
This is a repository copy of Compressed Empirical Measures (in finite dimensions).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/224476/

Preprint:
Grunewalder, Steffen (2024) Compressed Empirical Measures (in finite dimensions). 
[Preprint] 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/224476/
https://eprints.whiterose.ac.uk/


Compressed Empirical Measures

(In Finite Dimensions)
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Abstract

We study approaches for compressing the empirical measure in the context of finite

dimensional reproducing kernel Hilbert spaces (RKHSs). In this context, the empiri-

cal measure is contained within a natural convex set and can be approximated using

convex optimization methods. Such an approximation gives rise to a coreset of data

points. A key quantity that controls how large such a coreset has to be is the size of the

largest ball around the empirical measure that is contained within the empirical convex

set. The bulk of our work is concerned with deriving high probability lower bounds on

the size of such a ball under various conditions and in various settings: we show how

conditions on the density of the data and the kernel function can be used to infer such

lower bounds; we further develop an approach that uses a lower bound on the smallest

eigenvalue of a covariance operator to provide lower bounds on the size of such a ball;

we extend the approach to approximate covariance operators and we show how it can

be used in the context of kernel ridge regression. We also derive compression guaran-

tees when standard algorithms like the conditional gradient method are used and we

discuss variations of such algorithms to improve the runtime of these standard algo-

rithms. We conclude with a construction of an infinite dimensional RKHS for which

the compression is poor, highlighting some of the difficulties one faces when trying to

move to infinite dimensional RKHSs.
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1 Introduction

Many methods in machine learning and statistics make use of the empirical measure which

is effectively a representation of the data. Reducing the number of points on which the em-

pirical measure is supported, while preserving most of the information that is necessary for

inference, can result in a significant speed-up of algorithms without sacrificing accuracy.

We study the question of how to compress the empirical measure while preserving infor-

mation in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs). To

give an overview of our results it is useful to introduce the key objects of our investigation.

We are generally concerned with data taking values in some set X . Often we will assume

this set to be compact. We then look at a kernel function k defined on X and the corre-

sponding RKHS H. For various results, it is useful to assume that the functions in H are

continuous or even Lipschitz-continuous. Our main interest lies in the unknown distribu-

tion P of data X1, . . . , Xn where we assume throughout that X1, . . . , Xn are independent

and identically distributed. We adopt a common convention from the empirical process

theory literature and will denote by Pf the integral
ş
fpxq dP pxq whenever f P L1pX , P q.

Since P is unknown it is common to use the empirical measure Pn as a surrogate, where

Pnf “ p1{nq řn

i“1 fpXiq. There is a useful interplay between the measures P and Pn

3



and RKHSs. Whenever kpX1, ¨q is Bochner-integrable with respect to P we can define

m “
ş
kpx, ¨q dP pxq P H and it follows that

xm, hy “ Ph, for all h P H.

Similarly, by defining mn “ p1{nq řn

i“1 kpXi, ¨q we have that xmn, hy “ Pnh for all h P H.

Our aim in this paper is to find an element m̄n such that

}m̄n ´ mn} « }mn ´ m}

to guarantee that }m̄n ´ m} is of the same order as }mn ´ m} and m̄n can be used in place

of mn without sacrificing significant accuracy in applications.

To gain such an approximation m̄n, we make use of another fortunate circumstance.

The element m does not only lie in H but within the convex set

C “ cch tkpx, ¨q : x P X u,

where cch denotes the closed convex hull. This is useful because the extremes of C are

contained within the set tkpx, ¨q : x P X u and often we can reduce the study of C to

studying the interaction between kpx, ¨q and functions h P H. For instance, the width of C

in a direction h P H, }h} “ 1, is

width hpCq “ sup
xPX

xkpx, ¨q, hy ´ inf
xPX

xkpx, ¨q, hy “ sup
xPX

hpxq ´ inf
xPX

hpxq.

The set tkpx, ¨q : x P X u is usually infinite and not directly useful for algorithms. However,

when using mn, we have another convex set in H that is usable, that is the empirical convex

set Cn “ ch tkpXi, ¨q : i ď nu which contains mn. The extremes of Cn are contained

within the finite set tkpXi, ¨q : i ď nu.

Standard techniques like the conditional gradient method or the kernel herding algo-

rithm are directly applicable to approximate mn by convex combinations of tkpXi, ¨q : i ď
nu. The kernel herding algorithm generates an approximation of the form p1{lq řl

i“1 kpXιi , ¨q,

where ι : t1, . . . , lu Ñ t1, . . . , nu is some selection of data points and l ď n. The data

points Xιp1q, . . . , Xιplq themselves can be seen as a coreset for the data set. This approach

is visualized in Figure 1.(i). The conditional gradient method does not provide such an

average but an arbitrary convex combination of the points kpX1, ¨q, . . . , kpXn, ¨q and can-

not be used directly to find a coreset. However, a coreset is often not necessary and many

algorithms can work directly with an approximation of m or related quantities; we demon-

strate this in Section 1.5 and Section 5. The advantage of the conditional gradient method

when compared to the kernel herding algorithm is that it usually leads to a vastly superior

compression of the data.

Crucially, the performance of these techniques depends on the size of the largest ball

in Cn that can be centered at mn. The existence of such a ball is in itself already of major

4
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Figure 1: (i) The figure depicts how a subset or coreset of the sample is selected: the data

is embedded in H by using the kernel function of H. An approximation algorithm is then

applied to the convex polytope in H to find an approximation of m that uses only a few

extremes of the convex polytope. The pre-images of these extremes are the sample points

that are selected as the coreset. (ii) For most statistical problems approximating m itself

is insufficient and one has to approximate closely related quantities. In the case of least-

squares regression, one has to approximate the operator Cy,n P {H d H (see Section 1.9 and

Section 3 for the definitions), which is closely related to the empirical covariance operator,

and a ‘weighted’ mean embedding my,n P R1 bH. It is often of interest to approximate Cy,n
and my,n simultaneously, for instance, when building a coreset for least-squares regression.

This can be achieved by considering the direct sum p {H d Hq ‘ pR1 b Hq and a ‘direct

sum’ of the convex polytopes in the two spaces. The relation between the extremes of the

convex polytopes is highlighted in the figure through the dotted lines; i.e. an algorithm will

select a pair that is connected by a dotted line and by selecting such a pair of extremes the

approximation of both the covariance and mean element will change.

importance for the performance of the techniques and is known as Slater’s condition. In

this paper, our main focus lies on the derivation of high probability lower bounds on the

size of such a ball around mn within Cn. Figure 2 outlines our approach. In (i) the setting is

shown with mn P Cn Ă C and the largest ball around mn in Cn is drawn. One of the main

difficulties is that both mn and Cn are stochastic and change with the sample. We sidestep

this difficulty by analyzing C and m, and relating the empirical quantities Cn and mn to C

and m. Standard techniques from empirical process theory suffice to control the deviations

between the empirical versions and their population limits (Figure 2.(iv)). There are at least

two useful approaches to control the size of the largest ball around m within C. The first

approach is sketched in (ii) and (iii): first, we lower bound the width of C uniformly over a

range of ‘directions’ h in H (Figure 2.(ii)). Then we determine how centered m lies within

5



- -

S g

l

n n

n a

(i) (ii) (iii) (iv)

C

Cn

mn

h1 h2
h3

•ma

b

h1 h2

h3

Figure 2: The figure summarizes some of the key questions we address in this paper: (i)

This is the central question in this paper; ‘how large a ball exists within the empirical

convex setCn around mn?’ (ii) This question can be addressed by first controlling the width

of C itself in different directions h1, h2, . . . P H. The width in such a direction h is the size

of the projection of C on the span of the function h P H. Lower bounds on the width that

hold simultaneously for all relevant h translate to the existence of a ball in C; furthermore,

the size of the ball is directly related to the lower bounds on the width. (iii) We need not just

any ball in C but one that is centered at m. Now, generally, m can lie close to the boundary

and no large ball around it might exist. However, under certain natural conditions, it can be

ruled out that m will lie too closely to the boundary. In particular, under these conditions,

we can control the ratio of a{b for the segments shown in the figure. Controlling this ratio

for all relevant h P H allows us to show that there exists a ball around m in C. (iv) To

translate this back to Cn and mn we are making use of empirical process theory to control

the convergence of Cn Ñ C and mn Ñ m which allows us to lower bound the size of a

ball around mn in Cn with high probability. Similarly to (ii) we control the convergence

per direction h and then use high probability guarantees that hold simultaneously for all

relevant h.

C in each direction h (Figure 2.(iii)). Combining these two arguments, we can derive a

lower bound on the size of the largest ball around m in C. The second approach is quite

different in that it does not try to control the width of the set C explicitly. Instead, it uses

the spectrum of the covariance operator to derive lower bounds on the largest ball around

m in C. In particular, a simple argument using the Paley-Zygmund inequality goes a long

way and leads to lower bounds that are controlled by the smallest non-zero eigenvalue of

the centered covariance operator.
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1.1 Lower bounding the width of C

When trying to control the width of C the first thing one notices is that we seem to know

relatively little about C. Even the RKHS H itself is usually only accessed through k and

we do not have easy access to a basis of H. So it might come as a surprise that there is a

relatively simple way to access the width of C. The key to bounding the width is that

widthhpCq “ 2 inf
cPR

}h ´ c1}8,

where h P H, }h} “ 1, and 1 is the constant function that is equal to 1 everywhere. This

relationship holds because

sup
gPC

xh, gy ´ inf
gPC

xh, gy “ sup
xPX

xh, kpx, ¨qy ´ inf
xPX

xh, kpx, ¨qy “ sup
xPX

hpxq ´ inf
xPX

hpxq.

The relevance of this equality is that it reduces the problem of measuring the width to the

problem of measuring how well constant functions can be approximated by functions in

the RKHS. The question of how well certain functions can be approximated by RKHS

functions is well understood when the RKHS is infinite dimensional. In particular, the

K-functional is a common tool to control the approximation quality, and results about the

K-functional can be brought to bear to provide bounds on the width of C. However, in

the finite dimensional setting, these results are of limited use. We develop for this case

a simple approach to measure how well constant functions can be approximated: if the

constant functions do not lie in the RKHS H then we can construct a new RKHS H` by

introducing the kernel function k` “ k ` 1 b 1, where k is the kernel of H. The RKHS

H` then contains the constant functions and H Ă H`. In fact, we have an isometric

embedding of H into H`. Now, in H` it is easy to measure how well constant functions

can be approximated by functions in the unit sphere of H. In detail,

inf
hPH,}h}“1

inf
cPR

}h ´ c1}H` “ 1.

There are different ways to move from the norm of H` to } ¨ }8 which we summarize in

Lemma 1 on p. 36. One of these approaches applies if k` is a Mercer kernel and λ̃d`1 ą 0

is the smallest eigenvalue in the series expansion. In this case

2λ̃
1{2
d`1 ď widthhpCq,

for all h P H, }h} “ 1.

If the constant functions lie already in H then a different approach is necessary. Let

us mention that we only need to control the width of C within the affine subspace that is

spanned by it. Since xkpx, ¨q,1y “ 1 for all x P X we can observe that the space spanned

by 1 is perpendicular to the affine subspace of C. To get a lower bound on widthhpCq for

7



functions h in the affine subspace we can consider the kernel k´ “ k ´ }1}21 b 1 and

the corresponding RKHS H´. The constant functions do not lie in H´ and H´ can be

isometrically embedded in H. Most importantly the functions h P H´ of norm }h}H´ “ 1

are exactly the directions in which we need to bound the width ofC. Now, with an approach

analogous to the one involving H and H` we get a lower bound of the form

2λ̃
1{2
d ď widthhpCq,

for all h P H´, }h}H´ “ 1, and with λ̃d being the smallest eigenvalue of the Mercer

decomposition of the kernel k. Proposition 1 on p. 44 contains these results and results

about related approaches to bound the width.

1.2 Locating m within C

Controlling the width of C alone is insufficient since m might lie in the boundary of C. We

need to complement the lower bounds on the width with results that tell us how centered

m lies. This can be achieved by controlling the ratio a{b and b{a of the segments along

any function h from m to the boundary as depicted in Figure 2.(iii). An observation that

is useful in this context is the following: if we have a probability measure on R which has

a mean value of zero and there exists some measurable set B with inf B ě ϵ ą 0 and

P pBq ą 0, then there will be probability mass on the negative axis since otherwise

0 “
ż

R

x dP “
ż

r0,8q
x dP ě

ż

B

x dP ě ϵP pBq ą 0.

A similar argument applies to C and m. For instance, if we have a uniform distribution

on the boundary of the ellipse shown in Figure 2.(iii), then m cannot lie in the boundary:

otherwise, there would exist a function h P H, }h} “ 1, such that xh, kpx, ¨qy ě xh,my for

all x P X and an ϵ ą 0 such that A “ tx : xh, kpx, ¨q ´ my ě ϵu has non-zero measure.

Hence,

0 “
ż

xh, kpx, ¨q ´ my dP pxq ě ϵP pAq ą 0.

Combining this argument with a Lipschitz assumption on the kernel function and a lower

bound on the density allows us to show that m has to lie away from the boundary. How far

away it has to lie is made precise in Proposition 2 on p. 52.

1.3 Convergence of Cn to C

To transfer the results about C and m to Cn and mn we use VC and Rademacher arguments

to bound the difference between Cn and C, and mn and m. For controlling }mn ´ m} a

8



standard argument suffices. However, it is less clear how to best control the difference

between Cn and C.

The approach that we are taking is the following. We consider indicators χtxkpX, ¨q ´
m, hy ď ´cu where X is a random variable with the same distribution as X1, . . . , Xn and c

is a constant that we vary. Observe that whenever

PχtxkpX, ¨q ´ m, hy ď ´cu ą 0

then there is a point x P X , such that xkpx, ¨q ´ m, hy ď ´c, or in other words, there is

a point which lies c away from m along h. A VC argument allows us to control all these

indicators simultaneously over all h in the unit ball of H and to show that for any such h,

|PnχtxkpX, ¨q ´ m, hy ď ´cu ´ PχtxkpX, ¨q ´ m, hy ď ´cu|,

is small for sufficiently large n. This allows us to show thatCn converges along h towardsC

with a certain rate and since we have guarantees that hold uniformly over the unit ball in H
we can derive a rate of convergence of Cn to C. A similar approach works for Rademacher

complexities with the main difference being that we have to approximate the indicator

functions with continuous functions.

Both approaches rely on a lower bound on the probability that hpXq attains values

below a threshold. We use two different approaches to get such lower bounds: the first

approach uses an assumption on the the density (lower bounded away from zero) and a

Lipschitz assumption on the functions in H. The second approach uses assumptions on the

covariance operator. The second approach is more general in the sense that assumptions on

the density imply a certain behavior of the covariance operator but our density assumption

is certainly not the only way to control the covariance operator. On the other hand, the

assumption on the covariance operator is quite abstract while the density assumption is in

a sense very concrete.

Combining these different arguments allows us to control the size of the ball around

mn. In particular, our first theorem combines the Rademacher approach with a density

assumption (Theorem 1 on p. 60). This approach brings together some of the results on

the width of C, the location of m and the convergence results to show that for large enough

n there is with high probability a ball of a certain radius around mn in Cn. In detail, there

exists a ball of size δ with the dominant term of δ being

2c̃λ̃
pl`1q{2
d βl

pl ` 1qLl ,

where X “ r0, 1sl, L is the Lipschitz constant, λ̃d the smallest eigenvalue of the Mercer

decomposition of k, c̃ ą 0 is a lower bound on the density of the law of X1 on X and βl is

the Lebesgue measure of the l-dimensional unit ball in Rl.

9



With probability q P p0, 1q there then exists a ball of radius δ{4 around mn in Cn
whenever n is greater than

n ě
˜a

2 logp1{qq ` 96}k}1{2
8 {δ

c̃βlpδ{8Lql

¸2

_
˜
4}k}1{2

8 ` 3
a
2 logp1{qq

δ{4

¸2

.

We can observe that δ is strongly dependent on the dimension l of the space X . This

stems from our approach: we identify a point x0 P X which corresponds to an element

kpx0, ¨q P H that lies far away from m. We then identify a second point x1 such that kpx1, ¨q
lies in the opposite direction of kpx0, ¨q with respect to m. If the space is low dimensional

then kpx1, ¨q needs to lie far from m to counter the mass that is accumulated around kpx0, ¨q
and, thus, m lies reasonably centered between kpx0, ¨q and kpx1, ¨q. However, when the

space is high dimensional then no single point kpx1, ¨q has to lie far away from m because

the mass accumulated around kpx0, ¨q can be countered by ‘many points’ that lie close to

m and m can lie significantly closer to the boundary.

To contrast this worst-case bound with the best-case scenario, observe that there is a

point in C such that a ball of radius 2λ̃
1{2
d lies around it within C. The factor λ̃

1{2
d itself

is in all likelihood tight and reflects the fact that the convex set C is very small in certain

directions.

1.4 Assumptions on the spectrum of the covariance operator

An alternative approach to controlling the width of C in different directions h P H and

then determining how centered m lies in each direction is to use assumptions on the covari-

ance operator. In fact, the argument that involves the covariance operator is considerably

simpler: when

Eph2pXqq ´ E2phpXqq ě λ̄ ą 0

for some positive λ̄ then |hpXq| must attain large enough values with some non negligible

probability. Furthermore, when h is a bounded function then both phpXq´EphpXqqq` and

phpXq ´ EphpXqqq´ must be large with a non-negligible probability. A simple argument

involving the Paley-Zygmund inequality suffices to make these statements precise. To get

a lower bound on the largest ball around m in C we have to control all h in the unit ball

with this approach. In terms of the spectrum of the covariance operator this means that we

have to use the smallest non-zero eigenvalue of the covariance operator as λ̄.

Another advantage of the covariance operator approach is that it adapts nicely to set-

tings where the distribution has support S that is not equal to X . Effectively, algorithms

like the CGM or kernel herding work implicitly with a subspace of H that is isometric to

an RKHS HS with kernel kæS ˆ S (the restriction of k to S ˆ S) and for HS we have

a covariance operator that has the same non-zero eigenvalues as the covariance operator

10



for H. Hence, we can use the same λ̄ for HS as for H and we can control the largest ball

around mS in HS through this argument. Theorem 2 on p. 62 is based on that argument.

1.5 Adapting the approach to concrete statistical problems

Most methods for inference do not use m itself but related quantities. For example, in

the least squares problem, where we try to fit observations Yi through fpXiq with some

function f in an RKHS, we have

1

n

nÿ

i“1

pfpXiq ´ Yiq2 “ 1

n

nÿ

i“1

xf b f, kpXi, ¨q b kpXi, ¨qyb ´ 2

n

nÿ

i“1

xf, YikpXi, ¨qy ` 1

n

nÿ

i“1

Y 2
i

“ xf b f,CnyHdH ` 2xf,my,ny ` 1

n

nÿ

i“1

Y 2
i ,

where we denote by H d H the tensor space H b H when the functions are restricted

to the diagonal ∆ “ tpx, xq : x P X u, Cn “ p1{nq řn

i“1 kpXi, ¨q b kpXi, ¨q æ ∆ and

my,n “ p1{nq řn

i“1 YikpXi, ¨q.

There are significant similarities between the problem of compressing mn and that of

compressing Cn or my,n. We discuss these in Section 3. Let us highlight a few results.

The empirical covariance operator Cn can be dealt with quite easily by associating it to

the element p1{nq řn

i“1 κpXi, ¨q, where κpx, yq “ k2px, yq. This way one can apply all the

results we developed for mn to Cn, one only has to substitute κ for k.

Dealing with the element my,n is more challenging and there is a certain degree of

freedom of how to phrase the compression problem. A natural and simple choice is to

consider YikpXi, ¨q as the random elements which attain values in H. A first indicator

that things are more complicated is that when Yi is unbounded then we run into serious

problems when trying to define a bounded convex set that contains p1{nq řn

i“1 YikpXi, ¨q.

Things simplify if we assume boundedness of the Yi and make some natural assumptions

about how the data is generated. In particular, if we assume that X1, . . . , Xn are i.i.d.

and Yi “ f0pXiq ` ϵi, where f0 is some bounded measurable function, the ϵi’s are i.i.d.,

centered, independent of X1, . . . , Xn and bounded by |ϵi| ď b a.s., then my,n converges to

my “
ż
f0pX1qkpX1, ¨q dP P H

and my is contained in the convex set

Cy “ cch tpf0pxq ˘ bqkpx, ¨q : x P X u.
In this setting there is also a simple relationship between the width of Cy and C: consider

some h P H, }h} “ 1, then

widthhpCyq ě bwidthhpCq
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and results on widthhpCq are applicable. The downside of this approach is that the con-

vergence of the empirical convex set towards Cy can be very slow since the |ϵi| might only

have a low probability of attaining values close to b. This problem can be circumvented

by using an alternative approach. Instead of considering the convergence of the empirical

convex set to a suitable population limit we can directly work with the empirical convex

set and analyze how deep the empirical mean element lies within that set. We develop

this approach in Section 3.3.1. The discussion in that section cumulates in Proposition 2,

which provides lower bounds on the radius of a ball that is centered on the empirical mean

element my,n and which is contained within the empirical convex set.

We extend this approach to the case of unbounded Yi by using random variables uYi
that are capped at a certain, n dependent, threshold. There are a variety of technical chal-

lenges that have to be overcome to make this approach work. In particular, one has to

verify that the empirical mean element corresponding to the capped random variables is

close the empirical mean element of the original variables when the threshold of the cap is

selected appropriately. Also, one has now to work with a family of covariance operators

corresponding to the different thresholds and the corresponding capped random variables.

We show that the lowest eigenvalues of these covariance operators are close the the lowest

eigenvalue of the original covariance operator if the threshold for the cap is set in the right

way. Proposition 3 contains the details of that result.

Simultaneous approximation. Up to now we considered the approximation problems in

isolation but it also makes sense to try to approximate Cn simultaneously to my,n by se-

lecting elements YikpXi, ¨q that reduce the approximation error for both elements. Quite a

different set of techniques are needed to deal with this simultaneous approximation prob-

lem. In Section 3.4 we develop an approach based on direct sums of Hilbert spaces to deal

with this problem. The analysis is much more intricate and interesting than for the indi-

vidual approximation problems. In Figure 1.(ii) the high level approach is visualized. The

space {H d H is the space of functions HdH when trivially extended from X to RˆX and

the space R1 bH is an RKHS with kernel function ppy1, x1q, py2, x2qq ÞÑ xy1, y2yRkpx1, x2q
which is also defined on R ˆ X . The convex sets we introduced above have natural ana-

logues in {H d H and in R1 ˆ H. By taking the direct sum of these spaces we also get a

sort of direct sum of these convex sets and we are trying again to control quantities like

the width of that set. The particular problem of approximating Cn simultaneously to my,n

is benefiting from the fact that {H d H X pR1 b Hq “ t0u. This allows us to define an

RKHS that is isometrically isomorphic to the direct sum. The analysis of the simultaneous

approximation problem then breaks down to studying the empirical mean element and the

empirical convex set within that RKHS.

The situation that the two Hilbert spaces that we combine through the direct sum are not

overlapping is rather special. For instance, if we try to approximate m and C simultaneously

12



then the Hilbert spaces overlap, which adds another layer of difficulties. We are developing

for this case a quotient space approach that factors out the intersection between the two

Hilbert spaces. An interesting finding in this context is that the direct sum cannot be related

directly to an RKHS but, like in the case of approximating m and C simultaneously, the

affine subspace spanned by the convex set can be isometrically isomorphic to an RKHS

which then allows us to use results we developed for RKHSs (see Lemma 5, p. 95).

When we apply the conditional gradient method to the above RKHSs then we will not

end up with a coreset of data points but with elements in {H d H,R1 bH or {H d H‘ pR1 b
Hq. However, that is not a major obstacle and it is for various problems quite easy to adapt

the algorithms to deal with these approximations; we highlight that approach for kernel

ridge regression in Section 5.

1.6 Implications for algorithms

The various results that we derived to control the size of the largest ball around mn in Cn
can be translated directly to results for algorithms like the CGM. In particular, we can give

high probability guarantees on the approximation error when the CGM is being run for t

iterations and we can give guarantees on the expected size of a coreset when the kernel

herding algorithm is used with a stopping criterion that is an error of below n´1{2. The

corresponding results are contained in Section 4.

One problem with these algorithms is that they require an upfront computation of order

Opn2q which is too high for large-scale data. Standard approaches to scale the CGM to

large-scale problems do not seem to yield direct computational advantages but there are

some interesting directions to explore. In particular, a divide-and-conquer approach has

some intriguing features. The performance of the approach depends to a large extent on the

bias of the algorithms (CGM or kernel herding). Section 4 contains a detailed discussion

of these ideas.

1.7 Slow rate of convergence in infinite dimensions

It was observed in [3] that the proof technique used to derive fast rates of convergence

for the kernel herding algorithm and the conditional gradient method cannot be applied to

compact sets in infinite dimensional RKHSs since compact sets in such spaces do not con-

tain norm balls. It was later found that there are general limits to how well the representer

of the empirical measure can be approximated. In particular, [27, Thm.3.1] states that there

exists a set of n points x1, . . . , xn in Rd, for large enough d and n ě d, such that for any set

of points y1, . . . , yl with l ă
?
dn{2 it holds that

}1
l

lÿ

i“1

kpyi, ¨q ´ 1

n

nÿ

i“1

kpxi, ¨q} ą }k}´1
8 n´1{2,
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under mild assumptions on the kernel. This implies that for this particular set of elements

x1, . . . , xn there cannot be any significant compression of the element m “ p1{nq řn

i“1 kpxi, ¨q.

The argument in [27] is not stochastic and is not concerned with draws of samplesX1, . . . , Xn

from a distribution, but it seems likely that the argument can be extended to provide restric-

tions on how well mn can be approximated by a core-set of points in high probability

(over the values that mn attains). Nevertheless, there is hope to circumvent the barries

erected by this theorem. First of all, the construction uses approximations of the form

p1{lq řl

i“1 kpyi, ¨q and not arbitrary convex combinations of the elements kpyi, ¨q, i ď l. A

greedy algorithm to find such a core-set of points y1, . . . , yl requires generally significantly

more points than algorithms that approximate mn with convex combinations of elements

kpyi, ¨q. An interesting question is therefore if there exists an inherent limitation for ap-

proximating with core-sets that can be avoided by more general convex combinations, or if

this difference in performance is simply due to the algorithms (kernel herding vs. CGM).

There is a simple argument that hints at the former: consider the set X “ r0, 1sdX for

some positive dX P N and a continuous kernel function k : X ˆ X Ñ R whose corre-

sponding RKHS is infinite dimensional and separable. The set C is then compact and for

any orthonormal basis teiuiě1 of H it holds that supfPCxei, fy ´ infgPCxg, eiy converges

to zero as i Ñ 8. The rate with which this series converges is in all likelihood of crucial

importance for determining how well mn can be approximated. Therefore, let us introduce

dpPUi
C,Cq “ sup

fPC
}PUi

f ´ f},

where Ui is the subspace spanned by e1, . . . , ei and PUi
is the orthogonal projection onto

this subspace. Now, Caratheodory’s theorem tell us that for i ě 1 there exists a convex

combination pmi of i ` 1 elements kpx1, ¨q, . . . , kpxi`1, ¨q such that

}mn ´ pmi} ď dpPUi
C,Cq.

In other words, when dpPUi
C,Cq is of order i´α, for some α ą 0, and if we are aiming for

an approximation error of n´1{2 then we need approximately n1{2α many points. Further-

more, when dpPUi
C,Cq falls exponentially fast, say with order expp´iq, then logpnq many

points suffice.

Another important aspect of the compression problem that is not captured by the the-

orem is the dependence of the compression problem on the distribution of the data. For

example, in [3] a lower bound on the density of the distribution was crucial for deriving

fast rates of convergence in certain settings. This is because such properties of the density

translate directly to geometric properties of the approximation problem (the existence of

a ball around mn in Cn). Similarly, in this paper, we use the size of the largest non-zero

eigenvalue of the covariance operator to control the rate of convergence. One might won-

der if such properties also influence the compression performance in infinite dimensional
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Figure 3: The figure shows lower bounds on |xen, wy| in dependence of the first element

am that has not yet been chosen. The shaded area is a lower bound on ∥w∥ when m “
1020. The norm of w goes to infinity in m which implies that the kernel herding algorithm

converges with a rate that is slower than 1{t.

RKHSs. To this end, we provide an example that shows that an assumption on the density

alone will in all likelihood be insufficient. The example we construct is not universal in

the sense that we show that the kernel herding algorithm does not achieve its fast rate of

1{t of approximation in this example. As in the example from [27], we construct a par-

ticular target m and do not consider the empirical version mn. However, our construction

incorporates properties of the underlying probability measure and might serve as a start-

ing point for more refined analyses that use properties of the distribution of the data. The

counter-example is constructed for the kernel herding algorithm and not the conditional

gradient methods since the behavior of the kernel herding algorithm is easier to control

but we strongly suspect that similar problems will also occur with the conditional gradient

method.

In detail, the example we construct shows that there exists a continuous kernel on r0, 1s,
a Borel probability measure on r0, 1s which assigns positive measure to open subsets of

r0, 1s, and an initialization for which the kernel herding algorithm converges with a slower

rate than 1{t when approximating the representer m of the probability measure (Theorem

3 on p. 122). The construction of this example is somewhat involved since we need to gain

control over the behavior of the kernel herding algorithm. The basic intuition, however, is

rather simple. We start with some infinite dimensional Hilbert space H and an orthonormal

sequence tenuně1 in it. The construction is best explained when assuming that m “ 0 (we

cannot set it exactly to 0 and need later a minor modification). We then construct a compact

convex set that contains elements tanuně1, tbnuně1, where each an is a positive multiple
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of en and each bn is a negative multiple of en. Furthermore, bn is of significantly smaller

magnitude than an. Consider now an initialization of the algorithm with an element c P H
which is of small magnitude compared to the an and has a positive inner product with each

an. Because of this positive inner product the different an’s will be chosen one by one

by the algorithm and because the bn’s are of small magnitude compared to the an’s hardly

any weight will be reduced in the directions en. This way the element wt, which measures

the approximation error at iteration t, builds up mass in the different directions en and

its norm grows in t. The construction is more involved than this sketch, but, a suitably

adapted version of this approach allows us to show that so much mass will be added to wt
that its norm diverges to infinity. This effect is visualized in Figure 3. The figure shows

four different wt as inner products with en (n being shown on the x-axis). The shaded

area continues past the right end of the plot (the limit of the shaded area is given in the

legend: 105 for the black line etc.). One can observe that the right limit of the shaded area

grows significantly from the black line to the red line, i.e. from 105 to 1020. While the

right limit grows exponentially the left limit hardly changes. This is due to the small scale

of the bn’s. As a result the overall mass in the shaded area, which corresponds to ∥wt∥,

diverges to infinity. This implies then directly that the algorithm cannot converge with the

fast rate of 1{t that is achieved under similar assumptions in the finite dimensional setting.

All that then remains to complete the example is to show that there exists a continuous

kernel that gives rise to this setup. We construct first a continuous function ϕ : r0, 1s Ñ H
that goes over all an and bn and we then use this Hilbert space and the continuous function

to construct an RKHS with a continuous kernel function.

1.8 Literature

The concept of a coreset is known for at least two decades and there is a wide range of

literature on its application to machine learning, Bayesian statistics and geometric approx-

imation problems (e.g. [4, 1, 21]). It is natural to apply the conditional gradient method

[17] in that context (e.g. [21]).

The kernel herding algorithm and the conditional gradient method are greedy approx-

imation algorithm as they choose at each stage t an element that minimizes the remaining

error. Greedy algorithms will generally not return the best possible approximation that can

be achieved in t steps but they are easy to compute. This is a big advantage since in the

large data context computational efficiency is paramount. Greedy algorithms for approx-

imating functions have been popular at least since the late nineties. An overview of the

most popular approaches is provided in [32]. The approach is here to make use of a ba-

sis of a function space, say of a Sobolev or Besov space, to approximate elements inside

these function spaces in a greedy fashion. An important generalization is to use so-called

dictionaries which are families of functions that are not necessarily linearly independent,

i.e. there are redundancies in the representation of elements in the function space. These
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approaches are very natural if one has access to a basis or related families of functions. In

contrast to this approach, we are interested in approximating subsets of the function space

that are naturally described by point-evaluators, a kernel function, or, more generally, a set

of extremes of a convex set. Instead of working then with linear subspaces of the func-

tion space we are working with convex subsets of the function spaces and we apply greedy

algorithms to approximate elements inside such convex sets.

The methods we are studying compress the sample into a potentially small subset of the

original sample while retaining optimal, or nearly optimal, rates of convergence. While our

approach is inspired by various optimization methods there are links to sample compres-

sion schemes as introduced in [24, 16]. Sample compression schemes are concerned with

the inference of ‘concepts’, which are indicators χA, A a Borel subset of some topological

space X . In this setting, one has given a set of concepts that contains the concept χA, or

are sufficient to approximate χA in a suitable way, and one likes to infer χA from observa-

tions px1, y1q, . . . , pxn, ynq, xi P X , yi P t0, 1u. A sample compression scheme compresses

these observations into a subset that is sufficient to reconstruct the original labels yi for all

xi, i ď n, if the observations are consistent with some concept χA1, where χA1 is con-

tained in the predefined set of concepts. Compressibility is directly linked to VC-theory:

in [16] it is shown that, under some technical conditions, sets with VC-dimension d are

d-compressible, meaning that one can always reduce the sample to a sub-sample of size d

while still being able to reconstruct the sample in the above sense. Furthermore, it is not

possible to compress the sample to less than d-points without losing the reconstructability

property. Our aim is quite different in that we do not care about being able to reconstruct

the original labels. In that sense our approach is more closely related to sufficient statis-

tics which compress the data to facilitate inference. That being said, there are interesting

parallels. For instance, Caratheodory’s theorem tells us that, in our setting, there is a com-

pression of the data down to d` 1-points if we work with a d-dimensional RKHS; such an

RKHS has VC-dimension d.

Naturally, there are a variety of alternative approaches to deal with large scale data in

the RKHS context. In particular, when the RKHS is finite dimensional with dimension

d it is straight forward to represent mn using a basis expansion: take points X1, . . . , Xd

such that kpX1, ¨q, . . . , kpXd, ¨q are linearly independent and apply the Gram-Schmidt or-

thogonalization procedure to gain a basis e1, . . . , ed of H then m can be written as a

linear combination of e1, . . . , ed which implies that it can be written as a linear com-

bination of kpX1, ¨q, . . . , kpXd, ¨q. In more detail, the coefficients α1, . . . , αd, such that

mn “ řd

i“1 αikpXi, ¨q, can be computed recursively by first computing the basis represen-

tation through

xe1,my “ xkpX1, ¨q,mny{kpX1, X1q
...

17



ci “ xkpXi, ¨q,mny ´
i´1ÿ

j“1

xkpXi, ¨q, ei´jyxei´j,mny

xei,mny “ ci{}kpXi, ¨q ´
i´1ÿ

j“1

xkpXi´j, ¨q, ejyej},

and then to link this back to the coefficients of kpX1, ¨q, . . . , kpXd, ¨q. To perform this

Gram-Schmidt procedure it is necessary to compute kpXi, Xjq for all i, j ď d. In other

words, we need in the order of d2 many kernel evaluations. This is a negligible factor

when d ! n. Similarly, one can solve concrete statistical problems, like a linear regression

problem, by using a d ˆ d covariance matrix instead of the kernel matrix; one way to gain

such a covariance matrix is to use again the Gram-Schmidt procedure. Our aim in this

paper is not to compete with these methods in terms of runtime performance in the context

of d ! n, but to gain insights into the behavior of greedy algorithms in the absence of

complications that arise in infinite dimensional settings.

The question of how to construct coresets for m has garnered significant attention in

recent years. In [14] a good overview is given that covers recent approaches most of which

focus on the infinite dimensional setting. In the context of finite dimensional RKHSs it is

worth mentioning the paper [20] which studies linear kernel functions and shows that under

certain conditions they can achieve a compression down to n1{2.

1.9 Preliminaries

Throughout this paper we will be working with a set X in which covariates or features

attain values and a kernel function k : X ˆ X Ñ R (see [26, Def.2.12]). Recall that such a

kernel function gives rise to an RKHS H [26, Def2.14]. While X does not need a particular

structure to define a kernel on, we are interested in integrals involving k and we will assume

for most of our results that X is a measureable space and k is a measurable in the sense

that kpx, ¨q : X Ñ R is measurable for all x P X . This is equivalent to saying that any

h P H is a measurable function from X to R (see [31, Lem.4.24]). We also use the notation

ϕpxq “ kpx, ¨q when this is convenient.

We are making use of empirical process theory in various places and to ease the appli-

cation we will assume that our underlying probability space corresponds to a product space

and the involved random variables are coordinate projections following essentially [13,

Sec.3.1]. In detail, we will usually have a probability space pΩ,A, µq with independent and

identically distributed random variables X,X1, X2, . . . attaining values in pX ,AX q, where

X is a topological space and AX is a σ-algebra on X , which are defined on this probability

space. Natural choices for AX are the Borel-algebra or the domain of a Radon measure.

We usually do not need assumptions on AX but at various points we need to guarantee that

the support of the law P ofX is well defined. In these cases we typically assume that P is a
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τ -additive topological measure and AX is its domain. Alternatively, we could assume that

P is a Radon measure which guarantees that P is a τ -additive topological measure (see [18,

411]). This is for a wide range of spaces not a strong assumption. In particular, if X is a

Polish space then it is a Radon space [18, 434K(b)] and the completion of a Borel measure

on X is a Radon measure [18, 434F(a.iii), 211L]. Ω will usually be the product X N and for

ω P Ω, Xipωq “ ωi P X for all i ě 1, and Xpωq “ ω0. There are multiple natural choices

for the σ-algebra A. In [13, Sec.3.1] A is the product σ-algebra which is the one that is

generated by the cylinder sets, that is the smallest σ-algebra such that all cylinders which

are defined by finite many coordinates are measurable. We use in this paper the completion

of this σ-algebra as A. If we have pairs pXi, Yiq, where Xi attains values in X and Yi in

R then we use the same setting but let pXi, Yiqpωq P X ˆ R. We reserve P for the law

of the random variables, e.g. the law of X , and use Pr if we want to state probabilities of

events in A. In particular, hpXq P L1pΩ, µq if, and only if, h P L1pX , P q and, in this case,ş
hpXq dµ “

ş
h dP . The empirical measure Pn is p1{nq řn

i“1 δXi
, where δxpAq “ 1 when-

ever A P BX and x P A; otherwise δxpAq “ 0. It is often useful to associate a measure

space to Pn to be able to talk about random variables with law Pn. For this purpose we

will use the measure space pX ,BX q and equip it with the random measure Pn. A random

variable will be the measurable function X̃ : X Ñ X , X̃pxq “ x. If we want to talk about

a sequence of independent random variables with law Pn we use the product space with the

product measure assigned to it.

Separable processes and Rademacher complexities. There are generally various mea-

surability concerns when working with empirical processes. In this paper these can essen-

tially be avoided by using separability of H to guarantee that suprema are measurable. In

the context of Rademacher complexities we use separability of H typically in the follow-

ing way. Assume we have x1, . . . , xn P X , let F be the unit ball of H and let ϵ1, . . . , ϵn
be i.i.d. Rademacher variables. The map h ÞÑ řn

i“1 ϵihpxiq is almost surely continu-

ous on H. In particular, suphPF
řn

i“1 ϵihpxiq is almost surely equal to a supremum over

a countable subset of F and, due to completeness of the probability space, it follows that

suphPF
řn

i“1 ϵihpXiq is measurable. In particular, the Rademacher process is a separable

stochastic process [19, Def.4.1.2] and we have

E
`
sup
hPF

nÿ

i“1

ϵihpXiq
˘

“ sup
FĂF ,F finite

E
`
sup
hPF

nÿ

i“1

ϵihpXiq
˘
. (1)

When we have i.i.d. variables X1, . . . , Xn which are independent of ϵ1, . . . , ϵn we will rep-

resent this probability space as a product space. It is common to condition wrt. X1, . . . , Xn

and to study Eϵ
`
suphPF

řn

i“1 ϵihpXiq
˘
, where Eϵ denotes Kolmogorov’s conditional ex-

pectation with respect to X1, . . . , Xn. Fubini’s theorem guarantees us in this setting that

we can express Eϵ as an integral wrt. the marginal measure corresponding to ϵ1, . . . , ϵn.
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Bochner integrals and Lppµ,Hq. We need in various places vector valued integrals. In

particular, we make use of Bochner integrals and Hilbert-space valued Lp spaces. Let

pΩ,A, µq be a probability space and X a random variable that attains values in X then byş
fpXq dµ, f : Ω Ñ H Bochner integrable, we mean the Bochner integral of the function

fpXq : Ω Ñ H with respect to the measure µ. The Hilbert space valued Lp spaces, where

1 ď p ă 8, corresponding to this measure space are given by

Lppµ;Hq “ tf : Ω Ñ R : f Bochner measurable and

ż
}fpωq}p dµpωq ă 8u.

The seminorm on Lppµ;Hq is }f}pp “
ş

}f}p dµ. We use bold fonts for the Lppµ;Hq semi-

norms throughout this paper. As usual there are corresponding spaces Lp of equivalence

classes with norms } ¨ }p under which these Lp spaces are complete. The space L2pP ;Hq
is a Hilbert space with the inner product corresponding to the bi-linear function x¨, ¨y2 on

L2pµ;Hq given by xf, gy2 “
ş
xfpωq, gpωqy dµpωq whenever f, g P L2pµ;Hq. Of particular

importance to us is the Bochner integral
ş
kpX, ¨q dµ P H which is well defined whenever

kpX, ¨q P L1pµ;Hq and H is separable. We will denote this integral by m. Finally, we have

the following important relation between the inner product in H and Bochner integrals:

whenever f P L1pµ;Hq and h P H then according to [12, Thm.6,p.47],

xh,
ż
f dµy “

ż
xf, hy dµ.

In rare occasions we will make statements about equivalence classes and not functions

itself. We use the notation f ‚ to denote the equivalence class corresponding to f , i.e. if

f P L2pµq then f ‚ P L2pµq and, similarly, for Hilbert space valued functions.

Tensor products. In various parts of this paper we make use of the tensor product of

two Hilbert spaces H1 and H2. One way to define this tensor product is to first define an

algebraic tensor product of the vector spaces H1 and H2; given that we are only working

with Hilbert spaces of functions it is natural to define the algebraic tensor product as

tf : X ˆ Y Ñ R : fpx, yq “
nÿ

i“1

gipxqhipyq, gi P H1, hi P H2, n P Nu,

where we assume that functions in H1 map from X to R and functions in H2 from Y to R.

That this is a tensor product for H1 and H2 can be verified by applying Criterion 2.3 in [11].

Next, we equip the algebraic tensor product with the inner product xg1 b h1, g2 b h2yb “
xg1, h1y1xg2, h2y2, e.g. [25, Thm.6.3.1], and complete the resulting pre-Hilbert space. In the

case where H1 and H2 are RKHSs with kernels k1 and k2 we have bounded point evaluators

for elements in the pre-Hilbert space, i.e. xh1 b h2, k1px, ¨q b k2py, ¨qyb “ h1pxqh2pyq for
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all x P X , y P Y , h1 P H1 and h2 P H2. Due to [2, second theorem on p.347] there is

then a unique functional completion of the algebraic tensor product and we will use this

completion when working with RKHSs. We do not use the algebraic tensor product itself

and, in the following, will reserve the notation pH1 b H2, x¨, ¨ybq for the above defined

tensor product of the two Hilbert spaces, that is H1 b H2 is a Hilbert space with inner

product x¨, ¨yb, and, whenever H1 and H2 are RKHSs, H1 b H2 is a Hilbert space of

functions. In fact, in the latter case H1 bH2 is an RKHS with kernel k̃ppx1, y1q, px2, y2qq “
k1px1, y1qk2px2, y2q. See also [26, Thm.5.11].

When X, Y are independent random variables under the measure µ attaining values in

X1,X2, k1, k2 are kernel functions on X1 and X2 respectively, g P H1, h P H2, and the

Bochner integrals
ş
k1pX, ¨q dµ,

ş
k2pY, ¨q dµ,

ş
k1pX, ¨q b k2pY, ¨q dµ are well defined then

xg b h,

ż
k1pX, ¨q b k2pY, ¨q dµyb “

ż
gpXqhpY q dµ “

ż
gpXq dµ

ż
hpY q dµ

“ xg,
ż
k1pX, ¨q dµy1xh,

ż
k2pY, ¨q dµy2 “ xg b h,

ż
k1pX, ¨q dµ b

ż
k2pY, ¨q dµyb.

