (K(JZ, ')7k($> ))>/C = _h(‘x) + h(l’) = 07

and C is a subset of U~

The subspace U+ together with the inner product inherited from K is isometrically
isomorphic to H, . This follows since /U and H, . are isometrically isomorphic and
U+ and K/U are isometrically isomorphic. The latter holds since every co-set corresponds
to exactly one element in U+, and for u € U+, |u® H;C/U = inf{||u + v|c:ve U} = |u|k.

Also, span C = U*. We know already that span C < U*. To show that they are equal
let K = span ((spanC') U U). Observe that this space is closed since span C' and U are,
and because they are orthogonal. It is sufficient to show that (f,0) € K, (0, g) € K for all
f e HOH and g € H since the smallest closed subspace that contains all these elements
is(HOH)DH.

FONI' f = Z?:l 6@’</€<~Ti, ) + k(*rw )) € HH-HC define ¢£f> = Zz 1 6@( (l’z, ‘)7 (1:2)) €
span C' < (HOH) @ H. The operator ¢ : H, ., — Span C is linear and defined on a dense
subset of H, .. It is furthermore norm preserving since

[W(NIe = D] BBkl ;) + D) BiBik(xs, ;) = | f7 -

3,j=1 1,j=1

Hence, it can be extended to a linear isometry, which we will also denote by 1), between
H,.., and Span C' with the norm inherited from (H O H) ® H.

For any h € (H ® H) n ‘H we can infer that it lies in the RKHS with kernel « + & due
to [2, Thm.,p.353] and <(h) lies in Span C. Write 1(h) as (hy, ho), hy € HO H, hy € H,
then for all x € X,

hi(x) + ha(z) = {(h1, ha), (K(z, "), k(z,)))e = (h), ¥ (k(z, ) + k(z,)))e
= (hyk(x, ) + k() ) ek = h(x).
In other words, for any h € (HOH)NH we have hy € HOH, hy € H such that h = hy +hy
and (hq, he) € span C. Since h, hy € H ® H it follows that hy = h —hy € (HOH) nH

and (hg, —hs) € U. Thus, (h,0) = (hy, he) + (he, —hs) € K. Similarly, we can observe
that (0, h) € K.
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For f € HOH let (f) = (f1, fo) with f{ € H O H and fo € H. In other words,
f = f1+ f> and since H O H is a linear space, we know that fo = [ — fi € (HOH) nH.
And, as above, we can conclude that (f,0) also lies in K. The same argument also shows
that for any g € H we have (0, g) € K. Hence, K = (HOH) ®H andspanC' = U™

Lemma S. Let X be a measurable space and k a measurable kernel function on X with
corresponding RKHS H then span {(k(z,-), k(z,-)) : z € X} < (HOH) ® H equipped
with the inner product of (H © H) @ H is isometrically isomorphic to H, .

3.4.3 Simultaneous least-squares risk approximation for unbounded Y

Often it is unnecessary to include the (1/n) > " | V;* term in the simultaneous approxima-
tion since many methods only rely on the terms that include f (e.g. the ridge regressor) and
also (1/n) >, Y;? € Ritself can be represented by a single real number and does not need
to be compressed. However, when selecting points (X A1) K(m)), m < n, for a coreset then

is not the mean squared error of f given the sample X, 1), Y, (1), ..., X,(m), Yi(m) and might
even be negative. An easy way to remedy this problem is to move to (1/m) )", sz)
but then we do not have any guarantee that this is close to (1/n) > " | Y. An alternative
is to include the Y;’s in the simultaneous approximation problem. This can be done by,
for instance, defining a kernel on R x X through r((y1,z1), (Y2, 22)) = {y1, y2)r and by
considering the direct sum

3I*—‘

Z(fQ( i) = 2Yi f(

1=1

HOH® R M) ®H,.

Alternatively, we can restrict the functions to the support S of the underlying measure and
consider

(HOH)s @D (R @H)s ® Hrrs, xs, -
If there is no constant function in the RKHS H x, then (R'® H)s N H,ps,xs5, = {0} and

(HOH)s N (R'®H)s N Hrys,xs,) = 10}

if, furthermore, Rg contains at least two different values: any function in H © H is of
the form g*(x),z € Xs,g € H and functions in (R' ® H)g N Hrys,xs;) are of the form
(y, x) — yh(zx) + cy for some constant c. For any functions g, h € H, choose y1,y2 € Rg,
Y1 = Y2, and 1, 19 € X are such that h(z;) = h(x3). For g° to be equal to yh(z) + cy it
has to hold that g*(z1) is equal to y; () + cy; and it also has to be equal to yoh(z1) + cys
In other words, (y; —y2)h(x1) = ¢(y2 —y1) and h(x;) = —c and similarly for h(x2), that is
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h(z1) = h(xy) with a contraction to the choice of z; and x5. Hence, under these conditions
we can identify the direct sum with an RKHS corresponding to a sum of kernels,

(HOH)s® (R @H)s @ Hrtspxsy = Hisy+p+r)sy xSy

When the RKHS # .y, contains the constant function then the intersection (R’ ® H)s N
Hr15, x5, is not empty since the function (y, ) +— y, with domain S, lies in (R'® H)s and
in H,ps,xs,. We can follow the same approach as in Section [317] and consider the one
dimensional subspace U = {(—h,h) : h € (R'®@H)s " Hris;xs;} of (R'QH)s®Hy1s, x5,
and consider the quotient space Q@ = ((R'® H)s ® H,1s,xs,)/U with the usual quotient
norm. The space Q is a Hilbert space [28, Sec.Ill.4]. By the same argument as in Section
we can infer that

Q = H(prr)1sy xSy

and for (z,y) € S, (p((y, x),-),7((y,x),-)) lies in U+ = (R' @ H)s ® Hrys,xs,. Also, the
space U+, with the inherited inner product, is isometric isomorphic to Hiprr)rs,xs;- When

Rg contains at least two elements then (7—[/(9\7{)5 N (R'®@H)s N Hrrs,xs,) = {0} and

(@)S (‘B Q = H(Ry—i-p-l-?“)[SfXSf'

We will apply these results to the problem of ridge regression and it is convenient to have
a proposition which provides guarantees on the approximation in the ridge regression con-
text. Since we do not need to approximate the sum of the Y;' terms to compute the ridge
regression estimator we will consider the space (”H/(-D\H)g N (R ® H)s. We make the
assumption that H does not contain the constant functions, which removes the need to
consider quotient spaces. Furthermore, we will assume sub-Gaussian noise and that fy is
bounded but we will allow for unbounded Y; random variables. Recall the definitions of
the kernel functions p in @0), < : X x X — R, k = k?, and its extension x, (see just below
(40)). Before stating a result on the compression, we need to modify the arguments that
we used to control the difference between m¥, and Mm%, and the difference between ¢&:S

y,n?
and é?’s’l. This is necessary since the kernel function, which we will denote by 7 below,
is (ky + p)((y,2), (v, 2")) = k(z,2") + yy'k(z, 2’) in the current context, and this kernel
function is not of the form yy’ l%(:c, x'), where k is some kernel on X. Since we assumed
that latter form in Section when we derived the bounds on the differences, we cannot
simply reuse the earlier results. Fortunately, the necessary modifications are minor: Let
m.,, be the empirical mean element corresponding to the kernel function 7 on R x & and

B =~ 17T, X0, =~ SU6(X0) + k(X ).

i<n i<n
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The distance between the empirical mean element and its capped version is

~ ]- - (n
[ = B2 = 5 DY = ¥ rk (X )2

1<n

—H 2 =T wk (X, )]
<n
since the x terms cancel and because the function inside the norm lies within #H, (apply
[26, Thm.5.4] to get the inequality). This implies that we can reuse the bound in (33), and
with probability 1 — 4, 6 € (0, 1), we have that

[y — @y < V20 k| 204 (2 n + m—rzm)

where v > 0 is the variance factor corresponding to the sub-Gaussian noise terms. We also
need control over the covariance operators corresponding to the capped Y;’s. We proceed
as in Section [3.3.3] Assuming that the law P of (Y, X) is a Radon measure let S be its
support and let S,, be the support of (Y( X) (which is well defined as the law of this
random variable is again a Radon measure). Let éfT . H, — H, be the covariance

1/2
512, (45)

operator corresponding to the original random variable and @f " : H, — H, the covariance
operator corresponding to the capped random variable. We start by bounding the difference
between these covariance operators in the operator norm,

€8~ €l = supsup (€ €)1 Sy Sp)es,.

1h1tSsllr,s =1 [1h2!S ]l 7,5, =1

Due to Lemma@ the space H, s, is isometrically isomorphic to a direct sum space and, as
above (1)), we can write h; = f; + g; fori € {1,2}, f1, fo € Hiy1S5x55> 91592 € Hprsyxs;
and such that the squared norms of the h; equals the sum of the squared norms of the f;
and g;. We can proceed by expanding the h;’s and observing that f;(7, z) = f;(y, x) for all
y € R and x € X since f; is a function of the second coordinate only,

(&, — C)hy 1 Sy, ha | Sprs,
= E(hl(Y7 X)hQ(Y> X)) (hl(Y X)) ( ( ))
— BE(h (Y™, X)ho(Y ™, X)) + E(hy (Y™, X)) E(ho(Y ™, X)).

The difference of the bias terms becomes

E(h (Y™, )) (ha(Y ))—E(hl(KX))E(hz(Y,X))
= E(gl( ))E(92( X)) — E(:(Y, X)) E(g2(Y, X))
E(fi(Y, ))(E(gz(?‘” X)) — E(g2(Y, X)))
E(fo(Y, X)) (E(q:(Y™, X)) — E(g(Y, X))).



Since f1, f> have norm one it follows that E( f (Y, X)) and E( f5(Y, X)) are upper bounded

by |4 = | k| . Also recall that g;, i € {1,2}, can be written as #; for some u; € H; and

u; has norm one (see (32)). Hence
[E(g:(Y™, X)) = E(g:(Y, X)) < [k[Z2E(Y™ —Y])
and the bound (33) can be used. Similarly,
[E(g1 (Y™, X)) E(9:(Y™, X)) = E(g1(Y, X)) E(ga(Y, X))|
< |E(g (Y™, X)) |E(g2(Y™, X)) = E(g2(Y, X))
+ [E(g>(Y, X)) [E(g:1 (Y™, X)) = E(g1(Y, X))
20k E(Y™ —Y])(E (IY Jo(X)I) + E(|/o(X)]))
21k (o + | follo) E(IY™ = Y)),

where we assume that the noise term has variance o
able. Hence,

<
<

2 > ( and f; is bounded and measur-

[ B(h (Y™, X)) E(hy(Y™, X)) = E(hi(Y, X)) E(ha(Y, X))
< 2kloo(0 + Ifollo + K[ E(T T = Y]).
We can deal with the covariance terms in the same way,

E(hy(Y, X)hs(Y, X)) = E(hy (Y™, X)ho (Y™, X))

= E(q1(Y, X)g2(Y, X)) = E(q: (Y™, X)go (Y™, X))

+ E(fi(Y, X)(g2(Y, X) — go(Y™, X))
+ E(f2(Y, X)(9:(Y, X) — 1(? X)))
< K[ EY Y, X) —a (Y™, X)) + B(Y]lg2(Y, X) — g2(Y™, X))

+2|k2E(Y - Y™)

<2k E(Y|IY = Y™M)) + 2|k|22E(]Y — Y™))

< 2|k (B(Y — fo")2E(Y = YO))2 4 | fol E(JY = Y))
+ 2|k E(Y = Y®™)

= 20]k[ E((Y = Y)Y 1 2k (| folloo + [KIZDE(Y = V)

and we can apply (33) and (34). Combining the above bounds and substituting (33)) and
(34)) yields the following bound,

1€, — &5, <20k E((Y — V)24 4k (02 + [ foll oo + [KIL2)E(Y — 7))
<40V k] owe ™Y + /3210 oo (/2 + | folloo + K[ 22)e
=402k |e 17" 1 /3270 k| (0/2 + | folloo + [K[42)e™™%° (46)
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where we used v = o2 in the last line. To make use of this bound we need a lower bound
on the smallest eigenvalue of égT. We proceed as in (36). Instead of imposing such an as-
sumption directly we can also use an assumption on the covariance operator corresponding
to the kernel £ and the marginal distribution on X', which seems more natural. To see this,
fix h € Hrs,, |hrs, = 1, and let f € Hy 15,5559 € Hyp5.5 besuch that h = f + g
and the squared norm of h equals the sum of the squared norms of the f and g (see the
discussion around (36)).