Since this holds for all g b h, g P H1, h P H2,
ż
k1pX, ¨q b k2pY, ¨q dµ “

ż
k1pX, ¨q dµ b

ż
k2pY, ¨q dµ. (2)

There is another natural way to define a tensor product for two RKHSs H1 and H2 that

is often of use. Here, we identify the tensor product with a rank one operator mapping from

H1 to H2. To distinguish it from the above definition we will use gpbh, g P H1, h P H2,

to denote this tensor product. Whenever f, g P H1, h P H2, the tensor product is defined

by pgpbhqpfq “ xg, fyH1
h P H2. Furthermore, we can define an inner product on this

tensor space by letting xf1pbf2, h1pbh2ypb “ xf1, h1yH1
xf2, h2yH2

, f1, h1 P H1, f2, h2 P H2.

Using Parseval’s identity one can observe that is just the usual inner product of the space

HSpH1,H2q of Hilbert-Schmidt operators and span tgpbh : g P H1, h P H2u lies dense in

HSpH1,H2q. It is therefore natural to use HSpH1,H2q as the completion of the algebraic

tensor product defined in terms of rank one operators. We will therefore denote the inner

product between such tensors by x¨, ¨yHS .

Covariance operators. A first application of this tensor product leads us to covariance

operators. The covariance operator C̃ : H Ñ H, given by xC̃g, hy “ EpgpXqhpXqq, is

linear (xC̃pαf ` gq, hy “ αEpf ˆ hq ` Epg ˆ hq “ xαC̃pfq ` C̃pgq, hy for all h P H
and, therefore, C̃pαf ` gq “ αC̃pfq ` C̃pgq whenever f, g P H, α P R) and is bounded

whenever H can be continuously embedded in L2pX , P q, i.e. for some c ą 0, }h}2 ď
c}h} for all h P H, since then }C̃}op “ sup}f}“1 }C̃f} “ sup}f}“1 sup}h}“1 |xC̃f, hy| “
sup}f}“1 sup}h}“1 |Epf ˆ hq| ď sup}f}“1 sup}h}“1 }f}2}h}2 ď c2. In fact it is a Hilbert-

Schmidt operator whenever H is separable and kpX,Xq P L2pµq because then for any
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orthonormal basis tenunPN of H,
ř
n,mPN |xC̃en, emy|2 ď Eppř

nPN |xen, kpX, ¨qy|2q2q “
Epk2pX,Xqq due to Beppo Levi’s theorem. In this case C̃ is also self-adjoint and the

spectral theorem applies. Furthermore, we can write the covariance operator as a Bochner-

integral of the tensors kpx, ¨qpb kpx, ¨q, i.e. C̃ “
ş
kpx, ¨qpb kpx, ¨q dP . This Bochner in-

tegral is well defined and attains values in HSpHq whenever
ş

}kpx, ¨qpb kpx, ¨q}HS dP “ş
kpx, xq dP ă 8 and H is separable. Separability of H is important in this context be-

cause it implies that HSpHq is separable and Bochner measurability, that is necessary for

the Bochner integral above to be well defined, is not a restrictive assumption [11, App.B12].

Observe that there is close relationship between the eigen-decomposition of C̃ and the

expansion of the integral operator Tk : L
2pP q Ñ L2pP q, pTkfqpyq “

ş
fpxqkpx, yq dP pxq.

Whenever H is infinite dimensional and Mercer’s theorem applies there exists an orthonor-

mal sequence te‚
i uiě1 in L2pP q and corresponding values tλ̃iuiě1 in R such that ei are

eigenfunctions of Tk with eigenvalues λ̃i and tλ̃1{2
i eiuiě1 is an orthonormal basis for H.

Furthermore, xC̃ei, ejy “ EpeipXqejpXqq “ xei, ejyL2pP q “ δij and λ̃
1{2
1 ei, λ̃

1{2
2 e2, . . . are

the eigenvectors of C̃ with corresponding eigenvalues λ̃1, λ̃2, . . .. Also notice that for all

y P X , pTk1qpyq “
ş
kpy, xq dP “ xkpy, ¨q,my “ mpyq whenever the Bochner integralş

kpx, ¨qdP is well defined. Since Tk1 and m are real valued functions defined on X that

are equal for all y P X it follows that Tk1 “ m.

The covariance operator as described above is giving us the second moments but not the

covariance itself. The centered version C̃c “ C̃ ´ mpbm gives us the covariance itself, i.e.

EppfpXq ´ EpfpXqqqpgpXq ´ EpgpXqqqq “ xC̃cf, gy for any f, g P H. This operator is

also self-adjoint under suitable conditions on the kernel and has a spectral decomposition.

Direct sum. Another construction that we need is the direct sum of two Hilbert spaces

H1 and H2. The direct sum H1 ‘ H2 is the Cartesian product tpg, hq : g P H1, h P H2u
equipped with the inner product xpg1, h1q, pg2, h2qy‘ “ xg1, g2y1 ` xh1, h2y2 [28, p.40,

Ex.5]. We do not assume here that H1 X H2 “ t0u.

2 Approximating convex sets and locating m and mn

We start this section with a discussion of a simple approach for approximating convex sets

using ε-nets. We will find that such an approximation is of very limited use only which

motivates the remainder of the paper. In this remainder we analyze a stochastic approach at

length where we consider the random convex set which is induced by the sample. In detail,

we control the difference between the empirical convex set Cn corresponding to the sample

and its population limit C using VC-theory and Rademacher complexities in Section 2.2.

Such tools are not necessary for the finite dimensional setting but the question of conver-

gence of the empirical convex set to its population limit can easily be developed for the
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infinite dimensional setting. In particular, the approach based on Rademacher complexities

applies directly to infinite dimensional RKHSs. In Section 2.3 we study the width of the

convex set C. We link here lower bounds on the width of C to how well constant functions

can be approximated within the unit ball of the RKHS. Building up on these sections we

study how deep m lies within C in Section 2.4. We also look in this section at an approach

based on covariance operators which adapts automatically to the support of the unknown

measure. Finally, in Section 2.5 we translate these findings to mn and we provide our main

theorems in this section which give high probability bounds on the size of balls within the

empirical convex set which are centered at mn.

2.1 Approximation based on ε-nets.

Let H be an RKHS of real-valued functions acting on X “ r0, 1sd with kernel function

k being bounded by 1. Furthermore, let ϕ : X Ñ H be the map ϕpxq “ kpx, ¨q and

mn “ 1
n

řn

i“1 ϕpxiq for certain points x1, . . . xn P X . For ε ą 0 there exists an ε-net

for r0, 1sd that consists of Nε,d “ rdd{2{εds many closed balls that are centered at points

y1, . . . , yNε,d
in r0, 1sd. This ε-cover of r0, 1sd gives rise to a cεα-cover of ϕrX s “ S if ϕ

is α-HÈolder continuous with Lipschitz constant c. Let si “ ϕpxiq for all i ď n and s1
i the

closest point to si in ϕrty1, . . . , yNε,d
us. Then the approximation m1

n “ 1
n

řn

i“1 s
1
i of mn,

which can be written as a sum over at most Nε,d many terms, achieves an approximation

error of

}mn ´ m
1
n} ď 1

n

nÿ

i“1

}si ´ s1
i} ď cεα.

If we want to achieve an approximation error of at most n´1{2 then we need to include

rdd{2pc2nqd{p2αqs many balls in the cover. If c ě 1 then we can only represent mn with less

than n-points if d “ 1 and α ą 1{2. The Lipschitz constant c is here only of limited help if

we choose our kernel independent of n.

We can also observe that a fine cover is necessary for good approximation if we do not

impose assumptions on the measure and on m. For instance, consider again X “ r0, 1sd
and a kernel k such that kpx, xq “ 1 for all x P X and such that 1 ´ kpx, yq ď c}x´ y} for

some constant c ą 0 and any x, y P X . Furthermore, assume that we have a cover centered

at ld points x1, . . . , xld then there exists a point x0 with miniďl }x0 ´ xi} ě 1{2l. If we

consider now the measure with unit mass on x0, i.e. m “ kpx0, ¨q, then the error, when

approximating the expected value of the norm one function h “ kpx0, ¨q, is

|xm, hy ´ xmn, hy| “ }m}2 ´
lÿ

i“1

αikpxi, x0q ě c

2l
.

Hence, to attain an approximation error of order n´1{2 we need a cover consisting of at

least nd{2 many points.
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2.2 Empirical convex sets

In the following, let H be a separable RKHS and let Cn “ ch tϕpXiq : i ď nu be the

set valued random variable determined by X1, . . . , Xn. The variable Cn attains values in

the closed convex subsets CpHq of H. There exists various natural topologies on CpHq
(see [7]). We equip CpHq with the Vietoris topology and the corresponding Borel-Effron

σ-algebra. The random variable Cn is then well defined as a measurable map from Ω to

CpHq. The random variable Cn tends to C “ cch tϕpxq : x P X u as n tends to infinity. We

aim to quantify how similar Cn is to C. We do so by framing the question of convergence

in the context of empirical process theory. In the following discussion we assume that X is

compact, H is finite dimensional with dimension d, and the corresponding kernel function

k is continuous. In particular, }k}1{2
8 “: b is finite.

Observe that we can reduce the question of convergence of Cn to C to the question of

how fast the projection ofCn on some direction u P H, }u} “ 1, converges to the projection

of C on u. More specifically, if we can control the convergence uniformly over all such

u then we have control of the convergence of Cn to C. Furthermore, since Cn and C are

convex we only need to control the end points of the projections; these points correspond to

projections of extremes of Cn and C onto span tuu. With this aim in mind, let us introduce

the functions fu,cpxq “ χtupxq ď cu, fu,c : X Ñ R, for u P H, }u} “ 1, and with c going

through the interval txu, hy : h P Cu “ ch tupxq : x P X u or a superset of this interval.

The importance of the functions fu,c is that Pfu,c ą 0 if, and only if, there is an element

h P C such that xh, uy ď c (given that there is non-zero mass on that element or the mass of

all elements whose projection falls below c is strictly greater than zero). For instance, if C

contains the origin then we could vary negative c’s to explore the extension of the projection

of C in direction u. Since the extremes of C are a subset of S :“ tϕpxq : x P X u and the

probability measure is concentrated on S it is sufficient to work with elements in S instead

of all of C. This setup is depicted in part (i) and (ii) of Figure 4.

The situation is similar for the empirical convex set. The empirical convex set will con-

tain an element which lies c away from the origin in direction u if, and only if, PnpupX̃q ď
cq ą 0, with X̃ being a random variable with law Pn (see the preliminaries in Section 1.9).

Notice that the condition PnpupX̃q ď cq ą 0 is equivalent to miniďn upXiq ď c.

VC-theory. To be able make use of this approach to quantify the difference between C

and Cn we need to control the convergence of Pnfu,c to Pfu,c simultaneously over all these

fu,c. One simple way to do this is to use VC theory. Since we are working here with finite

dimensional RKHSs this is rather straight forward. In detail, whenever u P H, }u} “ 1,

then |upxq| ď b and we can use r´b, bs as the interval over which we vary c. Hence, let

F “ tfu,c : u P H, }u} “ 1,´b ď c ď bu.
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We want to show that F is a VC-subgraph class of functions. In fact, it is convenient

to work with a countable dense subset of F to sidestep measure theoretic complications

relating to the empirical process. To this end, let H̃ be a countable dense subset of H such

that H̃ X tu : }u} “ 1, u P Hu lies dense in tu : }u} “ 1, u P Hu and define the countable

set F̃ “ tfu,c : u P H̃, }u} “ 1, c P pQ X r´b, bsq Y t´b, buu Ă F .

The family F is a VC-subgraph class and its VC-dimension is upper bounded by d` 1:

consider the family of function G “ span pHYtc1 : c P Ruq. The dimension of G is at most

d ` 1 and c ´ upxq P G for every u P H, ´b ď c ď b. Applying [13], Theorem 4.6, shows

that the VC dimension of PospGq “ tpospgq : g P Gu, where pospgq “ tx : gpxq ě 0u, is

at most d ` 1. Furthermore, the family G 1 of sets of the form tpx, tq : x P pospgq, t ď 1u,

g P G, has the same VC-dimension. But G 1 is a family of subgraphs that contains all the

subgraphs of functions in F and the claim follows. Since F̃ Ă F it also follows that F̃ is

a VC-subgraph class with VC-dimension at most d ` 1.

The family F̃ has the measurable envelope χX and, due to [19, Thm3.6.9], its covering

numbers can be bounded by

NpF̃ ,L2pQq, εq ď 4p8{ε2qd`2 _ c̃,

where c̃ can be chosen as maxtm P N` : logm ě m1{pd`1qpd`2qu and whenever Q is a

probability measure on X . Be aware that the ν-index as defined in [19] is equal to one plus

the VC-dimension when using the definition of [13] for the VC-dimension.

Now, applying HÈolder’s inequality,

Jpδq “
ż δ

0

sup
Q

b
log 2NpF̃ ,L2pQq, εq dε ď δ plogp2c̃q _ p1 ` 2pd ` 2qqq1{2

.

In particular, Jp1q ď
?
log 2c̃_

a
1 ` 2pd ` 2q. By Remark 3.5.5 and Theorem 3.5.4 from

[19] we can conclude that

Epsup
fPF̃

|Pnf ´ Pf |q ď 12Jp1qn´1{2.

We use now Bousquet’s version of Talagrand’s inequality to move to a high probability

bound (e.g. [19], Theorem 3.3.9). For simplicity, we will denote the supremum over u, c,

such that fu,c P F̃ , by supu,c in the following. Let Sn “ supu,c | řn

i“1pfu,cpXiq ´Pfu,cq| “
n supu,c |Pnfu,c´Pfu,c|. Observe that }Pfu,c´fu,c}8 ď 1 andESn “ nEpsupu,c |Pnfu,c´
Pfu,c|q. Applying Talagrand’s inequality yields

e´x ě Pr

ˆ
max
jďn

Sj ě ESn `
a
2xp2ESn ` nq ` x{3

˙

for all x ě 0. In particular, with probability at least 1 ´ expp´xq,

sup
u,c

|Pnfu,c ´ Pfu,c| ď 12Jp1qn´1{2 ` n´1{2
b
2xp24Jp1qn´1{2 ` 1q ` x{3n. (3)
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Rademacher complexities. As is usually the case with metric entropy based bounds, the

constants are loose and n needs to be large to gain useful results. Tighter bounds can often

be attained by using Rademacher complexities (see [5, 19]). While the resulting bounds

are generally tighter it is not possible to work directly with the indicator functions fu,x but

we need a continuous approximation of these. Also, in the Rademacher approach that we

develop it is beneficial to center the functions h P C by moving to Cc “ th ´ m : h P Cu.

In the following, let F “ tpu, cq : u P H, }u} “ 1,´b ď c ď bu and F̃ “ tpu, cq : u P
H̃, }u} “ 1, c P pr´b, bs X Qq Y t´b, buu. Furthermore, consider the function ψγ : R Ñ R,

with γ ą 0, defined by

ψγpxq “

$
’&
’%

1 x ď ´γ,
´x{γ ´γ ă x ă 0,

0 0 ď x.

Then fu,cphq “ χtxu, hy ď cu ě ψγpxu, hy ´ cq for any u, h P H and ´b ď c ď b.

The function ψγ is depicted in part (iii) of Figure 4. Importantly, ψp0q “ 0 and |ψγpxq ´
ψγpyq| ď |x´ y|{γ, that is γψγp¨q is a contraction vanishing at zero (see [19, Thm3.2.1] or

[23, Thm4.12]).

We have that Pnfu,c`xu,my ě Pnψγpxu, ϕp¨q´my´cq. The proof of [19, Thm3.4.5] gives

us a high probability lower bound on the latter term (in the notation of the book, combine

Sn ă ESn `
a
2x{n with ESn ď 2ES̃n). In detail, with probability 1´ p, simultaneously

for all u P H̃, }u} “ 1, and c P pr´b, bs X Qq Y t´b, bu, we have have the following lower

bound on Pnψγpxu, ϕp¨q ´ my ´ cq,

Pψγpxu, ϕp¨q ´ my ´ cq ´ 2E
`

sup
pu1,c1qPF̃

| 1
n

nÿ

i“1

ϵiψγpxu1, ϕpXiq ´ my ´ c1q|
˘

´
c

2 logp2{pq
n

,

where ϵi are i.i.d. Rademacher variables that are independent of X1, . . . , Xn. Because γψγ
is a contraction vanishing at zero

E
`

sup
pu1,c1qPF̃

ˇ̌ 1
n

nÿ

i“1

ϵiψγpxu1, ϕpXiq´my´c1q
ˇ̌˘

ď 2

γ
E

`
sup

pu1,c1qPF̃

ˇ̌ 1
n

nÿ

i“1

ϵipxu1, ϕpXiq´my´c1q
ˇ̌˘
.

Applying [5, Thm12 (7) and Lem22] and using that the Rademacher complexity for the

constant functions xu1,my ` c1, pu1, c1q P F̃ , where |xu1,my ` c1| ď b ` |c1| ď 2b, is upper

bounded by 4bn´1{2,

E
`

sup
pu1,c1qPF̃

ˇ̌ 1
n

nÿ

i“1

ϵipxu1, Xiy ´ c1q
ˇ̌˘

ď 4bn´1{2 ` E
`
p2{nq

` nÿ

i“1

kpXi, Xiq
˘1{2˘ ď 6bn´1{2

and simultaneously for all pu, cq P F̃ with probability 1 ´ p,

Pnψγpxu, ϕp¨q ´ my ´ cq ě Pψγpxu, ϕp¨q ´ my ´ cq ´ p
a
2 logp2{pq ` 24b{γqn´1{2.
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(i) (ii) (iii)

C

span tuu

ppupxqq

upxq
c

1
0

c

c ´ γ

Graph of ψγpupxq ´ cq

Figure 4: (i) The figure show C as a subset of H. The diagonal (blue) line is the span tuu
for some function u P H, }u} “ 1, The short lines connecting this line to the ellipse indicate

the projection of C on span thu. In particular, the distance between the two short lines is

width upCq. The long line which is orthogonal to span tuu (red) indicates a threshold;

the interest is here if C extends past this threshold. (ii) The question if C extends past the

threshold is rephrased in this figure by focusing on span tuu and considering the probability

that values upxq are attained that lie beyond the threshold. In this figure, we assume for

simplicity that the measure on C induces a density function ppyq through the projection

on span tuu, where y goes over the range of u. The threshold is in this figure set to ´c
and C extends past the threshold if the density function is non-zero to the left of ´c. (iii)

To link this construction to the empirical measure we use the function ψγ whose graph

is plotted in this figure against upxq. The motivation is here to appromxiate the indicator

function corresponding to the event upXq ď ´c from below by a continuous function. The

parameter γ controls the approximation and for γ Ñ 0 the function ψγ converges to the

indicator function.

The VC and Rademacher bounds allow us to control the size of the empirical convex

set in terms of Pfu,c and Pψγpxu, ϕp¨q ´ my ´ cq. In either case we need to get a handle

on P to move further. In particular, we need to understand how P concentrates around the

extremes of C. We are now looking at a few examples to get a better understanding of how

P concentrates and what this implies for the convergence of the empirical convex set to C.

Of major importance is how smooth ϕ : X Ñ H is and how the distribution of X1, . . . , Xn

on X looks like. We start with a couple of simple examples and discuss links to stochastic

geometry before addressing typical settings that one faces in practice.

2.2.1 Example 1: Unit circle

Consider the unit circle in R2 with the uniform distribution on it. What can we say about

the interior of Cn as a function of n? In particular, what can be said about the size of

Cn in direction u P R2, }u} “ 1? Due to the symmetry of the unit sphere and because

the uniform distribution is used it is sufficient to consider the vector u “ p1, 0qJ. The
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probability that a sample point, when we sample just once, lies to the right of cu, with

c P r´1, 1s, is p1{2πq
ş2π
0
χtxu, pcos θ, sin θqJy ě cu “ arccospcq{π, using here that arccos

is a monotonically decreasing function. Similarly, the probability that a sample point lies

to the left of cu is 1 ´ arccospcq{π. Furthermore, if we draw n independent samples then

the probability to see at least one sample point to the right of cu is 1 ´ p1 ´ arccospcq{πqn
and that at least one sample point lies to the left of cu is 1 ´ parccospcq{πqn. Moving on

to the distribution of the length of the interval, which corresponds to the projection of Cn
onto u, that is the distribution of width pu, Cnq, we can observe that width pu, Cnq attains

values in r0, 2s and that width pu, Cnq “ maxi cos θi ´ mini cos θi, where we denote with

θi independent and uniformly distributed random variables on r0, 2πq. We could now try

to calculate the distribution of width pu, Cnq by controlling the maximum and minimum.

Since we are interested in getting a better understanding of the VC and Rademacher ap-

proach we use instead the uniform guarantees on Pnfu,c. Let X be the unit circle and let

the kernel function be kpx, yq “ xx, yyR2 . This way H becomes the dual space pR2q1 of

R2: recall that a basis of pR2q1 is given by xe1, ¨yR2 , xe2, ¨yR2 , where e1, e2 is the standard

basis in R2, and for any i, j P t1, 2u, xxei, ¨yR2 , xej, ¨yR2ypR2q1 “ xei, ejyR2 . Since e1, e2 lie in

X it holds for any i, j P t1, 2u, xxei, ¨yR2 , xej, ¨yR2ypR2q1 “ xkpei, ¨q, kpej, ¨qy and the claim

follows.

Associate to u P R2 the function ũ P H given by ũpxq “ xu, xyR2 . Let H̃ be a countably

dense subset of H such that tu : u P H̃, }u} “ 1u lies dense in the unit sphere of H. Define

F “ tfũ,c : u P H, }u} “ 1,´1 ď c ď 1u and F̃ “ tfũ,c : u P H̃, }u} “ 1,´1 ď c ď 1u,

where fũ,cpxq “ χtũpxq ď cu “ χtxu, xy ď cu. The family of functions F̃ is a VC-

subgraph class and on an event of probability at least p it holds simultaneously for all

fũ,c P F̃ that

Pnfũ,c ě Pfũ,c ´ n´1{2ξn “ 1 ´ arccospcq{π ´ n´1{2ξn,

where ξn “ 12Jp1q `
a
2 logp1{pqp24Jp1qn´1{2 ` 1q ` logp1{pqn´1{2{3. We use here that

the uniform distribution on the unit circle is invariant under rotations, i.e. for a given u let

A be the rotation matrix for which Au “ p1, 0qJ. Then,

Pfũ,c “ 1

2π

ż 2π

0

χtxAu,Apcospθq, sinpθqqJy ď cu “ 1

π

ż π

0

χtcospθq ď cu.

In other words, on an event of probability p, whenever n is such that n´1{2ξn ă 1{2, and

for any c ą cospp1 ´ n´1{2ξnqπq, there will be a sample point which has an inner product

with u which is smaller than c. To be exact, let c0 ă 0 be a real number strictly larger than

cospp1 ´ n´1{2ξnqπq and let the above event be denoted by B. It holds that P pBq ě p and

for any ω P B, miniďnxu,Xipωqy ď c0. In fact, the VC-argument shows that B can be

chosen such that P pBq ě p and for all ω P B,

sup
uPH,}u}“1

min
iďn

xu,Xipωqy ď c0.
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From this we can infer that a ball centered at the origin and of radius c0 is contained in

the empirical convex set Cnpωq, whenever ω P B: consider without loss of generality the

vector v “ pc0, 0qJ and an element ω P B. There exist elements Xj such that Xjpωq lies

on the unit circle and x´v,Xjpωqy ď c20, that is xv,Xjpωqy ě }v}2. Let Xipωq be such an

element which also attains the maximum of the map j ÞÑ xv,Xjpωqy.

Assume that Xipωq does not lie in span v and that Xipωq lies north of span v, i.e.

xXipωq, p0, 1qJy ą 0. Consider the lines between Xipωq and the elements Xjpωq, j ď
n, j ­“ i. There will be an index j0 ď n, j0 ­“ i, such that the line between Xipωq and

Xj0pωq intersects with span v. Consider the vector w “ p0,´c0qJ. There will be a sam-

ple point Xj1pωq such that xw,Xj1pωqy ě }w}2 and the line between Xipωq and Xj1pωq
crosses span v. Order the samples according to how large the inner product between the

point of intersection of the line between the sample and Xipωq and v is. Let Xj2pωq be the

maximum in this ordering. Assume that xXj2pωq, vy ă }v}2, that is the intersection lies

to the left of v. Let ṽ be the point on the circle with radius c0 for which the line between

Xipωq and Xj2pωq is tangent and which lies to the right of the line. There is now a point

Xj3pωq on the sphere such that xXj3pωq, ṽy ě }ṽ}2. The point Xj3pωq cannot lie north of

v since this would contradict the maximality of Xipωq. However, if Xj3pωq lies south of

v then the line between Xj3pωq and Xipωq crosses span v further to the right than the line

between Xj2pωq and Xipωq which contradicts the maximality of Xj2pωq.

Hence, we have either two points to the right of v, one on the north side and one on

the south side of the sphere, or the point p1, 0qJ is contained in the sample. By the same

argument, either p´1, 0qJ is contained in the sample or there are two points left of ´v, one

on the north side and one on the south side. The convex hull of these points is a subset of

Cnpωq and contains v.

To provide a concrete example, let p “ 0.9 and observe that the c̃ which appears in

the bound of Jpδq can be chosen as 1021. Then Jp1q ď 8 _ 3 “ 8 and ξn ď 96 `a
2 logp10qp192n´1{2 ` 1q ` n´1{2 logp10q{3. Hence, a ball of radius 0.2 exists around the

origin inside the empirical convex set with probability p for n being about 52000 or larger.

As expected n needs to be large to guarantee the existence of the ball or radius 0.2.

Using Rademacher complexities we can attain significantly tighter bounds in this setting.

Building up on our discussion and using m “ 0 we can see that

Pnψγpxu, ¨y ´ cq ě Pψγpxu, ¨y ´ cq ´ p
a
2 logp2{pq ` 12{γqn´1{2.

Finally, by using a rotation of u and with cγ “ pc ´ γq _ ´1 it follows that

Pψγpxu, ¨y ´ cq “ 1

π

ż π

0

ψγpcospθq ´ cq “ 1 ´ arccospcγq
π

` 1

πγ

ż arccospcγq

arccospcq
pc ´ cospθqq

“ 1 ´ arccospcγq
π

p1 ´ c{γq ´ c arccospcq
πγ

` 1

πγ
p
?
1 ´ c2 ´

b
1 ´ c2γq.

29



For instance, with γ “ 1 and c ă 0 this leads to

Pnψγpxu, ¨y ´ cq ě cp1 ´ arccospcq{πq `
?
1 ´ c2

π
´ p

a
2 logp2{pq ` 12qn´1{2.

The bound guarantees in this case the existence of a ball of radius 0.2 around the origin

within the empirical convex set with probability at least 0.9 when n is about 5000, a 10-

fold improvement in the constant over the VC-bound. While the bound is significantly

better it does not come close to capture the right magnitude: even a number as small as

n “ 10 suffices in experiments for the empirical convex set to contain a ball of radius 0.2

with high probability.

2.2.2 Example 2: Polytopes with finitely many extremes

Let us consider next a simple polytope. Let H “ Rd with the usual inner product and

kpx, yq “ xJy. Furthermore, consider C “ ch txi : i ď mu with x1, . . . , xm P Rd and

such that the random variable X attains values in tx1, . . . , xmu and PrpX “ xiq ě α ą 0

for all i ď m. Then for all u P H, }u} “ 1, |c| ď }k}1{2
8 either Pfu,c “ 0 or Pfu,c ě α.

Hence, we have that Pnfu,c ą 0 with probability at least 1 ´ e´?
n whenever

n ě p12Jp1q `
a
2p24Jp1q ` 1q ` 1{3q2{α2.

In other words, for n that large the empirical convex set equals C on an event of probability

at least 1 ´ e´?
n.

If each of the xi is an extreme then we can compare this probability to the probability

that in n independent trials all m extremes are drawn: the probability that element i is not

drawn in n independent trials is 1 ´ PrpX “ xiqn and the probability that at least one

element i is not drawn is upper bounded by

Prp
ď

iďm

č

jďn
tXj ­“ xiuq ď

ÿ

iďm
p1 ´ PrpX “ xiqqn ď mp1 ´ αqn “ m expp´βnq.

where β “ ´ logp1 ´ αq. In other words, instead of 1 ´ e´?
n we get a probability of

1 ´ m expp´βnq that the empirical convex set matches the convex set C.

Consider now the special case of the d-dimensional simplex chS, with S “ t0, e1, . . . , edu
and e1, . . . , ed being an orthonormal basis in Rd. Furthermore, assume that each x P S has

probability 1{pd ` 1q to be sampled. The interior of the empirical convex set Cn is empty

unless all points have been sampled. Hence, in this example either intCn “ H or Cn “ C

and the interior of n does not grow slowly in size as n increases but changes abruptly.

As a final example consider a rhombus given by C “ ch te1,´e1, re2,´re2u where

e1, e2 are orthonormal vectors in R2 and r P p0, 1q. Furthermore, let X be uniformly

distributed on the boundary of C. We can again consider the functions fũ,c to measure the
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interior of the empirical convex set. However, in contrast to the unit circle the measure in

direction u that lies c apart from the origin is not the same for all u but depends strongly

on the direction. For instance, for direction ´e1 and c P p0, 1q it holds that Pf´ẽ1,´c “
2pp1 ´ cq

?
1 ` r2, where p denotes here the density of the uniform distribution on the

boundary, while for ´e2 we get Pf´ẽ2,´c1 “ 2pp1 ´ c1{rq
?
1 ` r2, for c1 P p0, rq. In

particular, for c “ 0.9, c1 “ 0.9r the probabilities Pf´ẽ1,´c and Pf´ẽ2,´c1 are equal and the

probability Pf´ẽ1,´c, which is spread out over an interval of length 0.1 in direction e1, is

contained in an interval of length 0.1r in direction e2 irrespective of how small r is.

2.2.3 Example 3: Image of a Lipschitz-continuous kernel function

Let us go back to the setting that we discussed at the beginning of the section. In detail, let k

be a continuous kernel function on compact set X that is upper bounded by b. Furthermore,

let us assume that the corresponding feature map ϕpxq “ kpx, ¨q is L-Lipschitz continuous

with Lipschitz constant L ą 0 and the law of X1, . . . , Xn has a density on X which is

lower bounded by b1 ą 0. We are now aiming to quantify the extension of the convex set

in a direction u after centering the convex set around m. In detail, for u P H, }u} “ 1, let

xu P X be a point at which c˚
u :“ xu, ϕpxuq ´ my “ minxPX xu, ϕpxq ´ my. As before, for

c P R, let fu,c “ χtxu, ϕp¨q ´ my ď cu and observe that |xu, ϕpxuq ´ ϕpxqy| ď L}xu ´ x}.

Therefore, with ru “ pc ´ c˚
uq{L and whenever c ą c˚

u,

Pfu,c ě
ż

X

b1 ˆ χtxu, ϕpxq ´ my ď cudx ě
ż

Bpxu,ruqXX

b1 “ b1 volpBpxu, ruq X X q.

For example, when X “ r0, 1s, u any element in H with }u} “ 1 and c ą c˚
u such that

xu ´ pc ´ c˚
uq{L ě 0, it follows that volpBpxu, ruq X X q ě ru and Pfu,c ě b1ru “

b1pc ´ c˚
uq{L.

This lower bound on Pfu,c can directly be combined with a metric entropy bound.

If we want to use instead a Rademacher complexity bound then we have to apply ψγ to

xu, ϕp¨q ´my ´ c. Under the above Lipschitz assumption for any u, }u} “ 1, and whenever

c˚
u ď c ´ γ,

1 “ ψγpxu, ϕpxq ´ my ´ cq ð c ´ γ ě xu, ϕpxq ´ my
ð c ´ γ ´ c˚

u ě xu, ϕpxq ´ ϕpxuqy ð c ´ γ ´ c˚
u ě L}x ´ xu}.

Also, ψγpxu, ϕpxq ´ my ´ cq is strictly positive whenever L}x ´ xu} ď c ´ c˚
u.

Let ru,1 “ pc´γ´c˚
uq`{L. For x P Bpxu, ru,1q we have that ψγpxu, ϕpxq´my´cq “ 1

which gives us right away the following lower bound

Pψγpxu, ϕp¨q ´ my ´ cq ě b1volpX X Bpxu, ru,1qq. (4)
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This bound can now be combined with the Rademacher complexity bounds. However, to

say anything concrete about the size of the empirical convex set some knowledge of c˚
u

is required. In the Section 2.3 we derive approaches to measure the width of C in any

direction, then we derive lower bounds on c˚
u. We combine these bounds in Section 2.5

with the above bound.

2.2.4 Example 4: Data attaining values in a subset

Working with empirical convex sets has the advantage that the empirical convex set is

adapted to the support of the distribution, if P has support S on X then Cn converges to

cch tkpx, ¨q : x P Su (see [18, Def.411N] for the defintion of support). Instead of showing

this under a density and Lipschitz assumption we are using an assumption on the covariance

operator.

A simple way to deal with S is to consider the space HS “ th æS : h P Hu which is

again an RKHS with kernel kS “ kæS ˆ S. We discuss HS and how covariance operators

are naturally adapted to S at length in Section 2.4.3. For the moment it is sufficient to note

that for all h P H,

xC̃ch, hy “ xC̃Sc hæS, hæSyHS
,

where C̃c is the centered covariance operator and C̃Sc the corresponding operator for the

RKHS HS . In Section 2.4.3 we also show that HS is naturally linked to the affine subspace

spanned by kpx, ¨q, x P S and that statements about the behavior of Cn can be derived

by analyzing HS . In particular, the eigenfunctions of C̃c which have eigenvalue zero are

almost surely constant on S and are all mapped to the same one dimensional subspace

of HS . Important for the analysis later on are the eigenfunctions which have non-zero

eigenvalues and are therefore not constant on S. Let u P HS be an eigenfunction of C̃Sc
with eigenvalue λ̄. Let ϕS be the feature map corresponding to kS and mS the corresponding

mean embedding. The function u has by definition norm one and for γ ą 0, c P R, and X

a random variable with law P ,

Pψγpxu, ϕSp¨q ´ mSyHS
´ cq ě Prp´pupXq ´ EpupXqqq ě ´γ ´ cq.

In the following, let Z “ ´pupXq ´EpupXqqq and write Z “ Z` ´Z´ where Z` “ Z ˆ
χtZ ě 0u, Z´ “ Z ˆ χtZ ď 0u. Since Z has mean zero we have that EpZ`q “ EpZ´q.

Whenever }k}8 ă 8 we also have thatEppZ`q2q ď }k}1{2
8 EpZ`q andEpZ`q “ EpZ´q ě

EppZ´q2q{}k}1{2
8 . Furthermore,

λ̄ “ EpZ2q “ EppZ`q2q ` EppZ´q2q ď EppZ`q2q ` }k}1{2
8 EpZ`q ď 2}k}1{2

8 EpZ`q.

Consider now γ, c such that 0 ă ´γ ´ c ď λ̄{2}k}1{2
8 ď EpZ`q then the Paley-Zygmund

32



inequality yields

PrpZ ě ´γ ´ cq “ PrpZ` ě ´γ ´ cq ě pEpZ`q ´ p´γ ´ cqq2
EppZ`q2q

ě pλ̄{2}k}1{2
8 ´ p´γ ´ cqq2

}k}8
“ pλ̄{2}k}8 ´ p´γ ´ cq{}k}1{2

8 q2.

In particular, when ´γ ´ c “ λ̄{8}k}1{2
8 ,

Pψγpxu, ϕSp¨q ´ mSyHS
´ cq ě λ̄2{8}k}8. (5)

2.3 Width of the convex set C

The width of a convex set plays an important role when trying to control the convergence

behavior of various convex approximation algorithms. By the width of the convex set

C “ cch tϕpxq : x P X u, where X is as usual a measurable space and ϕ is a feature

map, we mean the size of the projection of C on a function of norm one within the RKHS

corresponding to ϕ,

widthhpCq :“ sup
xPX

xh, ϕpxqy ´ inf
xPX

xh, ϕpxqy “ sup
xPX

hpxq ´ inf
xPX

hpxq,

where h P H, }h} “ 1.

There is a simple relationship between the width of the convex C in direction h and

how close h is to a constant function. In the following, let 1 denote the function that is

equal to one for all x P X and let }f}8 “ supxPX |fpxq| for any function f : X Ñ R,

allowing for }f}8 “ 8. For any h P H, }h} “ 1,

widthhpCq “ 2 inf
cPR

}h ´ c1}8, (6)

In particular, h is a constant function if, and only if, widthhpCq “ 0.

Small widths of C in any direction h are a concern when trying to approximate m

because various performance bounds of algorithms discussed in later sections depend on a

lower bound on the width; the higher this lower bound the faster the convergence. To be

precise, the set C can lie in an affine subspace that is not all of H and the algorithms we

study depend only on the affine subspace. Denote the closure of the affine span of C by

affC. In other words, affC is the closure of tα1h1 ` . . . ` αnhn : n P N, hi P C, αi P
R for all i ď nu which is a closed affine subspace. Furthermore, let UC “ affC ´ f , where

f is any element of C, then UC is a closed subspace of H. Observe that the dimension of

UK
C is at most one since for h P UK

C it holds that hpxq “ xh, ϕpxqy “ xh, ϕpyqy “ hpyq for

all x, y P X , and, hence, only constant functions can lie in UK
C .
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The key quantity which influences the behavior of the algorithms is now

inf
hPUC ,}h}“1

widthhpCq.

If 1 lies in the RKHS then 1, and all constant functions, lie in UK
C and we do not have to

worry about them. The important question is now, how closely can an h P UC , }h} “ 1,

approximate a constant function.

Before leveraging Equation (6) for controlling the width of C we recall some topo-

logical properties. If X is compact and ϕ is continuous then ϕrX s is compact [15, Thm.

3.1.10]. Due to Mazur’s Theorem C “ cchϕrX s is then also compact [12, Thm. 12,

p.51]. This implies, in particular, that there exists no norm ball inside ϕrX s, chϕrX s or

cchϕrX s whenever H is infinite dimensional because a closed norm ball inside the com-

pact set cchϕrX s would be compact [15, Thm. 3.1.2]. However, closed norm balls in

infinite dimensional Hilbert spaces are not compact [33, S. I.2.7]. Similarly, there exist no

norm ball B such that B X affC lies inside C.

Furthermore, whenever H is infinite dimensional, C is compact, penqně1 is an or-

thonormal sequence in H and ϵ ą 0, it holds that for only finite many of the en the

width widthenpCq can be greater than ϵ. Assume otherwise and let I : N Ñ N be an

enumeration of all the elements en for which the width is greater than ϵ. Furthermore,

assume w.l.o.g. that C is centered in the sense that for all n P N, supuPCxu, eIpnqy `
infuPCxu, eIpnqy “ 0. Since C is compact supuPCxu, eIp1qy is attained at some point u1 P C.

Inductively, we can select a countably infinite sequence of points punqně1 in C such that

}un ´ um} ě ϵ{4 ą 0 whenever n ­“ m: given points u1, . . . , un there exists m P N

such that maxiďn |xui, eIpm1qy| ď ϵ{4 for all m1 ě m. Let un`1 be a point in C such that

ϵ{2 ď supuPCxu, eIpm1qy “ xun`1, eIpm1qy. Then }un`1 ´ ui} ě ϵ{4 for all i ď n. Hence,

we have countably infinitely many points with distance at least ϵ{4 between them. These

points give rise to an open cover of C that does not contain a finite sub-cover, contradicting

the compactness of C.

This last statement implies that whenever H is infinite dimensional, C is compact and

}k}8 ă 8 then for any ϵ ą 0 there are infinitely many orthonormal elements h1, h2, . . .

in H such that for each i, supxPX hipxq ´ infxPX hipxq ď ϵ. Furthermore, at most one of

the hi’s can be constant, because if hi and hj , i ­“ j, were both constants then they clearly

would not be orthogonal.

2.3.1 Interpolation spaces

Interpolation spaces are useful when trying to quantify the width of C because we can

use them to measure how well the constant functions can be approximated. Consider 1 as

an element of CpX q and let H be an RKHS that is continuously embedded in CpX q; for

simplicity we will treat H as a subset of CpX q. Furthermore, define for θ P p0, 1q the inter-

polation space Hθ :“ pCpX q,Hqθ “ tf : }f}θ ă 8u, where }f}θ “ suptą0Kpf, tq{tθ and
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K : CpX qˆp0,8q Ñ R is the K-functional defined byKpf, tq “ infhPHp}f´h}8 `t}h}q.

If 1 P Hθ then for any r ą 0 there exists an element h P H, }h} ď r, such that

}1 ´ h}8 ď }1}1{p1´θq
θ r´2θ{p1´θq. In particular, for any ϵ ą 0 there exists an r and

h P H, }h} ď r, such that }1 ´ h}8 ă ϵ. Therefore, with c “ 1{}h} and h˚ “ h{}h}, i.e.

}h˚} “ 1, it holds that }c1 ´ h˚}8 ă ϵ and widthh˚pCq ď 2ϵ. If 1 itself does not lie in H
then h˚ lies in the affine span of C and is a problematic direction.

In the finite dimensional case the situation is simpler. If H is finite dimensional and if

the constant function is not in H then it is also not in any of the interpolation spaces since

Hθ is a subset of the closure of H in CpX q. But because H is finite dimensional the closure

of H is equal to H, i.e. Hθ “ H for all θ P p0, 1q. The K-functional can be used in this

case to quantify how well 1 can be approximated.

The K-functional has a few useful properties with regard to the constant function. Ob-

serve that Kp1, 1q ď }1 ´ 0}8 “ 1, which does not need any conditions on the kernel

function. When }k}8 ď 1 then we also have for any h P H that

}h ´ 1}8 ` }h} ě p1 ´ }h}q ` }h} “ 1

since }h}8 ď }k}1{2
8 }h} ď }h}. Hence, Kp1, 1q “ 1 whenever }k}8 ď 1. It is straight

forward to generalize this to any c P R whenever }k}8 ă 8, i.e.

Kpc1, }k}1{2
8 q “ c. (7)

Also, for any c P R, t ą 0 we have the trivial bound Kpc1, tq ď c. For t ă }k}1{2 the value

Kpc1, tq can be smaller than c. If Kpc1, tq ă c then for any ϵ ą 0 there exists a function

h P H, h ­“ 0, such that

Kpc1, tq ` ϵ ě }c1 ´ h}8 ` t}h},

and the norm of such an element h is bounded by

c ´ Kpc1, tq ´ ϵ

}k}1{2
8

ď }h} ď Kpc1, tq ` ϵ

t
.

Furthermore,

Kpc1, tq “ |c| inf
hPH

p}1 ´ h{c}8 ` t}h{c}q “ |c|Kp1, tq

and a minimizer exists for Kp1, tq if, and only if, there exists a minimizer for Kpc1, tq.

The relation between these minimizers is straight forward: h˚ is a minimizer of Kp1, tq if,

and only if, ch˚ is a minimizer of Kpc1, tq.

When H is finite dimensional and }k}8 ă 8 then there exists a minimizer of the K-

functional. For any c P R, t ą 0,

Kpc1, tq “ inf
hPH

}c1 ´ h}8 ` t}h} “ min
hPA

}c1 ´ h}8 ` t}h},
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where A “ th : h P H, }h} ď pc{tq ^ p1 `Kpc1, tq{tqu. This holds because A is compact

and h ÞÑ }c1 ´ h}8 ` t}h} is continuous whenever }k}8 ă 8. The norm of such a

minimizer h˚
t,c is bounded by pc ^ Kpc1, tqq{t (the additional one in the definition of A is,

in fact, unnecessary as the above argument shows that the infimum is attained). Hence, we

have that
1 ´ Kp1, tq

}k}1{2
8

ď
}h˚

t,c}
c

ď 1 ^ Kp1, tq
t

.