(€, h, h>fsf = BE((f(X) + fo(X)g(X) + eg(X))?) = E*(f(X) + fo(X)g(X))
E((F(X) + fo(X)g9(X))?) = B*(f(X) + fo(X)g(X)) + o> E(g*(X))
2<€SQ g>kS

If k is continuous, we are guaranteed the smallest eigenvalue 5\*7 g of @kg is bounded away
from zero (see below (36)). In particular, if we choose r; such that the last display in (46))
is upper bounded by o2\ ..5/2 then the smallest eigenvalue A of the capped covariance
operator is at least half the smallest eigenvalue \, of Q , and is lower bounded by o2\, g 5/2.
To guarantee this, we can define the sequence {rn}n>1 s1m11ar1y to before, starting with

1/2<22||k\oo<a + [ folloo + K22 >

rr=1v20lo =
1 g UQ)\ﬁg

(47)

and by assuring that the sequence is non-decreasing.

We are now in a position to state a compression result in the regression context along
the lines of Proposition [3| but in the case where we compress the data simultaneously for
the kernel #,, and p. For conciseness we will use the notation |75, , o for [71Sf, X St e
where Sy, = {(y,z) : (x,y) € S,} and S, is the support of measure corresponding to the
capped random variables.

Proposition 4. Let (X' xR, T, A, P) be a topological measure space such that P is a Radon
probability measure which has support S. Let k be continuous bounded kernel function de-
fined on X such that the corresponding RKHS is finite dimensional and does not contain the
constant functions. Let (X1,Y1),...,(X,,Y,) be i.i.d. random variables with law P, and
assume that Y; = fo(X;)+¢€;, forall i < n, where fy is a measurable and bounded function
and €1, ..., €, are i.i.d. sub-Gaussian random variables with variance 0 < o? which are

independent of X1, ..., X,. Consider the kernel function T = k, + p on R x X and let
A, g be the smallest elgenvalue of the covariance operator €k corresponding to the kernel
function k1S x S, S = {x: (x,y) € S}. Furthermore, let \, be the smallest eigenvalue of
CS_, then X, > 0. Choose q € (0,1) and define the sequence {ry,},>1 in the following way:

c, T’

choose 11 as in and forn > 2 let, = 1 v /20 v /20 log"? (160202 |k||../q). For
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the smallest eigenvalue " of éf’; it holds that X" > A2 = 025\*75/2 > 0, where S,
is the support of the law of P™ corresponding to (X, }7(")). There exists a ball of radius

N2l 2 = N 20kl + (L folloo +7a) 2 k]2L%) around @, within the affine
space spanned by C. = {7((y,x),-) : (z,y) € S,} as a subset of H... Furthermore, for any
q € (0,1) and whenever n is (strictly) greater than

~(n 2 2
(8|7‘|5f7mw(«/210g(12/q) + 192|750/ >)> s <16|T|1/2 s 28810g(4/q)>
)

(A2

then with probability 1 — q there exists a ball of radius 5 /4 around W, in C‘T,n within
the affine subspace spanned by C; and

||ﬁ\17'n - mT,nHT < n_1/2-

Proof. Most of the statement has already been derived. Just note that | 7 2 < (K2 +

ns

(I folloo ) Koo 2 < Koo+ (| folloo +72) V2| k|| 4%, For the definition of Tn and the bound
on the difference between the mean and the capped mean we could use essentially the same
bound as in Proposition [3] Instead we use here a slightly different bound to demonstrate
how the arguments can be varied: when 7, > /20 it follows from (&3) that with probability
qs

me — ﬁmHQ \fUHkHI/Q "/4V~ V2

Setting the right side equal to n /%, setting § = ¢/2 and solving for r,, gives

=20 log1/2(16n1/20'2 1Ko/ q)-

3.5 Rescaling the kernel function does not affect compression

We finish this section by studying the effect of modifying the kernel function, or the in-
volved convex sets, on the approximation of m. Given that the smallest eigenvalues of the
covariance operator and the width of C' control the approximation of m it is natural to try to
increase these. One way to do so is to scale the kernel function by a constant factor o > 0,
i.e. replace the kernel function £ on X by ak. However, due to [26, Prop.5.20] the inner
products corresponding to the two spaces are scaled versions of each other (for all x,y € X,
ez, ), k(y, )k = (1/a){ak(z, ), ak(y,-))ax) and the algorithms that we discuss in the
next section are unaffected by this change. One might also wonder if the error bounds are
affected and if we can, at least, optimize these by choosing an appropriate scaling. It turns
out that the error bounds are also invariant to the scaling of the kernel function. Let use
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start by analyzing the width of the convex set C'. The change in width is easy to quantify:
given a kernel function & : X x X — R the width increases by o''/? if we replace the kernel
function by ak, where o > 0. In detail, a function h, |kl = 1, lies in H,, if, and only if,
the function o'/2h lies in H,. and has norm |a'/2h| 4, = 1 [26) Prop.5.20] and the width
is
width 12, 5, (C) = o?(sup h(z) — in)f; h(z)) = o?width j, 4, (C).
zeX z€

Similarly, when the smallest non-zero eigenvalue of the centered covariance operator (;ICJC
is \;, [ = 1, it follows that the smallest non-zero eigenvalue of €.,y is a) : let h €
Hy., ||k||lx = 1, be the eigenfunction corresponding to ); then o'/?h has unit norm in Hy

and
(Coar0?h, 0By = a(E(h3(X)) — (E(h(X)))?) = al.

Recall that the relation between the width and the radius § of the largest ball around m is
approximately 6 ~ (width,(C))?¢™! when X is a subset of R? and under suitable conditions
on the density (end of Section [2.4.1). In other words, a scaling of the kernel function by
o increases ¢ approximately by a factor of o(?*1)/2, This increase has to be compared to
the increase in the Lipschitz constant which results from this scaling. In Equation (14)
the Lipschitz constant L enteres into the lower bound on § through L~?. For a function
a'?h € H,, we have that

ja2h(z) — a2h(y)|
|z =yl

< oLk = o L] "R o,

for any x,y € X,z = y, if the Lipschitz assumption holds with constant L for H.
Combining these we see that § changes approximately by a factor of a(¢+1)/2[=¢ — ¢1/2,
Hence, we can increase 0 by increasing «.. In the error bounds in the next section we
will see that the key quantity for controlling the approximation error is the ratio o/ ||l<:Héé2
which has to be large to guarantee a good compression. Since |ak|, = ak|s this term
is independent of o and rescaling does not change the rate of compression that is promised
by the bounds. Also note that we are changing the norm by which we measure the error.
For some approximation m of m in #;, we can observe that | — m|, = o'/?|th — m| .
This «/? factor is cancelled by the leading constant in the error bound of the algorithms,
which is of the order [ak||* = /2| k|7,

If we consider instead the bound on ¢ that is based on the covariance operator (Theorem
then ¢ is of order XI/HkHéf and a scaling of o leads again to a\;/a'/2|k|%* and the
scaling does not affect the error bound.
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4 Compression using the CGM and related approaches

We discuss in this section two methods to compress m,,. The bottleneck in both algorithms
is the computation of the vector

s = (X1, ) mDs ooy (X, ) mad) T

If s is available then the remaining parts of the two algorithms that we analyze have a
runtime of n/, where [ is the number of iterations the algorithms are run for. In particular,
for large n, [ will be in the order of log(n) when using the classical CGM and of order n'/?
when using the kernel herding algorithm. This then results in a runtime of O(nlog(n)) and
O(n®?) respectively to gain a representation of m,. The CGM achieves in this context a
compression down to log(n) many points and the kernel herding algorithm down to n'/2,
that is, if we have a ball of sufficient size around m,, in C,,.

A naive algorithm to compute s has a runtime of O(n?). In fact, a brute-force compu-
tation needs to compute all pairs k(X;, X;), i, j < d, and the computational complexity is
the same as the computational complexity of computing the kernel matrix itself (though the
algorithm only needs O(n) memory instead of O(n?)). However, there is hope for faster
algorithms. For instance, when we have a finite dimensional RKHS with dimension d then
we can represent m,, as a linear combination of d points and s can be computed in O(nd)
time. Computing the representation of m,, needs another d? steps. In practice this is not
useful because we would derive an exact representation of m,, based on d data points to find
an approximation of m,, using more than d data points. Ideally, we would hope for an algo-
rithm that can compute, or approximate, s in n logn steps independently of the dimension
d of the Hilbert space. Alternatively, we could try to modify the main algorithms itself to
mitigate the complexity of computing s. There are some standard ways to deal with large
scale data in the context of the CGM as summarized in [8]. However, they do not lead
to computational benefits in our particular setting. We discuss a promising alternative that
is based on a divide and conquer approach in some detail below (Section [4.1.1] and [4.2.2))
after analyzing the standard algorithms. We also include short discussions on how to adapt
these methods when aiming for compressing other quantities like the covariance and how
to use the CGM to compress the data in the case of kernel regression.

4.1 Kernel herding and subset selection

Let us start by stating a version of the kernel herding algorithm [10] for compressing the
empirical measure.

The index function ¢ : {1,...,7} — {1,...,n} tracks the samples that we include in
the coreset and the elements w, measure the error between m,, and m; as ||w,| = ¢[m, —m|.
The algorithm converges with a rate of 1/t if, and only if, the sequence of weights w; is
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Algorithm 1 (The kernel herding algorithm for compressing m,,)

Input: sample X, ..., X,,, kernel £, number of points in the coreset 7.
Initialise: let wy = k(X7, ) —m, and ¢(1) = 1, iterate through t > 2 :
choose i* € arg max;,, (we, k(X;, -))

L1
set L(t) = ’i*, W1 = Wy — (k(Xz*a ) - mn)> and m; = ; Z k<XL(“)’ )
u=1

Stop when ¢ = T and return the approximation M.

bounded. In other words, if the sequence diverges then the algorithm converges with a slow
rate. It is easy to show that |w,| stays bounded when a ball of radius 6 > 0 exists around
m,, in C,, and that |m,, — m;| < ax /0t for a constant ax m and all ¢. In particular, we can
choose

axn = 8|k

Also, notice that the same bound holds when a ball of radius § exists around m,, in the
affine span of C,,.

Instead of running the algorithm for 7" iterations independent of the approximation error
we can also use the approximation error as a stopping criterion. The approximation error
(1/8)|wy] = (Jme]]> — 2¢(my, m,> + [m,||>)"/? can be computed exactly in O(n?) if we
prevent the algorithm from running for more than n iterations. In detail, pre-computing
|m,|| and s can be done in O(n?). Also, ||m;|| can be computed in O(t) given ||m,_;|| by
using that |[m,|? = |m,_q|? + 2k(X,0), ), My_1) + k(X, ), Xy)). Similarly, (m;, m,,)
can be easily gained from {(m,_;, m,) by using (m;, m,) = (M;_y,m,) + 5,¢;). A natural
stopping point for the algorithm is an approximation error of n~'/? which guarantees that
[m; — m| will be of the same order as ||m,, — m|.

The compression of this algorithm is sub-optimal but it has the advantage that it returns
a coreset. The CGM, which we discuss below, achieves a significantly better compression
but does not return a coreset of samples.

It is easy to gain high probability guarantees for the approximation error of a compres-
sion that uses 7'/? many points, under the conditions stated in Section With a bit more
work it is also possible to control the expected approximation error. We summarize these
in the following proposition under a Lipschitz assumption on the kernel function, assuming
that we have a Mercer kernel and that the constant functions are in the RKHS; in particular,
we assume that k is a continuous kernel on [0, 1]', which is a sufficient assumption for Mer-
cer’s theorem to hold. When discussing the CGM we give a similar proposition which uses
instead an assumption on the covariance operator; the aim is to highlight how the various
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assumptions can be combined with the algorithms.

Proposition 4. Let X,,..., X, be i.id. random variables on some probability space
(Q, A, P), which attain values in X = [0,1]',] > 1, and let k be a continuous ker-
nel function on X such that the corresponding RKHS H is d-dimensional, 1 < d < oo,
functions h € H are Lipschitz continuous in the sense of (13)) with Lipschitz constant
L > 0, and 1 € H. Furthermore, assume that the law of X, has a density p on X and
inf,cx p(x) = ¢ > 0 for some constant c. Let S\d be the smallest eigenvalue of the Mercer
decomposition. With probability 1 — q,q € (0, 1),

[~ | < 20l
whenever
> <\/m + 96|’fl<¥2/5> o <4|lc|ié2 + 3m>2
c3(0/8L) 574
and where -
5 =2\ A (lc+d1)le

Furthermore, let N = (16|k|%%/8)% v (96(8L)!|k|%*/cB,61)? then for any t > 1 and
whenever n > N,

E(|@y —m,|) < 32[k|o/t6 + 4]k[} exp(—(cin? — 3)3) /1",
where c; and co can be chosen as

c1 = (cBy(8/8LY/V/3) A (8/17) and c5 = ((96/+/38) v 1) k|2,

If the stopping criterion of the algorithm is an error of |m; — m,| < n='2 ie. t =

inf,> |my — m,| < n=Y2, and if the infimum is greater than n, then t = n and m; = m,,
then
E(t) < [32|k|lon'/?/8] + 2nexp(—(c1n'/? — ¢;)?)

whenever n = N.

Proof. The first part follows directly from Theorem (1| and the bound on the error of the
kernel herding algorithm. For the second statement, observe that

1
Prma =i > /1) < o g5 (0" ~ 1010122
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whenever n > (16\\/{;\\%2 /8)?, follows by the same argument as in Theorem |1} Similarly,
there is a ball of radius /2 around m in C,, in the affine span of C,, with probability at least

1= (1/2) exp(—(n2cB(5/SL) - 96]k]/2/5)°)

whenever n > (96(8L)lHk\|¥2/cﬁl(5l+l)2. Also, notice that even when there is no ball
around m,,, for ¢t > 1 it holds that

Jweer|* = [E(Xo), ) = mal® + ] = 2(k(X,gp), ) — mn, my).

Now, (k(X,w),-),m,) = |m,|* since m, lies in C,, which has extremes k(Xi,-),...,
k(X,,"), and

t

w2 < Y IR(X o, ) = mal®

i=1
Hence, ||m; — m,,||> < (4/t)] k|-
Combining these, we find that

B[y = my|)) < 32|kl /t0 + 4]K[}2 exp(—(ein'? — c2)7 )t

whenever n is large enough and with ¢y, ¢, as in the theorem statement.

The third statement follows along similar lines. In the event that we have a ball of size
§/4 it follows that |m; — m,| < 32|k|./td. Setting the right hand side to n~/? leads
to { < [32|k|.n'/2/8]. If this event does not occur then |, — m,| < 2|k|%* /2 and
t < [4]k|.n], but the algorithm stops when ¢ > n and the trivial upper bound ¢ < n is
more useful. Combining these we find that

E(f) < [32“]{:\\00711/2/5] + 2n exp(f(cml/2 — 02)1)

when n is large enough. ]

4.1.1 Avoiding the explicit computation of s

There are various ways one can try to reduce the computation time. For instance, the
stochastic conditional gradient method seems like a promising candidate. An alternative
way to mitigate the cost of computing s is to split the data into batches of size about
n'/2, which implies that for each batch the corresponding vector can be computed in O(n).
Algorithm[2]implements such a version of kernel herding. There are a number of interesting
observations that can be made when following this route. We will discuss a few such
observations in this section and in Section 4.2.2] below.

In terms of Algorithm 2| notice that the number of samples per batch can always be
chosen in {¢ — 1,0,¢ + 1,0 + 2} to guarantee that n = Y._ {; because (({ — 1) <
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Algorithm 2 (A version of kernel herding that avoids the explicit computation of s)

Input: sample X;, ..., X, kernel k,a > 0.
Initialise: let £ = |n/? + 1/2].
Split sample into ¢ disjoint batches: X1, ..., Xj,,j < ¢,
witheach ¢; € {¢{ —1,¢0,0 + 1,0+ 2}.
Apply Algorithm [T with ' = [n/4+*] to each batch to get @, . . ., M.

g ~ ~ ~ - 1 ~
Compute |m,| and 5 = ((my,m,), ..., (M, m,))", where m, = — Z lm;.
n 4

Apply a version of Algorithmm with T = [n4+%] to t,, using |, | and 5 to get ¢.
T

Return the approximation — Z ().
'L 1

(n'2 +1/2)(n'/? = 1/2) < n < (£ +1/2)? < (¢ + 2) and by a version ofAlgorlthmee
mean the obvious modification where instead of k(X7,-), ..., k(X,, ) we use my, ..., My
to approximate m,,. The algorithm works by specifying the number of iterations for the
kernel herding algorithm. Alternatively, it makes sense to run the first £ optimization algo-
rithms as well as the last optimization step until an error of n'/* is attained.

The runtime of the algorithm can be computed in the following way: observe that,
initially, the standard kernel herding algorithm is applied ¢ times to about ¢/ many samples
and the overall order of runtime for the first part is O(¢3) = O(n??). Also, observe that,
given My, ..., M, an approximation of |m,| can be computed in £[n'/4**]2, which is of
order O(n'*2*), by using the approximation m,, = (1/n)(¢;m; + ... + £,m,). Similarly,
K = ((@;,M;)); < can be computed in (2[nY/4+*]2 which is of order O(n¥2*2%) and,
given K, the vector § = ((fiy,M,), ..., (M, m,))T can be computed in 2 steps, which is
of order O(n). Given 5 and |m,,| the second application of the kernel herding algorithm
can be run in [n'/4+*]¢, which is of order O(n**+®), and Algorithm 2] has an overall order
of O(n3/2+2a)

Quantifying the approximation error of this algorithm is more difficult and in the fol-
lowing we only highlight some of the challenges that one has to address to control the
approximation error. For n large enough the difference |m; — (1/¢;) Zle k(Xi;, )|l is with
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high probability of order n~'/4 for all i < /. Furthermore,

&

4
=2 Xij, o) — ).

i=1 j=1

3IH

Hmn - ﬁ"nH2 |mn Z ¢; m1H2
Notic Bochner integral
£;
E(Y(k(Xy, ) — ) = L(m — E(f,)).
j=1

Furthermore, observe that the m,, ..., m, are independent random variables since they are
functions of separate samples and that E((X,Y)) = (E(X), E(Y)) for independent
random variables in £?(P;H). Hence,

l 44
Bm, — 2 S dl?) - L B0 Y0 - wl)
=1 =1 7j=1

niZeum B(fy),m — B(f,))

1=]
0y
~ n PE() Y (KX, ) — @) [2) + m - B(@)]?,

=1

where we have an approximation in the last line since the ¢;’s are not necessarily all equal.
A first difficulty is to determine the bias [m — E(m;)]|| that the kernel herding algorithm
introduces. A simple bound on the bias is gained by using [m — F(m;)| < E(|m, —m4|)
and Proposition 4| can be used to bound this by about n~"/* which implies a bound on the
squared bias of order n /2. This bound is of no use since we need a bias of order 1/n or
less. The other term behaves approximately as 1/n if there is a ball of size § > 0 around m
in C' and n is large enough. In particular, under the conditions of Proposition 4]

01
(H— D k(Xay,) = @0)[?) < 160%/nY?6% + 8]k| o exp(—(crn'* — ¢2)*)n /.

j 1

Up to the exponential term on the right, we have that

2B HZ (Xj,7) = @)[?) € n 2802 ~ 1/,
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If the bias is also of order O(1/n) then

In particular, for any 5 > 0,

Pr(|m, — m,| = n **4) = Pr(|m, — Z€ ;| = n VP <
i=1

To summarize, if the bias is of order O(1/n) we will have with high probability an ap-
proximation of m,, that has an error of order n~'/>*? and this approximation consists of
approximately 7¢ ~ n** many points.

The second application of the kernel herding algorithm aims to compress this further.
In particular, if with high probability there is a ball around m,, in the convex set ch {m; :
i < (}, then we can hope that n'/* many of the m; are sufficient to approximate m,, with an
error of order n~/?*#_ This would imply that an approximation with n'/? many elements
is sufficient. However, since m; converges to m,, as n goes to infinity, the size of such a
ball has to be a function of n and will shrink with n. This itself does not imply that the
algorithm will converge slowly since the smaller § might be set-off by a smaller size of the
convex set. In any case, a detailed analysis of the interplay between ch {m; : i < ¢} and
m,, is necessary to understand the compression that can be achieved by this algorithm and
variations thereof.

Let us conclude our discussion of these algorithms with a final simple observation.
The elements m; = (1/¢;) Zf.":l k(Xj,-), which we are approximating with m;, can be
interpreted as a sequence of independent and identically distributed (up to differences in
the ¢;’s) random variables whose second moment is given by

4;

1 1
HmzH g_QZE 7,]7 2<E wa' 7 (k(Xwa>>>
tg=1 Z u=v
141,
- 7+ e

whenever k(z,z) = 1 for all z € X'. Hence,

E(Jm; — m|?) = B(Ji)?) — [m|* ~ n~ and E(|i; —m]) <"

4.2 Better compression with the CGM

A significantly better compression can be attained by using the CGM. The downside of
using the CGM is that no coreset of datapoints is generated but some convex combination
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Algorithm 3 (The CGM for compressing m,,.)

Input: sample X;, ..., X, kernel k£, number of iterations 7.
Initialise: let m; = k(X1,-),aq; = 1 and ¢(1) = 1, iterate through ¢ > 2 :
choose i* € arg max;_,, (k(X;, ), My —m,,),
kXi*f_AfaAf_ n
leta*=<( ) mtl:‘:ﬂt12m>
[F(Xis, ) — M|

set u(t) =", oy = " and forall u <t — 1, a4, = (1 — a)y—14,

Al

t
and let ﬁ\lt = Z Oétuk(XL(u)a )
u=1

Stop when ¢ = T and return the approximation M.

of the images of the data points in A that approximates m,, well. The standard CGM for
compressing m,, is given below.

Notice that a* > 0 since k(X;-, -) maximizes the inner product between any element in
C, and m;_; — m,,. This algorithms guarantees that the error is bounded by

- 5(t—1)
|m, — @y < 2[k| Y2 exp| — ,
” 6]k[ 2>

when a ball of size ¢ exists around m,, in C',, within the affine subspace spanned by C,, [6,
Prop.3.2] and with S denoting the support of the law of X;.