In fact, we can say more about the norm of h˚
t,c in the finite dimensional case. Notice

first that }h˚
t,c}8 ď 2c since otherwise 0 would be a better approximation of c1. Since the

RKHS is finite dimensional this implies an upper bound on the RKHS-norm of h˚
t,c as the

next lemma shows. The lemma is actually of major importance in this paper and we develop

it further than what is needed for the current discussion. In particular, the second part of

the Lemma is concerned with the relation between }h}8 and }h} when Mercer’s theorem

(e.g. [31, Thm.4.49]) applies. Recall that Mercer’s theorem provides us under certain

conditions with orthonormal elements e‚
1, . . . , e

‚
d in L2pX , µq, µ being a Borel measure on

X , where e1, . . . , ed are continuous functions and such that ẽi “ λ̃iei for all i ď d, where

λ̃1 ě . . . ě λ̃d ą 0, lie in the RKHS H and are an orthonormal basis of H. The kernel

function has to be continuous for Mercer’s theorem to hold. There are various forms of

Mercer’s theorem together with a variety of assumptions for the theorems to hold. Instead

of making such assumption the following lemma assumes directly in its second part that

the e1, . . . , ed exist and have the above properties.

Lemma 1. Let X be a set, k a kernel on X such that the corresponding RKHS H is d-

dimensional. For any c P R, th : }h}8 ď cu is a compact subset of H. Furthermore, for

h P H and any points x1, . . . , xd for which kpx1, ¨q, . . . , kpxd, ¨q are linearly independent,

pλd{dq1{2 }h} ď }h}8,

where λd is the smallest eigenvalue of the kernel matrix for the points x1, . . . , xd.

Whenever X is a topological space, k is a continuous kernel function on X and there

exist continuous functions ei : X Ñ R, i ď d, and a Borel probability measure µ on X
such that e‚

1, . . . , e
‚
d are orthonormal in L2pX , µq, and tẽiuiďd is an orthonormal basis of

H where ẽi “ λ̃
1{2
i ei, for all i ď d, and λ̃1 ě λ̃2 . . . ě λ̃d ą 0, then

λ̃
1{2
d }h} ď }h}8.

Proof. (a) For the first statement let x1, . . . , xd be such that kpx1, ¨q, . . . , kpxd, ¨q are lin-

early independent. Observe that such points always exist: assume that d1 ă d points

x1, . . . , xd1 exist such that any kpx, ¨q lies in the span of kpx1, ¨q, . . . , kpxd1 , ¨q. Now any

h P H of the form
řN

j“1 αjkpzj, ¨q with coefficients αj and zj P X can be written as a sum
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řd1

i“1 βikpxi, ¨q with suitable coefficients βi. The family of functions h that can be written

this way lies dense in H, that is, span tkpxi, ¨q : i ď d1u is a dense subspace of H. But this

subspace is closed and therefore equal to H. Hence, H is d1-dimensional contradicting our

assumption about H.

Consider the linear operator A : H Ñ Rd, defined for any f P H by

Af “ pfpx1q, . . . , fpxdqqJ “ pxf, kpx1, ¨qy, . . . , xf, kpxd, ¨qyqJ.

The operator is bounded since }Af}2
Rd ď }f}2 řd

i“1 kpxi, xiq and }A}2op ď řd

i“1 kpxi, xiq.

A is also injective. One way to see this is by means of Gram-Schmidt orthogonalization

through which we gain an orthonormal basis e1, . . . , ed of H from kpx1, ¨q, . . . , kpxd, ¨q and

for any f, g P H it holds that f “ g if, and only if, xei, fy “ xei, gy for all i ď d if, and

only if, xkpxi, ¨q, fy “ xkpxi, ¨q, gy for all i ď d.

Since A is injective and the dimension of H is d it follows that A is surjective and

invertible. By the open mapping theorem A´1 is continuous and A´1rtv : v P Rd, }v}8 ď
cus is a compact subset of H.

(b) Let K be the kernel matrix corresponding to the points x1, . . . , xd. The rows of the

kernel matrix are linearly independent since they are the images of the linearly independent

elements kpx1, ¨q, . . . , kpxd, ¨q under the isomorphismA. Hence,K is invertible and for any

y P Rd, with α “ K´1y,

Ap
dÿ

i“1

αikpxi, ¨qq “
dÿ

i“1

αipkpxi, x1q, . . . , kpxi, xdqqJ “ Kα “ y.

In particular, for f “ řd

i“1 αikpxi, ¨q, with αi P R, it follows that α “ K´1Apfq. We have

a useful inner product on Rd given by xx, yyK´1 “ xJK´1y. For arbitrary f, g P H with

f “ řd

i“1 βikpxi, ¨q and g “ řd

i“1 αikpxi, ¨q,

xf, gy “ βJKα “ pK´1AfqJKpK´1Agq “ xAf,AgyK´1 .

Applying this to h,

}h}2 “ pAhqJK´1pAhq “ tr pK´1pAhqpAhqJq
ď }K´1}oppAhqJpAhq ď d}K´1}op}h}28.

(c) Now assuming that k is continuous and the e1, . . . , ed have the assumed properties,

we can write any h P H as h “ řd

i“1 αiẽi,
řd

i“1 α
2
i “ }h}2, and

}h}22 “
dÿ

i“1

α2
i λ̃i ě λ̃d}h}2.

Since }h}2 ě λ̃d}h} and µ is a probability measure, there has to be some point x P X at

which |hpxq| ě λ̃d}h}.
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Example 1. Consider the space X “ t1, . . . , du with kernel function kpx, yq “ 1 if x “ y

and zero otherwise. Then }h}2 “ řd

i“1 |hpiq|2 and if hpiq “ c ą 0 for all i ď d then

}h} “
?
d}h}8 which matches the bound if we use x1 “ 1, . . . , xd “ d.

Coming back to the case of H being d-dimensional, }k}8 ă 8 and x1, . . . , xd P X be

any points such that kpx1, ¨q, . . . , kpxd, ¨q are linearly independent and the kernel matrix is

full rank. Furthermore, let λd be the smallest eigenvalue of the kernel matrix. Consider

the map ψphq “ }1 ´ h}8. By a similar argument as above we can infer that there exists

a minimizer of ψ. However, the minimizer is usually not unique. Consider, for example,

X “ r´1, 1s and the RKHS consisting of linear and quadratic functions such that x ÞÑ x

and x ÞÑ x2 both have norm 1. Then both of these functions minimize the distance to 1

as does 0. Any minimizer h of ψ has norm }h}8 ď 2 and, therefore, according to Lemma

1, it has an RKHS norm }h} ď p4d{λdq1{2 “: r. In particular, all minimizers of ψ are

included in the compact ball B “ th : h P H, }h} ď ru. Let A be the set of all minimizers

of ψ then A is a compact set: if A is finite then this follows right away. Otherwise, take

a convergent sequence thnunPN in A and denote the limit by h. Since for all x P X ,

|hpxq ´ 1| “ limnÑ8 |hnpxq ´ 1| ď minhPH }1 ´ h}8 and h P A. Finally, consider

the norm as a function on A. The norm is continuous and the image of the compact set

A under the norm is a compact subset in R. Hence, there exists an element h˚ in A of

maximal norm. Let us assume first that h˚ ­“ 0. For such an element h˚ let b “ 1{}h˚}
and note that}b1 ´ bh˚}8 “ infcPR min}h}“1 }c1 ´ h}8. Otherwise, there is an element

h̃, }h̃} “ 1, and a c such that }c1 ´ h̃}8 ă }b1 ´ bh˚}. The constant c cannot be equal

to b since then }1 ´ h̃{b}8 ă }1 ´ h˚} in contradiction to our assumption on h˚. It also

cannot be larger than b because then }1 ´ h̃{c}8 ă pb{cq}1 ´ h˚}8 ă }1 ´ h˚}8 which is

again in contradiction to h˚ being a best approximation of 1. But c can also not be smaller

than b; whenever }c1 ´ h̃}8 is minimal it follows that }1 ´ h̃{c}8 is minimal and equal to

}1 ´ h˚}8. However, }h̃{c} “ 1{c ą 1{b “ }h˚} in contradiction to the assumption that

}h˚} has maximal norm within A. Therefore,

lim
tÑ0

Kpb1, tq “ }b1 ´ bh˚}8 “ inf
cPR

min
}h}“1

}c1 ´ h}8 “ p1{2q inf
}h}“1

width hpCq

and, since Kpb1, tq “ bKp1, tq ě p1{rqKp1, tq, it follows that

ˆ
λd

d

˙1{2
lim
tÑ0

Kp1, tq ď inf
}h}“1

width hpCq. (8)

If h˚ “ 0 then limtÑ0Kp1, tq “ }1}8 “ 1 but also for any c P R, h P H, }c1 ´ h}8 ą
}c1}8 since otherwise h{c would be a minimizer of norm greater than zero, contradicting

the assumption that h˚ “ 0 is the minimizer with the largest norm. For h P H, there is

a sequence of points x1, x2, . . . such that limnÑ8 hpxnq converges and |hpxnq| Ñ }h}8.

Fix one such sequence and let σphq be the sign of all but finitely many elements of this
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sequence hpx1q, hpx2q, . . ., e.g. if σphq is positive and h attains maxima then there is a

point x such that hpxq “ }h}8. By another application of Lemma 1 it follows for any

h P H, }h} “ 1, that

width hpCq “ }σphq}h}81 ´ h}8 ą }h}8 ě
ˆ
λd

d

˙1{2
lim
tÑ0

Kp1, tq

and

inf
}h}“1

width hpCq ě
ˆ
λd

d

˙1{2
lim
tÑ0

Kp1, tq.

We can set in the above derivation r to p4{λ̃dq1{2 when Mercer’s theorem applies, where λ̃d
is the d-th eigenvalue of Tk. The bound then becomes

λ̃
1{2
d lim

tÑ0
Kp1, tq ď inf

}h}“1
width hpCq.

These results are only meaningful if 1 is not in the RKHS. In the next section we discuss

an approach to remove constants from an RKHS which allows us, among other things, to

extend these results to RKHSs that contain constants.

2.3.2 Adding and removing constants

It is sometimes useful to be able to remove constant functions from an RKHS or to add

constant functions to an RKHS. There is an efficient way to do this by manipulating the

kernel function.

In the following let X be some topological space and consider the p.s.d. functions

k : X ˆ X Ñ R that lie in L2pX ˆ X q and denote these by K. Furthermore, consider the

partial order on K given by k ľ l if, and only if, k ´ l is p.s.d. where k, l P K. Also note

that K is not a lattice, i.e. for k, l P K the infimum k ^ l and the supremum k _ l will

generally not be defined.

For a function f : X Ñ R we let f b f be the function that maps px, yq to fpxqfpyq
for any x, y P X . There is a simple criterion which tells us if f P Hk for a kernel function

k P K. Assume that f b f P L2pX ˆ X q, then f P Hk if, and only if, there exists a c ą 0

with c2k ľ f b f . In case that f P Hk it holds that }f}k “ inftc : c2k ľ f b fu.

This observation motivates the following definitions. For an RKHS H with kernel k

that does not contain 1 let

k` :“ k ` 1 b 1 and H` :“ Hk` . (9)

The function k` is a kernel function being the sum of the kernel functions k and 1 b 1 and

H` is well defined. We denote the norm of H` by } ¨ }` and we can observe that

}1}` “ inftc : c2pk ` 1 b 1q ľ 1 b 1u ď 1.
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In fact, }1}` “ 1 because otherwise there exists a c ă 1 such that

c2k ľ p1 ´ c2q1 b 1 ñ
´ c?

1 ´ c2

¯2

k ľ 1 b 1 ñ 1 P H.

We also have that H Ă H`, since k ĺ k`, and for h P H,

}h}` ď }h}. (10)

When the RKHS H is finite dimensional then }h}` is actually equal to }h}. To show this

we make use of the following lemma which is a simple extension of [26, Sec5.3].

Lemma 2. Let h1, . . . , hd be linearly independent functions mapping from some topologi-

cal space X to R and let a1, . . . , ad ą 0 then κ “ řd

i“1 aihi b hi is a kernel function, the

functions hi lie in Hκ and are orthogonal in Hκ. Furthermore, the dimension of Hκ is d

and }hi}κ “ 1{?
ai.

Now, let d ă 8 be the dimension of H, choose orthogonal functions h1, . . . , hd P H,

h1, . . . , hd ­“ 0, and define the kernel κ “ řd

i“1p1{}hi}2qhi b hi. Then k “ κ. This

follows because, according to the above lemma, both spaces consist of span th1, . . . , hdu,

}hi}κ “ }hi}k, for all i ď d, and the hi’s are orthogonal in both spaces, i.e. Hk “ Hκ which

implies that k “ κ. The importance of this statement is that it shows that we can write the

kernel as a finite sum of weighted tensor products.

From this description of κ we also gain that k` “ řd

i“1 aihibhi`1b1 and, because 1

is not in the original RKHS H, it follows that 1 is linearly independent of h1, . . . , hd which

implies that 1 is orthogonal to h1, . . . , hd in H`.

Consider now one of the hi’s. We like to show that }hi}` ě }hi} which then implies,

together with (10), that }hi}` “ }hi} and }h}` “ }h} for all h P H; the hi’s are orthogonal

in both H and H`. Let l “ k` ´ p1{}hi}2qhi b hi so that hi R Hl. Furthermore, consider

any c such that 0 ă c ă }hi}. If }hi}` “ c then

c2k` ľ hi b hi ñ c2l ľ p1 ´ c2{}hi}2qhi b hi ñ c2}hi}2
}hi}2 ´ c2

l ľ hi b hi ñ hi P Hl,

which is impossible and, therefore, }hi}` ě }hi}.

Similarly, for an RKHS H that does contain 1 and is not of dimension 1 let

k´ “ k ´ c21 b 1, where c “ inftc̃ : c̃2k ľ 1 b 1u, and H´ :“ Hk´ . (11)

It follows right away that 1 R H´ and because, k´ ĺ k we know that H´ Ă H and

}h}´ ď }h} for all h P H´. Next, notice that we can write k “ řd´1

i“1 aihi b hi ` c21 b 1

where h1, . . . , hd´1,1 are orthogonal in H and a1, . . . , ad´1 ą 0. Due to the orthogonality

it follows that the h1, . . . , hd´1 are linearly independent elements in H´ and H´ is d ´ 1
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dimensional. Lemma 2 tells us furthermore that h1, . . . , hd´1 are orthogonal in H´. Finally,

for all i ď d ´ 1 we have that }hi}´ “ }hi}; assume c “ 1 and observe that in this case

pH´q` “ H and due to the above results for H` we can conclude that }hi}´ “ }hi}´` “
}hi}. The above argument for H` does not rely on }1} “ c “ 1 and we can generalize this

result right away to any c ą 0. Because the norm of the hi does not change and since the

hi are orthogonal we can conclude that }h}´ “ }h} for all h P H´.

We summarize these results for the case when H is finite dimensional in the following

lemma.

Lemma 3. If H is a finite dimensional RKHS with dimension d, kernel k P K, and which

does not contain 1 then H`, as defined in (9), is d ` 1 dimensional, H Ă H`, 1 P H`

with }1}` “ 1, xg, hy` “ xg, hy for all g, h P H, and 1 is orthogonal in H` to all

h P H. Similarly, if H is a finite dimensional RKHS with dimension d ą 1, kernel k P K,

and which does contain 1 then H´, as defined in (11), is d ´ 1 dimensional, H´ Ă H,

1 R H´,xg, hy´ “ xg, hy for all g, h P H which are orthogonal to 1.

2.3.3 Lower bounds on the approximation error in finite dimensions

In finite dimensions we can now provide lower bounds on the approximation error of any

function f : X Ñ R. Before specializing to constant functions we take a short detour

and discuss the general technique. The approach to get lower bounds is the following:

let k “ řd

i“1 aihi b hi for linearly independent h1, . . . , hd and ai ą 0. If f is linearly

dependent on the hi’s then f P H. Otherwise, we can move to the kernel function k1 “řd

i“1 aihi b hi ` f b f and the corresponding RKHS H1. The function f is orthogonal

to h1, . . . , hd in H1. That means that the lowest approximation error, when approximating

f by functions in the subspace corresponding to H, is given by the projection onto this

subspace. Due to the orthogonality the projection of f onto this subspace is just the origin

and the approximation error is }f}H1 “ 1 when measured in the RKHS norm of H1. If we

consider the constraint that the approximation has to lie in H and has to have norm }h} “ 1

then the best approximation error of f is
?
2, i.e.

inf
hPH,}h}“1

}f ´ h}H1 “
?
2.

To gain a lower bound on the approximation error in } ¨ }8 we use Lemma 1 which shows

that

inf
hPH,}h}“1

}f ´ h}8 ě
?
2

ˆ
λd`1

d ` 1

˙1{2
,

where we get d ` 1 since we use the RKHS H1 which has dimension d ` 1. The constant

λd`1 is the smallest eigenvalue of a kernel matrix corresponding to points x1, . . . , xd`1 such

that k1px1, ¨q, . . . , k1pxd`1, ¨q are linearly independent. Notice, that this approximation error
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depends implicitly on the particular function f through the kernel matrix and the smallest

eigenvalue. The bound can become loose when }f}8 is significantly larger than }hi}8, but

observe that we can always replace f by cf for some constant c ă 1 to rescale the infinity

norm. In the following, let k2 “ řd

i“1 aihi b hi ` pcfq b pcfq and treat H as a subset of

H2 :“ Hk2 . Such a rescaling leads to a problem in the constraint }h} “ 1 because

inf
hPH,}h}“1

}cf ´ h}8 “ c inf
hPH,}h}“1{c

}f ´ h}8.

We can compensate for this by using the constraint }h} “ c. Since }cf}H2 “ 1,

inf
hPH,}h}“1

}f ´ h}8 “ 1

c
inf

hPH,}h}“c
}cf ´ h}8 ě

?
1 ` c2

c

ˆ
λd`1

d ` 1

˙1{2
,

where λd`1 is again the smallest eigenvalue of a kernel matrix but now for the kernel k2.

Example 2. Let X “ t0, 1u and h : X Ñ R be given by hp0q “ 1, hp1q “ 0, and let

f : X Ñ R be defined by fp0q “ 0, fp1q “ r for r ą 0. Let H be the RKHS with

kernel hbh which consists of span thu. The smallest approximation error of f by elements

in H which have norm 1 is attained by ´h and h and is equal to }h ´ f}8 “ r _ 1.

Considering now the bound: let the kernel of the RKHS H1 be k “ hbh`f bf . Consider

x1 “ 0, x2 “ 1 and the corresponding kernel matrix

K “
ˆ
hp0q2 0

0 fp1q2
˙

“
ˆ
1 0

0 r2

˙

which has minimal eigenvalue 1 ^ r2. The corresponding lower bound is

inf
gPH,}g}“1

}g ´ f}8 ě
?
2

ˆ
1 ^ r2

2

˙1{2
“ 1 ^ r

which is exact when }f}8 “ 1 but degrades for r away from 1.

Scaling f by c “ 1{}f}8 “ 1{r gives us the kernel k1 “ h b h ` p1{rq2f b f and a

kernel matrix

K 1 “
ˆ
hp0q2 0

0 p1{rq2fp1q2
˙

“
ˆ
1 0

0 1

˙

which has minimal eigenvalue 1. The bound becomes

inf
gPH,}g}“1

}g ´ f}8 ě
c

1 ` r2

2
ě 1 ^ r.
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Coming back to the approximation of constant functions. When H does not contain the

constant functions then an approach to calculate lower bounds is to use the kernel k` and

the corresponding RKHS H`. The norm of c1 in this RKHS, where c P R, is |c| and for

any such c,

inf
hPH,}h}“1

}h ´ c1}8 ě
a
1 ` |c|2

|c|

ˆ
λd`1

d ` 1

˙1{2
ě

ˆ
λd`1

d ` 1

˙1{2

with d being the dimension of H and λd`1 the lowest eigenvalue of a kernel matrix corre-

sponding to points x1, . . . , xd`1 for the kernel k`. Using the right hand side as the lower

bound has the advantage that we only deal with one RKHS, i.e. with H`, and we only need

λd`1 for that kernel. Scaling of the function 1 in dependence of which constant c1 we want

to approximate might improve the lower bounds but then λd`1 has to be calculated for the

individual scalings.

When Mercer’s theorem applies we gain the bound

inf
cPR

inf
hPH,}h}“1

}h ´ c1}8 ě λ̃
1{2
d`1,

where λ̃d`1 is the pd`1q-th eigenvalue of Tk` . For Mercer’s theorem to apply it is important

that k` is continuous. But when k is continuous then so is k`.

If H already contains the constant functions then we are interested in determining

the width of the convex set in the affine subspace spanned by C. In particular, because

xkpx, ¨q,1y “ 1 for all x P X , there exists a subspace S of H that is orthogonal to

1 and a c ­“ 0 such that affC “ aff tkpx, ¨q : x P X u “ c1 ` S. In fact, c “
argminc1PR }kpx, ¨q ´ c1

1}, where we can use an arbitrary x P X and S “ H´. This is

exactly the same situation that we faced above with H` and a lower bound on the width of

the convex set in the affine space spanned by it can be gained through

inf
cPR

inf
}h}´“1

}h ´ c1}8 ě
ˆ
λd

d

˙1{2
,

where d is the dimension of H and λd the smallest eigenvalue of any kernel matrix for

kernel k. If we can use Mercer’s theorem then we also gain the lower bound

inf
cPR

inf
}h}´“1

}h ´ c1}8 ě λ̃
1{2
d ,

where λ̃d is the d-th eigenvalue of Tk.

We can also extend the results from Section 2.3.1 on the application of K-functionals.

We summarize in the following proposition these results together with a variety of results
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on the width of C that we derived up to now. We use the notation K´p1, tq for the K-

functional corresponding to H´. We hope that the use of the letter K for both the K-

functional and the kernel matrix does not lead to confusion. To streamline the statement

of the following proposition let us say that k has a Mercer decomposition with lowest

eigenvalue λ̃d if k is a continuous kernel function on X and there exist continuous functions

ei : X Ñ R, i ď d, and a Borel probability measure µ on X such that e‚
1, . . . , e

‚
d are

orthonormal in L2pX , µq, tẽiuiďd is an orthonormal basis of H, where ẽi “ pλ̃iq1{2ei, for

all i ď d, and λ̃1 ě λ̃2 . . . ě λ̃d ą 0. Notice that the Mercer decomposition based results

in the following proposition do not seem to have a dependence on d beyond the eigenvalue

λd but this is somewhat misleading as the discussion in Section 2.3.4 demonstrates.

Proposition 1. Let X be a measurable set and k P K a kernel function defined on X . The

following holds.

1. If H is infinite dimensional, X is compact and k is continuous, then for every ϵ ą 0

there exist infinitely many orthonormal elements penqně1 in H such that supně1 width enpCq ă
ϵ.

If H is finite dimensional with dimension 1 ď d then the following hold.

2. If 1 P Hθ for some θ P p0, 1q then there exists h P H, }h} “ 1, such that width hpCq “
0.

3. If 1 R H then for any x1, . . . , xd`1 P X and corresponding kernel matrix K` “
pk`pxi, xjqqi,jďd`1 with smallest eigenvalue λd`1,

inf
}h}“1

width hpCq ě 2

ˆ
λd`1

d ` 1

˙1{2
.

4. If 1 R H, }k}8 ă 8, then for any x1, . . . , xd P X and corresponding kernel matrix

K “ pkpxi, xjqqi,jďd with smallest eigenvalue λd,

inf
}h}“1

width hpCq ě
ˆ
λd

d

˙1{2
lim
tÑ0

Kp1, tq.

5. If 1 P H and 2 ď d, then for any x1, . . . , xd P X with corresponding kernel matrix

K “ pkpxi, xjqqi,jďd and with the smallest eigenvalue of K being λd,

inf
}h}´“1

width hpCq ě 2

ˆ
λd

d

˙1{2
.
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6. If 1 P H, 2 ď d, then for any x1, . . . , xd´1 P X with corresponding kernel matrix

K´ “ pkpxi, xjqqi,jďd´1 and with the smallest eigenvalue of K´ being λd´1,

inf
}h}´“1

width hpCq ě
ˆ
λd´1

d ´ 1

˙1{2
lim
tÑ0

K´p1, tq.

In the following, let X be a compact space and k a continuous kernel function on X . The

following hold.

7. If k` has a Mercer decomposition with smallest eigenvalue λ̃d`1 and 1 R H then

inf
}h}“1

width hpCq ě 2λ̃
1{2
d`1.

8. If k has a Mercer decomposition with smallest eigenvalue λ̃d and 1 R H then

inf
}h}“1

width hpCq ě λ̃
1{2
d lim

tÑ0
Kp1, tq.

9. If k has a Mercer decomposition with smallest eigenvalue λ̃d and 1 P H then

inf
}h}´“1

width hpCq ě 2λ̃
1{2
d .

10. If H is d ě 2 dimensional, k´ has a Mercer decomposition with smallest eigenvalue

λ̃d´1 and 1 R H then

inf
}h}´“1

width hpCq ě λ̃
1{2
d´1 lim

tÑ0
K´p1, tq.

Example 3. Consider the kernels kdpx, yq “ řd

u“1 x
uyu, with x, y P r´1, 1s, which cor-

responds to polynomials of order 1 to 4 but without the constant functions. To test the

kernel matrix based lower bound in a simple experiment we are calculating upper bounds

on infcPR infhPH,}h}“1 }h ´ c1}8 in the following way: the functions xu and xv are orthog-

onal in the corresponding RKHSs whenever u ­“ v and have norm 1. Therefore, functions

of the form p1{
?
dq řd

u“1 x
u have norm 1. To get a good approximation of constant func-

tions we use such functions for d “ 3, 4, with signs adjusted so that the different terms

cancel each other as well as possible. In detail, for d “ 1 we use the function h1pxq “ x

which has approximation error 1 when approximating the (constant) function 0; for d “ 2

we use h2pxq “ x2; for d “ 3 we use h3pxq “ p1{
?
3qpx ` x2 ´ x3q; and for d “ 4,

h4pxq “ p1{
?
4qp´x`x2 `x3 ´x4q. The functions for d “ 2, 3 and 4 are shown in Figure

5 in the left three plots in blue. The constant that are best approximated by these functions

are shown in orange. In the right plot the corresponding approximation error in } ¨}8 norm

is plotted against d (top curve; orange). The blue curve in the right plot corresponds to the

lower bound where we use ´1 “ x1 ă . . . ă xd “ 1 with equidistant spacing to get full

rank kernel matrices.
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Figure 5: The three plots on the left show in blue polynomials of degree 2, 3 and 4 respec-

tively. The orange lines correspond to the constant functions that are best approximated

by these polynomials. The right most plot shows the corresponding approximation error in

} ¨ }8 (orange curve) and our lower bound on the approximation error (blue curve). Note

that the approximation error is calculated for the three curves in the left plots and is only

an upper bound for the best approximation error that can be attained.

2.3.4 Quantifying the width of the empirical convex set Cn

The above techniques can also be applied to the empirical convex set Cn. An easy way

to do so is to identify the subspace spanned by Cn with a new RKHS. In particular, the

subspace spanned by the empirical convex set Cn can be identified with an RKHS in a

similar way to how we dealt with measures that attain values in a subspace in Section

2.2.4; see also Section 2.4.3 for a more detailed discussion. For an experiment ω P Ω let

Sω “ tX1pωq, . . . , Xnpωqu be the support of the empirical measure for the realization ω. If

k is our original kernel function then let kω be kæSω ˆ Sω and let Hω be the corresponding

RKHS. The empirical convex set Cn, as an element of H, has then a corresponding convex

set Cω “ ch tkωpXipωq, ¨q : i ď nu within Hω. For ease of notation fix an ω P Ω and let

x1, . . . , xn P X be x1 “ X1pωq, . . . , xn “ Xnpωq for the rest of this section.

Importantly, there is a linear map ψ : H Ñ Hω defined in the following way: if h P H
is of the form

řn

i“1 αikpxi, ¨q for some αi P R then let ψphq “ řn

i“1 αikSpxi, ¨q. Also,

let U “ span tkpxi, ¨q : i ď nu be the subspace of H corresponding to these functions

h. For functions g P UK, define ψpgq “ 0, and extend ψ to all of H by linearity. The

function ψ : H Ñ Hω defined in this way has the following properties: for all g, h P
span tkpX1pωq, ¨q, . . . , kpXnpωq, ¨qu Ă H we have xg, hy “ xψpgq, ψphqyHω

(this follows

right away from the kernel expansion of g, h because k and kS are equivalent on x1, . . . , xn)

and ψpfq “ 0 if f is orthogonal to the subspace spanned by the data. In other words, ψ is

a partial isometry between H and Hω and an isometry between U , with the inherited inner

product, and Hω.

Beside this natural link between H and Hω there is also the linear map A that we
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considered in Lemma 1. We have to adapt the approach from Lemma 1 slightly to make

use of it in this new context. First, observe that if Hω is dω-dimensional then we have

the operators Aω : Hω Ñ Rdω defined by Aωf “ pfpxιp1qq, . . . , fpxιpdωqqqJ for a given

injective function ι : t1, . . . , dωu Ñ t1, . . . , nu such that the matrix pkpxιpiq, xιpjqqqi,jďdω
has full rank. This dimension can obviously depend on ω and will always be upper bounded

by the dimension dH of H. Consider now the kernel matrix Kω “ pkpxιpiq, xιpjqqqi,jďdω and

equip Rdω with the inner product xa, byK´1
ω

“ aJK´1
ω b, a, b P Rdω . As in the proof of

Lemma 1 it follows that xg, hyHω
“ xAg,AhyK´1

ω
for all g, h P Hω and Aω : Hω Ñ Rdω is

an isometry.

We have the following commutative diagram summarizing the relationship between the

three spaces.

H Hω

Rdω

ψ

Aω˝ψ Aω

Furthermore, when U “ span tkpx1, ¨q, . . . , kpxn, ¨qu is the subspace of H induced by the

data it follows that the following three spaces are isometric isomorphic

pU, x¨, ¨yq – pHω, x¨, ¨yHω
q – pRdω , x¨, ¨yK´1

ω
q.

In particular, Aω ˝ ψ is an isometry between U and Rdω . This isometry has takes a simple

form: let h “ řn

i“1 αikpxi, ¨q then

pAω ˝ ψqphq “
nÿ

i“1

αipkpxi, xιp1qq, . . . , kpxi, xιpdωqqqJ “ phpxιp1qq, . . . , hpxιpdωqqqJ.

This relation allows us to apply the techniques we developed for measuring the size of C to

the empirical convex set Cn. For example, if Hω does not contain constant functions then

using the kernel k`
S and denoting the corresponding RKHS by H`

ω , we can lower bound

the width of Cω. The RKHS H`
ω has dimension dω ` 1 and there exists an injection ι :

t1, . . . , dω`1u Ñ t1, . . . , nu such that k`
S pxιp1q, ¨q, . . . , k`

S pxιpdω`1q, ¨q are linearly indepen-

dent. Then, as above, A`
ω : H`

ω Ñ Rdω`1 defined by A`
ω phq “ phpxιp1qq, . . . hpxιpdω`1qqqJ

is an isometry between H`
ω and Rdω`1 when the latter is equipped with the inner product

xa, bypK`
ω q´1 , for all a, b P Rdω`1 and K`

ω is the kernel matrix corresponding to the points

xιp1q, . . . , xιpdω`1q. From this we can infer a lower bound on the width of Cω within Hω.

Alternatively, we can apply directly Proposition 1 to Hω to get this lower bound. Since we

have an isometry between U and Hω these lower bounds translate directly to lower bounds

on the width of Cn within U .
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There is another point worth noting. The lower bound on the width of Cn depends on

the choice of ι. Finding the subset of points x1, . . . , xn that maximizes this lower bound

seems like a hard problem. Therefore one might wonder if there is a simpler way to op-

timize the lower bound. In particular, there seems hope to get the largest smallest eigen-

value λdω when using the full kernel matrix. To that end, let K‹
ω “ pkpxi, xjqqi,jďn be the

kernel matrix corresponding to all the data. Since the subspace spanned by the data has di-

mension dω it follows that there are exactly dω non-zero eigenvalues λ‹
1, . . . , λ

‹
dω

.There

is a useful interplay between K‹
ω and the following linear operator A‹

ω : Hω Ñ Rn

given by A‹
ωphq “ phpx1q, . . . , hpxnqqJ. First note that for h “ řn

i“1 αikpxi, ¨q, with

suitable αi P R, we have that A‹
ωphq “ K‹

ωα. Also observe that A‹
ω in injective be-

cause if A‹
ωpfq “ pfpx1q, . . . , fpxnqqJ “ pgpx1q, . . . , gpxnqqJ “ A‹

ωpgq for two func-

tions f, g P Hω, f : S Ñ R, g : S Ñ R, then f and g are equal on S and are there-

fore the same function. While A‹
ω is injective there are generally for a given h P Hω

many α P Rn such that A‹
ωphq “ K‹

ωα and K‹
ω is not invertible. Therefore, consider the

Moore-Penrose pseudo-inverse pK‹
ωq:, and observe that with α‹

h “ pK‹
ωq:A‹

ωphq we get

K‹
ωα

‹
h “ K‹

ωpK‹
ωq:A‹

ωphq “ A‹
ωphq since A‹

ωphq lies in the range of K‹
ω [9, Def.1.1.2(a)].

In particular, for f, g P Hω,

xf, gy “ pα‹
f qJK‹

ωα
‹
g “ pA‹

ωpfqqJpK‹
ωq:K‹

ωpK‹
ωq:A‹

ωpgq “ pA‹
ωpfqqJpK‹

ωq:A‹
ωpgq.

From this relation we get a lower bound on the supremums norm of a function h P Hω,

}h}2Hω
“ pA‹

ωpfqqJpK‹
ωq:A‹

ωpfq “ tr ppK‹
ωq:A‹

ωpfqpA‹
ωpfqqJq

ď }pK‹
ωq:}oppA‹

ωpfqqJA‹
ωpfq ď n}pK‹

ωq:}op}h}28.

The term }pK‹
ωq:}op is equal to 1{λ‹

dω
but, unfortunately, instead of the constant dω we have

now the constant n.

In Proposition 1 seemingly no price had to be paid for the dimension of H when using

a Mercer decomposition. Since intuitively K‹
ω is closely related to the integral operator

that appears in Mercer’s theorem when the underlying measure is the empirical measure

Pn one might wonder if the constant dω, or n, can be removed by following that route.

Unfortunately, this approach does not, in fact, remove the constant: consider the integral

operator

pTωfqpyq “
ż
fpxqkpx, yq dPnpxq,

for f P L2pS, Pnq where S “ tx1, . . . , xnu. Observe that L2pS, Pnq is the same set of

functions as Hω but the L2-inner product does not have to be equal to the inner product of

Hω. Then for f P L2pS, Pnq “ Hω and j ď n,

pTωfqpxjq “ 1

n

nÿ

i“1

fpxiqkpxi, xjq “ n´1ppA‹
ωpfqqJK‹

ωqj
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and for f, g P L2pS, Pnq,

xTωf, gy2 “ n´2pA‹
ωpfqqJK‹

ωA
‹
ωpgq.

The eigenfunctions of Tω are closely related to the eigenvectors of K‹
ω. Let q1, . . . , qn P Rn

be the eigenvectors of K‹
ω and let λ‹

1, . . . , λ
‹
n be the corresponding eigenvalues. Observe

that q1, . . . , qdω lie in the range of A‹
ω since for any i ď dω, qi “ λ‹

iK
‹
ωqi “ A‹

ωpeiq where

ei “ řn

j“1 λ
‹
i pqiqjkpxj, ¨q. Also, it follows directly that n1{2e1, . . . , n

1{2edω are an orthonor-

mal basis in L2pS, Pnq as xn1{2ei, n
1{2ejy2 “ A‹

ωpeiqJA‹
ωpejq “ qJ

i qj and L2pS, Pnq is

dω-dimensional. Furthermore, n1{2e1, . . . , n
1{2edω are the eigenfunctions of Tω,

nxTωei, ejy2 “ n´1qJ
i K

‹
ωqj “ pλ‹

j{nqqJ
i qj

and the corresponding eigenvalues of Tω are λ‹
1{n, . . . , λ‹

dω
{n.

To summarize, we discussed two approaches in this section to get a lower bound on

the width of the empirical convex set. The first approach uses a selection of dω sample

points and the eigenvalues of the kernel matrix corresponding to these points. It is unclear

if there is an efficient way to optimize over this subset selection. The second approach uses

instead the full kernel matrix, which sidesteps the problem of selecting sample points, and

leads to a larger eigenvalue but then the constant degrades significantly if n " dω. There

is a third way which ‘interpolates’ between the two approaches. For instance, it might be

reasonable to use 2dω many points to help with the subset selection problem while keeping

the constant small.

There are multiple hurdles to using these approaches in practice. First off, it is not just

the width that needs to be controlled but also how centered mn lies within Cn. Furthermore,

the current approach is only applicable in the small sample regime since we need the small-

est eigenvalue of the kernel matrix to control the width. This eigenvalue can be computed

by applying the power iteration method. The power iteration returns the largest absolute

value of a matrix. A standard way to find λd is the following: apply the power iteration to

K to find λ1; then move to matrix B “ K ´ λ1I , which is negative definite, and apply the

power iteration to get λd ´ λ1. Each iteration of the power iteration relies on a multiplica-

tion of an nˆ n matrix with a vector. This makes this method prohibitively costly to apply

in the large sample regime. We come back to these issues in Section 4 where we study,

among other things, algorithms which split the data into small batches. In such settings it

becomes possible to control the width of the empirical convex sets that correspond to the

small batches of data.

2.4 Locating m

For various convex approximation methods the distance from m to the boundary of the

convex set characterizes the rate of convergence: the larger the distance the faster the rate
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of convergence. A crude way to measure the distance is to consider the largest ball that

fits within the convex set around m. Having a closed ball of size δ ą 0 around m in C is

equivalent to

inf
}h}“1

sup
xPX

xh, kpx, ¨q ´ my ě δ, (12)

and similarly for affine subspaces. This can be seen in the following way: clearly when

there exists a closed ball around m with the stated properties then for any h, }h} “ 1,

some extreme of the convex set must fulfill (12). On the other hand, C ´ m is equal to the

intersection of the closed half-spaces tangent to it [29, Thm18.8]. To each of these half-

spaces there exists a normal h P H, h ­“ 0, and an αh P R such that xg, hy ď αh whenever

g lies in the half-space. In particular, for any such normal xg, hy ď αh whenever g P C´m.

Without loss of generality we can assume that the normals have norm one and by assuming

that (12) holds we know that for any such normal h, αh ě δ. If there would not exist a ball

of size δ around m in C then there would be an element g R C ´ m, }g} ď δ. But then

xh, gy ď δ for all h P H, }h} “ 1, and g would lie in the intersection of the half-spaces and

then also in C ´ m due to [29, Thm18.8] which cannot be.

In the previous section we quantified the width of the setC in direction h, i.e. width hpCq “
supxPX hpxq ´ infxPX hpxq. The width tells us how large a ball around m can be in the ideal

case where m lies centered within C, however, we do not know how centered m lies within

C. Obviously, m can lie in the boundary for instance when m “ kpx, ¨q and kpx, ¨q is an

extreme of C, and assumptions on the distribution of the data are needed to guarantee the

existence of a ball around m. Our aim in this section is to show how natural assumptions on

the probability distribution translate to statements of how centered m lies. In the following,

we are studying two such conditions: (1) a lower bound on the density of the law of X1

together with a Lipschitz condition on ϕ : X Ñ H; (2) an assumption on the covariance

operator C̃c. We finish this section with a look at the case where the law of X1 does not

have full support in X .

Before looking at these conditions let us add a short comment about the relation be-

tween the extremes of C and m. For the convex set C “ cch tϕpxq : x P X u the extremes

of C which are close to m are images under ϕ of points x which lie close to each other. In

detail, consider a kernel function with kpx, xq “ 1 for all x P X . Whenever }ϕpxq´m} ă ϵ

and }ϕpyq ´ m} ă ϵ for some ϵ ą 0 then 4ϵ2 ě }ϕpxq ´ ϕpyq}2 “ 2p1 ´ kpx, yqq. In other

words, if there exists an extreme ϕpx0q of C that lies ϵ close to m then all the extremes of

C that are ϵ close to m are contained in

ϕrty : kpx0, yq ě 1 ´ 2ϵ2us.

Obviously, the case that we have an extreme ϕpx0q close to m is rare since this means that

for all functions h P H, }h} ď 1, the expected value EphpXqq « hpx0q and H cannot

distinguish between P and a probability measure that puts mass one on x0.
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2.4.1 Assumptions on the density

In [3] it was observed that when the probability measure corresponding to m has a density

on X which is bounded away from 0 and H is finite dimensional then it is at least guaran-

teed that some open ball exists around m in C. This result can be strengthened and turned

into a quantitative statement by using a simple observation.

Consider first the Lebesgue integral on R. If we have a (non-atomic) probability mea-

sure on R which has a mean value of 0 and there exists some measurable set B with

inf B ě ϵ and P pBq ą 0, then there will be probability mass on the negative axis to

counter the ªpullº from B since otherwise

0 “
ż

R

x dP “
ż

r0,8q
x dP ě

ż

B

x dP ě ϵP pBq ą 0.

This argument can also be applied to m. Consider the setX “ r0, 1s, an RKHS H with con-

tinuous kernel function kpx, yq and assume that kpx, ¨q P L1pP ;Hq with Bochner-integral

m and the probability measure P has a density function that is bounded away from 0. For

every y P X with kpy, ¨q´m ­“ 0 there exists an x P X such that xkpy, ¨q ´ m, kpx, ¨q ´ my ă
0. Otherwise, let ϵ “ ∥kpy, ¨q ´ m∥2 {2 then B “ tx : xkpy, ¨q ´ m, kpx, ¨q ´ my ą ϵu
is non-empty as y P B and contains an open interval I of X , with P pIq ą 0. Hence,

P pBq ą 0 and because }m}2 “
ş
X

xm, kpx, ¨qy dP pxq,

0 “
ż

X

xkpy, ¨q ´ m, kpx, ¨q ´ my dP pxq ě
ż

B

xkpy, ¨q ´ m, kpx, ¨q ´ my dP pxq

ě ϵP pBq ą 0.

This implies that we have on both sides of m (with respect to the direction kpy, ¨q ´ m)

elements of cch tkpx, ¨q : x P Xu “ C.

To provide lower bounds on the radius of a ball around m in C we need more. Ideally,

we like to have assumptions on the kernel function and the measure which guarantee the

existence of some strictly positive function ψ : p0,8q Ñ p0,8q such that for any h P
H, ∥h∥ ď 1, x P X , if xh, kpx, ¨q ´ my ą 0 then

inf
yPX

xh, kpy, ¨q ´ my ď ´ψpxh, kpx, ¨q ´ myq.

Under a Lipschitz assumption on the functions in H we can provide such a function ψ. The

Lipschitz assumption we are using is that any h P H fulfills

sup
x ­“x1

|hpxq ´ hpx1q|
}x ´ x1} ď }h}L, (13)

where L ą 0 is the Lipschitz-constant. When the space X is a compact subset of R

this Lipschitz assumption is often fulfilled. For instance, when a polynomial or Gaussian
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kernel is used. In fact, whenever we have a well behaved domain X like r0, 1sd, hæ intX P
C1pintX q, h P CpX q and }Dxh}op ď }h}L (compare to [31, Cor.4.36]) then the condition

is fulfilled.

In the following, βd denotes d-dimensional Lebesgue measure of the unit ball in Rd and

µd denotes Lebesgue measure.

Proposition 2. Let X “ r0, 1sd and let H be an RKHS such that for all h P H and

x, x1 P X , |hpxq ´ hpx1q| ď L}h}}x ´ x1}. Furthermore, let P be a probability measure

on X and assume that P has a density p with infxPX ppxq ě c ą 0. Then for any h P H,

∥h∥ ď 1,

max
yPX

x´h, kpy, ¨q ´ my ě cγd`1

pd ` 1qp2Lqdβd.

whenever there exists an x P X such that xh, kpx, ¨q ´ my ě γ ą 0 and γ{L ď 1.