The run-time of this algorithm is again dominated by the O(n?) run-time cost needed
to compute s. When s is available the run-time reduces to O(7'n): the arg max step can be
performed in O(n) given s and when the inner products (k(X;, -), m;_; ) are available. Sim-
ilarly, if s, the inner products (k(X;, "), M,_1), |[m;_1, (My_1,m, ) and |[k(Xx, ) — my_q|
are available, it is possible to compute a* in O(1). The norm term in the denominator can
be computed in O(1) from |m;_;|| and the inner products {(k(X;, -), M;_1 ). The coefficients
i, can be computed in O(T?). Updating the elements (k(X;, ), Mm;_1) to

</{?(X“ ')7 {ﬁt> = (1 - a*)<k(Xiv ')’ ﬁ\lt—1> + a*<k(Xi7 ')7 k(Xl*v )>

can be done in O(n). Furthermore, ||, |? = (1—a*)?|m_y||>+ (*)?k (X, Xix ) +2a* (1—
a* )k (X, ), my_1yand (my, m,, )y = (1 — o*)(my_y, my,) + a*(k(X;x, -), m, ) can both be
updated in O(1). In particular, if we aim for a compression down to 7" = log(n) elements
then the run-time of the algorithm is O(nlog(n)), if s is available.

As for the kernel herding algorithm, it is easy to bound, with high probability, the
approximation error, as well as the expected error and the number of data points that are

109



needed for the approximation when the stopping criterion is a pre-specified error. In the
following proposition, we bound the approximation error given that the algorithm is run for
[12“/@“%2 log(n)/d] many iterations. Alternatively, it is possible to use [log” (n)], with v >
1, as a stopping criterion that does not depend on the unknown quantity 9. For large enough
n, [12Hk||éé2 log(n)/d] < [log”(n)] and the guarantees will carry over to that setting.

Proposition 5. Let (X, A, P) be some probability space with P being a topological mea-
sure that is T-additive, and with measurable kernel function k defined on X such that the
corresponding RKHS H is finite dimensional. Furthermore, let X4, ..., X, be i.i.d. ran-
dom variables attaining values in X and with law P. Assume that |k|, < oo, and that
the centered covariance operator ¢, has an eigen-decomposition with smallest non-zero

eigenvalue being \;. Let B = 3Hk:||ié2/(5 then with probability 1 — q, g € (0, 1),
2HkH1/2 —-1/2

M 28 108(n)] — M| <

whenever n is (strictly) greater than

— 2
<8|kuoo<\/z log(6/q) + 192||koo/Ad>> y (16%%2 +
¥

288102(2/q) \
5

and where § = Xg/2|k|X%. Let N = (16||k||2*/6)2 v (1536|k|2 /X3)? then for any t > 1
and whenever n > N,

By, —my|) < exp(—d(t — 1)/24k[2%) + 6] k[ 2/ exp(—(esn'* — c1)?),

where c5 = (A\2/8V2|k||w) A (8/17) and ¢y = (192||k||0/v2Ma) v Hk‘H%z are possible
choices.

If the stopping criterion of the algorithm is an error of |m; — mnH <n 2 e t =
inf;> My — m,| < n~Y2 and if the infimum is greater than n, then t = n and m; = m,,
then

—-1/2

E(t) < [1+ 12|k|Z*1og(n)/8] + 3nexp(—(csn'/? — ¢4)?)
whenever n > N.

Proof. The first part follows directly from Theorem [2] and the bound on the error of the
CGM. For the other statements let us consider the space Hg corresponding to the kernel
ks = k1S x S, where S is the support of the law P, and with corresponding objects
mg, mg,, and (;lf . As in the proof of Proposition 4| we have that Pr(|mg,, — mg|s >
§/4) < exp(—(1/288)(n'/%5 — 16|k|%*)?) whenever n > (16|k|>/5)?. Furthermore,
there is a ball or radius ¢/2 around mg in C,, (as a subset of the affine span of Cs) with

probability at least
n'2A5 192]k]0\2
(- L)
8kl Ad
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whenever n > (1536]|k||% /2\3)%. Hence, with probability at least
1-— Sexp(—(03n1/2 —cy)?)

there is a ball or radius 6/4 around mg,, in C,, (as a subset of the affine span of Cs). The
second result follows since the CGM reduces the error in each step and the initial error is
bounded by [, — m,| < 2|k|4%.

The third statement follows along similar lines. In the event that we have a ball of size
§/4 it follows that |/, — m,| < exp(—d(t — 1)/24|k|%?). Setting the right hand side to
n=1/2 leads to £ < [1 + 12|k|%* log(n)/é]. O

4.2.1 Compression for kernel regression

We can also apply Algorithm [3|to compress the data for kernel regression. The only thing
that we need to do is to use the kernel function 7((y, z), (v, 2')) = (k,+p)((y, z), (v, ")) =
k(x,2") + yy'k(x, ') that we used in Section [3.4.3|and where  is some kernel function on
the space &, and to cap the response variables Y. We state the corresponding result for the
compression of the mean element in high probability below. One can obviously also derive
bounds on the deviation in expectation and the expected number of points in the core-set.

Proposition 5. Let (X xR, T, A, P) be a topological measure space such that P is a Radon
probability measure which has support S. Let k be continuous bounded kernel function
defined on X such that the corresponding RKHS is finite dimensional and does not contain
the constant functions. Let (X1,Y1),...,(X,,Y,) be i.i.d. random variables with law P,
and assume that Y; = fo(X;) + €, for all i < n, where fy is a measurable and bounded
function and €, . . ., €, are i.i.d. sub-Gaussian random variables with variance 0 < o>
which are independent of X1, ..., X,. Let 5\*7 g be the smallest eigenvalue of the covariance

operator éf corresponding to the kernel function k fS’ xS, S = {x: (x,y) € S}. Chose
q € (0,1) and define the sequence {r,},>1 in the following way:

1/2<22||k|oo<a + | folloo + K122 >

CERN

r1 =1v 20log

and forn = 2, let
e =71V V20 v V20 log? (160202 k| /q).-

Define Y = (Y A (rn + | folw)) v —(rn + [|folw), let @, be the empirical mean
element corresponding to the kernel T and the data (Xl,f/l(n)), ce (Xn,ﬁﬁ”)) and let
ﬁ‘tm be the output of the algorithm when applied to the capped data and W, ,,. Let } =
48||7||s;.,..c0/ 72X, g then with probability 1 — q

[ s1oganirls, , on+1 = Mra] < 20742
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whenever n is (strictly) greater than

- 2
(16HT|sf,n,oo(\/2log(12/Q) + 384!T!sf,n,oc/02&,g)>

132
o )\*,5

2
L (0475 + 68|7]d" ., log"*(4/q)
02;\*75 .

Proof. The statement follows from Proposition[d] In particular, under the states conditions
and with probability at least 1 — g, simultaneously [, ,, — m, ||, < n~% and

~ oM 1

2\ ~ 1/2

Hmr,t - mT,n”T < QHT”SCJL,OO exp <_T 1/2 > :
6HTHSf7n,OO

Setting the right side of the last equation equal to n~"/2 yields

1/2
L [uws@n,w 1og<4msf,n,ﬂ

o)

Replacing 4™ by its lower bound oA, 5/4“7'“}9/Jc 2moo gives the constant /3 stated in the
proposition.
O]

Remark 2. The eigenvalue in the definition of the sequence r,, can be replaced in that
definition by a lower bound on this eigenvalue. Similarly, the term || fo| in the definition

of Y can be replaced by an upper bound. We also used here the lower bound 025\*7 gon N

instead of using R directly. This affects, in particular, the number n from which point
onward the compression results apply.

4.2.2 Avoiding the explicit computation of s

Mitigating the cost of computing s is more difficult when the CGM is used. The main
problem is that we are aiming for a run-time of O(nlog(n)) and there is not much lee-
way in each iteration. For instance, if, like for kernel herding, we split the data into y/n
batches of size y/n then we have an overall run-time of \/n x (y/n)?> = n*? because
computing s per batch incurs a quadratic cost in the sample size. One way to reduce that
compuational cost is to make the quadratic term smaller but then we have many batches.
For example, if we aim for a log(n) batch size then we have n/log(n) many batches and
the reduction in sample size is minuscle. In particular, we could not just run the CGM
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directly on the n/log(n) many approximations since that would result in an n2/log?(n)
run-time cost. One way around this problem is to apply the process iteratively: in the first
iteration use about n/log(n) =: T many batches and compute myy,...M;7,. This can
be done in about (n/log(n)) x log®(n) = nlog(n) time, resulting in approximations that
consist of log log(n) many elements each. If we want to allow a run-time of O(nlog(n))
per iteration then in the second iteration we can use T} := T}/ log?(n) many batches since
(Ty/log?(n)) x log*(n) = nlog(n) (ignoring the loglog(n) terms). Continuing this pro-
cess, at iteration 3, we have T3 = T,/ 10g4(n) many batches, and, more generally, fori > 2,
wehave T; =T, 1/ logzl_1 (n) many batches. We can stop the iterations when we are down
to 4/n many batches since we can apply the CGM then directly. To get down to /1 many
batches we need about

log(n)
(=1 ———— | ~logl

% (10g log(n)) oglogl)
many iterations since

n n

Vn~T; = — = :
[Tiilog® "(n)  log™ (n)

This then implies an overall run-time of this algorithm of about O(n log(n) loglog(n)).

A major concern with this algorithm is that we have many optimization problems that
have to be solved simultaneously and we need to be lucky in each case to have a ball
of sufficient size around the corresponding m,, in C,,. It seems rather unlikely that we can
guarantee for each of these optimization problems the existence of such a ball. A better way
to approach this compression problem might be to work instead with fixed error bounds that
have to be achieved in each optimization problem. The hope with this approach is that we
can then guarantee a sufficient compression but the number of sample points needed might
be larger than log(n). Algorithm [4|implements this idea.

In the algorithm m, ;,..., m; 1, denote the mean elements corresponding to the initial
T7 batches. For the analysis of the algorithm it is useful to also have the mean elements
corresponding to all the samples entering into the j’th batch in iteration 7; denote this
element by m; ;. The idea of the algorithm is to approximate m; ; in iteration ¢ and batch
j. Working directly with m; ; is not possible if we try to stay around nlog(n) computation
time per iteration since m; ; will consist eventually of about 4/n many samples in each batch
which implies a cost of n per batch. Therefore, we approximate m; ; first by m; ; which
will consist, under suitable conditions, of far fewer sample points. The approximation
™, ; is then further compressed into m; ; which consists of even fewer sample points. The
variables M ; keep track over how many sample points m; ; is averaged. Hence, m; ; =
(1/Mz,j> ZUGIM Mi_Lumi_Lu for all] < T'z and 2 <1 < /.

We left out a few details in the algorithm. In particular, the usual vector s that consists
of inner products between k(X;,-) and m,, has to be replaced by vectors with entries of
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Algorithm 4 (A compression algorithm for m,, that uses the CGM and avoids the explicit
computation of s.)

Input: sample X1, ..., X,,, kernel k.

In the follow let ¢ = | —— log (287} 1]
log(2) log log(n)

Split the sample into 77 := [n/log(n)| batches.

Let Zy1, ..., Zy1, be the corresponding indices of the sample points.
Apply the CGM to each batch to approximate m; i, ..., m; 7, by using sample points
indexed by Z; 1, . .., Z; 7, until the error of all approximations j < 7}

is below €15 = ‘_’Z-l’j’il/z.

Store the approximations in My 1, ..., My 7, and let M1y = |Zy 4|, ..., M1, = [Ty
Iterate through i = 2, ... ¢ :
Split the approximations M;_y 1,...,M;_y 7, , into T; := [T,/ log%1 (n)| batches.
LetZ;y, ..., Z;;, be the corresponding indices and for all j < 7T; let
Mij= > My,
’U,EIZ"J‘

For each batch j < T} average the old approximations

1 ~
] Z M'—l,umi—Lu-

v.J uEIi’j

RUN

Apply the CGM to each batch j < T}, approximating m; ; by convex combinations

~ . —1/2
of the elements m;_ ,,, u € Z; ;, with an error of at most ¢, ; = M, p 2

Store the approximations in m; 1, ..., M; 7.
Ty
Apply the CGM a final time to My 1, . .., My 7, to compress T Z My ;
0 -
j=1

with an approximation error of at most 7~ /2 and return the approximation.

the form <ﬁ\1i_1,u, Iﬁi7j>, u € Z; ;, when 7 > 2. The element m; ; corresponds to an average
over the t/fli_l’u terms and there are |Z; ;| many terms over which this average is taken. The
quantity |Z; ;| is not of major concern when bounding the computational complexity. The
computational complexity of calculating these inner product vectors is rather dominated by
how many points are contained in the approximations m; ;. Another point worth noting is
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that the final approximation will ideally by given in terms of convex combinations of the
original sample points k(X ), k(Xs,"),.... Roughly speaking, this convex combination
can be computed by multiplying the weights in the different iterations. Finally, observe
that we can keep track of how well m; ; is approximated if m; ; does not consist of too
many points since the |Z; ;| are chosen small enough that we can compute and store the
corresponding kernel matrices

(<{ﬁi—1,u y {ﬁi—l,v>)u,veL,j

and from these kernel matrices we can compute the approximation errors.

Bounding the size of the set which is used in the resulting approximation in high prob-
ability or expectation is a major challenge that we will not address here. However, it is
easier to say something about the resulting approximation error by refining the analysis of
the kernel herding algorithm: the philosophy of the algorithm is to guarantee in high prob-
ability in each iteration that m,, is approximated with an error of n'/2. In detail, observe
that for any 1 <@ < ¢, m, = (1/n) Zj 1 M; jm; ;, where we use that Z L M;; =n. We
can use the link between m; ; and m; ; to measure in each iteration the error when approx-
imating m,, by (1/n) Z i1 M; jm; ;. The naive approach of using the triangular inequality
does not lead to useful results since

T; T;
1 - 1 1 ~
[m, = (1/n) Y Mi i ] < - DM gm =) < e
—1 =1

and we would need to set &; to n~'/2 to guarantee a low enough approximation error. But

aiming in each batch for an error of n~/2 when only log(n) sample points are in each batch
is not useful. As for the kernel herding analysis, a better approach might be to consider the
variance of the error and to make use of the independence of the sample points. Let us first
look at the case i = 1,

~

i

1 ~
) = EE(H > Mij(miy — @i g)[*)
J

1

1@
E(|my — = > M; i
n 4

T; )
1 & L ~ ~
= ﬁ D E(IMj(mij — @ )]°) Z D M Mg, E((my g, — Wy, mi g, — W 5,))
=1 J1=1ja=51
1 T; 1 T;
=3 Z E(][(mi; —mi )[*) + = DD My M j(m — E(fy,), m — E(f,).
Jj=1 J1=1ja=751

As for the kernel herding algorithm we can control the bias term in a crude manner by using
that

?) <€

[(m = B, ;,), m — B, ;,))] < max |m — E(@, ;) |* < max E(|m;; — @,
J<T; J<T;
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However, this is not leading to an improvement since in the first iteration

Ty 2 2 2
Blma — 3 Myl < — ~ (1 +1/n)
7j=1
and
1 &
(Hmn——ZMmmull %) <ef(n+1).
7=1

implies that £; would have to be of order n~/2. A central question at this point is of what

order is the bias term. In particular, is the upper bound of 2 for the squared bias term
overly pessimistic? A natural threshold for the error in each batch is log~"/?(n) in the first
iteration since there are about log(n) many samples in each batch. For log?(n) to be
sufficiently low we need a bound on the bias term of about cn~/2, ¢ € (0, 1), since then

wm——ZMMmm nY2) < ¢+ etlog(n) < 2,
j=1

when a threshold of ¢"/>log™"/?(n) is used in the optimization. In other words, the bias
term has to fall exponentially fast to allow for a threshold that is proportional to the sample
size, i.e. the bias has to be below exp(—m,/2), where m = log(n) is the sample size in each
batch in the first iteration.

The error in the successive approximations can be treated in a similar way and since
there are only about log log(n) many iterations a simple union bound argument suffices to
control the error simultaneously over all iterations. To demonstrate how the error evolves
consider ¢ = 2, then

1 &
E(|m, — - Z Mo gy 5|

j 1

)

T1 T2

< 3(E(m, — _ZMlijJ’ ) + E( H_ZMlijJ ZMQJmZJ’

)

and

T Ty
1 ~ - ~
ZE(”E > My i — Z M ;i ;) Z (M g ; — Mo jis 5)[)
= n < =
T

= ZMng [mo,; — o ]%) +222M11MM<E(‘“21 My;), B(Ma, — May))

Jj=1 j=lu=j
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where we can move the expectation inside the inner produce since m, ; and my ; are inde-
pendent of m,,, and M, ,,. The bias term that is now important is | E'(my ;) — E(m2 ;)| and
we need a similar fast decay of the bias as for 7 = 1. The other term is easier to deal with,

ZMQQJ |Tﬁ2] m2]” EMQJ__

by the choice of ¢; ; in the algorithm.

There are a few open problems concerning this algorithm, and variations thereof. The
algorithm is set up to enforce tighter and tighter error bounds in each iteration, 1.e. the error
threshold changes approximately from log~"/?(n) in the first iteration to log=*?(n) in the
second iteration and log ™"/ ?(n) in the third iteration. The hope is that good approximations
in the first iteration allow us to get even better approximations in the second round and so
forth. But it is by no means obvious that this intuition is correct and in all likelihood these
choices are not optimal.

The next major obstacles in controlling the error of the algorithm are obviously the bias
terms. If there is an exponential decrease in the bias then we are in a very fortunate situation
and can control the approximation error. If the bias term decreases slower then it might be
worth to consider alternatives of the CGM which incorporate bias reduction techniques and
are not focusing solely on the approximation error.

The biggest challenge when studying this algorithm is in all likelihood the problem
of controlling the size of the ball around the various elements m; ; simultaneously over all
iterations and batches. In fact, a uniform bound might even be suboptimal for analyzing the
performance of the algorithm since small ball sizes can be compensated for by batches that
have a larger ball around their corresponding m; ; and which need less sample points than
suggested by a worst case bound. In other words, we might need to control the fluctuations
or the distribution of the ball sizes.

5 Applications

In the following, we look at how these techniques can be combined with machine learn-
ing methods. In particular, we are looking at the two sample problem, at kernel ridge
regression and at kernel PCA. Since it is currently unclear what compression rates can be
achieved when avoiding the upfront cost of O(n?), we formulate the runtime statements as
functions of eomp (1) and tgi,e (1), where O(%eomp(n)) is the computational cost for calcu-
lating the compression and O(t)g,.(n)) is order of the number of points that are needed in
the compression to guarantee, with high probability, that the compression is no more than
en~'2, ¢ > 0, away from the mean element that corresponds to the empirical measure. In
the finite dimensional settings that we consider and when using the standard algorithms,
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we can use Yeomp(n) = n? and g, (n) = log(n). Generally, the hope is that these can be
changed to something of the form ¢comp () = nlog™(n) and e (n) = log™(n), a > 1.

5.1 Two Sample Test

In the two sample test problem i.i.d. data X;,..., X, and Y7,...,Y,, attaining values in
X are given, the X;’s are furthermore independent from the Y;’s but it is unknown if the
X;’s have the same distribution as the Y;’s. The null-hypothesis is that the distributions are
equal. One way to build a test statistic for this hypothesis testing problem is to consider
|mx., — my,,|, where k is a kernel function on X, k(X,-),k(Y, ) € LY(P), mx, =
(1/n) > k(X;, ) and my,,, = (1/m) X", k(Y;, ). Calculating the norm can be done in
O((n v m)?) by using that

wmﬂMW=$lex-—ZZk“] LS k).
i,j=

i=1j=1 3,j=1
When using one of the compression approaches this turns into a run-time of the order

O((Yeomp() V Yeomp(m)) v (size(n) v size(m))?). In particular, we can simply re-
place my,,, and mx, by their approximations. Furthermore, with high probability, the

rate of convergence of |mx,, — my,| to |m X,-)dP and
my = {k(Y, ) dP, will be preserved when moving to the compression.

5.2 Kernel ridge regression

Let us consider now the regression problem with data (X;,Y7),...,(X,,Y,), where we

assume that the pairs are independent and that the Y; are bounded. When the conditional
gradient method is used to approximate €, m, and (1/n)> . _ Y; simultaneously we get

<n

a single index function ¢ : {1,...,{} — {1,...,n} and corresponding approximations
¢ =0, wik (X, @), ) and my; = - w; (Y3, ) @ k(X,),-) with strictly positive
w;’s such that wy + ... + w; = 1. The approximation of the least-squares error for a
function h € H is
o 5 !
zmbl WX@))? = @y Wy — 2008, Wywen + ) wiY 5y,

i=1

where we denote the function (z,) — h2(z) with h. Due to the representer theorem we
can write the solution to the ridge regression problem in the form h, = Zi:l aik(X.6), )
for suitable o; € R. Substituting this into the equation for the least-squares error and
ignoring the last term (which is irrelevant for finding the solution) leads to

<Q:y 2 h >H®H 2 Z az<my b (XL('L)a ')>R/®’H~

i=1
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Let ) be an | x [ matrix with the entry in row ¢ and column j being

l
Z wu<k(XL(U)7 ) ® k(XL(U)v ')a k(XL(i)7 ) ® k(XL(J')’ )>®

then o
&ty ha)iigm = a' O

Also, let K; be the kernel matrix for samples X,.),..., X, and let m; be an -
dimensional vector with entry ¢ being

l
<ﬁ1§l7 k(XL(i)7 ')>R’®H = Z qu(u)k(XL(l), XL(u))

u=1

With these in place the solution of the ridge-regression problem with regularization param-
eter A > 0 is found by minimizing

a'Cia — 20" my + N Ko
with respect to « € R!. Taking the gradient with respect to v and setting it to zero yields
2Ca — 2my + 2D Ko = 0. (48)

Observe that C; = K;W K;, where W is a diagonal matrix with W,,, = w, for all u < [.
Similarly, m; = KWy = KlW(KlW)TKlWy, where y is a vector with entries y,, = Y, ()
for all u < [. Hence, we can rewrite (48) as

Ki((WK; + Ao — W(EKW)TK,Wy) =0,

where [, is the [ x [ identity matrix. Since W has strictly positive entries on the diagonal
we can rewrite this as

KW (K + AW a — (KiW) T KiWy) =0, (49)
for which a solution is given by
a = (K + \WH ™ (KW)T KWy, (50)

The inverse is well defined because K is p.s.d. and W ! is (strictly) positive definite; the
sum of a p.s.d. and strictly positive definite matrix is strictly positive definite and, therefore,
has an inverse. Also (K;W)" = (K;W)~! whenever K; is of full rank and in this case

a= (K +\W 1)1y (51)
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This « is also a solution to (49)) in the general case when K is not full rank since ( K| lW)TK Wy
can be replaced by y in this equation.

In terms of the runtime, if we use an O(n?) algorithm for deriving the inverse then,
after compression, the runtime is O (eomp(1) Vv (¥size(n))?). For example, if we work with
a finite dimensional RKHS and use the standard CGM then we attain a runtime of O(n?).
Beside the reduction in runtime the storage demand also goes down since only a matrix
of size Y,e(n) X Ysie(n) has to be stored for calculating «, and this can be as small as
log(n) x log(n). The CGM itself needs memory in the order of O(n).