Proof. Fix any h in the unit ball of H and let fpxq “ xh, kpx, ¨q ´ my. Let x˚ P X
be a point at which fpx˚q “ xh, kpx˚, ¨q ´ my ě γ. The function f is also Lipschitz

continuous with Lipschitz-constant }h}L ď L and f is therefore non-negative on the set

A “ ty : }y ´ x˚} ď γ{L, y P X u. Let B “ ty : }y} ď γ{L, y P X u then P pAq ě
cµdpAq ě cµdpBq because B minimizes the volume of the intersection of X with a ball of

radius γ{L. Furthermore, µdpBq “ pγ{2Lqdβd; this is the volume of a d-dimensional ball

of radius γ{L scaled by 2´d. Now, integrating over A and using [18, 265G, 265H] again

ż

A

fpxq dP pxq ě
ż

A´x˚

cpfpx˚q ´ L}x}q dx ě c

ż

B

fpx˚q ´ L}x} dx

ě cγd`1

p2Lqdβd ´ cL2´d d

d ` 1

γd`1

Ld`1
βd “ cγd`1

p2Lqdβd
ˆ
1 ´ d

d ` 1

˙
.

Since
ş
X
fpxq dP pxq “ 0 there must be a point y P X such that

fpyq ď ´cγd`1

p2Lqdβd
ˆ

1

d ` 1

˙
.

Under the conditions of the proposition we can state a lower bound on the size of

a ball included in C around m. Let h P H, }h} “ 1, and assume w.l.o.g. that s :“
supxPX xh, kpx, ¨q ´ my ě ´ infxPX xh, kpx, ¨q ´ my “: i. Then s ě p1{2qwidth hpCq and

i ě csd`1

pd ` 1qp2Lqdβd ě cpp1{2qwidth hpCqqd`1

pd ` 1qp2Lqd βd. (14)
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If we have a lower bound b on width hpCq for all such h then we can conclude that there

exists a ball of radius

δ “ mintpb{2q, cpb{2qd`1βd

pd ` 1qp2Lqd u

around m in C.

2.4.2 Assumptions on the covariance operator

Let us start with a useful relationship between 1 and m whenever 1 lies in the RKHS. For

any measure P , with corresponding element m we have that x1,my “ 1. Also, for any

x P X , xkpx, ¨q,1y “ 1 and C lies within the closed affine subspace th P H : xh,1y “ 1u,

where closure follows from h ÞÑ xh,1y being a continuous function and t1u being closed.

Also, since 1 “ xm,1y ď }1}}m} it has to hold that }m} ě 1{}1}. An upper bound on }1}
is therefore giving us a lower bound on }m}. For instance, we can get a lower bound on

}m} by inspecting the kernel function k of the RKHS in the sense that

}m} ě 1{ inftc : c2k ľ 1 b 1u. (15)

One might be tempted to move to H` whenever 1 does not lie in the RKHS H; recall that

H` has the kernel k ` 1 b 1. Since H can be regarded as a subspace of H` we have

that }m} “ }m}`; however, only for h P H do we have that
ş
h dP “ xm, hy` since

1 P HK by construction. But there is then an element m` P H` for which PHm
` “ m and

pI ´ PHqm` “ x1,m`y “ 1, where PH is the orthogonal projection onto the subspace H
and I the identity operator. Now, 1 “ x1,m`y` ď }m`}` “ 1 ` }m} and we only learn

from this the trivial fact that 0 ď }m}.

An alternative approach gives us more insight. Whenever there is a function 1̃ P H
such that }1 ´ 1̃}8 ď β ă 1 then 1 ´ β ď xm, 1̃y ď 1 ` β and

}m} ě p1 ´ βq{}1̃} “ p1 ´ βq{ inftc : c2k ľ 1̃ b 1̃u. (16)

In the following we will make use of the covariance operator C̃ (see Section 1.9) to

determine the location of m. Before exploring the relation between the covariance operator

and the location of m we note the following adaptation of the above discussion: If 1 P H
then xC̃1,1y “ 1 and whenever 1̃ P H fulfills }1 ´ 1̃}8 ď β ă 1 then

xC̃1,1y ě p1 ´ βq2}1̃} “ p1 ´ βq2{ inftc : c2k ľ 1̃ b 1̃u. (17)

Coming now to the problem of locating m within C we can take note of the following

fundamental relationship. Whenever H is d-dimensional, }k}8 ă 8 and C̃ has an eigen-

decomposition with smallest eigenvalue λ̄d then for any h P H, }h} “ 1, with xh,my “ 0,

it follows that
ş
hpxq dP “ 0 and

ż
pxh, kpx, ¨q ´ myq2 dP “

ż
h2pxq dP ě λ̄d.
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Since supxPX |hpxq| ď }k}1{2
8 and

ş
hpxq dP “ 0, a short calculation shows that

rpm, hq ě λ̄d

}k}1{2
8
,

where with h P H,

rpm, hq :“ psup
xPX

xh, kpx, ¨q ´ myq ^ p´ inf
xPX

xh, kpx, ¨q ´ myq.

In detail, it is sufficient to consider the case of a discrete measure where with probability

p the function xh, kpx, ¨q ´ my attains value a and with probability 1 ´ p attains value b,

with a ă 0 ă b, and a2p ` b2p1 ´ pq “ λ̄d. The condition xh,my “ 0 then implies that

ap ` bp1 ´ pq “ 0. For a particular value of a we get that p “ b{pb ´ aq and b “ λ̄d{p´aq.

The value b is minimized by maximizing ´a but ´a “ xh, kpx, ¨qy for some x P X and

´a “ |a| ď }k}1{2
8 . By symmetry we get that p´aq ^ b ě λ̄d{}k}1{2

8 .

The remaining direction we have to take care of is h˚ “ m{}m} The distance of m

to the boundary in direction h˚ can be lower bounded away from zero when the smallest

eigenvalue of the covariance operator is sufficiently large since

ż
pxm, kpx, ¨q ´ myq2 dP “

ż
pxm, kpx, ¨qyq2 dP ´ }m}4 “ xC̃m,my ´ }m}4

and ż
pxh˚, kpx, ¨q ´ myq2 dP “ xC̃h˚, h˚y ´ }m}2 ě λ̄d ´ }m}2.

Also, |xh˚, kpx, ¨q ´ my| ď }kpx, ¨q} ` }m} ď 2}k}1{2
8 and

rpm, h˚q ě λ̄d ´ }m}2

2}k}1{2
8

.

For this approach to yield a useful bound λ̄d has to be strictly greater than }m}2. How-

ever, λ̄d can even be smaller than }m}2. A better bound can be gained by using an eigen-

decomposition of C̃c “ C̃ ´ mpbm. In the following let λ̄1, λ̄2, . . . be the eigenvalues of C̃c
then by the same argument as for C, whenever h P H, }h} “ 1, is such that xh,my “ 0, it

follows that
ş
pxh, kpx, ¨q ´ myq2dP “ xC̃ch, hy ě λ̄d, where λ̄d is the smallest eigenvalue

of C̃c, and rpm, hq ě λ̄d{}k}1{2
8 . For h˚ “ m{}m} we get now that

ż
pxh˚, kpx, ¨q ´ myq2 dP “ xC̃ch˚, h˚y ě λ̄d

and rpm, h˚q ě λ̄d{2}k}1{2
8 . Also notice that when 1 P H then xC̃c1,1y “ 0 and λ̄d “ 0.

We summarize these finding in the following proposition.
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Proposition 1. Let pX ,A, P q be some probability space with measurable kernel function

k defined on it and such that the corresponding RKHS H has dimension d ă 8. Further-

more, assume that }k}8 ă 8 and that the centered covariance operator C̃c has an eigen-

decomposition with smallest eigenvalue λ̄d ą 0. Then 1 R H and for any h P H, }h} “ 1,

rpm, hq ě λ̄d

2}k}1{2
8
.

The dimension dependence is in this result not as obvious as in Proposition 2, but ob-

serve that when X is the d-dimensional unit sphere, d “ 2l ` 1 for some l P N, P is the

Lebesgue measure restricted to X and normalized, kpx, yq “ xx, yyRd for any x, y P X and

H is the corresponding RKHS which is of dimension d, then any h P H, }h} “ 1, is of the

form xx, ¨yRd for some x P X , }x}Rd “ 1 and for such an h

xC̃h, hy “ β´1
d

ż
h2pyq dP pyq “ β´1

d

ż
xx, yy2 dP pyq

“ β´1
d

ż 1

´1

xx, ỹxy2µd´1pBd´1p
a
1 ´ ỹ2qq dµpỹq

“ βd´1β
´1
d

ż 1

´1

ỹ2p1 ´ ỹ2ql dµpỹq “ 2ll!βd´1β
´1
dśl

i“1p2i ` 1q

ż 1

´1

ỹ2pl`1q dµpỹq

“ 2ll!βd´1β
´1
d

pśl

i“1p2i ` 1qqpl ` 3{2q
“ p2l ` 1q!
l!2l`1pśl

i“1p2i ` 1qqpl ` 3{2q
“ 1

d ` 2
,

where µd´1 denotes here the d ´ 1-dimensional Lebesgue measure and βd´1 the Lebesgue

measure of the d ´ 1-dimensional unit sphere. Hence, the eigenvalues of C̃ shrink to zero

as the dimension d increases.

If 1 P H then we get a similar result with λ̄d being replaced by λ̄d´1.

Corollary 1. Let pX ,A, P q be some probability space with measurable kernel function k

defined on it and such that the corresponding RKHS H has dimension d ă 8 and 1 P H.

Furthermore, assume that }k}8 ă 8 and that the centered covariance operator C̃c has an

eigen-decomposition with eigenvalue λ̄d´1 ą 0. Then for any h P H, }h} “ 1, xh,1y “ 0,

rpm, hq ě λ̄d´1

2}k}1{2
8
.

Proof. First note that xC̃c1,1y “ 0 and for any h P H s.t. xh,1y “ 0, xC̃c1, hy “
xC̃ch,1y “ Ephq ´Ephq “ 0. In particular, C̃c1 “ 0 and for any h P H, }h} “ 1, xh,1y “
0, xC̃ch, hy ě λ̄d´1. Now, for h P H, }h} “ 1, xh,1y “ 0,

ż
pxh, kpx, ¨q ´ myq2 dP “ xC̃ch, hy ě λ̄d´1
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and the lower bound follows by the same argument as in Proposition 1.

2.4.3 Data attaining values in a subset

Unless h P H is constant on the support of P it holds that Epph ´ Ephqq2q ą 0 and by the

above arguments it follows that rpm, hq ą 0. But m can certainly lie in the boundary, for

example, when m “ kpx, ¨q and kpx, ¨q is an extreme of C. Therefore, there must be some

direction h in which rpm, hq “ 0. The point is that when m is an extreme or lies in a face of

the convex set C and this face has extremes tkpx, ¨q : x P S Ĺ X u then P pX P X zSq “ 0

has to hold. Furthermore, there then exists a normal h˚ to this face and h˚ is constant on

the support of P which implies that xC̃ch˚, h˚y “ 0.

This observation suggests that m will either be an extreme or there will be a ball in

an affine subset of H around m within a face of the convex set. Furthermore, we can

hope that this affine subspace is directly related to the non-zero eigenvalues of C̃c and that

these eigenvalues characterize a lower bound on the width of this ball. Alternatively, it

is natural to consider the space HS “ th æ S : h P Hu where S is the support of P

[18, Def.411N]. The space HS is again an RKHS with kernel kS “ kæS ˆ S and norm

}h}kS “ inft}u} : u æ S “ h, u P Hu [26, Cor.5.8]. In the proposition below we show

that the covariance operator C̃Sc corresponding to P and HS characterizes the ball around

m within the affine subspace spanned by C.

Proposition 3. Let pX ,A, P q be a probability space with P being a topological τ -additive

probability measure which has support S and let k be a continuous kernel function k de-

fined on X such that the corresponding RKHS H has dimension d ă 8. Furthermore,

assume that }k}8 ă 8, and that the centered covariance operator C̃c has an eigen-

decomposition with eigenvalue such that (i) λ̄l ą 0 “ λ̄l`1 for some l ă d or (ii) λ̄d ą 0.

It follows that HS has dimension l ` 1 and C̃Sc has eigenvalues λ̄Si “ λ̄i for all i ď l

and λ̄Sl`1 “ 0 under (i), and HS has dimension d and the eigenvalues of C̃Sc are the same

eigenvalues as of C̃c under (ii). Furthermore, under condition (ii) there exists a closed

ball B centered at m with radius λ̄d{2}k}1{2
8 inside C. If λ1 “ 0 and there are no two

points x, y P X such that kpx, xq “ kpy, yq “ kpx, yq then S consists of a single ele-

ment and P “ kpx, ¨q for some x P X . If λ1 ą 0 then m lies in the relative interior of

F “ cch tkpx, ¨q : x P Su. In particular, under condition (i) there exists a closed ball B

centered at m such that B X affF Ă F and B has radius λ̄l{2}k}1{2
8 .

Proof. (a) When λ̄d ą 0 it follows that Eph2pXqq ą EphpXqq2 for all h P H, h ­“ 0. In

particular, let e1, . . . , ed P H be linearly independent and fix any a1, . . . , ad P R such that
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a1, . . . , ad are not simultaneously equal to zero. Consider e1æS, . . . , edæS then

E
`` dÿ

i“1

aieiæS
˘2˘

“ E
`` dÿ

i“1

aiei
˘2˘ ą 0.

Since this holds for all such a1, . . . , ad it follows that e1æS, . . . , edæS are linearly inde-

pendent and HS is d-dimensional. Similarly, when λl ą 0 and λl`1 “ 0 it follows that

there is an h1 P HS which is almost surely equal to 1æS and l linearly independent func-

tions e1æS, . . . , elæS P H which are also linearly independent of h1 (for any non-trivial

linear combination of e1æS, . . . , elæS it follows that the second moment is strictly larger

than the squared expected value and therefore these linear combinations are not equal to a

constant function). In fact, h1 is equal to 1æS since by assumption the kernel function is

continuous: Assume that h1 is not equal to 1, take a x P S such that h1pxq ­“ 1 and let

ϵ “ |h1pxq ´ 1|. Take a function h P H such that hæS “ h1 and }h} ď }h1}HS
` ϵ{4.

The set A “ h´1rty : |y ´ h1pxq| ă ϵ{4us is open and has non-empty intersection with S.

Also, h1 is different from 1 on all of A. Due to [18, 411N] it follows that P pAq ą 0 and 1

is not almost surely equal to h1 which is impossible. By the same argument it follows that

the other eigenfunctions of C̃c with zero eigenvalues are constant on S and therefore lie in

the span of h1 and the dimension of HS is l ` 1.

(b) In case (ii), let e1, . . . , ed be orthonormal in H then, due to (a), the functions e1æ
S, . . . , edæS are linearly independent. Also }eiæS}HS

“ }ei} for all i ď d, because for any

given i ď d, eiæS does not lie in the linear subspace spanned by tejæSuj ­“i. Similarly, for

any i, j ď d, }eiæS ` ejæS}HS
“ }ei ` ej} and }eiæS ` ejæS}2HS

“ }eiæS}2HS
` }ejæS}2HS

.

Hence, tei æSuiďd is an orthonormal basis of HS . In particular, when e1, . . . , ed are the

eigenfunctions of C̃c then e1æS, . . . , edæS are the eigenfunctions of C̃Sc since for i ­“ j,

xC̃Sc eiæS, ejæSyHS
“ xC̃cei, ejy “ 0

and for any i ď d, xC̃Sc ei, eiy “ λ̄i.

By the same argument it follows that in case (i) that e1æS, . . . , elæS,1æS{}1æS}HS
is

an orthonormal basis of HS . Hence, if e1, . . . , el are the first l eigenfunctions of C̃c then

e1æS, . . . , elæS are the eigenfunctions of C̃Sc and the eigenvalues match.

(c) When λ̄1 “ 0 it follows that HS “ span t1æSu and xmS, c1yHS
“ c “ xmS,n, c1yHS

for all c P R where mS and mS,n are just m and mn when the kernel is restricted to S. Also,

every function h P H is constant on S and xm, hy “ xmn, hy “ xh, kpx, ¨qy for all x P S.

In particular, if S does not consist of a single element it follows that kpx, yq “ kpx, xq “
kpy, yq for all x, y P S. Reversing this statement leads to the claim made in the proposition.

(d) Let U “ affF be the affine subspace spanned by kpx, ¨q, x P S. The element m

lies within U since for any h P H for which xkpx, ¨q, hy “ c for all x P S and for some

c P R it follows that xm, hy “
ş
S

xkpx, ¨q, hy dP “ c. In other words, if m would not
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lie in U then there would be an h, }h} ą 0, that stands perpendicular on U and such that

m “ h ` argmingPU }g ´ m}, and xm, hy ­“ xkpx, ¨q, hy for all x P S.

(e) Under condition (ii) the constant functions are not in H and the conditions of Propo-

sition 1 are fulfilled and the existence of the ball with the specified radius follows directly.

Under condition (i) the constant functions are contained in HS and there exists a func-

tion h0 P H such that h0pxq “ 1 for all x P S. Consider inft}h} : hpxq “ 1 for all x P
Su ď }h0}. Since h ÞÑ }h} is continuous and th : }h} ď }h0}u is compact it follows that

the infimum is attained at some h˚ P H. Also, }1æS}HS
“ inft}h} : hæS “ 1æSu “ }h˚}

and 1æS “ h˚æS.

Let U “ aff tkpx, ¨q : x P Su Ă H and V “ U ´ U be the subspace parallel to U . For

any h P U there exists m P N, λ1, . . . , λm P R, λ1 ` . . . ` λm “ 1 and x1, . . . , xm P S

such that h “ řm

i“1 λikpxi, ¨q. In particular, if g P H is constant on S and attains value c,

then xg, hy “ c
řm

i“1 λi “ c. This implies that g is orthogonal to V since xg, h1 ´ h2y “
0 for all h1, h2 P U . Due to assumption (i) there are d ´ l eigenfunctions el`1, . . . , ed
of C̃c which are constant on S, that is el`1, . . . , ed are orthonormal and each of them is

orthogonal to V . Also, any function h that is orthogonal to V has to be constant on S

since hpxq “ xkpx, ¨q, hy “ xkpy, ¨q, hy “ hpyq for all x, y P S. Since the eigenfunctions

e1, . . . , el have corresponding eigenvalues which are strictly greater than zero it follows

that e1, . . . , el cannot be constant and V has dimension l. Also, note that U cannot be equal

to V , or better, U cannot be a subspace but only an affine subspace: assume otherwise then

0 P U and if h is constant on S, attaining value c ­“ 0, then 0 “ xh, kpx, ¨qy “ hpxq “ c

for all x P S. In other words there cannot be functions that are constants on S in H, but we

know already that there are functions which are constant on S in H.

(f) We claim that W “ span pV Y th˚uq, when equipped with the inner product of H,

is isometric isomorphic to HS , U Ă W and pspan th˚uq X U ­“ H. We start with the latter

claim. Since U is not a subspace it follows that the orthogonal projection of 0 onto U is not

0 itself. In detail, take any x P S and let PV the projection onto the subspace V then the

orthogonal projection onto U is the operator defined by PUh “ kpx, ¨q ` PV ph ´ kpx, ¨qq.

Now PU0 “ kpx, ¨q ´ PV kpx, ¨q ­“ 0 and, PU0 is orthogonal to V . But that means the PU0

is constant on S and lies in the span of el`1, . . . , ed. In particular, there is function that is

constant on S which lies in U . Notice that for any function h which is constant on S there

exists an element in U that lies in the span of h if }h} “ supgPU |xh, gy|{}g}. Recall that

a function g P U can be written as g “ řm

i“1 λikpxi, ¨q for some m P N, x1, . . . , xm P S

and such that λ1 ` . . . ` λd “ 1. Hence, xh, gy “ c if h attains value c and h P U if

}h} “ |c| supgPU 1{}g}. Consider now a function h that is constant on S and attains value

1 then }h} “ supgPU 1{}g}. For 0 ă ϵ ă }h˚} take g P U such that }h} ď ϵ ` 1{}g}, then

|xh˚, gy|
}h˚} ď }g} ď |xh, gy|

}h} ´ ϵ
“ |xh˚, gy|

}h} ´ ϵ
ď |xh˚, gy|

}h˚} ´ ϵ
.
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In other words,
|xh˚, gy|

}g} ď }h˚} ď |xh˚, gy|
}g} ` ϵ

and supgPU |xg, h˚y|{}h˚} “ }h˚} which implies that pspan th˚uq X U ­“ H and U Ă W

Let ψ : W Ñ HS be the function that associates with h P W the function hæS P HS .

The function ψ is linear since paf`gqæS “ apfæSq`gæS for all f, g P W , a P R. We have

seen already that ψph˚q “ 1æS and }ψph˚q}HS
“ }h˚}. Also any h P U lies in the span

of tkpx, ¨q : x P Su and, since H is finite dimensional, h can be written as
řd

i“1 aikpxi, ¨q
for some a1, . . . , ad P R and x1, . . . , xd P S. Hence, any g, h P U Ă W can be written as

h “ řd

i“1 aikpxi, ¨q, g “ řd

i“1 bikpyi, ¨q, with some ai, bi P R, xi, yi P S for all i ď d, and

xg, hy “
dÿ

i,j

aibjkpxi, yjq “
dÿ

i,j

aibjkSpxi, yjq “ xψpgq, ψphqyHS
.

But this implies that for any g, h P V , that is in the subspace parallel to U , there exists

g̃, h̃ P U and x P S such that g “ g̃ ´ kpx, ¨q, h “ h̃ ´ kpx, ¨q and

xg, hy “ xg̃ ´ kpx, ¨q, h̃ ´ kpx, ¨qy
“ xψpg̃q, ψph̃qyHS

´ xψpg̃q, kSpx, ¨qyHS
´ xψph̃q, kSpx, ¨qyHS

` kSpx, xq
“ xψpg̃ ´ kpx, ¨qq, ψph̃ ´ kpx, ¨qqyHS

“ xψpgq, ψphqyHS
,

since ψpkpx, ¨qq “ kSpx, ¨q for any x P S. Finally, for any g P V , write g “ g̃ ´ kpx, ¨q for

some x P S, g̃ P U then

xg, h˚y “ xg̃, h˚y ´ xkpx, ¨q, h˚y “ 0 “ xψpg̃q ´ kSpx, ¨q,1æSyHS
“ xψpgq, ψph˚qyHS

,

since h˚ is constant on S, ψpg̃q “ řm

i“1 aiψpkpxi, ¨qq for some m P N, x1, . . . , xm P S

and a1, . . . , am such that
řm

i“1 ai “ 1, and xψpg̃q,1æSyHS
“ 1. Hence, ψ is an isometry

and since HS and span pV Y th˚uq have the same it follows that they are isometric isomor-

phic. The existence of the ball around m of the specified radius follows now directly from

Corollary 1.

Notice that HS does not have to be equal to H when λ̄d ą 0. For instance, when H
consists of the quadratic functions on r´1, 1s and has therefore dimension 1. If the measure

P is discrete with P pt´1uq “ P pt1uq “ 1{2 then λ̄1 ą 0 but S “ t´1, 1u and HS ­“ H.

2.5 Locating mn within the empirical convex set

We are now combining the various results we have derived. Section 2.4 allows us to refer

the size of a ball within C around m back to the question of the width of C. In Section 2.3
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we derived various ways to lower bound the width of C. We also know that Cn converges

to C. Section 2.2 contains various results on that. These results combine Rademacher or

VC bounds with lower bounds onPψγpxu, ϕp¨q ´ my ´ c and Pfu,c. These lower bounds

are closely related to the bounds in Section 2.4 since in both settings we need to measure

how much probability mass lies in various directions behind some threshold. To get now

high probability bounds for the existence of ball of a certain size around mn within Cn we

also need to control the convergence of mn to m. But that is easy to do with another VC

or Rademacher argument. The following two theorems combine these results under some

natural conditions. The first result applies when X “ r0, 1sl, H is finite dimensional, that

functions in H are Lipschitz continuous and that we have lower bound on the density of the

law of X1, . . . , Xn on X . We also assume that 1 P H but the result can easily be adapted

to the case of 1 R H.

Theorem 1. Let X “ r0, 1sl, l ě 1, and k a continuous kernel function on X such that

the corresponding RKHS H is d-dimensional, 1 ď d ă 8, functions h P H are Lipschitz

continuous in the sense of (13) with Lipschitz constant L ą 0, and 1 P H. Furthermore, let

X1, . . . , Xn be i.i.d. random variables defined on some probability space and such that the

law P of X1 has a density p on X and infxPX ppxq ě c ą 0 for some constant c. Mercer’s

theorem applies to k. Let λ̃d be the smallest eigenvalue of the Mercer decomposition. There

exists a ball of radius

δ “ 2λ̃
1{2
d ^ 2cλ̃

pl`1q{2
d βl

pl ` 1qLl

around m in C in the affine subspace spanned by C. Furthermore, for any q P p0, 1q and

whenever

n ą
˜a

2 logp6{qq ` 96}k}1{2
8 {δ

cβlpδ{8Lql

¸2

_
˜
4}k}1{2

8 ` 3
a
2 logp3{qq

δ{4

¸2

then with probability 1 ´ q there exists a ball of radius δ{4 around mn in Cn within the

affine subspace spanned by C.

Proof. The existence of the ball around m in C has already been derived at the end of

Section 2.4.1 and the bound on the width in terms of the lowest eigenvalue of the Mercer

decomposition has been stated in Proposition 1.

(a) We start with high probability bounds for }mn ´ m} being small using Rademacher

complexities. Let F̃ be a countable dense subset of the unit ball of H´ then for any α P R,

Pr p}mn ´ m} ě αq “ Pr

˜
sup
hPF̃

|p1{nq
nÿ

i“1

fpXiq ´ Pf | ě α

¸
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since, }mn ´m} “ suphPF̃xh,mn ´my. In particular, for any q ą 0 and α “ 4n´1{2}k}8 `
3
a
2 logp1{qqn´1{2 we can infer from [5, Lem.22] and [19, Thm.3.4.5] that,

Pr
´

}mn ´ m} ě p4}k}1{2
8 ` 3

a
2 logp1{qqqn´1{2

¯
ď q. (18)

(b) Next, we expand the argument from Section 2.2.3 to control the difference between

Cn and C. Let c1 “ ´δ{2 then for any γ ą 0 and with probability 1´ q simultaneously for

all u P F̃ ,

Pnψγpxu, ϕp¨q ´ my ´ c1q (19)

ě Pψγpxu, ϕp¨q ´ my ´ c1q ´ p
a
2 logp2{qq ` 24}k}1{2

8 {γqn´1{2.

Chose γ “ δ{4 and let x0 P X be a point such that xu, ϕpx0q ´ my ď ´δ. Then,

Pψγpxu, ϕp¨q ´ my ´ c1q ě Prpxu, ϕpX1q ´ my ď ´γ ` c1q.

As in the proof of Proposition 2 let A “ ty : }y ´ x0} ď δ{4L, y P X u and B the

translation of A to the origin, B “ ty : }y} ď δ{4Lu. Then the Lebesgue measure of B is

µlpBq “ pδ{8Lqlβl and PrpX1 P Aq ě cµlpBq. Hence,

Prpxu, ϕpX1q ´ my ď ´γ ` c1q ě PrpX1 P Bq ě cβlpδ{8Lql.

For a given q let

Nq “
˜a

2 logp2{qq ` 96}k}1{2
8 {δ

cβlpδ{8Lql

¸2

then whenever n ą Nq with probability 1 ´ q there is a ball of radius δ{2 around m in Cn.

(c) Finally, we transfer the lower bound that we have for a ball within Cn around m to

mn. For q P p0, 1q let

Ñq “
˜
4}k}1{2

8 ` 3
a
2 logp1{qq

δ{4

¸2

.

Then for any n ą Ñq with probability at least 1 ´ q, }mn ´ m} ď δ{4.

Bringing this together, with probability 1 ´ q there is ball of size δ{4 in Cn around mn

whenever n ą Nq{3 _ Ñq{3.

The second result uses an assumption on the centered covariance operator instead of

an assumption on the density. For this result we actually do not need to use the results

on the minimal width of C. We forumlate this result directly for the case where P is

allowed to attain values in a strict subset of X . A fortunate circumstance in that setting is
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that the empirical convex set converges to the intersection of C with the minimal face that

contains m and algorithms that work with the empirical convex set adapt automatically to

the structure of the covariance operator. The result relies on the existence of the support

of the measure P . A weak assumption to guarantee this existence is that P is a τ -additive

topological measure [18, 411N].

Theorem 2. Let pX ,A, P q be some probability space with P being a topological measure

that is τ -additive, and with measurable kernel function k defined on X such that the cor-

responding RKHS H is finite dimensional. Furthermore, let X1, . . . , Xn be i.i.d. random

variables attaining values in X and with law P and assume that }k}8 ă 8, and that

the centered covariance operator C̃c has an eigen-decomposition with smallest non-zero

eigenvalue being λ̄d. There exists a ball of radius δ “ λ̄d{2}k}1{2
8 around m in C within the

affine subspace spanned by C. Furthermore, for any q P p0, 1q and whenever n is (strictly)

greater than
˜
8}k}8p

a
2 logp6{qq ` 192}k}8{λ̄dq

λ̄2d

¸2

_
˜
16}k}1{2

8 `
a
288 logp2{qq
δ

¸2

then with probability 1 ´ q there exists a ball of radius δ{4 around mn in Cn within the

affine subspace spanned by C.

Proof. (a) The existence of the ball with radius δ follows directly from Proposition 3.

Furthermore, the same high probability bound for }mn ´ m} as in the proof of Theorem

1 applies. The bound for Cn also runs along the same line as in Theorem 1. Consider in

the following the RKHS HS . Let γ “ δ{4 and c “ ´δ{2 then Equation (5) tells us that

Pψγpxu, ϕSp¨q ´ mSyHS
´ cq ě λ̄2{8}k}8 whenever u P HS has unit norm. Hence, with

probability 1 ´ q and simultaneously for all u P F̃ , where F̃ is countable dense subset of

the unit ball of HS ,

Pnψγpxu, ϕp¨q ´ my ´ c1q ě λ̄2d{8}k}8 ´ p
a
2 logp2{qq ` 192}k}8{λ̄dqn´1{2.

(b) For a given q P p0, 1q let Ñq “ pp16}k}1{2
8 ` 12

a
2 logp1{qqq{δq2 then for any

n ą Ñq, }mn ´ m} ď δ{4 with probability 1 ´ q. Similarly, with probability 1 ´ q for

n ą Nq there is a ball of radius δ{2 around m in Cn (as a subset of the affine subspace

spanned by C), where

Nq “ 64}k}28p
a
2 logp2{qq ` 192}k}8{λ̄dq2

λ̄4d
.

The convergence of the empirical mean embedding and empirical convex set are both

unproblematic in the large sample case in both theorems. The bottleneck of the approach

is rather the size of the convex set C itself.
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3 Related approximation problems

When confronted with a concrete statistical problem it is typically insufficient to only ap-

proximate m. For example, the least-squares error, when a regressor f from an RKHS H
with kernel k is used, is

1

n

nÿ

i“1

pfpXiq ´Yiq2 “ 1

n

nÿ

i“1

xf b f, kpXi, ¨q b kpXi, ¨qyb ´ 2

n

nÿ

i“1

xf, YikpXi, ¨qy ` 1

n

nÿ

i“1

Y 2
i .

Looking at the right hand side we can note that we have to deal with multiple approxima-

tion problems. There are two high level approaches to addressing multiple approximation

problems. We can either solve each approximation problem individually or we can solve

them simultaneously. In terms of finding core-sets this means that we will get three differ-

ent core-sets when solving the approximation problems individually and a single core-set

when we solve the approximation problems simultaneously. Before getting back to this

discussion, let us have a look at the individual terms in the above least-squares problem.

The third term on the right hand side is rather unproblematic since it does not depend

on f and can be summarized by a single real number. In particular, if we approximate each

term individually then we can compress this term down to a single real number. The first

term on the right hand side corresponds to an empirical covariance and can be treated in a

similar way to the empirical measure, i.e.

1

n

nÿ

i“1

kpXi, ¨q b kpXi, ¨q

attains values in H b H. It fact, since we are only interested in the terms f 2pXiq, there is

an RKHS that is better suited for our purposes than H b H. Due to [26, Thm.5.16] there

exists a function g P H d H such that f 2pXiq “ gpXiq, where H d H is the RKHS that

corresponds to the kernel function κpx, yq “ k2px, yq. The empirical covariance, when

restricted to tph, hq : h P Hu, can be identified with

Cn “ 1

n

nÿ

i“1

κpXi, ¨q P H d H,

i.e. for any h P H,

xCn, h2yHdH “ 1

n

nÿ

i“1

h2pXiq “ 1

n

nÿ

i“1

xkpXi, ¨q b kpXi, ¨q, h b hyb.

The random element Cn attains values within the empirical convex set

Cd,n :“ cch tκpXi, ¨q : i ď nu.
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The corresponding population covariance element is given by

C “
ż

X

κpx, ¨q dP pxq (20)

which is contained in the convex set

Cd “ cch tκpx, ¨q : x P X u.

In Section 2.4.2 we used the covariance operator C̃ : H Ñ H. Notice that C̃ and C are

closely related since for any h P H, xC̃h, hy “ Eph2pXqq “ xC, h2yHdH.

The second term in the above sum is more difficult to deal with than the other two due

to the elements Yi. We are looking at two approaches in Section 3.3: In the first approach

we consider my,n “ p1{nq řn

i“1 YikpXi, ¨q as a subset of cch tYikpXi, ¨q : i ď nu. That

approach works well when we consider the approximation problem in isolation, but it does

lead to complications when trying to approximate my,n simultaneously to Cn. In the second

approach we incorporate the Yi’s into the kernel by using xYi, ¨yR b kpXi, ¨q as a kernel

function and by mapping f P H to x1, ¨yR b fp¨q P R1 b H, i.e. for i ď n,

xx1, ¨yR b fp¨q, xYi, ¨yR b kpXi, ¨qyR1bH “ YifpXiq “ xf, YikpXi, ¨qy.

In this approach we are aiming to approximate

m
b
y,n “ 1

n

nÿ

i“1

xYi, ¨yR b kpXi, ¨q “ x1, ¨yR b my,n.

In the least-squares problem we might like to use the same pointsXi with the same weights

wi to approximate Cn and my,n simultaneously. As we mentioned above this approach is

facilitated by incorporating the Yi’s and by moving to mb
y,n. Similarly, it is useful to extend

the functions in H d H to R ˆ X by setting ĥpy, xq “ hpxq for h P H d H. We denote

the resulting space by {H d H which is again a Hilbert space when using the inner product

xĥ, ĝy{HdH
“ xh, gyHdH, for any g, h P H d H. In fact, it is an RKHS with kernel function

κyppy1, x1q, py2, x2qq “ κpx1, x2q, since

xĥ, κyppy, xq, ¨qy{HdH
“ xh, κpx, ¨yqyHdH “ hpxq “ ĥpy, xq.

The empirical covariance operator now becomes Cy,n “ p1{nq řn

i“1 κyppYi, Xiq, ¨q.

One way to achieve a simultaneous approximation of Cy,n and mb
y,n is to use a direct

sum G “ p {H d Hq ‘ pR1 b Hq and consider the convex set

C‘,n “ cch tpκppYi, Xiq, ¨q, xYi, ¨yR b kpXi, ¨qq : i ď nu Ă G.
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The element that we like to approximate is in this context pCy,n,mb
y,nq which lies in C‘,n.

Let pC̄y,n, m̄b
y,nq be some element in G, then

}pC̄y,n, m̄b
y,nq ´ pCy,n,mb

y,nq}2G “ }C̄y,n ´ Cy,n}2{HdH
` }m̄b

y,n ´ m
b
y,n}2R1bH

and a good approximation in G guarantees good approximations of Cy,n and mb
y,n simulta-

neously.

3.1 Assumptions

There are some minimal assumptions that we need to impose on C,my and variations

thereof to be well defined. Generally, we assume that we have independent pairs of ran-

dom variables pX, Y q, pX1, Y1q, . . . defined on some probability space pΩ,A, µq. For C to

be well-defined it suffices to assume that κpY, ¨q P L1pµ;H d Hq and, similarly, for my it

suffices to assume that Y P L2pµq and kpX, ¨q P L2pµ;Hq since then
ş

}Y kpX, ¨q} dµ ď
}Y }2}kpX, ¨q}2 ă 8 and my “

ş
Y kpX, ¨q dµ P H.

Some further assumptions are useful to facilitate the following analyses. In particular,

in the least-squares setting it is natural to assume that Y “ f0pXq ` ϵ, where f0 is a

suitable function, ϵ is a zero mean real-valued random variable representing measurement

noise, and X and ϵ are independent. When making this assumption we are assuming that

ϵ is a random variable that is defined on the probability space pΩ,A, µq. To guarantee that

Y P L2pµq it is enough to assume that f0pXq P L2pµq and ϵ P L2pµq.

3.2 Covariance operators

Since Equation (20) tells us that the covariance operator C can be treated like a mean

element after changing the kernel, it follows immediately that the techniques we developed

for approximating mn and m can be applied to the covariance operator C and its empirical

version Cn. One might also wonder if the approximation problems for mn and Cn are related

and if any information that we might deduce about Cn and mn can give us insights into the

approximation problem for Cn. For instance, can we say anyhting about the width of the

convex set in Hκ based on the width of the convex set in H? Or, does an assumption on the

variance of functions in H translate to statements about the variance of certain functions

in Hκ? Unsurprisingly, this seems to be impossible to do in general. However, for certain

functions in Hκ we can infer statements about the width and the variance. Similarly, under

very stringent assumptions on certain eigenvalues we can say something about the width of

the convex set with respect to any function in Hκ. Before looking into these questions we

start by taking a closer look at the RKHS H d H.

Note that the space H d H is not just the RKHS corresponding to the kernel κpx, yq “
k2px, yq but it is also closely related to the tensor product HbH. In particular, h P HdH
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if, and only if, there exists u P H b H such that hpxq “ upx, xq for all x P X , and then

}h}HdH “ inft}u}HbH : hpxq “ upx, xq for all x P X u [26, Thm.5.16]. Observe that for

any h P H d H the set Ah :“ tu P H b H : hpxq “ upx, xq for all x P X u is a convex

subset of H b H. Define the linear operator T : H b H Ñ H d H by Tu “ u ˝ ψ where

ψ : X Ñ X ˆX , ψpxq “ px, xq, and observe that T is bounded since }Tu}HdH ď }u}HbH.

Hence,Ah “ T´1rthus is closed. Also, observe that when h “ pfbgq˝ψ for some f, g P H
then there exists functions f1, f2, f3 P H such that h “ p1{2qpf1bf1´f2bf2´f3bf3q˝ψ
and }f b g}b ě }f1 b f1 ` f2 b f2 ` f3 b f3}b: choose f1 “ pf ´ gq, f2 “ f, f3 “ g then

f b g ` g b f “ pf ` gq b pf ` gq ´ pf b fq ´ pg b gq “ f1 b f1 ´ f2 b f2 ´ f3 b f3

and, since pf b gq ˝ ψ “ pg b fq ˝ ψ, the first statement follows. In terms of the norm

observe that }f b g ` g b f}b “ }f1 b f1 ´ f2 b f2 ´ f3 b f3}b ď 2}f}}g} “ 2}f b g}b.

Also, note that

p1{2q}f b g ` g b f}2b “ }f}2}g}2 ` |xf, gy|2 “ }f b g}2b ` |xf, gy|2pď 2}f b g}2q,

where the expression in the bracket follows from the Cauchy-Schwarz inequality. Hence,

when f and g are orthogonal, we have that

}f1 b f1 ´ f2 b f2 ´ f3 b f3}b “
?
2}f b g}b.

The point is that for any tensor f b g we can express pf b gq ˝ ψ as a linear combination

of ‘symmetric’ tensor elements applied to ψ without increasing the tensor norm.

Let us next consider the closed subspace U “ span tkpx, ¨qbkpx, ¨q : x P X u Ă HbH
and the orthogonal projection PU onto it. For any u P H b H we have that PUu lies in the

subspace spanned by kpx, ¨q b kpx, ¨q and }PUu}b ď }u}b. In fact, for any x P X ,

u ˝ ψpxq “ xu, kpx, ¨q b kpx, ¨qyb “ xu, PUpkpx, ¨q b kpx, ¨qqyb

“ xPUu, kpx, ¨q b kpx, ¨qyb “ pPUuq ˝ ψpxq.

In other words, for h P H d H, if we can show that the infimum will be attained over Ah,

then there exists an element u in U such that h “ u ˝ ψ, }u}b “ }h}d, and for any v R U
that fulfills v ˝ ψ “ h it follows that }v}b ą }u}b.

When H is finite dimensional and the kernel function is bounded it follows that Ah XU

is compact: the tensor space H b H is finite dimensional since H is finite dimensional.

Also, h is bounded since the kernel function is bounded. For ϵ ą 0 consider the centered

closed ball B of radius }h}d ` ϵ within HbH. The intersection BXAh XU is non-empty

and compact and the infimum is attained within this compact set.
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3.2.1 Lower bound on the width of Cd

How can this tensor product characterization of H d H be used to characterize the width

of Cd? Let us first consider tensors of the form f b f , f P H, }f b f} “ 1 “ }f}. The

width of Cd in direction h, where h “ pf b fq ˝ ψ, is

width hCd “ sup
xPX

hpxq ´ inf
xPX

hpxq

“ sup
xPX

xf b f, kpx, ¨q b kpx, ¨qyb ´ inf
xPX

xf b f, kpx, ¨q b kpx, ¨qyb

“ sup
xPX

f 2pxq ´ inf
xPX

f 2pxq.

If X is path connected, k is continuous and, hence, f is continuous, then we can relate

width hCd to width f pCq: whenever there exist x, x1 P X such that fpxq ą 0 ą fpx1q, then

there also exists an x̃ P X with fpx̃q “ 0 due to the mean value theorem. In this case,

width hCd ě psup
xPX

fpxq _ ´ inf
xPX

fpxqq2 ě pp1{2qwidth f pCqq2.

If there is no x such that fpxq “ 0, that is f attains only positive or only negative values,

then we can argue in the following way. W.l.o.g. assume that f attains only positive values.

Since for a, b ě 0, a ě b, a2 ´ b2 ě pa ´ bq2, it also follows in this case that

width hCd ě pp1{2qwidth f pCqq2.

This lower bound can fail to hold when the assumptions about k and X are not fulfilled.

Consider X “ t´1, 1u with kpx, yq “ δx,y and the function f “ kp1, ¨q ´ kp´1, ¨q which

lies in the RKHS. For this function f ,

sup
xPX

f 2pxq ´ inf
xPX

f 2pxq “ 0 ă 1 “ pp1{2qpsup
xPX

fpxq ´ inf
xPX

fpxqqq2.

The factor 1{2 in the lower bound is redundant when f attains only positive or negative

values since a2 ´ b2 ě pa ´ bq2 whenever a and b have the same sign. More importantly,

the bound becomes loose when infxPX f
2pxq is large since a2 ´ b2 ´ pa ´ bq2 “ 2bpa ´ bq

whenever a ě b ą 0.

Moving on to other directions h P H b H, }h}b “ 1, we can first observe that the

arguments are not as straightforward as elements in U are of the form
řd

i“1 αikpxi, ¨q b
kpxi, ¨q for some d P N, αi P R and xi P X for i ď d, and, when considering the supremum

over x P X , the different terms αik
2pxi, xq can potentially cancel each other; in particular,

there is no reason why the αi should all be positive.

Alternatively, we can consider the set S “ tkpx, ¨q b kpx, ¨q ´
ş
kpz, ¨q b kpz, ¨qdP pzq :

x P X u and the convex hull of S. This convex hull is closely related toCd. Note that chS is
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a subset of HbH and contains the origin. Fix now any u P spanS, }u}b “ 1, then span tuu
intersects chS. In fact, span tuuXchS consists of more than a single point since otherwise

xkpx, ¨q b kpx, ¨q, uyb “ xkpy, ¨q b kpy, ¨q, uyb for all x, y P X and xu, syb “ 0 for any

s P S which would imply that u “ 0. Consider the two points at which span tuu intersects

with the boundary of chS and let d be the dimension of spanS. Each of these points can be

expressed as a convex combination of l ď d`1 points in S due to CarathÂeodory’s theorem.

Hence, u “ ũ{}ũ} where ũ “ řl

i“1 αikpxi, ¨q b kpxi, ¨q for some strictly positive αi’s that

sum to one and suitable points x1, . . . , xl. We can note right away that

inf
xPX

kpx, xq{pd ` 1q ď
´ lÿ

i,j“1

αiαjk
2pxi, xjq

¯1{2
“ }ũ}b ď sup

xPX
kpx, xq. (21)

Also, when kpx, yq is a non-negative function an application of Jensen’s inequality yields

further results. In detail,

sup
x,yPX

ũpx, xq ´ ũpy, yq “ sup
x,yPX

lÿ

i“1

αipk2pxi, xq ´ k2pxi, yqq

ě sup
xPX

´ lÿ

i“1

αikpxi, xq
¯2

´ inf
yPX

lÿ

i“1

αik
2pxi, yq.