5.3 Kernel PCA

The plug-in estimator of an eigenfunction of the covariance operator has a large bias when
working in infinite dimensionsal RKHSs and does not achieve the minimax optimal rate of
convergence [22]. However, in finite dimensional RKHSs this is not of major concern and
we can use the eigenfunction of ¢, € L(H, M) as an estimate of the eigenfunctions of the
covariance operator. In this context we want to approximate ¢,, which is given by

n

%Zk(Xi, D®k(Xi, ),

by using the CGM. As discussed in Section we can apply the CGM to the RKHS with
the kernel function (x,y) = k*(x,y) to approximate €, with some convex combination

@t = 25:1 a;k(X, ), ), where o = O foralli < ¢, o4 + ...+ a, = 1, and ¢ is some
selection of data points. The element €, is closely related to the operator €,, and a natural
approximation of €, is € = >, ;k(X, (), )®k(X, @), ). Note that for any f, g € H,

@ (1 ©9) 0o = Y aif (Xu)g(Xi) = (€S, )

where ¢ : X — X x X, (z) = (z,z). The operator €, is clearly symmetric and, hence,
self-adjoint since the RKHS is finite dimensional. Furthermore, all eigenvalues are non-

negative since if e € A is an eigenfunction of €, then
~ t
(Ce,e) = ZaieQ(XL(i)) > 0.
i=1

The main question is now if we can quantify the difference between elgenfunctlons of @t
and C,,. Let us assume that there are no multiple eingenvalues and that AM=...=2N>0

are the eigenvalues of Qﬁt and ey, .. ., e4 are the corresponding eigenfunctions. Similarly, let
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H1, - -, g > 0 be the eigenvalues of ¢, and fi,..., f;the corresponding eigenfunctions.
Furthermore, assume that the CGM is run until

Hth - cnHG) S €

Since

1€ — Coflop = sup, |€h —E,h|| = sup, ”shlpl<(€t &) (h), 9> = (€& — €, (h®g) o)
L Do

and ||(h®g)ov|e < |h®g|e = |h/|g] < 1it follows from the Cauchy-Schwarz inequality
that
1€~ Eulop < & — Clo <€

From this bound on the operator norm it follows right away that || (Ct ¢,)(e;)| and | (Qt
@,)(fi)| are less than € for all 7 < d. In particular,

A — e, énei>‘ <e and [(f;, é:tfi> — | <€
for all 7 < d. In particular,

A < {ep, €her) + e < sup | €uhle < g + e
[h|=1

By symmetry of the argument it follows that |\; — 11| < e. The difference between e; and
f1 can now also be controlled: let ay,...,aq € R be such thate; = a; f; + ... + aqfq then
1=e? =a?+...d%

d
pp — 2e < {eg, €pep) = Z a?u;

i=1

and from (1 — a?)p; — 2¢ < (1 — a}) e we can infer that for sufficiently small € > 0,

2¢ )1/2

2
a?>1-—=° and el—f1||2:2—2a1<2—2<1—u .
1 — M2

M1 — M2
The other eigenfunctions can be treated in a similar way by moving to the subspaces that
are orthogonal to the already covered eigenfunctions ey, ..., e;, | < d.
The computational complexity of the eigendecomposition is O(n?) as for kernel ridge
regression. By compressing the data this goes down to O(¢eomp(n) v (¥size(n))?).
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6 Example: Slow rate of convergence in infinite dimen-
sions

The last section of this paper is dedicated to the construction of the example for which
the kernel herding algorithm performs strictly worse than in finite dimensions when the
density function of the data distribution has a density that is bounded away from zero. The
corresponding theorem is the following.

Theorem 3. There exists an initialization, a continuous kernel, and a Borel probability
measure on |0, 1] which assigns non-zero probability to open intervals for which the kernel
herding algorithm does not converge fast, i.e. there exists no constant b such that |m; —
m|| < b/t forallt > 1.

The proof of Proposition [3]is split into two parts. In the first part, we construct a Hilbert
space, a map ¢ : [0,1] — H, and an element m € H such that the algorithm does not
converge fast. We then use this Hilbert space to construct an RKHS for which the algorithm
behaves in exactly the same way as when acting on the Hilbert space, and, consequently,
the algorithm does not converge fast when applied to the RKHS.

The construction idea. Before getting into the technical details we like to outline the
basic intuition of the construction: let the mean element m = (0. Then, given an infi-
nite dimensional Hilbert space #, choose an orthonormal sequence {e,},>; and elements
{an}n=1 in H such that each a,, is a multiple of e,,. Initialize the algorithm with an element
¢ € H which is of small magnitude compared to the a,, and has a positive inner product
with each a,,. The idea is that the different a,,’s will be chosen at one point by the algorithm
and will add to the (rescaled) approximation error w; of m (¢ is the iteration number of the
algorithm). In fact, we like to show that its norm will diverge to infinity.

This initial construction has a few problems which have to be addressed to make this
construction work. The first problem with this construction is that {a,, c¢) is positive. In
fact, (an, e,),{c,e,) > 0forall n > 1. But, we want the mean element m to be 0. Hence,
we will need probability mass on the negative side to counter the mass accumulated by the
a, and c. We can achieve this by introducing another set of elements {b,,},>1 which are
lying opposite to the a,,. Therefore, each b, is a negative multiple of e,,. These b,, need to
be further constraint in magnitude. If they are of a similar order like the a,, then they can
cancel the weight added to w; by the a,,’s. We are using here sequences with values in the
order of 1/In(n + 1) for a,, and —27" for b,.

Even though the b,’s are of small magnitude compared to the a,,’s it is not directly
obvious why these b,,’s should not be chosen many times by the algorithm to cancel step-
by-step the weight accumulated by the a,,’s. Here is an argument why this does not happen:
the a,,’s are constructed such that each a,, is chosen exactly once and they are selected in
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order by the algorithm. At a given iteration there is then an element a,, which has not
yet been chosen and our construction assures that in this case {a,,, w;) equals the initial
value {a,,, ¢), which is of magnitude 1/(mIn(m + 1)). Since the algorithm chooses the
element h € ¢[X] that maximizes the inner product with w; we can infer that this inner
product must be larger than 1/(mIn(m + 1)). Or put differently, an element b,, will only
be chosen if (b,,w;y = 1/(mln(m + 1)), that is {e,,w;y = 2"/(mIn(m + 1)). If, in
fact, the algorithm chooses, in this case, b, then we are at least assured that {e,,, w;,1) =
2"/(mIn(m+ 1)) —2~™ (Figure 3| on page[15] visualizes these bounds for different m). We
do not need this extra scaling of 2" and we use in the proof only that there are sufficiently
many e,, for which |(e,, w)| is larger than 1/In(m+ 1). The number of elements for which
the inner product is at least of this size grows in m and the sum over these inner products
gives us a diverging number that approaches infinity in m. This is then sufficient to show
that the norm of w; diverges.

Interlacing. In the above discussion we assume m = (0. However, constructing the
probability measure such that m = 0 is not straightforward. The problem is that the scaling
on the positive side (the a,,’s and the c) is exponentially larger than the scaling on the
negative side (the b,,’s). To get m = 0 we would need the probability mass for the a,,’s and
c times the magnitude of these elements to be scaled so that it equals the probability mass
of the b,,’s times the scale of the b,,’s. The exponential difference in scale implies that the
probability mass of the b,,’s needs to grow exponentially in n and the sum of all this mass
has to add up to infinity.

By closer inspection, one can observe that the a,,’s pose no serious problem since one
can just downscale the probability assigned to them by an exponential factor. However, the
¢ poses a more serious problem. Let p > 0 be the probability corresponding to c. We use
c = > n'e, and we thus have a factor of p/n pulling the mean element towards the
positive direction in dimension n. Hence, we will need a probability of p,, = p2"™/n for the
b,, elements to counter this pull. Since p does not change with n we are left with p,,’s that
grow rapidly in n.

Using an initialization c¢ is in a way too rigid and does not allow us to assign lower
probability mass as n increases. One way to overcome this problem is to break the ini-
tialization up and add probability mass to the different dimensions while the algorithm is
running. We do this by replacing the single ¢ with infinitely many elements, one for each
dimension e,. Since we do not want to alter the overall behavior of the algorithm these
different elements will need to be of a low scale and we need to sum multiple elements to
regain the 1/n value that ¢ would have assigned. Therefore, for each dimension e,,, we are
left with a finite sequence of elements ¢, 1, ¢, 2, . . . which takes the role of the original c.

The question is then how we can guarantee that all these ¢, ; elements are chosen to
simulate the initialization through c before the algorithm proceeds as usual. We guarantee
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this by introducing dimensions €, ; which are orthogonal to all the e,,. These dimensions
are used to force the algorithm to choose c,, ;41 after ¢, ; until the final element of the
sequence is chosen and we have a weight of 1/n in dimension e,,.

We still have not addressed the problem of assigning different probabilities to the dif-
ferent dimensions. But, since c is now broken into many small pieces, it is easy to ‘lose’
probability in n.

Proposition 6. For any infinite-dimensional Hilbert space H there exists a continuous
function ¢ : X — H, X := [0,1], a probability measure P on By which assigns
positive measure to any open subset of X, and an initialization wy € ¢[X] such that the
kernel herding algorithm when applied to § ¢(x) dP(z) generates a sequence {w;}>1 that
is unbounded and the algorithm does not converge with a 1/t rate to m = {¢(x) dP(z) €
H.

Proof. (a) Definition of the convex set: Let {V;}°, be a set of natural numbers to be
defined below, pick a countable infinite orthonormal sequence {€/,},,~1 in H and split this
sequence into {e,},>1 and the sequences €,.1, ..., €&, n, Where n goes through 2,3.. ..
This can be done since these are countable many sequences of N,, + 1 elements and since
countable unions of countable sets are again countable. Furthermore, define the sequences
{antn=1, {bn}tnz1, {cnm : 1 <n, 1 <m < Ny} {d, : 2 <n} < Hby

;o1 o 2m _ 41n(9)
ap (an+n> e, with a;, C[ln(nJrl)} and C ’734- In(2) w

b, == —2""e,,

— 64,

2
N; := 1 and f =2, Ny, = | ————|,
1 and for n ’7n<_bn7€n>“

C11 = €1 + 052715271, and forn > 2 :
Cni ‘= ﬁnen + an,lén,l - an,Qén,Za
Cp,N,—1 ‘= Bnen + an,Nn—lén,Nn—l - an,N"én,Nna
Cn,N, ‘= ﬁnen + Oén,Nnén,Nn - O5n+1,1én+1,17
dy := —(1/2)a21€21 and for all 2 < n let

dn = (1/2>an,1én,17

1
B, = TN for which — 3, < (=b,, e,,) holds,

Oy 1= \/@, and oy, ; := \/04,211 + (i—1)52for2 <i < N,.
n b

— [, is smaller than {—b,,, e,,» because —3,, = 1/(nN,,) < (=b,, e, /2. Also observe that
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the sequence a/, is non-increasing in n since

VARE 1 <o 2" 1 <o 2n I 2n i
In(n +2) | 271 = | "In(n + 1) | 20+ In(n+1) || 27+t |In(n +1) | 20

where we used that the function [-] is monotonically increasing.

(b) Construction of a continuous map ¢: We construct a continuous function
¢ : [0,1] — H which goes through the points {a, }nen, {0 }nen, {Cni: 1 <n,1 <@ < N,}
and {d,, : 2 < n}. We split the construction into three separate functions, ¢, for the a,,, b,
elements, ¢, for the ¢, ; and ¢3 for the d,, elements.

For ease of reading let y,, = 1/(n + 1) and z, = (y,, + yns+1)/2 for all n > 1. Define
¢1 :[0,1] — H, with n going through 1,2,3.. ., by

(

1—x :
1, M ify; <z <1,
x—§ . .__ Yntz
€ On if € = 55 < o <y,
-z M n+2zZn .
1 (x) = < e R
1 T Tr— . Yn+1+2n
znfgbn if § 1= 50 <1 < 2y,
[ 1 Ynt1+2n __.
E—yn dn+l ify,1 <z <5 =:¢,
0 ifz =0.

\

The function is continuous on (0, 1] as it is piecewise linear and the end points of the lines
are connected. The only critical point is 0. For continuity at 0 it suffices that for any € > 0
we can pick a ¢ such that z < ¢ implies ||¢(x)|| < e. We restrict the search for a § to points
1/n, n € N. For such a ¢ the maximum of ¢(z) in an interval [0, d] is either attained on
an a, or a b,. As we have that lim,,_, ||a,|| = lim,_ ||b,| = O there is for every ¢ > 0
an N € N such that for all n > N we have max(||a,||,||b.||) < € and, consequently for
d = 1/(N + 1) we have that ||¢(x)|| < e forany 0 < = < 9.

In the following let N; := 1. Furthermore, let 3, := 1/n, A, = (0 — Jns1)/Nas
Upm = Un — MOy, Upgo = Up and let 2, 1= (Upm-1 + Unm)/2, for all n > 1 and
1 <m < N,, — 1. With n going through all of 1,2, .. ., define ¢ : [0, 1] — H by

Gn—1 o~ ~
yn’i—znl Cn1 if 2,1 <2 < Yy,
eyl S ifup;m << Zym1l<m<N,—1,
n,m n,m
u —X . ~
G2(7) = — =y iy i Zygr < T < U, L <M <N, — 1,
n,m - n,m+1
T—Yn+1 £ < 3
gn,Nn*f/n-%—l Cn’N” lf yn+1 <Ts ZTL,Nnv
0 ifz = 0.
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Similarly, by going through all n > 2 define ¢3 : [0,1] — H by

( o
0 if1/2 <z <1,
- o .
ys and if 2,1 <o < Gy,
P T—Un,1 :
¢3(x).—<zn1uld ifu,; <z <2z,
0 §n+1<x<un,1,
0 ifx =0.

\

With the same reasoning as for ¢; one can infer that ¢, and ¢3 are continuous. Define

¢r(3x —2) if2/3<x<1,
G(x) =2 o(3x — 1) if1/3 <z <2/3,
¢3(37) if0<az<1/3.

The function ¢ is continuous since ¢y, @2, ¢3 are continuous and ¢1(0) = ¢2(1) = ¢p2(0) =
¢3(1) = 0. This implies also that ¢ : [0,1] — # is measurable. It is also Bochner
integrable with respect to any probability measure defined on the Borel sets of R as ||¢(+)]| :
[0,1] — R is continuous and, hence, bounded, i.e. § ||¢(z)|| dP(z) <

(c) Definition of the probability measure: We construct a Borel measure by defining
a density p on [0, 1]. Using the variables defined for ¢1, ¢o, ¢3, constants ay, by, ... and n
going through 1,2, ... we set

-

a; ify, <ax <1,

a, if y"+Z" < x < Yn,
p(z) =16, 1f@<x<%,

A1 1 Yp <2 < yn++zn7

(0 ifz =0.

and using constants c,, we furthermore define

(z) ¢, M Ypp1 < < Yp,
) .=
b2 0 ifz=0

Finally, going through all n > 2, 1 < m < N,, and with the constants 9,, ,,, let

1 ifl2<z<1,

Dn 1fun1 << gn,
p3($) = o~

1 ifgp1 < <upa

0 ifz=0



and combine these to define the density p by

mBr—2) if2/3<x<1,
p() =< po(3z —1) if1/3 <z <2/3,
p3(37) if0 <z <1/3.
Now, m = 0 iff {e,,, m) = E{e,,¢) =0 = (e}, ;,;m) = Ee; ;, ¢y foralln > 1,1 <i <

N,..
Observe that in general, if a,b € [0, 1], a < b, the density p is constant on [a, b] with
value p € [0,00), h € H and ¢ : [0, 1] — H is defined by

{@: —a)/(b—a)uh € [a,b],

0 otherwise

then for any e,, (and €], ;)

(o ) = Blen ) = | S ten ) = (12)pcen 1 (6~

and if
fo-a)/b—auh xelab],
¥lz) = {0 otherwise
then
(ens EY) = (1/2)pen, hy (b —a).
So,

1 + z — - -
{e1,m) = 6 <€1, (1 - 9 1) aja; + (yl 5 y2> b1b1 + (71 — y2)¢161,1>

will be zero by setting

o 26 (1= 252 s (1) )

and (e, m) = 0 by setting

1/1 1 {an; €n) 1 ¢
b, =2 1 2)( = —— .
(n+ D +2) (4 (n n+2) b eny ( n+ 1) <—bn,en>>
Also, for any n > 1 we have that b,, > 0 if a,,, ¢, > 0. Let, A/ be a normalising constant to

be defined below and let

N {(=bi,er) (1 itz
24<a1,61> 2

N<—b1>€1>
12 <Cl71, 61>

ap ;= >>0 and ¢; ;= >0
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such that b; = N. Also set for all n > 2

a, = n_ N (b en) >0 and ¢, := n_ N en) Bnis >0
n+1 {ay, e, 2(n +2) B A,
which makes b, = N(1 — A,41/A,,) and all {e,,, m) = 0. For the elements &, ; we have
that

6 €21, m) = Ajcy{c11,€21) + Aoca{ca1,€21) + No09{ds, 1)

and we set ~
Ay <C1 1, €2 1> <02,17 62,1>

0y 1= — +c = > 0.
? Ay 1< d2,€2 1> 2<—d2,€2,1>
Furthermore, for all n > 2 let
o — An—l c <_Cn—1,Nn,17 én,1> P <Cn,1) én,1>
" An el <dm én,1> " <dn; én,1> .

0,, > 0 for n > 2 since

2y (DT 1>[( : }

(0779 1N n n+1 1)< bn_l,en_1>
An+1 nQ 2
- o) |
A, n+2< €n) n{—by, e,
ol 1 n Apy  n—1 n? N,
“"n+l Tn+2 A, n+1l (n +2)2 Nyiq

n—1 3n*(n+1) (1 1
=2 - = -+ —
n+1l 2 (n+2)? \n 2rt!
which is strictly greater zero if
4n—1)(n+2)* —4n(n +1)> = 4(n* + n — 4)
is. But this is obvious for n > 3. For all remaining n, 7 > 2 we can observe that
<én 13 m> = (]-/6)Ancn <cn i—1 — Cn,i, én z> =0

for all m > 2. Hence, m = 0 and the density is strictly greater 0 on all but three points. It
remains to set A/ such that the density integrates to one. We have for any N/ > 0 that

0 < pr —ai(1— (31 + 2)/2)/3+ (1/3) Z 1) = (g — 2))/2
-0/ e — (s — )2

oo 1 o8]
2 —, + 1/6 4 (1/3) ZA 0+ (1/3) Y (a1 — Gs1)-
n=1

n=1 )
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The first sum is a finite multiple of A since a,, ~ 27" and the sum over ((y, — 2,_1) —
(Yn — 2n))/2 is bounded by 1. Similarly, the ¢,, sum is bounded since ¢, itself is upper
bounded by N and the rest is quadratic in n. Furthermore, b,, is upper bounded by A and
the sum of the intervals cannot exceed 1. Finally, 0,, is upper bounded since

2{—d,, én,1>0n - 2(n—1)
Oényl./\/' n+1

Q1 18 bounded and so is (—d,, é,1). Hence, the sum is a finite multiple of N and we
have in total a term that is a finite multiple of A plus a constant that is smaller than 1/2.
Therefore, we can choose A such that S p=1.

(d) Behaviour of the algorithm: Initialize the algorithm with w; := ¢;; € ¢[X ] and
let z; be the element which is chosen at stage ¢. The algorithm behaves as follows:

(1) Forany ¢t > 1, if w, = 0then ; € {an}nz1 U {bn}nz1 U {Chm : 1 < n,1 <m <
Nptud{dpm:2<n,1<m<N,}.

(2) Let n = min{m : a,, has not been chosen in steps 1...¢ — 1}. If £ > 2 then either
the smallest element of {(m, j) : ¢, ; has not been chosen in steps 1...¢ —1}\{c11}
in the lexicographic order is (n,7) with 1 < i < N,, and

Wy = —Y1€1 — ... — Vn—1€n—1 T Vn€n + Qpi€n i,

where

i . 2j ny bn 1
v = (2ad;=0)277,1eN and aj>=~;> min{a;,maX{M - 2_]’0}}

n
forl < j <n-1and~, = —(i — 1)5, (first case), or the smallest element is
(n+1,1) and

Wy = —Y1€1 — ... — Yn—1€n—1 + Vn€n + Qni1,1€n+11,
with 1, ..., 7,1 like above and ~,, = 1/n (second case). In particular w; = 0.

(3) Let N(n) := [1 + logy(nln(n + 1)) thenn — 1 = N(n) foralln > 7. If n is the
smallest index of an a,, which has not been chosen yet and if this n > 7 then for any
iwithn —1>1i> N(n)

1

. < _—
Ceir we) In(n + 1)

(4) For eachn > 1 there exists a step t > 1 with z; = a,,.
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P (o) (1) is saying that no point on the line from O to an a,,, by, ¢, Or d,, , is chosen that
differs from a,,, b,,, ¢, and d,, ,,. To see this first observe that only points ¢(z) will be
chosen at any stage ¢ for which (wy, ¢(x)) > 0: By assumption w; = 0. If there exists an
e, with {e,,, w;) = 0 then either {a,,, w;) or {b,, w, ) is strictly positive. Also, if there is an
€nm»> (N, m) = (2, 1), such that (é,, ,,, w;) > 0 then {(d,, ,,, wy) is strictly positive. Similarly,
if (€31, w;) < 0 then {dy1,w;) > 0. Assuming that none of these cases apply we have that
either (€21, w;) > 0 or there is an &, ,,, (n,m) = (2,1), with (&, ,, w;) < 0. In the first
case {c11,w;y > 0. In the latter case and with {(é5 1, w;y = 0 let (n’,m’) := min{(n, m) :
(€nm,wry < 0} where the minimum is taken wrt. the lexicographic ordering. We have
<Cn/7m/_17 wt> = Op/m/'—1 <én/’m1_1, wt> — O/ <én’,m’7 U)t> > — Q! <én’,m’; ’LUt> > O, if
m’ > 1,and if m’ = 1 then

<Cn/—17Nn/_17wt> = an’—l,Nn/_l<én’—1,Nn/_1>wt> - an/,l <én’,17 wt> > _an’,1<én/,1a wt> > 0.

If the chosen ¢(x) is on the line from 0 to an a,, then a, = &¢p(x) with & > 1 and
0 < {p(x),wy < EL{p(x), w) = {an,w;y and ¢(x) = a,. The same argument applies to
by, Cnm and dy, .

(8) We prove by induction over t > 2 that (2) holds. We start with the induction basis.
w; =C,;1 = € + (1/2716271 and we have <w1, bn> < 0,<’LU1, dn> <0 for all n, <w1, an> =0
for all n > 2, (wy, ¢,,;) = 0 if either n > 2 or (n = 2 and ¢ > 2). Furthermore,

e2,a Cl 4], 1 cl_2
<w1701,1>:"01,1"2:1+a§»1:1+<222>:1+§[ }+_<1+Z[ }jLZ

since C' > 1, [2/1n(2)] = 3 and hence

%[111?2)} ~ %'

AISO, <U}1, C271> = 043,1 < <w1, Cl,l> < <w1, (11> and T, = aj. Therefore,

Wo = W) — Q1 = €1 + 91621 — (Gl + 1)61 = —a 61 + Q91621

and wsy has the promised form.
(7) Next, we address the induction step. (i) Assuming w; has the given form in step ¢
we can observe that
(an, €5)

n

>0

<33t7 wt> =

130



since in the first case

(om0 = By + @ = —(i = 1)+ (a2, + (i — 1)B2) = 2

in case that? > 1 or, fori = 1,

(eniywe) = a2, = M‘
’ n

In the second case,
(€ns an)

e
(ii) For the b; (i) implies that, first, no j > n will have been chosen in ¢ since for these
(bj, w;y < 0 holds in both cases. Also, if fora j, 1 < j<n—1,v; < 2/{a,,e,)/n then
(bj,wiy = 7,279 < {an, e,y /nand b; = x;. On the other hand, if v; > 2/ {a,, e,) /n and
x¢ = b; then the coefficient changes by —277, i.e. the new coefficient is

<ana wt> = Tn <€na an> =

» '<an76n> »
"}/j—2 ‘7>2JT—2 J

The coefficient is also always non-negative since -y, is a multiple of 277 and b; will not be
selected if 7; = 0. In total, all cases are consistent with our induction hypothesis and we
are safe against any application of b;.