In the following, let c “ infg width gpCq, where the infimum is taken over tg : g P H, }g} “
1u. When c is large, k is non-negative and }k}8 ď 1, then this simple argument might be

of use: since kpxi, yq ď 1 it follows that kpxi, yq ě k2pxi, yq and

sup
xPX

´ lÿ

i“1

αikpxi, xq
¯2

´ inf
yPX

lÿ

i“1

αik
2pxi, yq ě sup

xPX

´ lÿ

i“1

αikpxi, xq
¯2

´ inf
yPX

lÿ

i“1

αikpxi, yq.

Furthermore, přl

i“1 αikpxi, yqq2 ě řl

i“1 αikpxi, yq ´ 1{4 and

sup
x,yPX

ũpx, xq ´ ũpy, yq ě c ´ 1{4.

This is only useful for large c. If, in fact, c ą 1{4, we can proceed and

sup
x,yPX

upx, xq ´ upy, yq ě c ´ 1{4
supxPX kpx, xq ě c ´ 1{4.

3.2.2 Lower bounds on the fourth moments

Instead of controlling the width of Cd we can also aim to control the covariance operator

corresponding to the kernel κ. Effectively, this corresponds to bounds on the fourth mo-

ments. A bound on the non-centered fourth moment is, in fact, easy to derive: let C̃ be
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the covariance operator (now interpreted as a linear operator) corresponding to the kernel

k. We need to control EpphpXq ´ EphpXqq2q for a function h P Hκ. Choosing again a

suitable u P H b H such that h “ u ˝ ψ, we find that

Eph2pXqq “ Eppu ˝ ψpXqq2q.

If U is d-dimensional then, as above, we can write u “ ũ{}ũ} where ũ “ řl

i“1 αikpxi, ¨q b
kpxi, ¨q for some positive αi,

řd`1

i“1 αi “ 1, and suitable points xi P X with l ď d ` 1.

Given this representation of u and assuming that the smallest eigenvalue of C̃ is λ̄,

}ũ}2Eph2pXqq “
lÿ

i,j“1

αiαjEppkpxi, Xqkpxj, Xqq2q ě
lÿ

i,j“1

αiαj|xC̃kpxi, Xq, kpxj, Xqy|2

ě
lÿ

i“1

α2
i

λ̄

kpxi, xiq
.

In particular, when kpx, xq “ 1 for all x P X then

Eph2pXqq ě λ̄

pd ` 1q}ũ}2 ě λ̄

d ` 1

follows from Eq. (21).

However, to say something about the largest ball that lies around C within Cd we need

a lower bound on the variance of h P Hκ. This is not straight-forward and will need, in

all likelihood, some stringent assumptions: consider the variance of an arbitrary functions

h P Hκ, when Hκ has dimension d ă 8. By the above argument, there exists a u “ ũ{}ũ},

where ũ “ řd`1

i“1 αikpxi, ¨q b kpxi, ¨q for some non-negative αi that sum to one and points

xi P X . Hence,

EpphpXq ´ EphpXqqq2q “ Eppu ˝ ψpXq ´ Epu ˝ ψpXqqq2q

“ }ũ}´2

d`1ÿ

i,j“1

αiαjEppk2pxi, Xq ´ Epk2pxi, Xqqqpk2pxj, Xq ´ Epk2pxj, Xqqqq.

There is no reason why the sum over the off-diagonal elements

ÿ

i ­“j
αiαjEppk2pxi, Xq ´ Epk2pxi, Xqqqpk2pxj, Xq ´ Epk2pxj, Xqqqq

should be positive or should be of considerably smaller magnitude than the sum over the

diagonal elements.
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3.3 Weighted mean embedding

There are different ways to address the term YifpXiq, i ď n, that occurs in the least squares

problem and there are a variety of natural assumptions under which one can study the

corresponding compression problem. Let us first have a look at how YifpXiq can be lifted

into the RKHS so that we can apply the compression techniques. A first approach to do so

was introduced at the beginning of Section 3, where we wrote YifpXiq “ xf, YikpXi, ¨qy.

Using this representation we can try to approximate p1{nq řn

i“1 YikpXi, ¨q P H. A second

approach is to map the Yi’s to linear functionals, that is to elements in the dual space R1,
and to consider the tensor products

xYi, ¨yR b kpXi, ¨q.

We still would like to work with an inner product similarly to xf, kpXi, ¨qy and we can do

so if we work with x1, ¨yR b xf, ¨y instead of f . In particular,

YifpXiq “ xxYi, ¨yR b kpXi, ¨q, x1, ¨yR b xf, ¨yyb. (22)

Both approaches are natural when the Yi’s are bounded but various issues arise when they

are not. In particular, for the latter approach the elements xYi, ¨yR b kpXi, ¨q are not con-

tained with probability one in a ball in the corresponding tensor product space. We there-

fore discuss the case where the Yi’s are bounded first before moving on to the unbounded

case. Finally, it is often natural to impose an assumption on the relation between Xi and

Yi, like

Yi “ f0pXiq ` ϵi (23)

with f0 P L2pP q, ϵi independent of Xi, Epϵiq “ 0, and the Xi and ϵi are i.i.d.

This leaves us with a total of eigth different settings. But not all of these settings

are useful for deepening our understanding. In particular, little can be said without the

assumption Eq. (23) and we assume in the following, up to short discussions, that Eq.

(23) holds. Beyond that we focus on three settings: the first setting uses the assumption

that Yi is bounded and we use the form YikpXi, ¨q. We then move on to translate the

results to the approach where we model YifpXiq through the tensor product as in Eq. (22).

Finally, we lift the assumption that Yi is bounded and study the problem in the context of

the assumptions Eq. (22) and Eq. (23). We assume throughout that the Xi’s are i.i.d. and

that kpXi, ¨q P L2pP ;Hq.

3.3.1 First setting: Bounded Yi’s & YifpXiq “ xf, YikpXi, ¨qy
There are few natural question when working with the empirical estimate my,n “ p1{nq řn

i“1 YikpXi, ¨q:

what is a natural convex set which contains my,n and over which we can optimize effi-

ciently? Do we have suitable population limits of the empirical quantities? What can be

70



said about the diameter of the empirical convex set, about how centered my,n lies within the

set and are assumptions on the covariance operator of use? In terms of an empirical convex

set which contains my,n it is natural to consider the set

Cy,n “ cch tYikpXi, ¨q : i ď nu

and optimization over this set is possible since we have control over the extremes of it.

Under the assumption that the Yi’s are of the form f0pXiq ` ϵi, there are natural expres-

sions for the population limits my and the convex set Cy. For concreteness, we assume in

the following that X is a Borel space, H is separable, f0 and the feature map ϕ : X Ñ H
are measurable, f0, the kernel function k and the ϵi’s are bounded, ϵi is independent of Xi,

and Epϵiq “ 0. We can define the population limit of my,n through

my “
ż
f0pxqkpx, ¨q dP pxq,

where P is the law of X1. The element my lies in H: The function f0 ˆ ϕ : X Ñ H is

weakly measurable since when h P H, then xf0pxqϕpxq, hy “ f0pxqhpxq is the product of

two Borel measurable functions and is therefore Borel measurable. Because H is separable

it follows that f0ˆϕ is Bochner measurable. Furthermore, }f0pxqϕpxq} ď |f0pxq|k1{2px, xq
is a bounded function of x and my “

ş
f0pxqϕpxq dP is well defined and lies in H.

Controlling }my,n´my}. We can quantify the deviation of my,n from my in the following

way. Let F̃ be a countable dense subset of the unit ball of H and using that dual elements

can be moved through the Bochner integral, we get for α ą 0,

Prp}my ´ my,n} ě αq

“ Pr
´
sup
hPF̃

xh,
ż
f0pX1qkpX1, ¨q dµ ´ 1

n

nÿ

i“1

YikpXi, ¨qy ě α
¯

ď Pr
´
sup
hPF̃

ż
f0pX1qhpX1q dµ ´ 1

n

nÿ

i“1

f0pXiqhpXiq ě α{2
¯

` Pr
´
sup
hPF̃

´ 1

n

nÿ

i“1

ϵihpXiq ě α{2
¯
. (24)

The latter term can be bounded by means of Theorem 3.3 in [? ] which is a Bernsteintype

theorem for Banach spaced valued random variables. Note that the theorem statement in [?

] contains and error which is corrected in [? ]. The bound is the following,

sup
hPF̃

´ 1

n

nÿ

i“1

ϵihpXiq “ } 1
n

nÿ

i“1

ϵiϕpXiq}
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and vn “ řn

i“1 ϵiϕpXiq attains values in H. The sequence v1, . . . , vn is a martingale se-

quence in H with regard to the filtration Ft “ σpX1, . . . , Xt, ϵ1, . . . , ϵtq, t ď n, since

Epvt|Ft´1q “ EpϵtϕpXtqq ` vt´1 “ vt´1 (a.s.) for 2 ď t ď n due to the independence be-

tween ϵt and Xt. Furthermore, let v0 “ 0 and F0 “ tH,Ωu so that Epv1|F0q “ Epv1q “ v0
a.s. We can continue the sequence by letting vt “ vn and Ft “ Fn for all t ą n, which

preserves the martingale property. To apply [? ? , Thm.3.3] we need the following moment

bounds; for all m ě 2,

nÿ

t“1

Ep}ϵtϕpXiq}m|Ft´1q ď npc}k}8qm (a.s.),

where c is an upper bound on |ϵt|. This implies that we can set Γ “ c}k}8, B “ n1{2c}k}8
in [? ? , Thm.3.3] and

Pr
`
} 1
n

nÿ

i“1

ϵiϕpXiq} ě α

2

˘
ď 2 exp

´
´ nα2

4c}k}8pc}k}8 ` α `
a
c2}k}28 ` αc}k}8{nq

¯
.

(25)

The first term can be controlled with a standard Rademacher argument after changing the

kernel. Define the kernel l “ f0bf0 and consider the product kernel lˆk : XˆX Ñ R with

RKHS Hlˆk. For h P H it follows that f0 ˆ h P Hlˆk; for an h of the form
řm

i“1 αikpxi, ¨q
one can write down the representation explicitly as f0 ˆ h “ řm

i“1 αif0pxqkpxi, xq “řm

i“1pαi{f0pxiqqpl ˆ kqpxi, xq, whenever f0pxiq ­“ 0 for all i ď m. We can thus write

Pr
´
sup
hPF̃

ż
f0pX1qhpX1q dµ ´ 1

n

nÿ

i“1

f0pXiqhpXiq ě α{2
¯

“ Pr
´

sup
gPF̃lˆk

ż
gpX1q dµ ´ 1

n

nÿ

i“1

gpXiq ě α{2
¯
, (26)

where F̃lˆk is dense subset of the unit ball of Hlˆk. The Rademacher argument that we are

using in (18) can now be applied.

Population limit of Cy,n. The next question to address is how to define the population

limit ofCy,n. Under the boundedness assumption of Y1 we can characterize the limit ofCy,n
in the following way. Let b̄ “ inftb : b P R, ϵ1 ď b a.s.u,

¯
b “ ´ suptb : b P R, ϵ1 ě b a.s.u

and let

Cy “ cch ptpf0pxq ` b̄qkpx, ¨q : x P X u Y tpf0pxq ´
¯
bqkpx, ¨q : x P X uq.

Note that for any x P X , pf0pxq ` b̄qkpx, ¨q and pf0pxq ´
¯
bqkpx, ¨q lie in H and Cy Ă H.

Furthermore, ϵi P r
¯́
b, b̄s (a.s.) and for i ď n, pf0pXiq ` ϵiqkpXi, ¨q is almost surely a
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convex combination of pf0pXiq ` b̄qkpXi, ¨q and pf0pXiq ´
¯
bqkpXi, ¨q. Therefore, Cy,n is

almost surely contained within Cy.

WhileCy is a natural limit ofCy,n, we face the problem that the convergence towardsCy
can be arbitrarily slow since ϵ1 can have a low probability of attaining values close to b̄ or

¯
b. Assumptions on the distribution of ϵ1 are one way to address this problem. Alternatively,

we can work directly withCy,n and study how deep my,n lies inCy,n by controlling events of

the form xh, Ỹ kpX̃, ¨q ´myy ď c, where pX̃, Ỹ q has law Pn, and by comparing the random

variables xh, Ỹ kpX̃, ¨q ´myy and xh, Ỹ kpX̃, ¨q ´my,ny. We follow this latter approach and

we use Rademacher complexities to control these events uniformly over the unit ball of H.

In the Rademacher approach, we control such events by lower bounding terms of the form

Pnψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq
`
“

ż
ψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq dPnpx̃, ỹq

˘

for suitable c, γ P R and all unit norm elements h P H. The element my,n converges to my

and, because ψγ is 1{γ-Lipschitz continuous, it follows that

|Pnψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq|
ď Pnp1{γq|xh,my,n ´ myy| ď p1{γq}my,n ´ my}, (a.s.) (27)

where the Pn term becomes redundant since no variables ỹ and x̃ are present in the last

line.

Next, we consider the convergence of Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq to its population

limit P pψγpxh, ykpx, ¨q´myy´cqq uniformly over the unit ball of H. The convergence can

be controlled by using Rademacher complexities. Because ϵ is used in this section to denote

the noise terms we will use ζ to denote Rademacher variables. Since ψγ is continuous and

is applied to a subset of R we can note that

nÿ

i“1

ζiψγpYihpXiq ´ EpY hpXqq ´ cq

is well defined. Also, γψγ is a contraction vanishing at zero [19, Sec.5.2.1] and for any

finite subset F of the unit ball of H it follow that

Eζ
`
sup
hPF

nÿ

i“1

ζipγ{2qψγpYihpXiq ´ EpY hpXqq ´ cq
˘

ď Eζ
`
sup
hPF

nÿ

i“1

ζiYihpXiq
˘

ď Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζiYihpXiq
ˇ̌˘

(a.s.),

from [19, Thm.5.2.1, Eq.5.50]. Note that, conditional on Yi, the probability laws of ζiYi
and ζi|Yi| are the same. In particular,

Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζiYihpXiq
ˇ̌˘

“ Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζi|Yi|hpXiq
ˇ̌˘

(a.s.).
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Recall that Rademacher complexities are stable under taking absolute convex hulls. Let

CF “ tp|Y1|hpX1q, . . . , |Yn|hpXnqq : h P F u and ĈF “ tp}Y }8hpX1q, . . . , }Y }8hpXnqq :
h P F u then abs conv CF Ă abs conv ĈF . Furthermore,

Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζi|Yi|hpXiq
ˇ̌˘

“ Eζ
`
sup
tPCF

ˇ̌ nÿ

i“1

ζiti
ˇ̌˘

“ Eζ
`

sup
tPabs conv CF

ˇ̌ nÿ

i“1

ζiti
ˇ̌˘

ď Eζ
`

sup
tPabs conv ĈF

ˇ̌ nÿ

i“1

ζiti
ˇ̌˘

“ }Y }8Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζihpXiq
ˇ̌˘
. (a.s.)

In summary, we have shown that

Eζ
`
sup
hPF

nÿ

i“1

ζiψγpYihpXiq ´ EpY hpXqq ´ cq
˘

ď p2{γq}Y }8Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζihpXiq
ˇ̌˘
. (a.s.)

A simple variation of the above argument gives us a bound on the absolute value. In detail,

Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζipγ{2qψγpYihpXiq ´ EpY hpXqq ´ cq
ˇ̌˘

ď Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζiYihpXiq
ˇ̌˘

` sup
hPF

|EpY hpXqq ´ c|E
`ˇ̌ nÿ

i“1

ζi
ˇ̌˘

ď }Y }8Eζ
`
sup
hPF

ˇ̌ nÿ

i“1

ζihpXiq
ˇ̌˘

` p}Y }8}k}1{2
8 ` |c|q

?
2πn, (a.s.) (28)

where the last inequality follows from integrating a Hoeffding bound on Prp| řn

i“1 ζi| ě tq.

Since this holds for all finite F we can take the supremum over finite sets F on both sides

and move to F̃ (see (1)).

Lower bounds. With the Rademacher argument we control the difference between the

empirical and population value. To make use of this bound we need a lower bound on the

population value. This can be attained in the following way. Let p “ Prpϵ1 ě 0q ^Prpϵ1 ď
0q. Because Epϵ1q “ 0 it holds that p ą 0. Using the towering rule for conditional

expectations and that ψγ is monotonically decreasing, we can now argue in the following

way for the population limit and any h P H,

Epψγpxh, Y kpX, ¨q ´ myy ´ cqq
ě Epψγpxh, Y kpX, ¨q ´ myy ´ cq ˆ χtϵhpXq ď 0uq
ě Epψγpxh, f0pXqkpX, ¨q ´ myy ´ cqˆ

pEpχtϵ ď 0u|Xq ˆ χthpXq ě 0u ` Epχtϵ ě 0u|Xq ˆ χthpXq ď 0uqq
ě pEpψγpxh, f0pXqkpX, ¨q ´ myy ´ cqq. (29)
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The final expectation term can be dealt with in the usual way after moving to the kernel

function l ˆ k, where l “ f0 b f0. We demonstrate this for the case that we work with a

covariance operator assumption and we derive high probability lower bounds on the radius

of a ball centered on my,n which lies within Cy,n.

Assumptions on the covariance operator. We denote the centered covariance operator

for the kernel l ˆ k by C̃c,lˆk. As usual, we need an assumption on the smallest non-zero

eigenvalue of this operator. Recall that }f0}l “ 1 and

}f0 ˆ h}lˆk “ mint}u}HlbHk
: f0pxqhpxq “ upx, xq for all x P X u.

In particular, }f0 ˆ h}lˆk ď }f0 b h}HlbHk
“ }h}k. In fact, this can be tightened by using

[26, Prop5.20]: the RKHS Hlˆk is the set tf0 ˆ h : h P Hu and for any g, h P H we have

that xf0 ˆ g, f0 ˆ hylˆk “ xg, hy. In particular, all eigenfunctions of C̃c,lˆk are of the form

f0 ˆ h for some h P H, }h} “ 1. Therefore, our bounds will depend on

λ̄‹ “ inftxC̃c,lˆkf0 ˆ h, f0 ˆ hylˆk : }h} “ 1, f0 ˆ h P pker C̃c,lˆkqKu. (30)

As before, it is beneficial to move to the RKHS Hlˆk,S corresponding to the kernel function

κ “ pl ˆ kqæS ˆ S, where S is the support of X . Observe that

pl ˆ kqæS ˆ S “ plæS ˆ Sq ˆ pkæS ˆ Sq “ ppf0æSq b pf0æSqq ˆ pkæS ˆ Sq.

Using [26, Prop5.20] again shows that Hlˆk,S “ tpf0æ Sq ˆ h : h P HSu, where HS is

defined as before. Furthermore, for g, h P HS ,

xpf0æSq ˆ g, pf0æSq ˆ hylˆk,S “ xg, hyS.

Let us also introduce mlˆk,S “
ş
κpx, ¨q dP pxq, where P is the law of X , and which is well

defined whenever pl ˆ kqpX, ¨q is Bochner integrable. For h P H,

xh,myy “
ż

X

xh, f0pxqkpx, ¨qy dP pxq “
ż

S

pf0æSqpxqphæSqpxq dP pxq

“
ż

S

xhæS, pf0æSqpxqpkæS ˆ Sqpx, ¨qyS dP pxq

“
ż

S

xpf0æSq ˆ phæSq, pf0æSq ˆ pf0æSqpxqpkæS ˆ Sqpx, ¨qylˆk,S dP pxq

“
ż

S

xpf0æSq ˆ phæSq, ppl ˆ kqæS ˆ Sqpx, ¨qylˆk,S dP pxq

“ xpf0æSq ˆ phæSq,mlˆk,Sylˆk,S.
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The key observation is now the following, for any h P H and almost surely

xh, f0pXqkpX, ¨q ´ myy “ phæSqpXqpf0æSqpXq ´ xpf0æSq ˆ phæSq,mlˆk,Sylˆk,S
“ xpf0æSq ˆ phæSq, κpX, ¨q ´ mlˆk,Sylˆk,S.

This leads directly to a first result. Under suitable assumptions and with δ “ λ̄‹{2}pf0 b
f0q ˆ k}1{2

8 , γ “ δ{4 and c “ ´δ{2, Equation (5) shows that for any h P H, such that

}hæS}S “ 1,

Epψγpxh, f0pXqkpX, ¨q ´ myy ´ cqq
“ Epψγpxpf0æSq ˆ phæSq, κpX, ¨q ´ mlˆk,Sylˆk,S ´ cqq
ě λ̄2‹{8}pf0 b f0q ˆ k}8. (31)

Combining the various steps above leads to the following proposition, which is an adapta-

tion of Theorem 2.

Proposition 2. Let pX ˆ R,A, P q be some probability space, let P be a topological mea-

sure that is τ -additive, and let k be a measurable kernel function defined on X s.t. the cor-

responding RKHS H is finite dimensional. Furthermore, let pX1, Y1q, . . . , pXn, Ynq be i.i.d.

random variables attaining values in X ˆR, with law P , and of the form Yi “ f0pXiq ` ϵi
where ϵ1, . . . , ϵn are centered i.i.d. random variables which are independent of X1, . . . , Xn

and such that |ϵ1| ď cϵ (a.s.), and f0 P L2pP q. Assume that }pf0 bf0q ˆk}8 ă 8, and that

the centered covariance operator C̃c,lˆk has an eigen-decomposition with smallest non-zero

eigenvalue being λ̄‹. Let δ “ λ̄‹{2}pf0 b f0q ˆ k}1{2
8 and p “ Prpϵ1 ě 0q ^ Prpϵ1 ď 0q.

For any q P p0, 1q and whenever n is (strictly) greater than

1024}f0 b f0 ˆ k}28
p2λ̄4‹δ

2

´
16p8}f0 b f0 ˆ k}8 ` 6

a
2 logp3{qqq2

_ 16p4cϵ}k}8 logp6{qq ` pp4c2ϵ}k}28 `
a
1 ` c2ϵ}k}28q logp6{qqq1{2q2

_ pδ
a
2 logp6{qq ` 16

?
2πpp}f0}8 ` cϵq}k}1{2

8 ` δ{2q ` 32}k}1{2
8 p}f0}8 ` cϵqq2

¯

then, with probability at least 1 ´ q, there exists a ball of radius δ{4 around my,n in Cy,n
within the affine subspace spanned by Cy,n.

Proof. (a) Since f0 b f0 ˆ k is a bounded kernel function we can apply (31) and conclude

for γ “ δ{4 and c “ ´δ{2 that Epψγpxh, f0pXqkpX, ¨q´myy´cqq ě λ̄2‹{8}pf0bf0qˆk}8
and from (29) it follows that

Epψγpxh, Y kpX, ¨q ´ myy ´ cqq ě pλ̄2‹{8}pf0 b f0q ˆ k}8.
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(b) Next, we have to incorporate a few triangle inequalities. First, we fill in the details

in (24). From (26) it follows that for p1 P p0, 1q and α1 “ 8n´1{2}f0 b f0 ˆ k}8 `
6
a
2 logp1{p1qn´1{2,

Pr
´
sup
hPF̃

Pf0 ˆ h ´ Pnf0 ˆ h ě α1{2
¯

“ Pr
´

sup
gPF̃lˆk

|Pg ´ Png| ě α1{2
¯

ď p1.

Also note that we can simplify (25) to

Pr
`
} 1
n

nÿ

i“1

ϵiϕpXiq} ě α2

2

˘
ď 2 exp

´
´ nα2

2

4cϵ}k}8pcϵ}k}8 ` α2 `
a
1 ` c2ϵ}k}28q

¯
,

whenever n ě α2cϵ}k}8. Hence, for such n, for p2 P p0, 1q and

α2 “ 4cϵ}k}8 logp2{p2q
n

`
˜

p4c2ϵ}k}28 `
a
1 ` c2ϵ}k}28q logp2{p2q
n

¸1{2

it follows that

Pr
`
} 1
n

nÿ

i“1

ϵiϕpXiq} ě α2

2

˘
ď p2.

In particular, for α12 “ α1 _ α2 and whenever n ě α2cϵ}k}8,

Prp}my ´ my,n} ě α12q ď p1 ` p2.

(c) From (27) we can infer that almost surely

Pψγpxh, ykpx, ¨q ´ myy ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq
ď γ´1}my,n ´ my} ` Pψγpxh, ykpx, ¨q ´ myy ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq.

The same inequality holds almost surely if we consider the supremum over F̃ . Therefore,

with γ “ δ{4 and α ą 0,

Prpsup
hPF̃

Pψγpxh, ykpx, ¨q ´ myy ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq ě 2αq

ď Prp}my,n ´ my} ě δα{4q
` Prpsup

hPF̃
Pψγpxh, ykpx, ¨q ´ myy ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq ě αq.

The latter term can be dealt with by a Rademacher argument when using (28). In detail, for

any p3 P p0, 1q, with probability 1 ´ p3 simultaneously for all h P F̃ ,

Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq ěPψγpxh, ykpx, ¨q ´ myy ´ cq ´
a
2 logp2{p3q{n

´ 2Eζ
`
sup
hPF̃

ˇ̌ 1
n

nÿ

i“1

ζiψγpYihpXiq ´ EpY hpXqq ´ cq
ˇ̌˘
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follows from [19, Thm3.4.5]; also see p. 26. Substituting (28) leads to the following lower

bound on the Pn term,

Pψγpxh, ykpx, ¨q ´ myy ´ cq ´
a
2 logp2{p3q{n

´ p4{γqp}Y }8Eζ
`
sup
hPF̃

ˇ̌ 1
n

nÿ

i“1

ζihpXiq
ˇ̌˘

` p}Y }8}k}1{2
8 ` |c|q

a
2π{nq.

Filling in γ, c, the upper bound on |Y | and the Rademacher complexity of F̃ , reduces the

lower bound to

α3 “
a
2 logp2{p3q?

n
` 16

?
2πpp}f0}8 ` cϵq}k}1{2

8 ` δ{2q
δ
?
n

` 32}k}1{2
8 p}f0}8 ` cϵq
δ
?
n

and

Pr
`
sup
hPF̃

Pψγpxh, ykpx, ¨q ´ myy ´ cq ´ Pnψγpxh, ỹkpx̃, ¨q ´ myy ´ cq ě α3

˘
ď p3.

(d) Combining these bounds we can derive a lower bound on Pnψγpxh, ỹkpx̃, ¨q´my,ny´cq.

In detail, let p1 “ p2 “ p3 “ q{3 and set

α‹ “ 4α12

δ
_ α3

then with probability 1 ´ q simultaneously for all h P F̃ ,

Pnψγpxh, ỹkpx̃, ¨q ´ my,ny ´ cq ě pλ̄2‹{8}pf0 b f0q ˆ k}8 ´ 2α‹.

To guarantee that the right hand side is strictly positive we can choose the n which is

provided in the statement of the proposition.

3.3.2 Second setting: Bounded Yi’s & Eq. (22)

In this section we map h P H to ȟ “ x1, ¨yR b hp¨q and we work with the kernel function

ρppy1, x1q, py2, x2qq “ xy1, y2yRkpx1, x2q.

In the introduction to this section we denoted the RKHS Hρ by R1 b H. We will use in the

following the more compact notation Hρ, } ¨ }ρ etc.

Compared to the approach in the previous section, using Hρ offers a dramatic sim-

plification of the analysis and leads to improved bounds. As usual, we are interested in

approximating a mean element. In the current context, this is mb
y “

ş
ρppy, xq, ¨q dP px, yq
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and there is a straight forward relation to the element my that was used in the previous

section,

m
b
y “

ż
xy, ¨yR b kpx, ¨q dP px, yq “ x1, ¨yR b

ż
ykpx, ¨q dP px, yq “ x1, ¨yR b my,

using (2). The element mb
y lies in R1 b H whenever Y 2kpX,Xq P L1pµq. Under our

assumption that Y “ f0pXq ` ϵ, X and ϵ independent random variables, the representation

of mb
y simplifies to

m
b
y “ Epxf0pXq ` ϵ, ¨yR b kpX, ¨qq

“ Epf0pXqx1, ¨yR b kpX, ¨qq ` xEpϵq, ¨y b EpkpX, ¨qq
“ x1, ¨yR b Epf0pXqkpX, ¨qq,

where we used (2) in the second and in the last equality. This is again just x1, ¨yR b my.

If P is τ -additive as a measure on X ˆ R then the support S of P is well defined and

we have a natural population limit

Cb
y “ cch txy, ¨yR b kpx, ¨q : px, yq P Su

of the empirical convex set

Cb
y,n “ cch txYi, ¨yR b kpXi, ¨q : i ď nu.

These are just the convex sets associated with the kernel function ρ acting on R ˆ X and

mb
y ,m

b
y,n are the corresponding mean and empirical mean elements. In fact, we can apply

right away Theorem 2. Our sample space is then r´}f0}8 ´ cϵ, }f0}8 ` cϵs ˆ X , where cϵ
is a constant such that |Y | ď cϵ a.s. The kernel function is ρ restricted to the sample space

and

}ρæS ˆ S}8 ď p}f0}8 ` cϵq}k}8.

In this formulation it might not be directly obvious how assumptions on the distribution of

Y enter. Using a Rademacher argument we can control the difference between P and Pn
when acting on indicator functions. To do so we do do not need any assumption on the

distribution of Y beside boundedness. But, if you recall our earlier arguments, you will

notice that we used lower bounds on P when applied to indicator functions to control the

size of Cb
y,n. This lower bound on P depends on the distribution of Y . In particular, with

the covariance operator approach, it depends on the variance of Y .

Let C̃b
c be the centered covariance operator corresponding to kernel ρ then for g, h P H,

xC̃b
c ǧ, ȟyρ “ EpY 2gpXqhpXqq ´ EpY gpXqqEpY hpXqq

“ Epf 2
0 pXqgpXqhpXqq ` σ2EpgpXqhpXqq ´ Epf0pXqgpXqqEpf0pXqhpXqq,
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where σ2 is the variance of ϵ. We can also relate this expression back to the covariance

operator discussed in the earlier approach, for h P H,

xC̃b
c ǧ, ȟyρ “ xC̃c,lˆkf0 b g, f0 b hylˆk ` σ2EpgpXqqEphpXqq.

Recall that for g, h P H, xg, hy “ xf0 ˆ g, f0 ˆ hylˆk and note that xǧ, ȟyρ “ xg, hy. In

particular,

}h} “ }ȟ}ρ “ }f0 ˆ h}lˆk (32)

for all h P H. If h P H, }h} “ 1, is such that f0 ˆ h is an eigenfunction of C̃c,lˆk with

eigenvalue λ and σ2 is the variance of ϵ then

xC̃b
c ȟ, ȟyρ “ λ ` σ2Eph2pXqq.

Furthermore, if f0 ˆ h is an eigenfunction of C̃c,lˆk and g is such that xg, hy “ 0 then

xC̃b
c ȟ, ǧyρ “ xC̃c,lˆkf0 ˆ h, f0 ˆ gylˆk ` σ2EpgpXqqEphpXqq “ σ2EpgpXqqEphpXqq.

There is no reason why the latter term should be zero and the two operators will generally

not have the same eigenfunctions (in the sense that ȟ is an eigenfunction of C̃b
c iff f0 bh is

an eigenfunction of C̃c,lˆk).

Remark 1. If v “ inftEph2pXqq : h P H, }h} “ 1u ą 0 then C̃b
c has no eigenvalue below

σ2v. This can help with the compression, but notice that larger values of σ2 are related to

larger values }ρ}8 which hinders the compression.

Lower bounds on the width. We could also look at the width of the convex set Cb
y by

means of the kernel function ρ. While this is a useful exercise we only want to highlight

here a simple relation between the width of Cb
y and the width of usual convex set CS (as a

subset of HS). For h P H, }h} “ 1,

width ȟpCb
y q “ sup

px,yqPS
py ´ f0pxqqxh, kpx, ¨qy ` hpxqf0pxq

´ inf
px1,y1qPS

ppy1 ´ f0px1qqxh, kpx1, ¨qy ` hpx1qf0px1qq

ě sup
xPXS

sup
y,y1PSx

py ´ y1qhpxq “ sup
xPXS

sup
y,y1PSx

py ´ y1q|hpxq|,

where XS “ tx : px, yq P Su and Sx “ ty : px, yq P Su. Also, note that

sup
xPXS

|hpxq| ě p1{2qwidth hpCSq

and we have a lower bound on width ȟpCb
y q which is a product of the width of CS and the

spread of ϵ.
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3.3.3 Third setting: Unbounded Yi’s & Eq. (22)

If Y is unbounded then one way to approach the approximation problem is to cap the

observations Yi and to control the cap as a function of n. We demonstrate this for the case

that we have the model stated in (23), f0 is bounded and measurable, and ϵ is sub-Gaussian

with variance factor ν (see [? , Sec.2.3]) but is not necessarily bounded. The natural

sample space is now R ˆ X . The kernel ρ is well defined on R ˆ X but is unbounded.

When f0 is bounded, k is measurable and bounded, and ϵ is sub-Gaussian, we have that

xY, ¨yRkpX, ¨q P L2pµ,Hρq since

Ep}xY, ¨yRkpX, ¨q}2ρq “ EpY 2kpX,Xqq ď }k}8EpY 2q

and the latter term is finite since Y is sub-Gaussian. Let trnuně1 be a non-negative and

non-decreasing sequence, and let uY pnq “ pY ^ prn ` }f0}8qq _ ´prn ` }f0}8q. The }f0}8
can obviously be replaced by an upper bound on the norm, but as the argument is devel-

oped such a bound is needed to control the error introduced by capping the observations

Yi. Define umb
y,n “ p1{nq řn

i“1xuY pnq
i , ¨yRkpXi, ¨q. In this section our aim is to derive a suit-

able adapted version of Theorem 2 for this setting where ϵ is sub-Gaussian. We start by

investigating the effect of the capping of Y .

Bounding }mb
y,n ´ umb

y,n}. A simple expansion yields

}mb
y,n ´ umb

y,n}2ρ “ 1

n2
}

nÿ

i“1

xYi ´ uY pnq
i , ¨yRkpXi, ¨q}2ρ

“ 1

n2

nÿ

i,j“1

pYi ´ uY pnq
i qpYj ´ uY pnq

j qkpXi, Xjq.

Due to the independence of the observations and by using the Cauchy-Schwarz inequality,

Ep}mb
y,n ´ umb

y,n}2ρq ď 1

n2

nÿ

i“1

|EpYi ´ uY pnq
i q2kpXi, Xiq|

` 1

n2

ÿ

i ­“j
|xEppYi ´ uY pnq

i qkpXi, ¨qq, EppYj ´ uY pnq
j qkpXj, ¨qqy|

ď}k}8
n2

nÿ

i“1

EpYi ´ uY pnq
i q2 ` n ´ 1

n
E2p|Y1 ´ uY pnq

1 |}kpX1, ¨q}q

ď}k}8
n2

nÿ

i“1

EpYi ´ uY pnq
i q2 ` pn ´ 1q}k}8

n
E2p|Y1 ´ uY pnq

1 |q.
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Let λ denote the law of ϵ. Noting that ϵ is sub-Gaussian and using [? , Sec.2.3] together

with [18, 252O] and [13, Prop2.5(a)], we obtain

Ep|Yi ´ uY pnq
i |q ď

ż 8

0

pt ´ rnq ˆ χtt ě rnu dλptq `
ż 0

´8
p´t ´ rnq ˆ χt´t ě rnu dλptq

ď
ż 8

0

λtt : t ě s ` rnu ds `
ż 8

0

λtt : ´t ě s ` rnu ds

ď 2

ż 8

rn

e´s2{2ν ds ď
?
2πνe´r2n{2ν . (33)

Similarly,

EpYi ´ uY pnq
i q2 ď

ż 8

0

pt ´ rnq2 ˆ χtt ě rnu dλptq `
ż 0

´8
p´t ´ rnq2 ˆ χt´t ě rnu dλptq

ď
ż 8

0

λtt : t ě
?
s ` rnu ds `

ż 8

0

λtt : t ď ´
?
s ´ rnu ds

ď 2e´r2n{2ν
ż 8

0

e´s{2ν ds “ 4νe´r2n{2ν . (34)

Combining these yields

Ep}mb
y,n ´ umb

y,n}2ρq ď 2ν}k}8e
´r2n{2ν

´
2{n ` πe´r2n{2ν

¯

and

Prp}mb
y,n ´ umb

y,n}ρ ě tq ď
2ν}k}8e

´r2n{2ν
´
2{n ` πe´r2n{2ν

¯

t2
.

In other words, if we have an upper bound on }f0}8 and cap the observations as described

above then with probability 1 ´ δ for any δ P p0, 1q,

}mb
y,n ´ umb

y,n}ρ ď
?
2ν}k}1{2

8 e´r2n{4ν
´
2{n ` πe´r2n{2ν

¯1{2
δ´1{2. (35)

Spectrum of the covariance operator. In Remark 1 we observed that no eigenvalue of

C̃b
c can be lower than σ2v, where σ2 is the variance of ϵ and v “ inftEph2pXqq : h P

H, }h} “ 1u. There is a peculiar detail that we have to be careful about: if h1, h2 P H
are linearly independent but h1æXS “ h2æXS , where XS “ tx : px, yq P Su, then there

exists an h P H of norm one for which Eph2pXqq “ 0. Furthermore, the corresponding

functions ȟ1, ȟ2 in Hρ are not constant on S but some linear combination of ȟ1 and ȟ2
is zero on S (at least when the involved functions are continuous). To make use of the
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lower bound σ2v it makes therefore sense to move right away to functions restricted to

Sf “ tpy, xq : px, yq P Su or XS .

Before coming back to the lower bound we want to take a paragraph to understand

better Hρ,Sf
, which is the RKHS corresponding to the kernel function ρæSf ˆ Sf . First,

notice that there are no (non-zero) constant functions in Hρ,Sf
if ϵ is not almost surely

zero. In particular, the covariance operator C̃b,S
c has then only eigenvalues that are strictly

positive. If C̃b
c has zero eigenvalues then there must be elements ȟ which are constant on

S but this means that these elements have to be equal to zero on S and correspond to the

origin in Hρ,Sf
. Also notice that Hρ,Sf

is not the same RKHS as the RKHS with kernel

function plæRS ˆ RSq ˆ pkæXS ˆ XSq, where RS “ ty : px, yq P Su and lpy, y1q “ xy, y1yR
for all y, y1 P R. This follows directly since they have different domains. The latter kernel

is defined for pairs px, yq in XS ˆ RS while the former is defined for pairs px, yq P S. This

is inconvenient since we like to use Eph2pXqq for h in some RKHS of functions acting on

the support of some measure and it is not directly obvious what this support should be like.

In the following, let TX be a topology on X , let T be the corresponding product topology

on X ˆ R, and assume that the law P of pX, Y q is a Radon measure with σ-algebra A; in

particular, it is a topological τ -additive measure and T Ă A. Then S is well defined as a

subset of X ˆ R. Let us also introduce our probability space pΩ,Σ, µq, assume that µ is

complete and pX, Y q is a well defined random variable in the sense that pX, Y q´1rAs P Σ

for all A P A. Furthermore, consider the σ-algebra AX “ tA : A ˆ R P Au and let

PX “ P ˝ π´1
X where the function πX : X ˆR Ñ X projects onto the first coordinate. The

σ-algebra AX contains TX since for O P TX it holds that O ˆ R is in the product topology

T. Hence, PX is a topological measure. If X is a Hausdorff space then PX is, in fact,

a Radon measure (apply [18, 418I] to πX and note that πX is continuous). This implies

that the support S 1 Ă X of PX is well defined. Observe that XS “ S 1: the projection

πX is a continuous inverse-measure preserving function from X ˆ R to X and, due to

[18, 411N.e], the support of PX is πX rSs “ tx : px, yq P Su “ SX . We also have to

check that X is actually a well defined random variable in the sense that X´1rAs P Σ

for all A P AX , and that Eph2pXqq “
ş
h2 dPX “

ş
phæ XSq2 dPX . The former can

be seen in the following way. Since πX is a measurable function from pX ˆ R,Aq to

pX ,AX q it follows that X “ πX ˝ pX, Y q is measurable as a mapping from pΩ,Σq to

pX ,AX q and is a well defined random variable. For the latter, if h is in L2pX , PXq thenş
h2 dPX is well defined and obviously equal to

ş
phæXSq2 dPX . It remains to show the

Eph2pXqq “
ş
h2 dPX . One way to show this is to use [18, 235E]. This can be applied

since µX´1rAs “ PrpX P A, Y P Rq “ Pπ´1
X rAs “ PX pAq for any A P AX .

We can now define an RKHS of functions that act on the support XS . For compactness

of notation let S̃ “ XS , let kS̃ “ kæS̃ˆS̃ and denote the corresponding RKHS by HS̃ . This

RKHS allows us to carry over Remark 1 to the case where we work with Hρ,Sf
. Let C̃b,S

c

be the centered covariance operator that corresponds to Hρ,Sf
. Since, Hρ,Sf

“ tȟæSf : h P
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Hu, it follows that

xC̃b,S
c ȟæSf , ȟæSfyρ,Sf

“ Epf 2
0 pXqh2pXqq ` σ2Eph2pXqq ´ E2pf0pXqhpXqq

“ Epf 2
0 pXqh2pXqq ` σ2xC̃S̃hæS̃, hæS̃yS̃ ´ E2pf0pXqhpXqq. (36)

When the kernel function k is continuous, then the only function h P HS̃ for which

Eph2pXqq “ 0 is h “ 0 which has norm zero (otherwise there is an open set on which

h2pXq is bounded away from zero and the intersection of this open set with the support

has measure strictly larger than zero [18, 411N]). In this case, all the eigenvalues of C̃S̃ are

strictly positive and also all eigenvalues of C̃b,S
c are strictly positive, implying that there

is no constant function in Hρ,Sf
. Also, note that }hæ S̃}S̃ “ }ȟæSf}ρ,Sf

for all h P H:

first observe that ǧæSf “ ȟæSf if, and only if, gæ S̃ “ hæ S̃. If gæ S̃ “ hæ S̃ then for

px, yq P S, ǧpy, xq “ ygpxq “ yhpxq “ ȟpy, xq because x P XS Ă S̃. On the other

hand, if ǧæSf “ ȟæSf then for any x P XS there exist a point y such that px, yq P S and

ygpxq “ yhpxq which implies gpxq “ hpxq if y ­“ 0. In fact, if σ2 ą 0, there exist at least

two such points and, in particular, there exists a y ­“ 0 such that ygpxq “ yhpxq. Since

g “ h on the dense subset XS of S̃ and both g, h are continuous (assuming k is continuous)

it follows that g “ h on S̃ (e.g. [15, Thm1.5.4] and using that R is a Hausdorff space).

Using (32),

}ȟæSf}ρ,Sf
“ inft}ǧ}ρ : ǧæSf “ ȟæSf , g P Hu “ inft}g} : ǧæSf “ ȟæSf , g P Hu
“ inft}g} : gæS̃ “ hæS̃, g P Hu “ }hæS̃}S̃. (37)

This implies that a strictly positive lower bound on the xC̃S̃hæ S̃, hæ S̃yS̃ is given by the

smallest eigenvalue of C̃S̃ (when H is finite dimensional). We can also express this bound

in terms of H since for h P H, xC̃h, hy “ xC̃S̃hæS̃, hæS̃yS̃ and }h} ě }hæS̃}S̃ it follows that

the smallest eigenvalue of C̃ provides a lower bound on the smallest eigenvalue of C̃S̃ and

this lower bound is strictly positive. We might be tempted to improve this lower bound by

recalling that the eigenvalues of C̃c tell us the dimension of HS̃ , but notice that there is no

reason why the eigenfunctions of C̃c and C̃ should be related since one corresponds to the

variance and the other corresponds to the second moment, and it is not directly obvious of

how to benefit from the additional information that C̃c provides.