(iii) In terms of a;, we can directly observe that (a;, w;) = 0if j > n and {(a;,w;) =
—v;{ej,a;) < 0if j < n. So only a, might have been chosen at time . However, in the
first case we have that

) N, —1 A,y En
<anawt> = Tn <an7 en> = _(Z - 1)ﬁn <0Jm en> < nNn <an7 €n> < < n >
and z; = a,. In the second case, if 7, = 1/n, then
_ Lan,en)
{ap,wy) = p—
Thus a,, might be chosen, and, in case it is, then the new coefficient is v, —a,, — 1/n = —a/,

which is consistent with the induction hypothesis.
(iv) Turning to the ¢,y elements we can observe that for (n,i) > (2,1) we have
{wy, ¢11) < 0. For (n,4) = (2,1) we are in the first case since N, = 4 and

(wy, C1,1> = (—me1 + Y€z + (1621, €1 + 042,152,1> = —m + (1/2) ez, as)
< —(1/2) ez, a2) + 1/2 + (1/2) (e, as) .
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But, 1/2 < (1/2) {ag, e2) and ¢, ; will never be chosen. For the remaining ¢, ; elements
we have in the first case in step ¢ that no ¢,/ will be chosen if n’ = n or ¢/ = 7 since in
these cases

(=0 ifn' > n,
= Vb =—(1—1)32<0 ifn =nand (/ >iori <i—1),
Wiy Crir) 3 = b — p; < 0 ifn’ =nandi +1 =1,
<0 if2<n’'=n-—1land? = Nyandi=1, (»)
= —Yw B < (Wi, bpr) if n’ < n and (*) does not apply.

(*) follows for n > 3 from

<wt7 Cn—1,Nn,1> = <wt; Bn-1€n-1+ Qn 1N, €n-1,N, 1 — an,16n,1>
_ 2 _ Tn—1 2
= —Yn-10n-1 — Hp1 = NN —

( - ) n—1

!/

< V127" — —<en;1an> 1 %

el gl
corn (i) = i

If now z; = ¢, ; then, in case © < N,,,

Wt+1

Wy — Cng = — Y Yi€i — (i = 1)Bnen + O ifni — Bubn — Qi + O is18nisn

n—1

- Z Vi€i — 1Bnen + O it1€nit1

i=1

which has the desired form. Similarly, in case that i = N,

Wi+1

= W¢ — Cu,N,

- 2 Vi€i — (Nn - 1)ﬁn€n + On, N, €n N, — Bnen — Oy N, €n N, + Qn+1,16n+1,1

n—1

- Z vi€i — NpBren + Qpi1,1€n41,1
i=1

which has the form of the second case since —N,, 3, = 1/n.
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In the second case no element ¢, ;» will be chosen since

-

0 ifn’ >n+1lor(n =n+1landé > 1),
a721+1,1 < {en,an)/n ifn =n+1land? =1,
(W, o) = { Ba/m — 0‘%+1,1 <0 ifn =nandi = N,
Bn/n <0 ifn’ =nand? < N,
| =B < {wy, by or =0 ifn’ <n.

(v) We turn to the d elements. First case: If (n,7) = (2, 1) then (wy, dy) = —(1/2)a3, <0
and otherwise (wy, dy) = 0. In either way dy will not be chosen. For any other n’ we have
that (wy, d,,) = 0if (n,7) = (n/, 1). Otherwise

1{en, an
(wry dwy = (1/2)al, = 5<_n>

and (wy, dp ) < {ay, e,y /n and d,, will never be chosen.
Second case: {wy, ds) < 0 and all d,, with n" = n + 1 are zero. Finally

dn = (1/2 2 _ <€n+1>an+1> < <e"’an>
(i, dny1) = (1/2)ag,, 4 n+ 1 n

since the sequence {e,, a,, ) is non-increasing.

Soin step ¢ + 1 the element w;; will have the right form, and, certainly, w;,; = 0.

(0) Next we prove (3). Since the smallest index n for which a,, has not been chosen in
rounds 1 to ¢ is assumed to be larger than 7 we can assume that ¢ > 2.

For each m, (@, €,y /m = al,/m = 1/(mIn(m + 1)). Hence, from (2) we conclude
foralli withn —1>17> N(n)

—{e;, W1y = 7; = min {aé, max {2iM — 27 O}}

n

1 21 ,
>mind ——— . —
o {ln(z’ +1) max{nln(n +1) }}

Using the assumption i = N (n) we observe that

, 2
i = 1+logy(nin(n+1)) =log,(2nin(n+1)) = 2' = 2nln(n+1) = m—l > 1
and since 7 > 1
9i y 9i 1 1
) e . S > :
nln(n + 1) nln(n + 1) In(i+1) = In(n+1)
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So,forn —1>i> N(n),
1
In(n + 1)

(¢) (4) also follows from (2). First, if a,, has been chosen in any step ¢ then for all ¢ > ¢
(2) tells us that {a,,, wy) < 0. Consequently, z = a,, and a,, will be chosen at most ones.
Also, if a,, is the element with minimal index which has not been chosen yet in time ¢ then
either (wy, a,) = {wy, Ay = 0 or (wy, ay,) > {wy, ay,) for all m > n. In the first case no
element a,; will be chosen and in the second case, if an a,, will be chosen it will be the
one with the smallest index in the set of elements which have not been chosen yet. So the
elements a,, will be chosen in order and no element will be skipped.

Let us now assume that {a,, : a,, = x; forallt > 1} is not empty and let a,, be the
element with the smallest index in this set.

The argument in (y) shows us that no ¢, ; with m > n will be chosen. Also, if ¢, j,
m < n, has been chosen in any step ¢ then for all # > t we again infer from (2) and the
argument in (y) that c,,, ; will not be chosen in ¢’ and, hence, each c,, ; is not chosen more
than ones. Also none of the d,, ; elements will be ever chosen.

So the only way that an a,, is never chosen is that infinite many b,,, elements are selected.
Yet, no b, with m > n will be chosen since the inner product with the weight vector is less
or equal to zero. Also each b,,, m < n can only be chosen finite many times before the
weight vector in direction e,,, becomes 0 and the inner product with b,, becomes 0 too (at
which point it will certainly not be chosen any more). So only finite many applications of
b,,’s are possible with a contradiction that a,, will not be chosen.

(e) Unboundedness: d.3 and d.4 allow us now to show that the sequence {||w;||}:>1 is
unbounded. Assume that at stage ¢ the element n is the smallest index such that {a,,, w;) is
positive.

For n > 7 we know from d.3 that |(e;, w;)| = 1/In(n + 1) forall i, N(n) < i <n
Hence, forn > 7,

—{€j, Wyt1) =

ol — N e w2 “ 1 n—1—N(n)
el ; Res wl” i=%(:n) (In(n +1))? g (In(n +1))?
_n—1—[1+]logy(nln(n +1))] . n= 3 logy(nln(n +1))
(In(n + 1))? ~ (In(n + 1))2 (In(n + 1))?
Furthermore,
logy(nin(n + 1)) _ In(n) + In(In(n + 1))) _ 2
(In(n + 1))? In(2)(In(n +1))2  ~ In(2)’
since In(z) < x for all z > 0 and In(n + 1) > 0. Hence,
9 n—3 2
[[w]|” =

(In(n+1))2 In(2)

134



The right side goes to infinity in 7 and, since for every n there is a ¢ at which a,, is chosen
due to d.4, the norm of w; crosses any boundary at one time ¢. ]

Corollary 2. There exists a continuous kernel on [0, 1], a Borel probability measure on
[0, 1] which assigns positive measure to open subsets of [0, 1] and an initialization for
which the algorithm does not converge with a 1/t rate to m.

Proof. We consider the Hilbert space (H, {-, -)) from Proposition [f] with the corresponding
feature map ¢ : [0, 1] — H. Define the continuous kernel function k(x,y) := (p(x), ¢(y))
on [0, 1] and let the corresponding RKHS be (I, (-, -)). The geometry of the two spaces is
closely related. We have for scalars a;,b; and z;,y; € [0,1],7i =1,...,n,j = 1,...,m,

that
yj 9 ) .

Furthermore, we know that the Bochner-integral m € 7 lies in cch ¢[X'] which equals
the closure of ch¢[X] [30][Thm. 5.2, p.71] and there exists a sequence {n;};n, n; €
N, elements z;; € [0, 1], and non-negative weights a;; with >.7* | a;; = 1 such that the
sequence {s; = Z?;l a;;¢(;;) }ien converges to m in norm, i.e. |m — s;|| — 0 for i — oo.
The corresponding sequence {5; = >.7* | a;;k(zij,-)) }ien is a Cauchy sequence in K since

Zaiqb(xi),ijﬂyj ZZ k(z;,y;) = (Z aik(z;, ),
i=1 j=1 =

1=1j5=1

HMS

15: = 5illic = llsi = il
and has a limit n € K because K is complete. In particular, for any x € X
(0, E(z, ) = (m, ¢(x))] = [(n = 55, k(x, ) + (Si, k(2, ) = (80, 0(x)) + (si = m, ¢(x)))]
< k() [n =il ¢ + l¢(@)]l, [m = sill, — 0 (ind)
and (n, k(x,-)) = (m, ¢(x)) forevery x € X. Furthermore, for arbitrary [ points z1, ..., x; €
X and scalars ay, . . ., a; it holds that (n, Y._, a;k(z;,-)) = (m, Zézl a;¢(z;)) and
vl = lmllgl < Hinlle = I5illcl + TISille = lsillal + [llsillz, = llmlly,|

which also goes to 0 in 7 and therefore ||n||,. = ||m|],,.
The function k(x,-) : X — H is continuous and therefore Bochner-integrable with
respect to P. Denote the Bochner integral with 0’ = {k(z,-) dP. For any z € X

n(z) = (n,k(z,)) = (m, ¢(x)) = E(), ¢(x)) = Ek(x, ) = (W, k(z,)) = w'(z)

and n = n'’.
Now if the algorithm is applied in (KC, (-, -)) with the initialization k(zo, -), where zg
is the element in X’ that maps to the initialization ¢ () that we use in Proposition [6] then
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sequences of elements x; and of weights w; are generated. The weights w; are of the form
k(xo,-) + X_, k(z;,-) — tn. The sequence xy, Ty, ... also maximizes the objective in
(H,<-,-)). This can be seen by an induction over the weights w; € H that are generated by
the algorithm. The induction step is the following.

= (k(l‘o, ‘)7 k(xt-Fl? )) + Z<k<xlv ’)7 k<xt+1> )) - t(ll, k(*rt-l-l? ))

_ <¢(Q;O) n Zt: d(z;) — tm, ¢($t+l>> = (W, P(T141)) -

From Proposition [ we can now infer that the sequence {||w; ||, }ien = {||we|| Hen is un-
bounded and the algorithm does not converge with the fast rate in /C. ]
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