A family of covariance operators. The move from Y to uY pnq affects the covariance, and

the covariance operator corresponding to xY, ¨yRkpX, ¨q is not the same as the covariance

operator corresponding to xuY pnq, ¨yRkpX, ¨q, n ě 1. Let us denote the covariance operators

corresponding to the uY ’s by the somewhat unwieldy
ũ
C

b,pnq
c and the covariance operator

corresponding to the support Sn of the law of pX, uY pnqq by
ũ
C

b,Sn

c ; we assume that the

laws P pnq of pX, uY pnqq are Radon measures, which guarantees that the support of P pnq
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is well defined. It is easy to verify that P pnq is a Radon measure if P itself is a Radon

measure and the topology corresponding to P is a Hausdorff topology. Consider the set

A “ X ˆ r´prn ` }f0}8q, rn ` }f0}8s equipped with the subspace topology which is also

a Hausdorff topology [15, Thm.2.1.6], and the continuous function f : X ˆ R Ñ A given

by fpx, yq “ px, uypnqq, where we mean the same transformation as for the random variable

Y . The push-forward P pnq “ f#P is a Radon measure according to [18, 418I].

We need lower bounds on the smallest non-zero eigenvalues of the different
ũ
C

b,pnq
c

operators to use our compression approach. It seems natural to work with an assumption on

the smallest eigenvalue of the covariance operator C̃b,S
c , which corresponds to the original

Y , and to relate the eigenvalues of
ũ
C

b,Sn

c back to the eigenvalues of C̃b,S
c . As discussed on

the previous page, the covariance operator C̃b,S
c does not have an eigenvalue that is zero if

k is continuous. In this case, the smallest eigenvalue uλpnq
‹ of

ũ
C

b,Sn

c is at least of size λ̄‹{2,

where λ̄‹ is the smallest eigenvalue of C̃b,S
c , whenever

}C̃b,S
c ´ ũ

C
b,Sn

c }op ď σ2v

2
,

where (36) tells us that we can choose v either as the smallest eigenvalue of C̃S̃ or the

smallest non-zero eigenvalue of C̃, and where 0 ă σ2 ď ν is the variance of ϵ. Alternatively,

we can obviously also directly impose assumptions on the eigenvalues of C̃b,S
c . We can

bound the operator norm in the following way,

}C̃b,S
c ´ ũ

C
b,Sn

c }op “ sup
}ȟæSf }ρ,Sf

“1

sup
}ǧæSf }ρ,Sf

“1

xC̃b,S
c ȟæSf ´ ũ

C
b,Sn

c ȟæSf , ǧæSfyρ,Sf

“ sup
}hæS̃}

S̃
“1

sup
}gæS̃}

S̃
“1

EppY 2 ´ puY pnqq2qhpXqgpXqq ´ EpY gpXqqEpY hpXqq

` EpuY pnqgpXqqEpuY pnqhpXqq.

Let us first address the second moment term. For h, g such that }hæS̃}S̃ “ 1 “ }gæS̃}S̃ ,

|EppY 2 ´ puY pnqq2qhpXqgpXqq| ď }k}8EpY 2 ´ puY pnqq2q

“ }k}8

ż 8

0

pt2 ´ r2nq ˆ χtt ě rnu dλptq ` }k}8

ż 0

´8
pt2 ´ r2nq ˆ χt´t ě rnu dλptq

ď }k}8

ż 8

0

λtt : t ě
a
s ` r2nu ds ` }k}8

ż 8

0

λtt : t ď ´
a
s ` r2nu ds

ď 2}k}8

ż 8

r2n

e´s{2ν ds “ 4ν}k}8e
´r2n{2ν .
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The other term can be controlled in the following way,

|EpY gpXqqEpY hpXqq ´ EpuY pnqgpXqqEpuY pnqhpXqq|
ď |EppY ´ uY pnqqgpXqqEpf0pXqhpXqq| ` |EpuY pnqgpXqqEppY ´ uY pnqqhpXqq|
ď }k}8p2}f0}8 ` rnqEp|Y ´ uY pnq|q ď

?
8πν}k}8p2}f0}8 ` rnqe´r2n{2ν .

Combining these yields

}C̃b,S
c ´ ũ

C
b,Sn

c }op ď p
?
8πνp2}f0}8 ` rnq ` 4νq}k}8e

´r2n{2ν . (38)

In particular, if we use ν “ σ2,

r1 “ p1 _ 2σ2q _ 2σ log1{2
´}k}8p12?

πp}f0}8 ` 1q ` 8σq
σλ̄‹,S̃

¯
, (39)

where λ̄‹,S̃ is the smallest non-zero eigenvalue of C̃S̃ , and let trnuně1 be a non-decreasing

sequence then for all n ě 1,
uλpnq

‹ ě λ̄‹,S̃{2.
This follows from the argument on the last page and because this choice guarantees that

the right hand side of Equation (38) is upper bounded by σ2λ̄‹,S̃: first notice that r21{4σ2 ě
log r1 for any r1 ě 1 _ 2σ2. Hence,

p
?
32πσ}f0}8 ` 4σ2q}k}8e

´r2
1

{2σ2 `
?
8πσ}k}8e

´r2
1

{2σ2`log r1

ď p
?
32πσ}f0}8 ` 4σ2q}k}8e

´r2
1

{2σ2 `
?
8πσ}k}8e

´r2
1

{4σ2

ď p
?
32πσp}f0}8 ` 1q ` 4σ2q}k}8e

´r2
1

{4σ2

.

The same arguments applies to any rn ą r1 and the final display is non-increasing in the r1
argument. Setting this final display equal to σ2λ̄‹,S̃{2 yields the expression in (39).

Also, notice that r1 depends logarithmically on the unknown terms }f0}8 and λ̄‹,S̃ .

Compression in the case of sub-Gaussian noise We have now all the ingredients to state

a proposition for the sub-Gaussian noise case under the assumption that we have an upper

bound on }f0}8, a lower bound on λ̄‹,S̃ and some control over the variance term σ2. In

particular, we know that when r1 is chosen as in (39) that
ũ
C

b,Sn

c has eigenvalues that are

closely related to the eigenvalues of C̃b,S
c and that we can apply our results to compress

umb
y,n. Furthermore, we know how to control the difference between umb

y,n and mb
y,n. The

following proposition ties these results together.
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Proposition 3. Let pX ,TX q be a Hausdorff space, pX ˆ R,T,A, P q be a topological

measure space such that P is a Radon probability measure which has support S, T is the

product topology corresponding to TX and the standard topology on R, and let k be a

continuous and bounded kernel function defined on X such that the corresponding RKHS

H is finite dimensional. Furthermore, let pX1, Y1q, . . . , pXn, Ynq be i.i.d. random variables

attaining values in X ˆ R, with law P , and of the form Yi “ f0pXiq ` ϵi, where ϵ1, . . . , ϵn
are centered i.i.d. random variables which are independent of X1, . . . , Xn and such that

ϵ1 is sub-Gaussian with variance 0 ă σ2, and f0 is a measurable and bounded function.

Let λ̄‹,S̃ be the smallest eigenvalue of the covariance operator C̃S̃ that corresponds to the

kernel function kæS̃ ˆ S̃, where S̃ is the closure of tx : px, yq P Su in X . Furthermore,

let λ̄‹ be the smallest eigenvalue of of the covariance operator C̃b,S
c corresponding to the

kernel function ρæSˆS, ρppy1, x1q, py2, x2qq “ y1y2kpx1, x2q for all x1, x2 P X , y1, y2 P R.

Given q P p0, 1q define the sequence trnuně1 in the following way. Define r1 as in (39) and

for n ě 2 through

rn “ r1 _
?
2σ logpn{qq.

Under these conditions, for any n ě 1, the smallest eigenvalue uλpnq
‹ of

ũ
C

b,Sn

c fulfills uλpnq
‹ ě

λ̄‹{2 ě σ2λ̄‹,S̃{2 ą 0 and there exists a ball of radius uδpnq “ uλpnq
‹ {p2p}f0}8 ` rnq1{2}k}1{2

8 q
around umb

y within the affine space spanned by uCρ “ tρppy, xq, ¨q : px, yq P Snu as a subset

of Hρ, where Sn is the support of the law of P pnq corresponding to pX, uY pnqq. Whenever n

is (strictly) greater than

˜
8p}f0}8 ` rnq}k}8p

a
2 logp12{qq ` 192p}f0}8 ` rnq}k}8{uλpnq

‹ q
puλpnq

‹ q2

¸2

_
˜
16p}f0}8 ` rnq1{2}k}1{2

8 `
a
288 logp4{qq

uδpnq

¸2

with probability 1 ´ q there exists a ball of radius uδpnq{4 around umb
y,n in uCb

ρ,n within the

affine subspace spanned by uCρ and

}umb
y,n ´ m

b
y,n}ρ ď 6σ}k}1{2

8 n´3{4.

Proof. We derived the inequalities concerning the eigenvalues earlier in this section. Fur-

thermore, the bound on uδpnq follows directly when applying Theorem 2 to the random

variables pX, uY pnqq and the kernel function ρ æSn ˆ Sn, noting that }ρ æSn ˆ Sn}8 ď
p}f0}8 ` rnq}k}8. The bound on n is also taken from Theorem 2 with the only modifi-

cation being that a union bound is used to guarantee simultaneously the existence of the

ball around umb
y,n within uCb

ρ,n and that }umb
y,n ´ mb

y,n}ρ is upper bounded by n´1{2. In detail,
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for the stated q with probability 1 ´ q{2 there exists a ball around umb
y,n and with the given

choice of rn, with probability 1 ´ q{2

}umb
y,n ´ m

b
y,n}ρ ď

?
2σ2}k}1{2

8 e´r2n{4σ2

´
2{n ` πe´r2n{2σ2

¯1{2
pq{2q´1{2

ď 2σ}k}1{2
8 n´1{2n´1{4p2n´1{2 ` πq1{2 ď 3σ}k}1{2

8 π1{2n´3{4.

follows from (35).

3.4 Simultaneous compression

In this section we are interested in compressing different quantities like the covariance op-

erator and the mean element simultaneously, meaning that we want to find a single convex

combination of a subset of the data that allows us to approximate both quantities well.

As mentioned in the introduction, we are utilizing a direct sum approach to approach the

simultaneous compression problem. In this section, we start our exploration with Cn and

my,n for bounded Y , which is in some sense easy to deal with since the RKHSs correspond-

ing to them have intersection t0u (after some minor adjustments of the kernel functions)

which makes the direct sum approach easy to apply. We then explore how we can deal with

RKHSs H1,H2 for which the intersection is a non-trivial subspace. This problem is more

challenging and we combine the direct sum approach with a quotient space approach to

deal with it. We conclude this section by applying this approach to approximate simultane-

ously Cn, my,n and
řn

i“1 Yi, which allows us to calculate the least squares error for RKHS

functions using only a core set of the data.

3.4.1 Compressing the covariance and weighted mean embedding simultaneously

One of the main challenges when trying to control the approximation error of Cn and my,n

simultaneously is to determine the size of the convex set that contains pCn,my,nq within the

direct sum of two RKHSs and to locate pCn,my,nq within this convex set, or, alternatively,

to analyze the covariance operator corresponding to this new space. These problems would

be easier to handle if we could identify the direct sum space with an RKHS and apply the

techniques that we have developed for RKHSs. When using the first approach for my,n, we

face directly a problem in that we will gain some weighted sum of pκpXi, ¨q, kpXi, ¨qq as

an approximation, but we need a weighted sum of pκpXi, ¨q, YikpXi, ¨qq. This problem can

be circumvented by incorporating the Yi’s into the kernel as we have done in the second

approach, i.e. for a given kernel function k on X let,

ρppy1, x1q, py2, x2qq “ y1y2kpx1, x2q “ xxy1, ¨yR b kpx1, ¨q, xy2, ¨yR b kpx2, ¨qyb (40)
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then ρ is a kernel function on RˆX and we move from my,n to mb
y,n. It helps to also extend

κ to RˆX by setting κyppy1, x1q, py2, x2qq “ κpx1, x2q. Let ĥ be the extension of h P Hκ to

R ˆ X , i.e. ĥpy, xq “ hpxq for all x P X , y P R, then }ĥ}κy “ }h}κ. For finite linear com-

binations this follows from } řn

i“1 αiκyppyi, xiq, ¨q}2κy “ řn

i,j“1 αiαjκyppyi, xiq, pyj, xjqq “
} řn

i“1 αiκpxi, ¨q}2κ, where n P N, αi P R, xi P X , yi P R for all i ď n and extends to all of

Hκ by a denseness argument. By a similar argument we can see that the extension map is

surjective.

Observe that {H d H, that is the RKHS corresponding to κy, and Hρ “ R1 b H are

linearly independent, i.e. p {H d HqXpR1bHq “ t0u, because κyppy1, x1q, py2, x2qq does not

depend on the values y1, y2 while ρ does. Due to this linear independence we have that K “
p {H d Hq ‘ pR1 b Hq is isometrically isomorphic to Hκy`ρ: Let G “ tg ` h : pg, hq P Ku
with norm }f}G “ inft}pg, hq}K : g`h “ f, pg, hq P Ku. There exists a surjective isometry

between K and G. Because {H d H and R1 b H are linearly independent there is for every

f P G exactly one pair pg, hq P K such that g ` h “ f and }f}G “ }pg, hq}K. Furthermore,

we have an inner product on G which is given by xf1, f2yG “ xpg1, h1q, pg2, h2qyK whenever

f1 “ g1 ` h1 and f2 “ g2 ` h2. For pg, hq P K we have that g P Hκy and h P Hρ. By

[2, Thm.,p.353] the kernel κy ` ρ is the kernel of G and, therefore, Hκy`ρ is isometrically

isomorphic to K.

When P is a Radon measure with support S Ă X ˆ R then we can look at KS “
p {H d HqS ‘ pR1 bHqS , where p {H d HqS “ tuæSf : u P {H d Hu “ HκyæSfˆSf

with norm

}u}κyæSfˆSf
“ inft}v} : u “ væSf , v P {H d Hu, with Sf “ tpy, xq : px, yq P Su, and

similarly we define pR1 b HqS . If RS “ ty : px, yq P Su contains at least two elements

then p {H d HqS X pR1 bHqS “ t0u and the above argument shows that KS is isometrically

isomorphic to Hpκy`ρqæSfˆSf
. We summarize this in the following lemma.

Lemma 4. Let X be a measurable space and k a measurable kernel function on X with

corresponding RKHS H then

{H d H ‘ pR1 b Hq – Hκy`ρ.

Furthermore, if P is a Radon measure on X ˆ R with support S and RS contains at least

two elements then

p {H d HqS ‘ pR1 b HqS – Hpκy`ρqæSfˆSf
.

In the following, we focus on the case where P is a Radon measure and study the RKHS

Hpκy`ρqæSfˆSf
. For ease of notation let κ‘ “ pκy ` ρqæSf ˆ Sf . Similar to before, there is

a natural definition for the convex set that contains our mean element. This convex set is

Cκ‘ “ cch tκ‘ppy, xq, ¨q : px, yq P Su
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and the empirical analogue is

Cκ‘,n “ cch tκ‘ppYi, Xiq, ¨q : i ď nu.

The mean element that we want to approximate is then mκ‘ “
ş
κ‘ppy, xq, ¨q dP px, yq

when this is well defined, and the empirical analogue is mκ‘,n “ p1{nq řn

i“1 κ‘ppYi, Xiq, ¨q.

In the following, we will assume that Y “ f0pXq ` ϵ with both f0 and ϵ being bounded

and ϵ independent of X .

Covariance operator We denote the covariance operator corresponding to κ‘ by C̃κ‘ .

Because we are dealing with a direct sum one might suppose that it follows directly that

the covariance operator factors into the individual covariance operators corresponding to

κy æ Sf ˆ Sf and ρ æ Sf ˆ Sf . Unfortunately that is not the case: for h1, h2 P Hκ‘ there

exists f1, f2 P HκyæSfˆSf
and g1, g2 P HρæSfˆSf

such that hi “ fi ` gi for i P t1, 2u, and

}hi}2κ‘
“ }fi}2κyæSfˆSf

` }gi}2ρæSfˆSf
. Hence,

xC̃κ‘h1, h2yκ‘ “xC̃κyæSfˆSf
f1, f2yκyæSfˆSf

` xC̃ρæSfˆSf
g1, g2yρæSfˆSf

` Epf1 ˆ g2q ` Epf2 ˆ g1q. (41)

The cross-terms do not vanish even if we use the centered covariance operator.

Width of Cκ‘ We can apply our standard approach directly to the kernel function κ‘
(recall that in our definition of this kernel the reduction to the support of P is already

incorporated) to gain insights into the convex set Cκ‘ . Alternatively, we can aim to link

the width of Cκ‘ back to the width of the corresponding convex sets corresponding to the

kernel k and κ. Due to Lemma 4 we have that

width uC‘ “ width hCκ‘ ,

where u P p {H d HqS ‘ pR1 bHqS, }u} “ 1, h, with }h} “ 1, is the corresponding element

in Hκ‘ , and

C‘ “ cch tppκyæSf ˆ Sf qppy, xq, ¨q, pρæSf ˆ Sf qppy, xq, ¨qu Ă p {H d HqS ‘ pR1 b HqS.

Hence, we can bound the width of C‘ instead of bounding directly the width of Cκ‘ . We

can write any u P p {H d HqS ‘ pR1 b HqS as pĝæSf , væSf q, where g P H d H, ĝ is the

extension of g to R ˆ X , and v P R1 b H. Observe that if v is given by a finite linear

combination of elements xyi, ¨yR b hi, yi P R, hi P H, then

v “
nÿ

i“1

αipxyi, ¨yR b hiq “ x1, ¨yR b
` nÿ

i“1

yiαihi
˘
. (42)
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For such finite linear combinations let ψ : R1 b H Ñ H be ψpvq “ řn

i“1 yiαihi. The map

ψ is independent of the particular representation of v because if

nÿ

i“1

αipxyi, ¨yR b hiq “ v “
mÿ

i“1

βipxzi, ¨yR b giq

for a suitable m P N and corresponding βi, zi P R, gi P H for all i ď m, then

0 “ }x1, ¨yR b p
nÿ

i“1

yiαihi ´
mÿ

i“1

ziβigiq}2ρ “ }
nÿ

i“1

yiαihi ´
mÿ

i“1

ziβigi}2

We can also observe that }v}2ρ “ } řn

i“1 yiαihi}2 “ }ψpvq}2. Furthermore, ψ is linear and

therefore an isometry. Since the finite linear combinations lie dense in R1 b H and H, and

both R1 bH and H are complete, we can extend ψ to a surjective isometry between R1 bH
and H [15, Cor.4.3.18]. In particular, any v P R1 b H can be represented as ψ´1phq with a

unique h P H.

The width of C‘ can now be lower bounded in the following way: choose α ą 0, let

bα “ suptb : Prpϵ ě bq ą α and Prpϵ ď ´bq ą αu and I “ r´bα, bαs. Then

width pĝæSf ,ψ´1phqæSf qC‘ “ sup
xPXS ,zPI

pgpxq ` pf0pxq ` zqhpxqq ´ inf
xPXS ,zPI

pgpxq ` pf0pxq ` zqhpxqq

whenever pĝ æSf , ψ´1phq æSf q has norm one, g P H d H and h P H. In particular, when

choosing the same point x and using z to move to absolute values, we gain

width pĝæSf ,ψ´1phqæSf qC‘ ě 2}h}bα sup
xPXS

|hpxq|
}h} ě bα}h}width h{}h}pCXS

q, (43)

where CXS
is the usual convex set for the kernel kæXS ˆ XS .

We need to complement this bound with a bound that is based on g to deal with cases

where }h} is small. When }f0}8 is smaller than bα then there is a simple way to get a lower

bound that involves g. For two points x1, x2 P XS and any h P H, we can chose z1, z2 P RS

such that pf0px1q ` z1qhpx1q ě 0 ě pf0px2q ` z2qhpx2q and, hence,

width pĝæSf ,ψ´1phqæSf qC‘ ě sup
xPXS

gpxq ´ inf
xPXS

gpxq ě }g}HdH width g{}g}HdH
Cd. (44)

We can combine (43) and (44) to gain a lower bound on the width of C‘ in terms of the

widths of C and Cd.

The low noise setting. The situation gets more complicated when |f0| attains values

that are significantly larger than bα. For instance, when there is no noise, i.e. ϵ “ 0 (a.s.),
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and there exists some h P H, g P H d H such that hpxq ­“ 0 and f0pxq “ ´gpxq{hpxq
on RS , and pĝ æ Sf , ψ´1phq æ Sf q has norm one, it holds that width pĝæSf ,ψ´1phqæSf qC‘ “ 0.

For f0 to be equal or close to ´g{h it is necessary that f0 attains large values when }h} is

small. For example, when H d H is finite dimensional with dimension d, λd ą 0 is the

smallest eigenvalue of a suitable kernel matrix based on the kernel κ, and k is a bounded

kernel, then f0pxq “ ´gpxq{hpxq can only happen if

sup
xPX

|f0pxq| ě }g}8
}h}8

ě }g}λ1{2
d

d1{2}h}}k}1{2
8
.

For a small value of }h} this implies that }g} will be close to 1 and |f0| has to attain a large

value at some locations x P X .

Interpolation and another look at the low noise setting We look now at the case

where there is no noise at all, that is Y “ f0pXq,

C‘ “ cch tpκyppf0pxq, xq, ¨q, xf0pxq, ¨yR1 b kpx, ¨qq : x P X u
and we are interested in interpolating f0. In particular, we are controlling the width of C‘
depending on how f0 is related to H and HdH. The direct sum approach is useful to gain

a deeper understanding of how well pCy,mb
y q can be approximated. The width of C‘ in this

interpolation setting has a simple form. Assume that the support of the marginal measure

is all of X and since there is no noise it then follows that the support of the measure P is

S “ tpx, f0pxqq : x P X u. For g P H d H, h P H,

width pĝ,ψ´1phqqC‘ “ sup
xPX

pgpxq ` f0pxqhpxqq ´ inf
xPX

pgpxq ` f0pxqhpxqq

The functions f0 ˆ h lie in the RKHS Hf0 which has the kernel function k0px, yq “
f0pxqkpx, yqf0pyq. According to [26, Prop.5.20] the RKHS Hf0 is equal to tf0ˆh : h P Hu
and the inner product on Hf0 is given by xf0 ˆ h1, f0 ˆ h2yf0 “ xh1, h2y whenever

h1, h2 P H. If Hf0 X pH d Hq “ t0u then we can embed both Hf0 and H d H in the

direct sum G “ pH d Hq ‘ Hf0 such that for any f P Hf0 , h P H d H it holds that

}f}f0 “ }p0, fq}G and }h}HdH “ }ph, 0q}G . As in Lemma 4 it holds that G – Hk0`κ and,

therefore, it also holds that }f}k0 “ }f}k0`κ and }h}HdH “ }h}k0`κ. In this case,

width pĝ,ψ´1phqq “ width pg,f0ˆhqCG

whenever g P H d H, h P H, where CG “ cch tpκpx, ¨q, k0px, ¨qq : x P X u Ă G. This

follows directly from

gpxq ` f0pxqhpxq “ xpg, f0 ˆ hq, pκpx, ¨q, k0px, ¨qqyG.
We can now follow the approach from Section 2.3.3 and, in particular, apply Proposition

1 to the RKHS with kernel kf0 ` κ. Assumptions on f0 imply then lower bounds on the

width.
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3.4.2 Linearly dependent spaces

The setting above where we approximate Cn and mb
y,n simultaneously is easy to deal with

because the corresponding RKHSs are linearly independent. On the other hand, when

the spaces over which we want to optimize are linearly dependent then the RKHS is not

isometrically isomorphic to the direct product space and the approach needs to be modified.

This can happen, for example, when we try to approximate C simultaneously to m. In this

context the corresponding spaces H d H and H can overlap. For instance, when k is a

polynomial kernel of order two then H and H d H are not linearly independent.

Whenever H d H and H are not linearly independent it is natural to identify elements

like ph, 0q and p0, hq, h P pH d Hq X H. One way to do so is to consider the subspace

U “ tp´h, hq : h P pH d Hq X Hu of K :“ pH d Hq ‘ H. The subspace is closed: let

tp´hn, hnqunPN be a convergent sequence in U . This sequence is also a Cauchy sequence

and for any ϵ ą 0 there exists an N P N such that for all n,m ě N,

ϵ ą }p´hn, hnq ´ p´hm, hmq}2‘ “ }hm ´ hn}2 ` }hn ´ hm}2HdH

and thnunPN is a Cauchy sequence both in H and H d H. Hence, it converges in both

spaces. Let f be its limit in H d H and g its limit in H then for any x P X there exists an

n P N such that |fpxq ´ gpxq| ď ϵ ` |hnpxq ´ hnpxq| “ ϵ and f “ g. It also follows right

away that limnÑ8 }p´hn, hnq ´ p´f, gq}‘ “ 0 and the sequence has its limit in U .

Consider the quotient space K{U with co-sets f ‚ “ f ` U , f P K, and the quotient

norm }f ‚}K{U “ inft}f ` h}K : h P Uu. The space K{U is again a Hilbert space since

U is closed (e.g. [28, Sec.III.4]), and it is isometrically isomorphic to the Hilbert space

H d H ` H when the latter is equipped with the norm }f}2` “ inft}g}2HdH ` }h}2 : f “
g ` h, g P H d H, h P Hu; in particular, a co-set pg, hq ` U P K{U is mapped to the

function f “ g ` h. This map is well defined since if pg1, h1q P pg, hq‚ then there is

some h2 such that g1 ` h1 “ g ´ h2 ` h ` h2 “ f . Furthermore, by the choice of U ,

there are no two elements u‚, v‚ P K{U , u‚ ­“ v‚, that are mapped to the same function f .

Assume otherwise, then there is some f such that f “ g1 ` h1 “ g2 ` h2 and, therefore,

pg2 ` g1 ´ g2, h2 ´ g1 ` g2q “ pg1, h1q. Since g1 ´ g2 P H dH and g1 ´ g2 “ h1 ´ h2 P H
it follows that pg2, h2q‚ “ pg1, h1q‚ which contradicts the assumption. Finally, any element

in H d H ` H can be represented this way since if f “ g ` h, g P H d H, h P H then

pg, hq‚ is mapped to f . Using again [2, Thm.,p.353] we can conclude that K{U and Hκ`k
are isometrically isomorphic.

While K{U and Hκ`k are isometrically isomorphic it does not hold in general that K
and K{U are isometrically isomorphic to Hκ`k. Hence, when mapping an element u P K
to u‚ P K{U , then finding an approximation v‚ of u‚ in K{U , we generally cannot invert

the ‚ operation to gain an approximation of u. Selecting an arbitrary element in v‚ does

not work either since a small value of }u‚ ´ v‚}K{U does not imply that all elements in the

corresponding co-sets have small distances, i.e. there is no reason why supwPv‚ }u ´ w}K
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should be small. However, we are no trying to approximate arbitrary elements in K but

only elements

pC,mq “ 1

n

nÿ

i“1

pκpXi, ¨q, kpXi, ¨qq

and we are optimizing the approximation over C̃ “ cch tpκpx, ¨q, kpx, ¨qq : x P X u Ă K.

The important observation is that for any non-zero element p´h, hq P U , that is h P pH d
Hq X H, we have

xp´h, hq, pκpx, ¨q, kpx, ¨qqyK “ ´hpxq ` hpxq “ 0,

and C̃ is a subset of UK.

The subspace UK together with the inner product inherited from K is isometrically

isomorphic to Hκ`k. This follows since K{U and Hκ`k are isometrically isomorphic and

UK and K{U are isometrically isomorphic. The latter holds since every co-set corresponds

to exactly one element in UK, and for u P UK, }u‚}K{U “ inft}u ` v}K : v P Uu “ }u}K.

Also, span C̃ “ UK. We know already that span C̃ Ă UK. To show that they are equal

let K “ span ppspan C̃q Y Uq. Observe that this space is closed since span C̃ and U are,

and because they are orthogonal. It is sufficient to show that pf, 0q P K, p0, gq P K for all

f P H d H and g P H since the smallest closed subspace that contains all these elements

is pH d Hq ‘ H.

For f “ řn

i“1 βipκpxi, ¨q ` kpxi, ¨qq P Hκ`k define ψpfq “ řn

i“1 βipκpxi, ¨q, kpxi¨qq P
span C̃ Ă pHdHq ‘H. The operator ψ : Hκ`k Ñ span C̃ is linear and defined on a dense

subset of Hκ`k. It is furthermore norm preserving since

}ψpfq}2‘ “
nÿ

i,j“1

βiβjκpxi, xjq `
nÿ

i,j“1

βiβjkpxi, xjq “ }f}2κ`k.

Hence, it can be extended to a linear isometry, which we will also denote by ψ, between

Hκ`k and span C̃ with the norm inherited from pH d Hq ‘ H.

For any h P pH d Hq X H we can infer that it lies in the RKHS with kernel κ ` k due

to [2, Thm.,p.353] and ψphq lies in span C̃. Write ψphq as ph1, h2q, h1 P H d H, h2 P H,

then for all x P X ,

h1pxq ` h2pxq “ xph1, h2q, pκpx, ¨q, kpx, ¨qqy‘ “ xψphq, ψpκpx, ¨q ` kpx, ¨qqy‘

“ xh, κpx, ¨q ` kpx, ¨qyκ`k “ hpxq.

In other words, for any h P pHdHqXH we have h1 P HdH, h2 P H such that h “ h1`h2
and ph1, h2q P span C̃. Since h, h1 P H d H it follows that h2 “ h ´ h1 P pH d Hq X H
and ph2,´h2q P U . Thus, ph, 0q “ ph1, h2q ` ph2,´h2q P K. Similarly, we can observe

that p0, hq P K.
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For f P H d H let ψpfq “ pf1, f2q with f1 P H d H and f2 P H. In other words,

f “ f1 ` f2 and since H dH is a linear space, we know that f2 “ f ´ f1 P pH dHq XH.

And, as above, we can conclude that pf, 0q also lies in K. The same argument also shows

that for any g P H we have p0, gq P K. Hence, K “ pH d Hq ‘ H and span C̃ “ UK.

Lemma 5. Let X be a measurable space and k a measurable kernel function on X with

corresponding RKHS H then span tpκpx, ¨q, kpx, ¨qq : x P X u Ă pH d Hq ‘ H equipped

with the inner product of pH d Hq ‘ H is isometrically isomorphic to Hκ`k.

3.4.3 Simultaneous least-squares risk approximation for unbounded Y

Often it is unnecessary to include the p1{nq řn

i“1 Y
2
i term in the simultaneous approxima-

tion since many methods only rely on the terms that include f (e.g. the ridge regressor) and

also p1{nq řn

i“1 Y
2
i P R itself can be represented by a single real number and does not need

to be compressed. However, when selecting points pXιp1q, Yιpmqq, m ! n, for a coreset then

1

m

mÿ

i“1

pf 2pXιpiqq ´ 2YιpiqfpXιpiqqq ` 1

n

nÿ

i“1

Y 2
i

is not the mean squared error of f given the sample Xιp1q, Yιp1q, . . . , Xιpmq, Yιpmq and might

even be negative. An easy way to remedy this problem is to move to p1{mq řm

i“1 Y
2
ιpiq

but then we do not have any guarantee that this is close to p1{nq řn

i“1 Y
2
i . An alternative

is to include the Yi’s in the simultaneous approximation problem. This can be done by,

for instance, defining a kernel on R ˆ X through rppy1, x1q, py2, x2qq “ xy1, y2yR and by

considering the direct sum
{H d H ‘ pR1 b Hq ‘ Hr.

Alternatively, we can restrict the functions to the support S of the underlying measure and

consider

p {H d HqS ‘ pR1 b HqS ‘ HræSfˆSf
.

If there is no constant function in the RKHS HXS
then pR1 b HqS X HræSfˆSf

“ t0u and

p {H d HqS X ppR1 b HqS X HræSfˆSf
q “ t0u

if, furthermore, RS contains at least two different values: any function in {H d H is of

the form g2pxq, x P XS, g P H and functions in pR1 b HqS X HræSfˆSf
q are of the form

py, xq ÞÑ yhpxq ` cy for some constant c. For any functions g, h P H, choose y1, y2 P RS ,

y1 ­“ y2, and x1, x2 P XS are such that hpx1q ­“ hpx2q. For g2 to be equal to yhpxq ` cy it

has to hold that g2px1q is equal to y1hpx1q ` cy1 and it also has to be equal to y2hpx1q ` cy2
In other words, py1 ´y2qhpx1q “ cpy2 ´y1q and hpx1q “ ´c and similarly for hpx2q, that is
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hpx1q “ hpx2q with a contraction to the choice of x1 and x2. Hence, under these conditions

we can identify the direct sum with an RKHS corresponding to a sum of kernels,

p {H d HqS ‘ pR1 b HqS ‘ HræSfˆSf
– Hpκy`ρ`rqæSfˆSf

.

When the RKHS HXS
contains the constant function then the intersection pR1 b HqS X

HræSfˆSf
is not empty since the function py, xq ÞÑ y, with domain S, lies in pR1 bHqS and

in HræSfˆSf
. We can follow the same approach as in Section 3.4.2 and consider the one

dimensional subspace U “ tp´h, hq : h P pR1 bHqSXHræSfˆSf
u of pR1 bHqS‘HræSfˆSf

and consider the quotient space Q “ ppR1 b HqS ‘ HræSfˆSf
q{U with the usual quotient

norm. The space Q is a Hilbert space [28, Sec.III.4]. By the same argument as in Section

3.4.2 we can infer that

Q – Hpρ`rqæSfˆSf

and for px, yq P S, pρppy, xq, ¨q, rppy, xq, ¨qq lies in UK Ď pR1 b HqS ‘ HræSfˆSf
. Also, the

space UK, with the inherited inner product, is isometric isomorphic to Hpρ`rqæSfˆSf
. When

RS contains at least two elements then p {H d HqS X ppR1 b HqS X HræSfˆSf
q “ t0u and

p {H d HqS ‘ Q – Hpκy`ρ`rqæSfˆSf
.

We will apply these results to the problem of ridge regression and it is convenient to have

a proposition which provides guarantees on the approximation in the ridge regression con-

text. Since we do not need to approximate the sum of the Y 1
i terms to compute the ridge

regression estimator we will consider the space p {H d HqS X pR1 b HqS . We make the

assumption that H does not contain the constant functions, which removes the need to

consider quotient spaces. Furthermore, we will assume sub-Gaussian noise and that f0 is

bounded but we will allow for unbounded Yi random variables. Recall the definitions of

the kernel functions ρ in (40), κ : X ˆX Ñ R, κ “ k2, and its extension κy (see just below

(40)). Before stating a result on the compression, we need to modify the arguments that

we used to control the difference between mb
y,n and umb

y,n, and the difference between C̃b,S
c

and
ũ
C

b,Sn

c . This is necessary since the kernel function, which we will denote by τ below,

is pκy ` ρqppy, xq, py1, x1qq “ κpx, x1q ` yy1kpx, x1q in the current context, and this kernel

function is not of the form yy1k̃px, x1q, where k̃ is some kernel on X . Since we assumed

that latter form in Section 3.3.3 when we derived the bounds on the differences, we cannot

simply reuse the earlier results. Fortunately, the necessary modifications are minor: Let

mτ,n be the empirical mean element corresponding to the kernel function τ on R ˆ X and

umτ,n “ 1

n

ÿ

iďn
τppuY pnq

i , Xiq, ¨q “ 1

n

ÿ

iďn
pκpXi, ¨q ` xuY pnq

i , ¨yRkpXi, ¨qq.
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The distance between the empirical mean element and its capped version is

}mτ,n ´ umτ,n}2τ “ 1

n2
}

ÿ

iďn
xYi ´ uY pnq

i , ¨yRkpXi, ¨q}2τ

ď 1

n2
}

ÿ

iďn
xYi ´ uY pnq

i , ¨yRkpXi, ¨q}2ρ

since the κ terms cancel and because the function inside the norm lies within Hρ (apply

[26, Thm.5.4] to get the inequality). This implies that we can reuse the bound in (35), and

with probability 1 ´ δ, δ P p0, 1q, we have that

}mτ,n ´ umτ,n}2τ ď
?
2ν}k}1{2

8 e´r2n{4ν
´
2{n ` πe´r2n{2ν

¯1{2
δ´1{2, (45)

where ν ą 0 is the variance factor corresponding to the sub-Gaussian noise terms. We also

need control over the covariance operators corresponding to the capped Yi’s. We proceed

as in Section 3.3.3. Assuming that the law P of pY,Xq is a Radon measure let S be its

support and let Sn be the support of puY pnq, Xq (which is well defined as the law of this

random variable is again a Radon measure). Let C̃Sc,τ : Hτ Ñ Hτ be the covariance

operator corresponding to the original random variable and
ũ
C
Sn

c,τ : Hτ Ñ Hτ the covariance

operator corresponding to the capped random variable. We start by bounding the difference

between these covariance operators in the operator norm,

}C̃Sc,τ ´ ũ
C
Sn

c,τ}op “ sup
}h1æSf }τ,Sf

“1

sup
}h2æSf }τ,Sf

“1

xpC̃Sc,τ ´ ũ
C
Sn

c,τ qh1 æSf , h2 æSfyτ,Sf
.

Due to Lemma 4 the space Hτ,Sf
is isometrically isomorphic to a direct sum space and, as

above (41), we can write hi “ fi ` gi for i P t1, 2u, f1, f2 P HκyæSfˆSf
, g1, g2 P HρæSfˆSf

and such that the squared norms of the hi equals the sum of the squared norms of the fi
and gi. We can proceed by expanding the hi’s and observing that fipuy, xq “ fipy, xq for all

y P R and x P X since fi is a function of the second coordinate only,

xpC̃Sc,τ ´ ũ
C
Sn

c,τ qh1 æSf , h2 æSfyτ,Sf

“ Eph1pY,Xqh2pY,Xqq ´ Eph1pY,XqqEph2pY,Xqq
´ Eph1puY pnq, Xqh2puY pnq, Xqq ` Eph1puY pnq, XqqEph2puY pnq, Xqq.

The difference of the bias terms becomes

Eph1puY pnq, XqqEph2puY pnq, Xqq ´ Eph1pY,XqqEph2pY,Xqq
“ Epg1puY pnq, XqqEpg2puY pnq, Xqq ´ Epg1pY,XqqEpg2pY,Xqq

` Epf1pY,XqqpEpg2puY pnq, Xqq ´ Epg2pY,Xqqq
` Epf2pY,XqqpEpg1puY pnq, Xqq ´ Epg1pY,Xqqq.
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Since f1, f2 have norm one it follows thatEpf1pY,Xqq andEpf2pY,Xqq are upper bounded

by }κ}1{2
8 “ }k}8. Also recall that gi, i P t1, 2u, can be written as ǔi for some ui P Hk and

ui has norm one (see (32)). Hence

|EpgipuY pnq, Xqq ´ EpgipY,Xqqq| ď }k}1{2
8 Ep|uY pnq ´ Y |q

and the bound (33) can be used. Similarly,

|Epg1puY pnq, XqqEpg2puY pnq, Xqq ´ Epg1pY,XqqEpg2pY,Xqq|
ď |Epg1puY pnq, Xqq| |Epg2puY pnq, Xqq ´ Epg2pY,Xqq|

` |Epg2pY,Xqq| |Epg1puY pnq, Xqq ´ Epg1pY,Xqq|
ď 2}k}8Ep|uY pnq ´ Y |qpEp|Y ´ f0pXq|q ` Ep|f0pXq|qq
ď 2}k}8pσ ` }f0}8qEp|uY pnq ´ Y |q,

where we assume that the noise term has variance σ2 ą 0 and f0 is bounded and measur-

able. Hence,

|Eph1puY pnq, XqqEph2puY pnq, Xqq ´ Eph1pY,XqqEph2pY,Xqq|
ď 2}k}8pσ ` }f0}8 ` }k}1{2

8 qEp|uY pnq ´ Y |q.
We can deal with the covariance terms in the same way,

Eph1pY,Xqh2pY,Xqq ´ Eph1puY pnq, Xqh2puY pnq, Xqq
“ Epg1pY,Xqg2pY,Xqq ´ Epg1puY pnq, Xqg2puY pnq, Xqq

` Epf1pY,Xqpg2pY,Xq ´ g2puY pnq, Xqqq
` Epf2pY,Xqpg1pY,Xq ´ g1puY pnq, Xqqq

ď }k}1{2
8 pEp|Y ||g1pY,Xq ´ g1puY pnq, Xq|q ` Ep|Y ||g2pY,Xq ´ g2puY pnq, Xq|qq

` 2}k}3{2
8 Ep|Y ´ uY pnq|q

ď 2}k}8Ep|Y ||Y ´ uY pnq|qq ` 2}k}3{2
8 Ep|Y ´ uY pnq|q

ď 2}k}8pEp|Y ´ f0|2q1{2EppY ´ uY pnqq2q1{2 ` }f0}8Ep|Y ´ uY pnq|qq
` 2}k}3{2

8 Ep|Y ´ uY pnq|q
“ 2σ}k}8EppY ´ uY pnqq2q1{2 ` 2}k}8p}f0}8 ` }k}1{2

8 qEp|Y ´ uY pnq|q
and we can apply (33) and (34). Combining the above bounds and substituting (33) and

(34) yields the following bound,

}C̃Sc,τ ´ ũ
C
Sn

c,τ}op ď2σ}k}8EppY ´ uY pnqq2q1{2` 4}k}8pσ{2 ` }f0}8 ` }k}1{2
8 qEp|Y ´ uY pnq|q

ď4σν1{2}k}8e
´r2n{4ν `

?
32πν}k}8pσ{2 ` }f0}8 ` }k}1{2

8 qe´r2n{2ν

“4σ2}k}8e
´r2n{4σ2 `

?
32πσ}k}8pσ{2 ` }f0}8 ` }k}1{2

8 qe´r2n{2σ2

, (46)
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where we used ν “ σ2 in the last line. To make use of this bound we need a lower bound

on the smallest eigenvalue of C̃Sc,τ . We proceed as in (36). Instead of imposing such an as-

sumption directly we can also use an assumption on the covariance operator corresponding

to the kernel k and the marginal distribution on X , which seems more natural. To see this,

fix h P Hτ,Sf
, }h}τ,Sf

“ 1, and let f P HκyæSfˆSf
, g P HkæS̃ˆS̃ be such that h “ f ` ǧ

and the squared norm of h equals the sum of the squared norms of the f and g (see the

discussion around (36)).

xC̃Sc,τh, hyτ,Sf
“ EppfpXq ` f0pXqgpXq ` ϵgpXqq2q ´ E2pfpXq ` f0pXqgpXqq
“ EppfpXq ` f0pXqgpXqq2q ´ E2pfpXq ` f0pXqgpXqq ` σ2Epg2pXqq
ě σ2xC̃S̃g, gyk,S̃.

If k is continuous, we are guaranteed the smallest eigenvalue λ̄‹,S̃ of C̃S̃k is bounded away

from zero (see below (36)). In particular, if we choose r1 such that the last display in (46)

is upper bounded by σ2λ̄‹,S̃{2 then the smallest eigenvalue uλpnq
‹ of the capped covariance

operator is at least half the smallest eigenvalue λ̄‹ of C̃Sc,τ and is lower bounded by σ2λ̄‹,S̃{2.

To guarantee this, we can define the sequence trnuně1 similarly to before, starting with

r1 “ 1 _ 2σ log1{2
´22}k}8pσ ` }f0}8 ` }k}1{2

8 q
σ2λ̄‹,S̃

¯
(47)

and by assuring that the sequence is non-decreasing.

We are now in a position to state a compression result in the regression context along

the lines of Proposition 3, but in the case where we compress the data simultaneously for

the kernel κy and ρ. For conciseness we will use the notation }τ}Sf,n,8 for }τæSf,nˆSf,n}8
where Sf,n “ tpy, xq : px, yq P Snu and Sn is the support of measure corresponding to the

capped random variables.

Proposition 4. Let pXˆR,T,A, P q be a topological measure space such that P is a Radon

probability measure which has support S. Let k be continuous bounded kernel function de-

fined on X such that the corresponding RKHS is finite dimensional and does not contain the

constant functions. Let pX1, Y1q, . . . , pXn, Ynq be i.i.d. random variables with law P , and

assume that Yi “ f0pXiq`ϵi, for all i ď n, where f0 is a measurable and bounded function

and ϵ1, . . . , ϵn are i.i.d. sub-Gaussian random variables with variance 0 ă σ2 which are

independent of X1, . . . , Xn. Consider the kernel function τ “ κy ` ρ on R ˆ X and let

λ̄‹,S̃ be the smallest eigenvalue of the covariance operator C̃S̃k corresponding to the kernel

function kæ S̃ ˆ S̃, S̃ “ tx : px, yq P Su. Furthermore, let λ̄‹ be the smallest eigenvalue of

C̃S
c,τ , then λ̄‹ ą 0. Choose q P p0, 1q and define the sequence trnuně1 in the following way:

choose r1 as in (47) and for n ą 2 let rn “ r1 _
?
2σ _

?
2σ log1{2p16n1{2σ2}k}8{qq. For

99



the smallest eigenvalue uλpnq
‹ of

ũ
C
Sn

c,τ it holds that uλpnq
‹ ě λ̄‹{2 ě σ2λ̄‹,S̃{2 ą 0, where Sn

is the support of the law of P pnq corresponding to pX, uY pnqq. There exists a ball of radius
uδpnq “ uλpnq

‹ {2}τ}1{2
Sf,n,8 ě uλpnq

‹ {2p}k}8 ` p}f0}8 ` rnq1{2}k}1{2
8 q around umτ within the affine

space spanned by uCτ “ tτppy, xq, ¨q : px, yq P Snu as a subset of Hτ . Furthermore, for any

q P p0, 1q and whenever n is (strictly) greater than

˜
8}τ}Sf,n,8p

a
2 logp12{qq ` 192}τ}Sf,n,8{uλpnq

‹ q
puλpnq

‹ q2

¸2

_
˜
16}τ}1{2

Sf,n,8 `
a
288 logp4{qq

uδpnq

¸2

then with probability 1 ´ q there exists a ball of radius uδpnq{4 around umτ,n in uCτ,n within

the affine subspace spanned by uCτ and

}umτ,n ´ mτ,n}τ ď n´1{2.

Proof. Most of the statement has already been derived. Just note that }τ}1{2
Sf,n,8 ď p}k2}8 `

p}f0}8`rnq}k}8q1{2 ď }k}8`p}f0}8`rnq1{2}k}1{2
8 . For the definition of rn and the bound

on the difference between the mean and the capped mean we could use essentially the same

bound as in Proposition 3. Instead we use here a slightly different bound to demonstrate

how the arguments can be varied: when rn ě
?
2σ it follows from (45) that with probability

q̃,

}mτ,n ´ umτ,n}2τ ď
?
8σ}k}1{2

8 e´r2n{4ν q̃´1{2.

Setting the right side equal to n´1{4, setting q̃ “ q{2 and solving for rn gives

rn “
?
2σ log1{2p16n1{2σ2}k}8{qq.

3.5 Rescaling the kernel function does not affect compression

We finish this section by studying the effect of modifying the kernel function, or the in-

volved convex sets, on the approximation of m. Given that the smallest eigenvalues of the

covariance operator and the width of C control the approximation of m it is natural to try to

increase these. One way to do so is to scale the kernel function by a constant factor α ą 0,

i.e. replace the kernel function k on X by αk. However, due to [26, Prop.5.20] the inner

products corresponding to the two spaces are scaled versions of each other (for all x, y P X ,

xkpx, ¨q, kpy, ¨qyk “ p1{αqxαkpx, ¨q, αkpy, ¨qyαk) and the algorithms that we discuss in the

next section are unaffected by this change. One might also wonder if the error bounds are

affected and if we can, at least, optimize these by choosing an appropriate scaling. It turns

out that the error bounds are also invariant to the scaling of the kernel function. Let use
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start by analyzing the width of the convex set C. The change in width is easy to quantify:

given a kernel function k : X ˆX Ñ R the width increases by α1{2 if we replace the kernel

function by αk, where α ą 0. In detail, a function h, }h}k “ 1, lies in Hk if, and only if,

the function α1{2h lies in Hαk and has norm }α1{2h}αk “ 1 [26, Prop.5.20] and the width

is

width α1{2h,Hαk
pCq “ α1{2psup

xPX
hpxq ´ inf

xPX
hpxqq “ α1{2width h,Hk

pCq.

Similarly, when the smallest non-zero eigenvalue of the centered covariance operator C̃c,k
is λ̄l, l ě 1, it follows that the smallest non-zero eigenvalue of C̃c,αk is αλ̄l : let h P
Hk, }h}k “ 1, be the eigenfunction corresponding to λ̄l then α1{2h has unit norm in Hαk

and

xC̃c,αkα1{2h, α1{2hyαk “ αpEph2pXqq ´ pEphpXqqq2q “ αλ̄l.

Recall that the relation between the width and the radius δ of the largest ball around m is

approximately δ « pwidth hpCqqd`1 when X is a subset of Rd and under suitable conditions

on the density (end of Section 2.4.1). In other words, a scaling of the kernel function by

α increases δ approximately by a factor of αpd`1q{2. This increase has to be compared to

the increase in the Lipschitz constant which results from this scaling. In Equation (14)

the Lipschitz constant L enteres into the lower bound on δ through L´d. For a function

α1{2h P Hαk we have that

|α1{2hpxq ´ α1{2hpyq|
}x ´ y} ď α1{2L}h} “ α1{2L}α1{2h}αk,

for any x, y P X , x ­“ y, if the Lipschitz assumption (13) holds with constant L for H.

Combining these we see that δ changes approximately by a factor of αpd`1q{2L´d “ α1{2.
Hence, we can increase δ by increasing α. In the error bounds in the next section we

will see that the key quantity for controlling the approximation error is the ratio δ{}k}1{2
8 ,

which has to be large to guarantee a good compression. Since }αk}8 “ α}k}8 this term

is independent of α and rescaling does not change the rate of compression that is promised

by the bounds. Also note that we are changing the norm by which we measure the error.

For some approximation m̂ of m in Hk we can observe that }m̂ ´ m}k “ α1{2}m̂ ´ m}αk.

This α1{2 factor is cancelled by the leading constant in the error bound of the algorithms,

which is of the order }αk}1{2
8 “ α1{2}k}1{2

8 .

If we consider instead the bound on δ that is based on the covariance operator (Theorem

2) then δ is of order λ̄l{}k}1{2
8 and a scaling of α leads again to αλ̄l{α1{2}k}1{2

8 and the

scaling does not affect the error bound.
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4 Compression using the CGM and related approaches

We discuss in this section two methods to compress mn. The bottleneck in both algorithms

is the computation of the vector

s “ pxkpX1, ¨q,mny, . . . , xkpXn, ¨q,mnyqJ.

If s is available then the remaining parts of the two algorithms that we analyze have a

runtime of nl, where l is the number of iterations the algorithms are run for. In particular,

for large n, l will be in the order of logpnq when using the classical CGM and of order n1{2

when using the kernel herding algorithm. This then results in a runtime of Opn logpnqq and

Opn3{2q respectively to gain a representation of mn. The CGM achieves in this context a

compression down to logpnq many points and the kernel herding algorithm down to n1{2,
that is, if we have a ball of sufficient size around mn in Cn.

A naive algorithm to compute s has a runtime of Opn2q. In fact, a brute-force compu-

tation needs to compute all pairs kpXi, Xjq, i, j ď d, and the computational complexity is

the same as the computational complexity of computing the kernel matrix itself (though the

algorithm only needs Opnq memory instead of Opn2q). However, there is hope for faster

algorithms. For instance, when we have a finite dimensional RKHS with dimension d then

we can represent mn as a linear combination of d points and s can be computed in Opndq
time. Computing the representation of mn needs another d2 steps. In practice this is not

useful because we would derive an exact representation of mn based on d data points to find

an approximation of mn using more than d data points. Ideally, we would hope for an algo-

rithm that can compute, or approximate, s in n log n steps independently of the dimension

d of the Hilbert space. Alternatively, we could try to modify the main algorithms itself to

mitigate the complexity of computing s. There are some standard ways to deal with large

scale data in the context of the CGM as summarized in [8]. However, they do not lead

to computational benefits in our particular setting. We discuss a promising alternative that

is based on a divide and conquer approach in some detail below (Section 4.1.1 and 4.2.2)

after analyzing the standard algorithms. We also include short discussions on how to adapt

these methods when aiming for compressing other quantities like the covariance and how

to use the CGM to compress the data in the case of kernel regression.

4.1 Kernel herding and subset selection

Let us start by stating a version of the kernel herding algorithm [10] for compressing the

empirical measure.

The index function ι : t1, . . . , T u Ñ t1, . . . , nu tracks the samples that we include in

the coreset and the elementswt measure the error between mn and pmt as }wt} “ t}mn´ pmt}.

The algorithm converges with a rate of 1{t if, and only if, the sequence of weights wt is
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Algorithm 1 (The kernel herding algorithm for compressing mn)

Input: sample X1, . . . , Xn, kernel k, number of points in the coreset T.

Initialise: let w1 “ kpX1, ¨q ´ mn and ιp1q “ 1, iterate through t ě 2 :

choose i‹ P argmaxiďn xwt, kpXi, ¨qy

set ιptq “ i‹, wt`1 “ wt ´ pkpXi‹ , ¨q ´ mnq, and pmt “ 1

t

tÿ

u“1

kpXιpuq, ¨q

Stop when t “ T and return the approximation pmT .

bounded. In other words, if the sequence diverges then the algorithm converges with a slow

rate. It is easy to show that }wt} stays bounded when a ball of radius δ ą 0 exists around

mn in Cn and that }mn ´ pmt} ď αKH{δt for a constant αKH and all t. In particular, we can

choose

αKH “ 8}k}8.

Also, notice that the same bound holds when a ball of radius δ exists around mn in the

affine span of Cn.

Instead of running the algorithm for T iterations independent of the approximation error

we can also use the approximation error as a stopping criterion. The approximation error

p1{tq}wt} “ p}pmt}2 ´ 2xpmt,mny ` }mn}2q1{2 can be computed exactly in Opn2q if we

prevent the algorithm from running for more than n iterations. In detail, pre-computing

}mn} and s can be done in Opn2q. Also, }pmt} can be computed in Optq given }pmt´1} by

using that }pmt}2 “ }pmt´1}2 ` 2xkpXιptq, ¨q, pmt´1y ` kpXιptq, Xιptqq. Similarly, xpmt,mny
can be easily gained from xpmt´1,mny by using xpmt,mny “ xpmt´1,mny ` sιptq. A natural

stopping point for the algorithm is an approximation error of n´1{2 which guarantees that

}m̂t ´ m} will be of the same order as }mn ´ m}.

The compression of this algorithm is sub-optimal but it has the advantage that it returns

a coreset. The CGM, which we discuss below, achieves a significantly better compression

but does not return a coreset of samples.

It is easy to gain high probability guarantees for the approximation error of a compres-

sion that uses n1{2 many points, under the conditions stated in Section 2.5. With a bit more

work it is also possible to control the expected approximation error. We summarize these

in the following proposition under a Lipschitz assumption on the kernel function, assuming

that we have a Mercer kernel and that the constant functions are in the RKHS; in particular,

we assume that k is a continuous kernel on r0, 1sl, which is a sufficient assumption for Mer-

cer’s theorem to hold. When discussing the CGM we give a similar proposition which uses

instead an assumption on the covariance operator; the aim is to highlight how the various
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assumptions can be combined with the algorithms.

Proposition 4. Let X1, . . . , Xn be i.i.d. random variables on some probability space

pΩ,A, P q, which attain values in X “ r0, 1sl, l ě 1, and let k be a continuous ker-

nel function on X such that the corresponding RKHS H is d-dimensional, 1 ď d ă 8,

functions h P H are Lipschitz continuous in the sense of (13) with Lipschitz constant

L ą 0, and 1 P H. Furthermore, assume that the law of X1 has a density p on X and

infxPX ppxq ě c ą 0 for some constant c. Let λ̃d be the smallest eigenvalue of the Mercer

decomposition. With probability 1 ´ q, q P p0, 1q,

}pmrn1{2s ´ mn} ď 32}k}8
δ

n´1{2

whenever

n ą
˜a

2 logp6{qq ` 96}k}1{2
8 {δ

cβlpδ{8Lql

¸2

_
˜
4}k}1{2

8 ` 3
a
2 logp2{qq

δ{4

¸2

and where

δ “ 2λ̃d ^ 2cλ̃l`1
d βl

pl ` 1qLl .

Furthermore, let N “ p16}k}1{2
8 {δq2 _ p96p8Lql}k}1{2

8 {cβlδl`1q2 then for any t ě 1 and

whenever n ě N ,

Ep}pmt ´ mn}q ď 32}k}8{tδ ` 4}k}1{2
8 expp´pc1n1{2 ´ c2q2`q{t1{2,

where c1 and c2 can be chosen as

c1 “ pcβlpδ{8Lql{
?
3q ^ pδ{17q and c2 “ pp96{

?
3δq _ 1q}k}1{2

8 .

If the stopping criterion of the algorithm is an error of }pmt̂ ´ mn} ď n´1{2, i.e. t̂ “
inftě1 }pmt ´ mn} ď n´1{2, and if the infimum is greater than n, then t̂ “ n and pmt̂ “ mn,

then

Ept̂ q ď r32}k}8n
1{2{δs ` 2n expp´pc1n1{2 ´ c2q2q

whenever n ě N .

Proof. The first part follows directly from Theorem 1 and the bound on the error of the

kernel herding algorithm. For the second statement, observe that

Prp}mn ´ m} ě δ{4q ď exp

ˆ
´ 1

288

`
n1{2δ ´ 16}k}1{2

8
˘2˙
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whenever n ě p16}k}1{2
8 {δq2, follows by the same argument as in Theorem 1. Similarly,

there is a ball of radius δ{2 around m in Cn in the affine span of Cn with probability at least

1 ´ p1{2q exp
`
´

`
n1{2cβlpδ{8Lql ´ 96}k}1{2

8 {δ
˘2˘

whenever n ě p96p8Lql}k}1{2
8 {cβlδl`1q2. Also, notice that even when there is no ball

around mn, for t ě 1 it holds that

}wt`1}2 “ }kpXιptq, ¨q ´ mn}2 ` }wt}2 ´ 2xkpXιptq, ¨q ´ mn,mny.

Now, xkpXιptq, ¨q,mny ě }mn}2 since mn lies in Cn which has extremes kpX1, ¨q, . . . ,
kpXn, ¨q, and

}wt`1}2 ď
tÿ

i“1

}kpXιptq, ¨q ´ mn}2.

Hence, }pmt ´ mn}2 ď p4{tq}k}8.

Combining these, we find that

Ep}pmt ´ mn}q ď 32}k}8{tδ ` 4}k}1{2
8 expp´pc1n1{2 ´ c2q2`qt´1{2

whenever n is large enough and with c1, c2 as in the theorem statement.

The third statement follows along similar lines. In the event that we have a ball of size

δ{4 it follows that }pmt ´ mn} ď 32}k}8{tδ. Setting the right hand side to n´1{2 leads

to t̂ ď r32}k}8n
1{2{δs. If this event does not occur then }pmt ´ mn} ď 2}k}1{2

8 t´1{2 and

t̂ ď r4}k}8ns, but the algorithm stops when t̂ ą n and the trivial upper bound t̂ ď n is

more useful. Combining these we find that

Ept̂q ď r32}k}8n
1{2{δs ` 2n expp´pc1n1{2 ´ c2q2`q

when n is large enough.

4.1.1 Avoiding the explicit computation of s

There are various ways one can try to reduce the computation time. For instance, the

stochastic conditional gradient method seems like a promising candidate. An alternative

way to mitigate the cost of computing s is to split the data into batches of size about

n1{2, which implies that for each batch the corresponding vector can be computed in Opnq.

Algorithm 2 implements such a version of kernel herding. There are a number of interesting

observations that can be made when following this route. We will discuss a few such

observations in this section and in Section 4.2.2 below.

In terms of Algorithm 2, notice that the number of samples per batch can always be

chosen in tℓ ´ 1, ℓ, ℓ ` 1, ℓ ` 2u to guarantee that n “ řℓ

i“1 ℓi because ℓpℓ ´ 1q ď
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Algorithm 2 (A version of kernel herding that avoids the explicit computation of s)

Input: sample X1, . . . , Xn, kernel k, α ą 0.

Initialise: let ℓ “ tn1{2 ` 1{2u.

Split sample into ℓ disjoint batches: Xj1, . . . , Xjℓj , j ď ℓ,

with each ℓj P tℓ ´ 1, ℓ, ℓ ` 1, ℓ ` 2u.
Apply Algorithm 1 with T “ rn1{4`αs to each batch to get pm1, . . . , pmℓ.

Compute }m̃n} and ps “ pxpm1, m̃ny, . . . , xpmℓ, m̃nyqJ, where m̃n “ 1

n

ℓÿ

i“1

ℓipmi.

Apply a version of Algorithm 1 with T “ rn1{4`αs to m̃n using }m̃n} and ps to get ι.

Return the approximation
1

T

Tÿ

i“1

pmιpiq.

pn1{2 ` 1{2qpn1{2 ´ 1{2q ă n ď pℓ` 1{2q2 ď ℓpℓ` 2q and by a version of Algorithm 1 we

mean the obvious modification where instead of kpX1, ¨q, . . . , kpXn, ¨q we use pm1, . . . , pmℓ

to approximate mn. The algorithm works by specifying the number of iterations for the

kernel herding algorithm. Alternatively, it makes sense to run the first ℓ optimization algo-

rithms as well as the last optimization step until an error of n1{4 is attained.

The runtime of the algorithm can be computed in the following way: observe that,

initially, the standard kernel herding algorithm is applied ℓ times to about ℓ many samples

and the overall order of runtime for the first part is Opℓ3q “ Opn3{2q. Also, observe that,

given pm1, . . . , pmℓ, an approximation of }mn} can be computed in ℓrn1{4`αs2, which is of

order Opn1`2αq, by using the approximation m̃n “ p1{nqpℓ1 pm1 ` . . . ` ℓℓpmℓq. Similarly,
pK “ pxpmi, pmjyqi,jďℓ can be computed in ℓ2rn1{4`αs2 which is of order Opn3{2`2αq and,

given pK, the vector ps “ pxpm1, m̃ny, . . . , xpmℓ, m̃nyqJ can be computed in ℓ2 steps, which is

of order Opnq. Given ps and }m̃n} the second application of the kernel herding algorithm

can be run in rn1{4`αsℓ, which is of order Opn3{4`αq, and Algorithm 2 has an overall order

of Opn3{2`2αq
Quantifying the approximation error of this algorithm is more difficult and in the fol-

lowing we only highlight some of the challenges that one has to address to control the

approximation error. For n large enough the difference }pmi ´ p1{ℓiq
řℓi
j“1 kpXij, ¨q} is with
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high probability of order n´1{4 for all i ď ℓ. Furthermore,

}mn ´ m̃n}2 “ }mn ´ 1

n

ℓÿ

i“1

ℓipmi}2 “ } 1
n

ℓÿ

i“1

ℓiÿ

j“1

pkpXij, ¨q ´ pmiq}2.

Notic Bochner integral

Ep
ℓiÿ

j“1

pkpXij, ¨q ´ pmiqq “ ℓipm ´ Eppmiqq.

Furthermore, observe that the pm1, . . . , pmℓ are independent random variables since they are

functions of separate samples and that EpxX,Y yq “ xEpXq, EpY qy for independent

random variables in L2pP ;Hq. Hence,

Ep}mn ´ 1

n

ℓÿ

i“1

ℓipmi}2q “ 1

n2

ℓÿ

i“1

Ep}
ℓiÿ

j“1

pkpXij, ¨q ´ pmiq}2q

` 1

n2

ℓÿ

i ­“j
ℓiℓjxm ´ Eppmiq,m ´ Eppmjqy

« n´3{2Ep}
ℓ1ÿ

j“1

pkpX1j, ¨q ´ pm1q}2q ` }m ´ Eppm1q}2,

where we have an approximation in the last line since the ℓi’s are not necessarily all equal.

A first difficulty is to determine the bias }m ´ Eppm1q} that the kernel herding algorithm

introduces. A simple bound on the bias is gained by using }m ´Eppm1q} ď Ep}mn ´ pm1}q
and Proposition 4 can be used to bound this by about n´1{4 which implies a bound on the

squared bias of order n´1{2. This bound is of no use since we need a bias of order 1{n or

less. The other term behaves approximately as 1{n if there is a ball of size δ ą 0 around m

in C and n is large enough. In particular, under the conditions of Proposition 4,

Ep} 1
ℓ1

ℓ1ÿ

j“1

pkpX1j, ¨q ´ pm1q}2q ď 16α2{n1{2δ2 ` 8}k}8 expp´pc1n1{4 ´ c2q2qn´1{4.

Up to the exponential term on the right, we have that

n´3{2Ep}
ℓ1ÿ

j“1

pkpX1j, ¨q ´ pm1q}2q À n´3{2ℓ21n
´1{2 « 1{n.
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If the bias is also of order Op1{nq then

Prp}mn ´ 1

n

ℓÿ

i“1

ℓipmi} ě tq À 1

nt2
.

In particular, for any β ą 0,

Prp}mn ´ m̃n} ě n´1{2`βq “ Prp}mn ´ 1

n

ℓÿ

i“1

ℓipmi} ě n´1{2`βq À n´2β.

To summarize, if the bias is of order Op1{nq we will have with high probability an ap-

proximation of mn that has an error of order n´1{2`β and this approximation consists of

approximately Tℓ « n3{4 many points.

The second application of the kernel herding algorithm aims to compress this further.

In particular, if with high probability there is a ball around mn in the convex set ch tpmi :

i ď ℓu, then we can hope that n1{4 many of the pmi are sufficient to approximate mn with an

error of order n´1{2`β . This would imply that an approximation with n1{2 many elements

is sufficient. However, since pmi converges to mn as n goes to infinity, the size of such a

ball has to be a function of n and will shrink with n. This itself does not imply that the

algorithm will converge slowly since the smaller δ might be set-off by a smaller size of the

convex set. In any case, a detailed analysis of the interplay between ch tpmi : i ď ℓu and

mn is necessary to understand the compression that can be achieved by this algorithm and

variations thereof.

Let us conclude our discussion of these algorithms with a final simple observation.

The elements m̄i “ p1{ℓiq
řℓi
j“1 kpXij, ¨q, which we are approximating with pmi, can be

interpreted as a sequence of independent and identically distributed (up to differences in

the ℓi’s) random variables whose second moment is given by

Ep}m̄i}2q “ 1

ℓ2i

ℓiÿ

j“1

EpkpXij, Xijqq ` 1

ℓ2i

ℓiÿ

u ­“v
xEpkpXiu, ¨qq, EpkpXiv, ¨qqy

“ 1

ℓi
` ℓi ´ 1

ℓi
}m}2,

whenever kpx, xq “ 1 for all x P X . Hence,

Ep}m̄i ´ m}2q “ Ep}m̄i}2q ´ }m}2 « n´1{2 and Ep}m̄i ´ m}q À n´1{4.

4.2 Better compression with the CGM

A significantly better compression can be attained by using the CGM. The downside of

using the CGM is that no coreset of datapoints is generated but some convex combination
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Algorithm 3 (The CGM for compressing mn.)

Input: sample X1, . . . , Xn, kernel k, number of iterations T.

Initialise: let pm1 “ kpX1, ¨q, α11 “ 1 and ιp1q “ 1, iterate through t ě 2 :

choose i‹ P argmaxiďn xkpXi, ¨q, pmt´1 ´ mny ,

let α‹ “ xkpXi‹ , ¨q ´ pmt´1, pmt´1 ´ mny
}kpXi‹ , ¨q ´ pmt´1}2

^ 1,

set ιptq “ i‹, αtt “ α‹ and for all u ď t ´ 1, αtu “ p1 ´ α‹qαt´1,u,

and let pmt “
tÿ

u“1

αtukpXιpuq, ¨q.

Stop when t “ T and return the approximation pmT .

of the images of the data points in H that approximates mn well. The standard CGM for

compressing mn is given below.

Notice that α‹ ě 0 since kpXi‹ , ¨q maximizes the inner product between any element in

Cn and pmt´1 ´ mn. This algorithms guarantees that the error is bounded by

}mn ´ pmt} ď 2}k}1{2
8 exp

˜
´δpt ´ 1q

6}k}1{2
8

¸
,

when a ball of size δ exists around mn in Cn within the affine subspace spanned by Cn [6,

Prop.3.2] and with S denoting the support of the law of X1.

The run-time of this algorithm is again dominated by the Opn2q run-time cost needed

to compute s. When s is available the run-time reduces to OpTnq: the argmax step can be

performed inOpnq given s and when the inner products xkpXi, ¨q, pmt´1y are available. Sim-

ilarly, if s, the inner products xkpXi, ¨q, pmt´1y, }pmt´1}, xpmt´1,mny and }kpXi˚ , ¨q ´ pmt´1}
are available, it is possible to compute α‹ in Op1q. The norm term in the denominator can

be computed in Op1q from }pmt´1} and the inner products xkpXi, ¨q, pmt´1y. The coefficients

αtu can be computed in OpT 2q. Updating the elements xkpXi, ¨q, pmt´1y to

xkpXi, ¨q, pmty “ p1 ´ α‹qxkpXi, ¨q, pmt´1y ` α‹xkpXi, ¨q, kpXi˚ , ¨qy

can be done inOpnq. Furthermore, }pmt}2 “ p1´α‹q2}pmt´1}2`pα‹q2kpXi˚ , Xi˚q`2α‹p1´
α‹qxkpXi˚ , ¨q, pmt´1y and xpmt,mny “ p1 ´ α‹qxpmt´1,mny ` α‹xkpXi˚ , ¨q,mny can both be

updated in Op1q. In particular, if we aim for a compression down to T “ logpnq elements

then the run-time of the algorithm is Opn logpnqq, if s is available.

As for the kernel herding algorithm, it is easy to bound, with high probability, the

approximation error, as well as the expected error and the number of data points that are
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needed for the approximation when the stopping criterion is a pre-specified error. In the

following proposition, we bound the approximation error given that the algorithm is run for

r12}k}1{2
8 logpnq{δs many iterations. Alternatively, it is possible to use rlogγpnqs, with γ ą

1, as a stopping criterion that does not depend on the unknown quantity δ. For large enough

n, r12}k}1{2
8 logpnq{δs ď rlogγpnqs and the guarantees will carry over to that setting.

Proposition 5. Let pX ,A, P q be some probability space with P being a topological mea-

sure that is τ -additive, and with measurable kernel function k defined on X such that the

corresponding RKHS H is finite dimensional. Furthermore, let X1, . . . , Xn be i.i.d. ran-

dom variables attaining values in X and with law P . Assume that }k}8 ă 8, and that

the centered covariance operator C̃c has an eigen-decomposition with smallest non-zero

eigenvalue being λ̄d. Let β “ 3}k}1{2
8 {δ then with probability 1 ´ q, q P p0, 1q,

}pmr2β logpnqs ´ mn} ď 2}k}1{2
8 n´1{2

whenever n is (strictly) greater than

˜
8}k}8p

a
2 logp6{qq ` 192}k}8{λ̄dq

λ̄2d

¸2

_
˜
16}k}1{2

8 `
a
288 logp2{qq
δ

¸2

and where δ “ λ̄d{2}k}1{2
8 . Let N “ p16}k}1{2

8 {δq2 _ p1536}k}28{λ̄3dq2 then for any t ě 1

and whenever n ě N ,

Ep}pmt ´ mn}q ď expp´δpt ´ 1q{24}k}1{2
8 q ` 6}k}1{2

8 expp´pc3n1{2 ´ c4q2`q,

where c3 “ pλ̄2d{8
?
2}k}8q ^ pδ{17q and c4 “ p192}k}8{

?
2λ̄dq _ }k}1{2

8 are possible

choices.

If the stopping criterion of the algorithm is an error of }pmt̂ ´ mn} ď n´1{2, i.e. t̂ “
inftě1 }pmt ´ mn} ď n´1{2, and if the infimum is greater than n, then t̂ “ n and pmt̂ “ mn,

then

Ept̂ q ď r1 ` 12}k}1{2
8 logpnq{δs ` 3n expp´pc3n1{2 ´ c4q2q

whenever n ě N .

Proof. The first part follows directly from Theorem 2 and the bound on the error of the

CGM. For the other statements let us consider the space HS corresponding to the kernel

kS “ k æS ˆ S, where S is the support of the law P , and with corresponding objects

mS,mS,n and C̃Sc . As in the proof of Proposition 4, we have that Prp}mS,n ´ mS}S ě
δ{4q ď expp´p1{288qpn1{2δ ´ 16}k}1{2

8 q2q whenever n ě p16}k}1{2
8 {δq2. Furthermore,

there is a ball or radius δ{2 around mS in Cn (as a subset of the affine span of CS) with

probability at least

1 ´ 2 exp
´

´1

2

´n1{2λ̄2d
8}k}8

´ 192}k}8
λ̄d

¯2¯
,
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whenever n ě p1536}k}28{λ̄3dq2. Hence, with probability at least

1 ´ 3 exp
`
´pc3n1{2 ´ c4q2`

˘

there is a ball or radius δ{4 around mS,n in Cn (as a subset of the affine span of CS). The

second result follows since the CGM reduces the error in each step and the initial error is

bounded by }pm1 ´ mn} ď 2}k}1{2
8 .

The third statement follows along similar lines. In the event that we have a ball of size

δ{4 it follows that }pmt ´ mn} ď expp´δpt ´ 1q{24}k}1{2
8 q. Setting the right hand side to

n´1{2 leads to t̂ ď r1 ` 12}k}1{2
8 logpnq{δs.

4.2.1 Compression for kernel regression

We can also apply Algorithm 3 to compress the data for kernel regression. The only thing

that we need to do is to use the kernel function τppy, xq, py1, x1qq “ pκy`ρqppy, xq, py1, x1qq “
κpx, x1q ` yy1kpx, x1q that we used in Section 3.4.3 and where k is some kernel function on

the space X , and to cap the response variables Y . We state the corresponding result for the

compression of the mean element in high probability below. One can obviously also derive

bounds on the deviation in expectation and the expected number of points in the core-set.

Proposition 5. Let pXˆR,T,A, P q be a topological measure space such that P is a Radon

probability measure which has support S. Let k be continuous bounded kernel function

defined on X such that the corresponding RKHS is finite dimensional and does not contain

the constant functions. Let pX1, Y1q, . . . , pXn, Ynq be i.i.d. random variables with law P ,

and assume that Yi “ f0pXiq ` ϵi, for all i ď n, where f0 is a measurable and bounded

function and ϵ1, . . . , ϵn are i.i.d. sub-Gaussian random variables with variance 0 ă σ2

which are independent ofX1, . . . , Xn. Let λ̄‹,S̃ be the smallest eigenvalue of the covariance

operator C̃S̃k corresponding to the kernel function k æ S̃ ˆ S̃, S̃ “ tx : px, yq P Su. Chose

q P p0, 1q and define the sequence trnuně1 in the following way:

r1 “ 1 _ 2σ log1{2
´22}k}8pσ ` }f0}8 ` }k}1{2

8 q
σ2λ̄‹,S̃

¯

and for n ě 2, let

rn “ r1 _
?
2σ _

?
2σ log1{2p16n1{2σ2}k}8{qq.

Define uY pnq “ pY ^ prn ` }f0}8qq _ ´prn ` }f0}8q, let umτ,n be the empirical mean

element corresponding to the kernel τ and the data pX1, uY pnq
1 q, . . . , pXn, uY pnq

n q and let
pumτ,t be the output of the algorithm when applied to the capped data and umτ,n. Let β “
48}τ}Sf,n,8{σ2λ̄‹,S̃ then with probability 1 ´ q

}pumτ,rβ logp4n}τ}Sf,n,8qs`1 ´ mτ,n} ď 2n´1{2
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whenever n is (strictly) greater than

˜
16}τ}Sf,n,8p

a
2 logp12{qq ` 384}τ}Sf,n,8{σ2λ̄‹,S̃q

σ4λ̄2‹,S̃

¸2

_
˜
64}τ}Sf,n,8 ` 68}τ}1{2

Sf,n,8 log1{2p4{qq
σ2λ̄‹,S̃

¸2

.

Proof. The statement follows from Proposition 4. In particular, under the states conditions

and with probability at least 1 ´ q, simultaneously }umτ,n ´ mτ,n}τ ď n´1{2 and

}pumτ,t ´ umτ,n}τ ď 2}τ}1{2
Sf,n,8 exp

˜
´

uδpnq

4

t ´ 1

6}τ}1{2
Sf,n,8

¸
.

Setting the right side of the last equation equal to n´1{2 yields

t ´ 1 “
S
12}τ}1{2

Sf,n,8 logp4n}τ}Sf,n,8q
uδpnq

W
.

Replacing uδpnq by its lower bound σ2λ̄‹,S̃{4}τ}1{2
Sf,n,8 gives the constant β stated in the

proposition.

Remark 2. The eigenvalue in the definition of the sequence rn can be replaced in that

definition by a lower bound on this eigenvalue. Similarly, the term }f0}8 in the definition

of uY can be replaced by an upper bound. We also used here the lower bound σ2λ̄‹,S̃ on uλpnq
‹

instead of using uλpnq
‹ directly. This affects, in particular, the number n from which point

onward the compression results apply.

4.2.2 Avoiding the explicit computation of s

Mitigating the cost of computing s is more difficult when the CGM is used. The main

problem is that we are aiming for a run-time of Opn logpnqq and there is not much lee-

way in each iteration. For instance, if, like for kernel herding, we split the data into
?
n

batches of size
?
n then we have an overall run-time of

?
n ˆ p?

nq2 “ n3{2 because

computing s per batch incurs a quadratic cost in the sample size. One way to reduce that

compuational cost is to make the quadratic term smaller but then we have many batches.

For example, if we aim for a logpnq batch size then we have n{ logpnq many batches and

the reduction in sample size is minuscle. In particular, we could not just run the CGM
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directly on the n{ logpnq many approximations since that would result in an n2{ log2pnq
run-time cost. One way around this problem is to apply the process iteratively: in the first

iteration use about n{ logpnq “: T1 many batches and compute pm11, . . . pm1T1 . This can

be done in about pn{ logpnqq ˆ log2pnq “ n logpnq time, resulting in approximations that

consist of log logpnq many elements each. If we want to allow a run-time of Opn logpnqq
per iteration then in the second iteration we can use T2 :“ T1{ log2pnq many batches since

pT1{ log2pnqq ˆ log4pnq “ n logpnq (ignoring the log logpnq terms). Continuing this pro-

cess, at iteration 3, we have T3 “ T2{ log4pnq many batches, and, more generally, for i ě 2,

we have Ti “ Ti´1{ log2i´1pnq many batches. We can stop the iterations when we are down

to
?
n many batches since we can apply the CGM then directly. To get down to

?
n many

batches we need about

ℓ “ log

ˆ
logpnq

log logpnq

˙
« log logpnq

many iterations since

?
n « Ti “ nśℓ

i“1 log
2i´1pnq

“ n

log2
ℓpnq

.

This then implies an overall run-time of this algorithm of about Opn logpnq log logpnqq.

A major concern with this algorithm is that we have many optimization problems that

have to be solved simultaneously and we need to be lucky in each case to have a ball

of sufficient size around the corresponding mn in Cn. It seems rather unlikely that we can

guarantee for each of these optimization problems the existence of such a ball. A better way

to approach this compression problem might be to work instead with fixed error bounds that

have to be achieved in each optimization problem. The hope with this approach is that we

can then guarantee a sufficient compression but the number of sample points needed might

be larger than logpnq. Algorithm 4 implements this idea.

In the algorithm m1,1, . . . ,m1,T1 denote the mean elements corresponding to the initial

T1 batches. For the analysis of the algorithm it is useful to also have the mean elements

corresponding to all the samples entering into the j’th batch in iteration i; denote this

element by mi,j . The idea of the algorithm is to approximate mi,j in iteration i and batch

j. Working directly with mi,j is not possible if we try to stay around n logpnq computation

time per iteration since mi,j will consist eventually of about
?
nmany samples in each batch

which implies a cost of n per batch. Therefore, we approximate mi,j first by m̃i,j which

will consist, under suitable conditions, of far fewer sample points. The approximation

m̃i,j is then further compressed into pmi,j which consists of even fewer sample points. The

variables Mi,j keep track over how many sample points mi,j is averaged. Hence, mi,j “
p1{Mi,jq

ř
uPIi,j Mi´1,umi´1,u for all j ď Ti and 2 ď i ď ℓ.

We left out a few details in the algorithm. In particular, the usual vector s that consists

of inner products between kpXi, ¨q and mn has to be replaced by vectors with entries of
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Algorithm 4 (A compression algorithm for mn that uses the CGM and avoids the explicit

computation of s.)

Input: sample X1, . . . , Xn, kernel k.

In the follow let ℓ “
R

1

logp2q log
ˆ

logpnq
log logpnq

˙
´ 1

V
.

Split the sample into T1 :“ rn{ logpnqs batches.

Let I11, . . . , I1T1 be the corresponding indices of the sample points.

Apply the CGM to each batch to approximate m1,1, . . . ,m1,T1 by using sample points

indexed by I1,1, . . . , I1,T1 until the error of all approximations j ď T1

is below ε1,j “ |I1,j|´1{2.

Store the approximations in pm1,1, . . . , pm1,T1 and let M1,1 “ |I1,1|, . . . ,M1,T1 “ |I1,T1 |.
Iterate through i “ 2, . . . , ℓ :

Split the approximations pmi´1,1, . . . , pmi´1,Ti´1
into Ti :“ rTi´1{ log2i´1pnqs batches.

Let Ii1, . . . , IiTi be the corresponding indices and for all j ď Ti let

Mi,j “
ÿ

uPIi,j
Mi´1,u.

For each batch j ď Ti average the old approximations

m̃i,j :“
1

Mi,j

ÿ

uPIi,j
Mi´1,upmi´1,u.

Apply the CGM to each batch j ď Ti, approximating m̃i,j by convex combinations

of the elements pmi´1,u, u P Ii,j, with an error of at most εi,j “ M
´1{2
i,j .

Store the approximations in pmi,1, . . . , pmi,Ti .

Apply the CGM a final time to pmℓ,1, . . . , pmℓ,Tℓ to compress
1

Tℓ

Tℓÿ

j“1

pmℓ,j

with an approximation error of at most n´1{2 and return the approximation.

the form xpmi´1,u, m̃i,jy, u P Ii,j , when i ě 2. The element m̃i,j corresponds to an average

over the pmi´1,u terms and there are |Ii,j| many terms over which this average is taken. The

quantity |Ii,j| is not of major concern when bounding the computational complexity. The

computational complexity of calculating these inner product vectors is rather dominated by

how many points are contained in the approximations pmi,j . Another point worth noting is

114



that the final approximation will ideally by given in terms of convex combinations of the

original sample points kpX1, ¨q, kpX2, ¨q, . . .. Roughly speaking, this convex combination

can be computed by multiplying the weights in the different iterations. Finally, observe

that we can keep track of how well m̃i,j is approximated if pmi,j does not consist of too

many points since the |Ii,j| are chosen small enough that we can compute and store the

corresponding kernel matrices

pxpmi´1,u, pmi´1,vyqu,vPIi,j

and from these kernel matrices we can compute the approximation errors.

Bounding the size of the set which is used in the resulting approximation in high prob-

ability or expectation is a major challenge that we will not address here. However, it is

easier to say something about the resulting approximation error by refining the analysis of

the kernel herding algorithm: the philosophy of the algorithm is to guarantee in high prob-

ability in each iteration that mn is approximated with an error of n1{2. In detail, observe

that for any 1 ď i ď ℓ, mn “ p1{nq řTi
j“1Mi,jmi,j , where we use that

řTi
j“1Mi,j “ n. We

can use the link between pmi,j and mi,j to measure in each iteration the error when approx-

imating mn by p1{nq řTi
j“1Mi,j pmi,j . The naive approach of using the triangular inequality

does not lead to useful results since

}mn ´ p1{nq
Tiÿ

j“1

Mi,j pmi,j} ď 1

n

Tiÿ

j“1

Mi,j}mi,j ´ pmi,j} ď εi

and we would need to set εi to n´1{2 to guarantee a low enough approximation error. But

aiming in each batch for an error of n´1{2 when only logpnq sample points are in each batch

is not useful. As for the kernel herding analysis, a better approach might be to consider the

variance of the error and to make use of the independence of the sample points. Let us first

look at the case i “ 1,

Ep}mn ´ 1

n

Tiÿ

j“1

Mi,j pmi,j}2q “ 1

n2
Ep}

Tiÿ

j“1

Mi,jpmi,j ´ pmi,jq}2q

“ 1

n2

Tiÿ

j“1

Ep}Mi,jpmi,j ´ pmi,jq}2q ` 1

n2

Tiÿ

j1“1

ÿ

j2 ­“j1
Mi,j1Mi,j2Epxmi,j1 ´ pmi,j1 ,mi,j2 ´ pmi,j2yq

“ 1

n2

Tiÿ

j“1

M2
i,jEp}pmi,j ´ pmi,jq}2q ` 1

n2

Tiÿ

j1“1

ÿ

j2 ­“j1
Mi,j1Mi,j2xm ´ Eppmi,j1q,m ´ Eppmi,j2qy.

As for the kernel herding algorithm we can control the bias term in a crude manner by using

that

|xm ´ Eppmi,j1q,m ´ Eppmi,j2qy| ď max
jďTi

}m ´ Eppmi,jq}2 ď max
jďTi

Ep}mi,j ´ pmi,j}2q ď ε2i .
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However, this is not leading to an improvement since in the first iteration

Ep}mn ´ 1

n

T1ÿ

j“1

M1,j pm1,j}2q ď
ε21 maxj1ďT1 M

2
1,j1pT1 ` T 2

1 q
n2

« ε21p1 ` 1{nq

and

Prp}mn ´ 1

n

T1ÿ

j“1

M1,j pm1,j} ě n´1{2q ď ε21pn ` 1q.

implies that ε1 would have to be of order n´1{2. A central question at this point is of what

order is the bias term. In particular, is the upper bound of ε21 for the squared bias term

overly pessimistic? A natural threshold for the error in each batch is log´1{2pnq in the first

iteration since there are about logpnq many samples in each batch. For log1{2pnq to be

sufficiently low we need a bound on the bias term of about cn´1{2, c P p0, 1q, since then

Prp}mn ´ 1

n

T1ÿ

j“1

M1,j pm1,j} ě n´1{2q ď c ` ε21 logpnq ď 2c,

when a threshold of c1{2 log´1{2pnq is used in the optimization. In other words, the bias

term has to fall exponentially fast to allow for a threshold that is proportional to the sample

size, i.e. the bias has to be below expp´m{2q, where m “ logpnq is the sample size in each

batch in the first iteration.

The error in the successive approximations can be treated in a similar way and since

there are only about log logpnq many iterations a simple union bound argument suffices to

control the error simultaneously over all iterations. To demonstrate how the error evolves

consider i “ 2, then

Ep}mn ´ 1

n

T2ÿ

j“1

M2,j pm2,j}2q

ď 3pEp}mn ´ 1

n

T1ÿ

j“1

M1,j pm1,j}2q ` Ep} 1
n

T1ÿ

j“1

M1,j pm1,j ´ 1

n

T2ÿ

j“1

M2,j pm2,j}2qq

and

n2Ep} 1
n

T1ÿ

j“1

M1,j pm1,j ´ 1

n

T2ÿ

j“1

M2,j pm2,j}2q “ Ep}
T2ÿ

j“1

pM2,jm̃2,j ´ M2,j pm2,jq}2q

“
T2ÿ

j“1

M2
2,jEp}m̃2,j ´ pm2,j}2q ` 2

T2ÿ

j“1

ÿ

u ­“j
Mi,jMi,uxEpm̃2,j ´ pm2,jq, Epm̃2,u ´ pm2,uqy
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where we can move the expectation inside the inner produce since m̃2,j and pm2,j are inde-

pendent of m̃2,u and pm2,u. The bias term that is now important is }Epm̃2,jq ´ Eppm2,jq} and

we need a similar fast decay of the bias as for i “ 1. The other term is easier to deal with,

1

n2

T2ÿ

j“1

M2
2,jEp}m̃2,j ´ pm2,j}2q ď 1

n2

T2ÿ

j“1

M2,j “ 1

n

by the choice of εi,j in the algorithm.

There are a few open problems concerning this algorithm, and variations thereof. The

algorithm is set up to enforce tighter and tighter error bounds in each iteration, i.e. the error

threshold changes approximately from log´1{2pnq in the first iteration to log´3{2pnq in the

second iteration and log´7{2pnq in the third iteration. The hope is that good approximations

in the first iteration allow us to get even better approximations in the second round and so

forth. But it is by no means obvious that this intuition is correct and in all likelihood these

choices are not optimal.

The next major obstacles in controlling the error of the algorithm are obviously the bias

terms. If there is an exponential decrease in the bias then we are in a very fortunate situation

and can control the approximation error. If the bias term decreases slower then it might be

worth to consider alternatives of the CGM which incorporate bias reduction techniques and

are not focusing solely on the approximation error.

The biggest challenge when studying this algorithm is in all likelihood the problem

of controlling the size of the ball around the various elements mi,j simultaneously over all

iterations and batches. In fact, a uniform bound might even be suboptimal for analyzing the

performance of the algorithm since small ball sizes can be compensated for by batches that

have a larger ball around their corresponding mi,j and which need less sample points than

suggested by a worst case bound. In other words, we might need to control the fluctuations

or the distribution of the ball sizes.

5 Applications

In the following, we look at how these techniques can be combined with machine learn-

ing methods. In particular, we are looking at the two sample problem, at kernel ridge

regression and at kernel PCA. Since it is currently unclear what compression rates can be

achieved when avoiding the upfront cost of Opn2q, we formulate the runtime statements as

functions of ψcomppnq and ψsizepnq, where Opψcomppnqq is the computational cost for calcu-

lating the compression and Opψsizepnqq is order of the number of points that are needed in

the compression to guarantee, with high probability, that the compression is no more than

cn´1{2, c ą 0, away from the mean element that corresponds to the empirical measure. In

the finite dimensional settings that we consider and when using the standard algorithms,
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we can use ψcomppnq “ n2 and ψsizepnq “ logpnq. Generally, the hope is that these can be

changed to something of the form ψcomppnq “ n logαpnq and ψsizepnq “ logαpnq, α ě 1.

5.1 Two Sample Test

In the two sample test problem i.i.d. data X1, . . . , Xn and Y1, . . . , Ym attaining values in

X are given, the Xi’s are furthermore independent from the Yi’s but it is unknown if the

Xi’s have the same distribution as the Yi’s. The null-hypothesis is that the distributions are

equal. One way to build a test statistic for this hypothesis testing problem is to consider

}mX,n ´ mY,m}, where k is a kernel function on X , kpX, ¨q, kpY, ¨q P L1pP q, mX,n “
p1{nq řn

i“1 kpXi, ¨q and mY,m “ p1{mq řm

i“1 kpYi, ¨q. Calculating the norm can be done in

Oppn _ mq2q by using that

}mX,n ´ mY,m}2 “ 1

n2

nÿ

i,j“1

kpXi, Xjq ´ 2

nm

nÿ

i“1

mÿ

j“1

kpXi, Yjq ` 1

m2

mÿ

i,j“1

kpYi, Yjq.

When using one of the compression approaches this turns into a run-time of the order

Oppψcomppnq _ ψcomppmqq _ pψsizepnq _ ψsizepmqq2q. In particular, we can simply re-

place mY,m and mX,n by their approximations. Furthermore, with high probability, the

rate of convergence of }mX,n ´ mY,n} to }mX ´ mY }, where mX “
ş
kpX, ¨q dP and

mY “
ş
kpY, ¨q dP , will be preserved when moving to the compression.

5.2 Kernel ridge regression

Let us consider now the regression problem with data pX1, Y1q, . . . , pXn, Ynq, where we

assume that the pairs are independent and that the Yi are bounded. When the conditional

gradient method is used to approximate Cy, my and p1{nq ř
iďn Yi simultaneously we get

a single index function ι : t1, . . . , lu Ñ t1, . . . , nu and corresponding approximations

Ĉy,l “ řl

i“1wiκpXιpiq, ¨q and m̂y,l “ řl

i“1wixYιpiq, ¨y b kpXιpiq, ¨q with strictly positive

wi’s such that w1 ` . . . ` wl “ 1. The approximation of the least-squares error for a

function h P H is
lÿ

i“1

wipYιpiq ´ hpXιpiqqq2 “ xĈy,l, h̃y{HdH
´ 2xm̂b

y,l, ȟyR1bH `
lÿ

i“1

wiY
2
ιpiq,

where we denote the function px, yq ÞÑ h2pxq with h̃. Due to the representer theorem we

can write the solution to the ridge regression problem in the form h‹ “ řl

i“1 αikpXιpiq, ¨q
for suitable αi P R. Substituting this into the equation for the least-squares error and

ignoring the last term (which is irrelevant for finding the solution) leads to

xĈy,l, h̃‹y{HdH
´ 2

lÿ

i“1

αixm̂b
y,l, k̂pXιpiq, ¨qyR1bH.
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Let Cl be an l ˆ l matrix with the entry in row i and column j being

lÿ

u“1

wuxkpXιpuq, ¨q b kpXιpuq, ¨q, kpXιpiq, ¨q b kpXιpjq, ¨qyb

“
lÿ

u“1

wukpXιpuq, XιpiqqkpXιpuq, Xιpjqq.

then

xĈy,l, h̃‹y{HdH
“ αJClα.

Also, let Kl be the kernel matrix for samples Xιp1q, . . . , Xιplq and let ml be an l-

dimensional vector with entry i being

xm̂b
y,l, k̂pXιpiq, ¨qyR1bH “

lÿ

u“1

wuYιpuqkpXιpiq, Xιpuqq.

With these in place the solution of the ridge-regression problem with regularization param-

eter λ ą 0 is found by minimizing

αJClα ´ 2αJml ` λαJKlα

with respect to α P Rl. Taking the gradient with respect to α and setting it to zero yields

2Clα ´ 2ml ` 2λKlα “ 0. (48)

Observe that Cl “ KlWKl, where W is a diagonal matrix with Wuu “ wu for all u ď l.

Similarly, ml “ KlWy “ KlW pKlW q:KlWy, where y is a vector with entries yu “ Yιpuq
for all u ď l. Hence, we can rewrite (48) as

KlppWKl ` λIlqα ´ W pKlW q:KlWyq “ 0,

where Il is the l ˆ l identity matrix. Since W has strictly positive entries on the diagonal

we can rewrite this as

KlW ppKl ` λW´1qα ´ pKlW q:KlWyq “ 0, (49)

for which a solution is given by

α “ pKl ` λW´1q´1pKlW q:KlWy. (50)

The inverse is well defined because Kl is p.s.d. and W´1 is (strictly) positive definite; the

sum of a p.s.d. and strictly positive definite matrix is strictly positive definite and, therefore,

has an inverse. Also pKlW q: “ pKlW q´1 whenever Kl is of full rank and in this case

α “ pKl ` λW´1q´1y. (51)
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This α is also a solution to (49) in the general case whenKl is not full rank since pKlW q:KlWy

can be replaced by y in this equation.

In terms of the runtime, if we use an Opn3q algorithm for deriving the inverse then,

after compression, the runtime is Opψcomppnq _ pψsizepnqq3q. For example, if we work with

a finite dimensional RKHS and use the standard CGM then we attain a runtime of Opn2q.

Beside the reduction in runtime the storage demand also goes down since only a matrix

of size ψsizepnq ˆ ψsizepnq has to be stored for calculating α, and this can be as small as

logpnq ˆ logpnq. The CGM itself needs memory in the order of Opnq.

5.3 Kernel PCA

The plug-in estimator of an eigenfunction of the covariance operator has a large bias when

working in infinite dimensionsal RKHSs and does not achieve the minimax optimal rate of

convergence [22]. However, in finite dimensional RKHSs this is not of major concern and

we can use the eigenfunction of C̃n P LpH,Hq as an estimate of the eigenfunctions of the

covariance operator. In this context we want to approximate C̃n, which is given by

1

n

nÿ

i“1

kpXi, ¨qpbkpXi, ¨q,

by using the CGM. As discussed in Section 3.2 we can apply the CGM to the RKHS with

the kernel function κpx, yq “ k2px, yq to approximate Cn with some convex combination
pCt “ řt

i“1 αiκpXιpiq, ¨q, where αi ě 0 for all i ď t, α1 ` . . . ` αt “ 1, and ι is some

selection of data points. The element Cn is closely related to the operator C̃n and a natural

approximation of C̃n is
p̃
Ct “ řt

i“1 αikpXιpiq, ¨qpbkpXιpiq, ¨q. Note that for any f, g P H,

xpCt, pf b gq ˝ ψyd “
tÿ

i“1

αifpXιpiqqgpXιpiqq “ xp̃
Ctf, gy,

where ψ : X Ñ X ˆ X , ψpxq “ px, xq. The operator
p̃
Ct is clearly symmetric and, hence,

self-adjoint since the RKHS is finite dimensional. Furthermore, all eigenvalues are non-

negative since if e P H is an eigenfunction of
p̃
Ct then

xp̃
Cte, ey “

tÿ

i“1

αie
2pXιpiqq ě 0.

The main question is now if we can quantify the difference between eigenfunctions of
p̃
Ct

and C̃n. Let us assume that there are no multiple eingenvalues and that pλ1 ě . . . ě pλd ą 0

are the eigenvalues of
p̃
Ct and e1, . . . , ed are the corresponding eigenfunctions. Similarly, let
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µ1, . . . , µd ą 0 be the eigenvalues of C̃n and f1, . . . , fd the corresponding eigenfunctions.

Furthermore, assume that the CGM is run until

}pCt ´ Cn}d ď ϵ.

Since

}p̃
Ct ´ C̃n}op “ sup

}h}“1

}p̃
Cth´ C̃nh} “ sup

}h}“1

sup
}g}“1

xpp̃
Ct ´ C̃nqphq, gy “ xpCt ´ Cn, phb gq ˝ψyd

and }phbgq˝ψ}b ď }hbg}b “ }h}}g} ď 1 it follows from the Cauchy-Schwarz inequality

that

}p̃
Ct ´ C̃n}op ď }pCt ´ Cn}d ď ϵ.

From this bound on the operator norm it follows right away that }pp̃
Ct ´ C̃nqpeiq} and }pp̃

Ct ´
C̃nqpfiq} are less than ϵ for all i ď d. In particular,

|λi ´ xei, C̃neiy| ď ϵ and |xfi, p̃Ctfiy ´ µi| ď ϵ

for all i ď d. In particular,

λ1 ď xe1, C̃ne1y ` ϵ ď sup
}h}“1

}C̃nh}ϵ ď µ1 ` ϵ.

By symmetry of the argument it follows that |λ1 ´ µ1| ď ϵ. The difference between e1 and

f1 can now also be controlled: let a1, . . . , ad P R be such that e1 “ a1f1 ` . . . ` adfd then

1 “ }e1}2 “ a21 ` . . . a2d,

µ1 ´ 2ϵ ď xe1, C̃ne1y “
dÿ

i“1

a2iµi

and from p1 ´ a21qµ1 ´ 2ϵ ď p1 ´ a21qµ2 we can infer that for sufficiently small ϵ ą 0,

a21 ě 1 ´ 2ϵ

µ1 ´ µ2

and }e1 ´ f1}2 “ 2 ´ 2a1 ď 2 ´ 2
´
1 ´ 2ϵ

µ1 ´ µ2

¯1{2
.

The other eigenfunctions can be treated in a similar way by moving to the subspaces that

are orthogonal to the already covered eigenfunctions e1, . . . , el, l ď d.

The computational complexity of the eigendecomposition is Opn3q as for kernel ridge

regression. By compressing the data this goes down to Opψcomppnq _ pψsizepnqq3q.
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6 Example: Slow rate of convergence in infinite dimen-

sions

The last section of this paper is dedicated to the construction of the example for which

the kernel herding algorithm performs strictly worse than in finite dimensions when the

density function of the data distribution has a density that is bounded away from zero. The

corresponding theorem is the following.

Theorem 3. There exists an initialization, a continuous kernel, and a Borel probability

measure on r0, 1s which assigns non-zero probability to open intervals for which the kernel

herding algorithm does not converge fast, i.e. there exists no constant b such that }mt ´
m} ď b{t for all t ě 1.

The proof of Proposition 3 is split into two parts. In the first part, we construct a Hilbert

space, a map ϕ : r0, 1s Ñ H, and an element m P H such that the algorithm does not

converge fast. We then use this Hilbert space to construct an RKHS for which the algorithm

behaves in exactly the same way as when acting on the Hilbert space, and, consequently,

the algorithm does not converge fast when applied to the RKHS.

The construction idea. Before getting into the technical details we like to outline the

basic intuition of the construction: let the mean element m “ 0. Then, given an infi-

nite dimensional Hilbert space H, choose an orthonormal sequence tenuně1 and elements

tanuně1 in H such that each an is a multiple of en. Initialize the algorithm with an element

c P H which is of small magnitude compared to the an and has a positive inner product

with each an. The idea is that the different an’s will be chosen at one point by the algorithm

and will add to the (rescaled) approximation error wt of m (t is the iteration number of the

algorithm). In fact, we like to show that its norm will diverge to infinity.

This initial construction has a few problems which have to be addressed to make this

construction work. The first problem with this construction is that xan, cy is positive. In

fact, xan, eny , xc, eny ą 0 for all n ě 1. But, we want the mean element m to be 0. Hence,

we will need probability mass on the negative side to counter the mass accumulated by the

an and c. We can achieve this by introducing another set of elements tbnuně1 which are

lying opposite to the an. Therefore, each bn is a negative multiple of en. These bn need to

be further constraint in magnitude. If they are of a similar order like the an then they can

cancel the weight added to wt by the an’s. We are using here sequences with values in the

order of 1{ lnpn ` 1q for an and ´2´n for bn.

Even though the bn’s are of small magnitude compared to the an’s it is not directly

obvious why these bn’s should not be chosen many times by the algorithm to cancel step-

by-step the weight accumulated by the an’s. Here is an argument why this does not happen:

the an’s are constructed such that each an is chosen exactly once and they are selected in
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order by the algorithm. At a given iteration there is then an element am which has not

yet been chosen and our construction assures that in this case xam, wty equals the initial

value xam, cy, which is of magnitude 1{pm lnpm ` 1qq. Since the algorithm chooses the

element h P ϕrX s that maximizes the inner product with wt we can infer that this inner

product must be larger than 1{pm lnpm ` 1qq. Or put differently, an element bn will only

be chosen if xbn, wty ě 1{pm lnpm ` 1qq, that is xen, wty ě 2n{pm lnpm ` 1qq. If, in

fact, the algorithm chooses, in this case, bn then we are at least assured that xen, wt`1y ě
2n{pm lnpm`1qq´2´m (Figure 3 on page 15 visualizes these bounds for different m). We

do not need this extra scaling of 2n and we use in the proof only that there are sufficiently

many en for which |xen, wty| is larger than 1{ lnpm`1q. The number of elements for which

the inner product is at least of this size grows in m and the sum over these inner products

gives us a diverging number that approaches infinity in m. This is then sufficient to show

that the norm of wt diverges.

Interlacing. In the above discussion we assume m “ 0. However, constructing the

probability measure such that m “ 0 is not straightforward. The problem is that the scaling

on the positive side (the an’s and the c) is exponentially larger than the scaling on the

negative side (the bn’s). To get m “ 0 we would need the probability mass for the an’s and

c times the magnitude of these elements to be scaled so that it equals the probability mass

of the bn’s times the scale of the bn’s. The exponential difference in scale implies that the

probability mass of the bn’s needs to grow exponentially in n and the sum of all this mass

has to add up to infinity.

By closer inspection, one can observe that the an’s pose no serious problem since one

can just downscale the probability assigned to them by an exponential factor. However, the

c poses a more serious problem. Let p ą 0 be the probability corresponding to c. We use

c “ ř8
n“1 n

´1en and we thus have a factor of p{n pulling the mean element towards the

positive direction in dimension n. Hence, we will need a probability of pn “ p2n{n for the

bn elements to counter this pull. Since p does not change with n we are left with pn’s that

grow rapidly in n.

Using an initialization c is in a way too rigid and does not allow us to assign lower

probability mass as n increases. One way to overcome this problem is to break the ini-

tialization up and add probability mass to the different dimensions while the algorithm is

running. We do this by replacing the single c with infinitely many elements, one for each

dimension en. Since we do not want to alter the overall behavior of the algorithm these

different elements will need to be of a low scale and we need to sum multiple elements to

regain the 1{n value that c would have assigned. Therefore, for each dimension en, we are

left with a finite sequence of elements cn,1, cn,2, . . . which takes the role of the original c.

The question is then how we can guarantee that all these cn,i elements are chosen to

simulate the initialization through c before the algorithm proceeds as usual. We guarantee
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this by introducing dimensions ẽn,i which are orthogonal to all the en. These dimensions

are used to force the algorithm to choose cn,i`1 after cn,i until the final element of the

sequence is chosen and we have a weight of 1{n in dimension en.

We still have not addressed the problem of assigning different probabilities to the dif-

ferent dimensions. But, since c is now broken into many small pieces, it is easy to ‘lose’

probability in n.

Proposition 6. For any infinite-dimensional Hilbert space H there exists a continuous

function ϕ : X Ñ H, X :“ r0, 1s, a probability measure P on Br0,1s which assigns

positive measure to any open subset of X , and an initialization w1 P ϕrX s such that the

kernel herding algorithm when applied to
ş
ϕpxq dP pxq generates a sequence twtutě1 that

is unbounded and the algorithm does not converge with a 1{t rate to m “
ş
ϕpxq dP pxq P

H.

Proof. (a) Definition of the convex set: Let tNiu8
i“1 be a set of natural numbers to be

defined below, pick a countable infinite orthonormal sequence te1
nuně1 in H and split this

sequence into tenuně1 and the sequences ẽn,1, . . . , ẽn,Nn
where n goes through 2, 3 . . ..

This can be done since these are countable many sequences of Nn ` 1 elements and since

countable unions of countable sets are again countable. Furthermore, define the sequences

tanuně1, tbnuně1, tcn,m : 1 ď n, 1 ď m ď Nnu, tdn : 2 ď nu Ď H by

an :“
ˆ
a1
n ` 1

n

˙
en with a1

n :“ C

R
2n

lnpn ` 1q

V
2´n and C “ 4

R
3 ` 4 lnp9q

lnp2q

V
“ 64,

bn :“ ´2´nen,

N1 :“ 1 and for n ě 2, Nn :“
R

2

n x´bn, eny

V
,

c1,1 :“ e1 ` α2,1ẽ2,1, and for n ě 2 :

cn,1 :“ βnen ` αn,1ẽn,1 ´ αn,2ẽn,2, . . .

cn,Nn´1 :“ βnen ` αn,Nn´1ẽn,Nn´1 ´ αn,Nn
ẽn,Nn

,

cn,Nn
:“ βnen ` αn,Nn

ẽn,Nn
´ αn`1,1ẽn`1,1,

d2 :“ ´p1{2qα2,1ẽ2,1 and for all 2 ď n let

dn :“ p1{2qαn,1ẽn,1,

βn :“ ´ 1

nNn

, for which ´ βn ă x´bn, eny holds,

αn,1 :“
c

xen, any
n

, and αn,i :“
b
α2
n,1 ` pi ´ 1qβ2

n for 2 ď i ď Nn.

´βn is smaller than x´bn, eny because ´βn “ 1{pnNnq ď x´bn, eny {2. Also observe that
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the sequence a1
n is non-increasing in n since

R
2n`1

lnpn ` 2q

V
1

2n`1
ď

R
2

2n

lnpn ` 1q

V
1

2n`1
ď

R
2

R
2n

lnpn ` 1q

VV
1

2n`1
“

R
2n

lnpn ` 1q

V
1

2n
,

where we used that the function r¨s is monotonically increasing.

(b) Construction of a continuous map ϕ: We construct a continuous function

ϕ : r0, 1s Ñ H which goes through the points tanunPN, tbnunPN, tcn,i : 1 ď n, 1 ď i ď Nnu
and tdn : 2 ď nu. We split the construction into three separate functions, ϕ1 for the an, bn
elements, ϕ2 for the cn.i and ϕ3 for the dn elements.

For ease of reading let yn “ 1{pn ` 1q and zn “ pyn ` yn`1q{2 for all n ě 1. Define

ϕ1 : r0, 1s Ñ H, with n going through 1, 2, 3 . . ., by

ϕ1pxq :“

$
’’’’’’’’’&
’’’’’’’’’%

1´x
1´y1 a1 if y1 ă x ď 1,
x´ξ
yn´ξ an if ξ :“ yn`zn

2
ă x ď yn,

ξ´x
ξ´zn bn if zn ă x ď yn`zn

2
“: ξ,

x´ξ
zn´ξ bn if ξ :“ yn`1`zn

2
ă x ď zn,

ξ´x
ξ´yn`1

an`1 if yn`1 ă x ď yn`1`zn
2

“: ξ,

0 if x “ 0.

The function is continuous on p0, 1s as it is piecewise linear and the end points of the lines

are connected. The only critical point is 0. For continuity at 0 it suffices that for any ϵ ą 0

we can pick a δ such that x ă δ implies ∥ϕpxq∥ ă ϵ. We restrict the search for a δ to points

1{n, n P N. For such a δ the maximum of ϕpxq in an interval r0, δs is either attained on

an an or a bn. As we have that limnÑ8 ∥an∥ “ limnÑ8 ∥bn∥ “ 0 there is for every ϵ ą 0

an N P N such that for all n ą N we have maxp∥an∥ , ∥bn∥q ă ϵ and, consequently for

δ “ 1{pN ` 1q we have that ∥ϕpxq∥ ă ϵ for any 0 ď x ď δ.

In the following let N1 :“ 1. Furthermore, let ỹn :“ 1{n, ∆n :“ pỹn ´ ỹn`1q{Nn,

un,m :“ ỹn ´ m∆n, un,0 :“ ỹn and let z̃n,m :“ pun,m´1 ` un,mq{2, for all n ě 1 and

1 ď m ď Nn ´ 1. With n going through all of 1, 2, . . ., define ϕ2 : r0, 1s Ñ H by

ϕ2pxq :“

$
’’’’’’’&
’’’’’’’%

ỹn´x
ỹn´z̃n,1

cn,1 if z̃n,1 ă x ď ỹn,
x´un,m

z̃n,m´un,m
cn,m if un,m ă x ď z̃n,m, 1 ď m ď Nn ´ 1,

un,m´x
un,m´z̃n,m`1

cn,m`1 if z̃n,m`1 ă x ď un,m, 1 ď m ď Nn ´ 1,
x´ỹn`1

z̃n,Nn´ỹn`1

cn,Nn
if ỹn`1 ă x ď z̃n,Nn

,

0 if x “ 0.
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Similarly, by going through all n ě 2 define ϕ3 : r0, 1s Ñ H by

ϕ3pxq :“

$
’’’’’’&
’’’’’’%

0 if 1{2 ă x ď 1,
ỹn´x
ỹn´z̃n,1

dn if z̃n,1 ă x ď ỹn,
x´un,1

z̃n,1´un,1
dn if un,1 ă x ď z̃n,1,

0 ỹn`1 ď x ď un,1,

0 if x “ 0.

With the same reasoning as for ϕ1 one can infer that ϕ2 and ϕ3 are continuous. Define

ϕpxq :“

$
’&
’%

ϕ1p3x ´ 2q if 2{3 ă x ď 1,

ϕ2p3x ´ 1q if 1{3 ă x ď 2{3,
ϕ3p3xq if 0 ď x ď 1{3.

The function ϕ is continuous since ϕ1, ϕ2, ϕ3 are continuous and ϕ1p0q “ ϕ2p1q “ ϕ2p0q “
ϕ3p1q “ 0. This implies also that ϕ : r0, 1s Ñ H is measurable. It is also Bochner

integrable with respect to any probability measure defined on the Borel sets of R as ∥ϕp¨q∥ :

r0, 1s Ñ R is continuous and, hence, bounded, i.e.
ş
∥ϕpxq∥ dP pxq ă 8.

(c) Definition of the probability measure: We construct a Borel measure by defining

a density p on r0, 1s. Using the variables defined for ϕ1, ϕ2, ϕ3, constants a1, b1, . . . and n

going through 1, 2, . . . we set

p1pxq “

$
’’’’’’&
’’’’’’%

a1 if y1 ă x ď 1,

an if yn`zn
2

ă x ď yn,

bn if
yn`1`zn

2
ă x ď yn`zn

2
,

an`1 if yn`1 ă x ď yn`1`zn
2

,

0 if x “ 0.

and using constants cn we furthermore define

p2pxq :“
#
cn, if ỹn`1 ă x ď ỹn,

0 if x “ 0.

Finally, going through all n ě 2, 1 ď m ď Nn and with the constants dn,m let

p3pxq :“

$
’’’&
’’’%

1 if 1{2 ă x ď 1,

dn if un,1 ď x ď ỹn,

1 if ỹn`1 ď x ď un,1

0 if x “ 0
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and combine these to define the density p by

ppxq :“

$
’&
’%

p1p3x ´ 2q if 2{3 ă x ď 1,

p2p3x ´ 1q if 1{3 ă x ď 2{3,
p3p3xq if 0 ď x ď 1{3.

Now, m “ 0 iff xen,my “ E xen, ϕy “ 0 “ xe1
n,i,my “ Exe1

n,i, ϕy for all n ě 1, 1 ď i ď
Nn.

Observe that in general, if a, b P r0, 1s, a ď b, the density p is constant on ra, bs with

value µ P r0,8q, h P H and ψ : r0, 1s Ñ H is defined by

ψpxq “
#

px ´ aq{pb ´ aqµh x P ra, bs,
0 otherwise

then for any en (and e1
n,i)

xen, Eψy “ E xen, ψy “
ż

ra,bs

x ´ a

b ´ a
µ xen, hy “ p1{2qµ xen, hy pb ´ aq

and if

ψpxq “
#

pb ´ xq{pb ´ aqµh x P ra, bs,
0 otherwise

then

xen, Eψy “ p1{2qµ xen, hy pb ´ aq.
So,

xe1,my “ 1

6

A
e1,

´
1 ´ y1 ` z1

2

¯
a1a1 `

´y1 ´ y2

2

¯
b1b1 ` pỹ1 ´ ỹ2qc1c1,1

E

will be zero by setting

b1 :“ 2 ¨ 6
ˆ´

1 ´ y1 ` z1

2

¯
a1

xa1, e1y
x´b1, e1y

`
ˆ
1 ´ 1

2

˙
c1

xc1,1, e1y
x´b1, e1y

˙

and xen,my “ 0 by setting

bn “ 2pn ` 1qpn ` 2q
ˆ
1

4

ˆ
1

n
´ 1

n ` 2

˙
an

xan, eny
x´bn, eny `

ˆ
1

n
´ 1

n ` 1

˙
cnβn

x´bn, eny

˙
.

Also, for any n ě 1 we have that bn ą 0 if an, cn ą 0. Let, N be a normalising constant to

be defined below and let

a1 :“
N x´b1, e1y
24 xa1, e1y

N´
1 ´ y1 ` z1

2

¯
ą 0 and c1 :“

N x´b1, e1y
12 xc1,1, e1y

ą 0
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such that b1 “ N . Also set for all n ě 2

an :“ n

n ` 1

N x´bn, eny
xan, eny ą 0 and cn :“ n

2pn ` 2q
N xbn, eny

βn

∆n`1

∆n

ą 0

which makes bn “ N p1 ´ ∆n`1{∆nq and all xen,my “ 0. For the elements ẽn,i we have

that

6 xẽ2,1,my “ ∆1c1 xc1,1, ẽ2,1y ` ∆2c2 xc2,1, ẽ2,1y ` ∆2d2 xd2, ẽ2,1y
and we set

d2 :“
∆1

∆2

c1
xc1,1, ẽ2,1y
x´d2, ẽ2,1y

` c2
xc2,1, ẽ2,1y
x´d2, ẽ2,1y

ą 0.

Furthermore, for all n ą 2 let

dn :“ ∆n´1

∆n

cn´1

@
´cn´1,Nn´1

, ẽn,1
D

xdn, ẽn,1y ´ cn
xcn,1, ẽn,1y
xdn, ẽn,1y

.

dn ą 0 for n ą 2 since

2 x´dn, ẽn,1y
αn,1N

dn “pn ´ 1q2
n ` 1

x´bn´1, en´1y
R

2

pn ´ 1q x´bn´1, en´1y

V

´ ∆n`1

∆n

n2

n ` 2
x´bn, eny

R
2

n x´bn, eny

V

ě2
n ´ 1

n ` 1
´ 3

n

n ` 2

∆n`1

∆n

“ 2
n ´ 1

n ` 1
´ 3

n2

pn ` 2q2
Nn

Nn`1

ě2
n ´ 1

n ` 1
´ 3

2

n2pn ` 1q
pn ` 2q2

ˆ
1

n
` 1

2n`1

˙

which is strictly greater zero if

4pn ´ 1qpn ` 2q2 ´ 4npn ` 1q2 “ 4pn2 ` n ´ 4q
is. But this is obvious for n ě 3. For all remaining n, i ě 2 we can observe that

xẽn,i,my “ p1{6q∆ncn xcn,i´1 ´ cn,i, ẽn,iy “ 0

for all m ě 2. Hence, m “ 0 and the density is strictly greater 0 on all but three points. It

remains to set N such that the density integrates to one. We have for any N ą 0 that

0 ă
ż

r0,1s
p “a1p1 ´ py1 ` z1q{2q{3 ` p1{3q

8ÿ

n“2

anppyn ´ zn´1q ´ pyn ´ znqq{2

` p1{3q
8ÿ

n“1

bnppyn ´ znq ´ pyn`1 ´ znqq{2

`
8ÿ

n“1

1

3npn ` 1qcn ` 1{6 ` p1{3q
8ÿ

n“1

∆ndn ` p1{3q
8ÿ

n“1

pun,1 ´ ỹn`1q.
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The first sum is a finite multiple of N since an « 2´n and the sum over ppyn ´ zn´1q ´
pyn ´ znqq{2 is bounded by 1. Similarly, the cn sum is bounded since cn itself is upper

bounded by N and the rest is quadratic in n. Furthermore, bn is upper bounded by N and

the sum of the intervals cannot exceed 1. Finally, dn is upper bounded since

2 x´dn, ẽn,1y
αn,1N

dn ď 2pn ´ 1q
n ` 1

αn,1 is bounded and so is x´dn, ẽn,1y. Hence, the sum is a finite multiple of N and we

have in total a term that is a finite multiple of N plus a constant that is smaller than 1{2.

Therefore, we can choose N such that
ş
p “ 1.

(d) Behaviour of the algorithm: Initialize the algorithm with w1 :“ c1,1 P ϕrXs and

let xt be the element which is chosen at stage t. The algorithm behaves as follows:

(1) For any t ě 1, if wt ­“ 0 then xt P tanuně1 Y tbnuně1 Y tcn,m : 1 ď n, 1 ď m ď
Nnu Y tdn,m : 2 ď n, 1 ď m ď Nnu.

(2) Let n “ mintm : am has not been chosen in steps 1 . . . t ´ 1u. If t ě 2 then either

the smallest element of tpm, jq : cm,j has not been chosen in steps 1 . . . t´ 1uztc1,1u
in the lexicographic order is pn, iq with 1 ď i ď Nn and

wt “ ´γ1e1 ´ . . . ´ γn´1en´1 ` γnen ` αn,iẽn,i,

where

γj “ p2ja1
j´lq2´j, l P N and a1

j ě γj ě min

"
a1
j,max

"
2j xan, eny

n
´ 2´j, 0

**

for 1 ď j ď n ´ 1 and γn “ ´pi ´ 1qβn (first case), or the smallest element is

pn ` 1, 1q and

wt “ ´γ1e1 ´ . . . ´ γn´1en´1 ` γnen ` αn`1,1ẽn`1,1,

with γ1, . . . , γn´1 like above and γn “ 1{n (second case). In particular wt ­“ 0.

(3) Let Npnq :“ r1 ` log2pn lnpn ` 1qqs then n ´ 1 ě Npnq for all n ě 7. If n is the

smallest index of an an which has not been chosen yet and if this n ě 7 then for any

i with n ´ 1 ě i ě Npnq
xei, wty ď ´ 1

lnpn ` 1q .

(4) For each n ě 1 there exists a step t ě 1 with xt “ an.
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PPP (α) (1) is saying that no point on the line from 0 to an an, bn, cn,m or dn,m is chosen that

differs from an, bn, cn,m and dn,m. To see this first observe that only points ϕpxq will be

chosen at any stage t for which xwt, ϕpxqy ą 0: By assumption wt ­“ 0. If there exists an

en with xen, wty ­“ 0 then either xan, wty or xbn, wty is strictly positive. Also, if there is an

ẽn,m, pn,mq ­“ p2, 1q, such that xẽn,m, wty ą 0 then xdn,m, wty is strictly positive. Similarly,

if xẽ2,1, wty ă 0 then xd2,1, wty ą 0. Assuming that none of these cases apply we have that

either xẽ2,1, wty ą 0 or there is an ẽn,m, pn,mq ­“ p2, 1q, with xẽn,m, wty ă 0. In the first

case xc1,1, wty ą 0. In the latter case and with xẽ2,1, wty “ 0 let pn1,m1q :“ mintpn,mq :

xẽn,m, wty ă 0u where the minimum is taken wrt. the lexicographic ordering. We have

xcn1,m1´1, wty “ αn1,m1´1 xẽn1,m1´1, wty ´ αn1,m1 xẽn1,m1 , wty ą ´αn1,m1 xẽn1,m1 , wty ą 0, if

m1 ą 1, and if m1 “ 1 then

xcn1´1,Nn1´1
, wty “ αn1´1,Nn1´1

xẽn1´1,Nn1´1
, wty ´ αn1,1 xẽn1,1, wty ą ´αn1,1xẽn1,1, wty ą 0.

If the chosen ϕpxq is on the line from 0 to an an then an “ ξϕpxq with ξ ě 1 and

0 ă xϕpxq, wty ď ξ xϕpxq, wty “ xan, wty and ϕpxq “ an. The same argument applies to

bn, cn,m and dn,m.

(β) We prove by induction over t ě 2 that (2) holds. We start with the induction basis.

w1 “ c1,1 “ e1 ` α2,1ẽ2,1 and we have xw1, bny ď 0,xw1, dny ď 0 for all n, xw1, any “ 0

for all n ě 2, xw1, cn,iy “ 0 if either n ą 2 or (n “ 2 and i ą 2). Furthermore,

xw1, c1,1y “ ∥c1,1∥
2 “ 1 ` α2

2,1 “ 1 ` xe2, a2y
2

“ 1 ` C

8

R
4

lnp3q

V
` 1

4
ď 1 ` C

4

R
2

lnp2q

V
` 1

4

ă 1 ` C

2

R
2

lnp2q

V
“ xw1, a1y

since C ě 1, r2{ lnp2qs “ 3 and hence

C

4

R
2

lnp2q

V
ą 1

4
.

Also, xw1, c2,1y “ α2
2,1 ă xw1, c1,1y ă xw1, a1y and x1 “ a1. Therefore,

w2 “ w1 ´ a1 “ e1 ` α2,1ẽ2,1 ´ pa1
1 ` 1qe1 “ ´a1

1e1 ` α2,1ẽ2,1

and w2 has the promised form.

(γ) Next, we address the induction step. (i) Assuming wt has the given form in step t

we can observe that

xxt, wty ě xan, eny
n

ą 0
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since in the first case

xcn,i, wty “ βnγn ` α2
n,i “ ´pi ´ 1qβ2

n ` pα2
n,1 ` pi ´ 1qβ2

nq “ xen, any
n

in case that i ą 1 or, for i “ 1,

xcn,i, wty “ α2
n,1 “ xen, any

n
.

In the second case,

xan, wty ě γn xen, any “ xen, any
n

.

(ii) For the bj (i) implies that, first, no j ě n will have been chosen in t since for these

xbj, wty ď 0 holds in both cases. Also, if for a j, 1 ď j ď n ´ 1, γj ă 2j xan, eny {n then

xbj, wty “ γj2
´j ă xan, eny {n and bj ­“ xt. On the other hand, if γj ě 2j xan, eny {n and

xt “ bj then the coefficient changes by ´2´j , i.e. the new coefficient is

γj ´ 2´j ě 2j
xan, eny

n
´ 2´j.

The coefficient is also always non-negative since γj is a multiple of 2´j and bj will not be

selected if γj “ 0. In total, all cases are consistent with our induction hypothesis and we

are safe against any application of bj .

(iii) In terms of aj , we can directly observe that xaj, wty “ 0 if j ą n and xaj, wty “
´γj xej, ajy ď 0 if j ă n. So only an might have been chosen at time t. However, in the

first case we have that

xan, wty “ γn xan, eny “ ´pi ´ 1qβn xan, eny ď Nn ´ 1

nNn

xan, eny ă xan, eny
n

and xt ­“ an. In the second case, if γn “ 1{n, then

xan, wty “ xan, eny
n

.

Thus an might be chosen, and, in case it is, then the new coefficient is γn´a1
n´1{n “ ´a1

n

which is consistent with the induction hypothesis.

(iv) Turning to the cn1,i1 elements we can observe that for pn, iq ą p2, 1q we have

xwt, c1,1y ď 0. For pn, iq “ p2, 1q we are in the first case since N2 “ 4 and

xwt, c1,1y “ x´γ1e1 ` γ2e2 ` α2,1ẽ2,1, e1 ` α2,1ẽ2,1y “ ´γ1 ` p1{2q xe2, a2y
ď ´p1{2q xe2, a2y ` 1{2 ` p1{2q xe2, a2y .
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But, 1{2 ă p1{2q xa2, e2y and c1,1 will never be chosen. For the remaining cn1,i1 elements

we have in the first case in step t that no cn1,i1 will be chosen if n1 ­“ n or i1 ­“ i since in

these cases

xwt, cn1,i1y

$
’’’’’’&
’’’’’’%

“ 0 if n1 ą n,

“ γnβn “ ´pi ´ 1qβ2
n ď 0 if n1 “ n and pi1 ą i or i1 ă i ´ 1q,

“ γnβn ´ α2
n,i ă 0 if n1 “ n and i1 ` 1 “ i,

ď 0 if 2 ď n1 “ n ´ 1 and i1 “ Nn1 and i “ 1, p˚q
“ ´γn1βn1 ă xwt, bn1y if n1 ă n and p˚q does not apply.

(*) follows for n ě 3 from

@
wt, cn´1,Nn´1

D
“

@
wt, βn´1en´1 ` αn´1,Nn´1

ẽn´1,Nn´1
´ αn,1ẽn,1

D

“ ´γn´1βn´1 ´ α2
n,1 “ γn´1

pn ´ 1qNn´1

´ α2
n,1

ď γn´12
´n ´ xen, any

n
ď 2´na1

n´1 ´ a1
n

n

“ C

ˆ
2´n

R
2n´1

lnpnq

V
2´pn´1q ´ 1

n

R
2n

lnpn ` 1q

V
2´n

˙

ď Cn´12´2n´1

ˆ
n

R
2n

lnpn2q

V
´ 2n´1

R
2n

lnpn ` 1q

V˙
ď 0.

If now xt “ cn,i then, in case i ă Nn,

wt`1 “ wt ´ cn,i “ ´
n´1ÿ

i“1

γiei ´ pi ´ 1qβnen ` αn,iẽn,i ´ βnen ´ αn,iẽn,i ` αn,i`1ẽn,i`1

“ ´
n´1ÿ

i“1

γiei ´ iβnen ` αn,i`1ẽn,i`1

which has the desired form. Similarly, in case that i “ Nn

wt`1 “ wt ´ cn,Nn

“ ´
n´1ÿ

i“1

γiei ´ pNn ´ 1qβnen ` αn,Nn
ẽn,Nn

´ βnen ´ αn,Nn
ẽn,Nn

` αn`1,1ẽn`1,1

“ ´
n´1ÿ

i“1

γiei ´ Nnβnen ` αn`1,1ẽn`1,1

which has the form of the second case since ´Nnβn “ 1{n.
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In the second case no element cn1,i1 will be chosen since

xwt, cn1,i1y “

$
’’’’’’&
’’’’’’%

0 if n1 ą n ` 1 or pn1 “ n ` 1 and i1 ą 1q,
α2
n`1,1 ă xen, any {n if n1 “ n ` 1 and i1 “ 1,

βn{n ´ α2
n`1,1 ă 0 if n1 “ n and i1 “ Nn,

βn{n ă 0 if n1 “ n and i1 ă Nn,

´γn1βn1 ă xwt, bn1y or “ 0 if n1 ă n.

(v) We turn to the d elements. First case: If pn, iq “ p2, 1q then xwt, d2y “ ´p1{2qα2
2,1 ă 0

and otherwise xwt, d2y “ 0. In either way d2 will not be chosen. For any other n1 we have

that xwt, dn1y “ 0 if pn, iq ­“ pn1, 1q. Otherwise

xwt, dn1y “ p1{2qα2
n,1 “ 1

2

xen, any
n

and xwt, dn1y ă xan, eny {n and dn1 will never be chosen.

Second case: xwt, d2y ď 0 and all dn1 with n1 ­“ n ` 1 are zero. Finally

xwt, dn`1y “ p1{2qα2
n`1,1 “ xen`1, an`1y

n ` 1
ă xen, any

n

since the sequence xen, any is non-increasing.

So in step t ` 1 the element wt`1 will have the right form, and, certainly, wt`1 ­“ 0.

pδq Next we prove (3). Since the smallest index n for which an has not been chosen in

rounds 1 to t is assumed to be larger than 7 we can assume that t ě 2.

For each m, xam, emy {m ě a1
m{m ě 1{pm lnpm ` 1qq. Hence, from (2) we conclude

for all i with n ´ 1 ě i ě Npnq

´xei, wt`1y “ γi ě min

"
a1
i,max

"
2i

xan, eny
n

´ 2´i, 0

**

ě min

"
1

lnpi ` 1q ,max

"
2i

n lnpn ` 1q ´ 2´i, 0

**
.

Using the assumption i ě Npnq we observe that

i ě 1`log2pn lnpn`1qq “ log2p2n lnpn`1qq ñ 2i ě 2n lnpn`1q ñ 2i

n lnpn ` 1q ´1 ě 1

and since i ą 1

2i

n lnpn ` 1q ´ 2´i ě 2i

n lnpn ` 1q ´ 1 ě 1

lnpi ` 1q ě 1

lnpn ` 1q .
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So, for n ´ 1 ě i ě Npnq,

´xei, wt`1y ě 1

lnpn ` 1q .

(ϵ) (4) also follows from (2). First, if an has been chosen in any step t then for all t1 ą t

(2) tells us that xan, wt1y ď 0. Consequently, xt1 ­“ an and an will be chosen at most ones.

Also, if an is the element with minimal index which has not been chosen yet in time t then

either xwt, any “ xwt, amy “ 0 or xwt, any ą xwt, amy for all m ą n. In the first case no

element an1 will be chosen and in the second case, if an an1 will be chosen it will be the

one with the smallest index in the set of elements which have not been chosen yet. So the

elements an will be chosen in order and no element will be skipped.

Let us now assume that tam : am ­“ xt for all t ě 1u is not empty and let an be the

element with the smallest index in this set.

The argument in (γ) shows us that no cm,j with m ą n will be chosen. Also, if cm,j ,

m ď n, has been chosen in any step t then for all t1 ą t we again infer from (2) and the

argument in (γ) that cm,j will not be chosen in t1 and, hence, each cm,j is not chosen more

than ones. Also none of the dn,i elements will be ever chosen.

So the only way that an an is never chosen is that infinite many bm elements are selected.

Yet, no bm with m ě n will be chosen since the inner product with the weight vector is less

or equal to zero. Also each bm, m ă n can only be chosen finite many times before the

weight vector in direction em becomes 0 and the inner product with bm becomes 0 too (at

which point it will certainly not be chosen any more). So only finite many applications of

bm’s are possible with a contradiction that an will not be chosen. QQQ

(e) Unboundedness: d.3 and d.4 allow us now to show that the sequence t∥wt∥utě1 is

unbounded. Assume that at stage t the element n is the smallest index such that xan, wty is

positive.

For n ě 7 we know from d.3 that |xei, wty| ě 1{ lnpn ` 1q for all i, Npnq ď i ă n

Hence, for n ě 7,

∥wt∥
2 “

8ÿ

i“1

|xei, wty|2 ě
n´1ÿ

i“Npnq

1

plnpn ` 1qq2 ě n ´ 1 ´ Npnq
plnpn ` 1qq2

“ n ´ 1 ´ r1 ` log2pn lnpn ` 1qqs

plnpn ` 1qq2 ě n ´ 3

plnpn ` 1qq2 ´ log2pn lnpn ` 1qq
plnpn ` 1qq2 .

Furthermore,

log2pn lnpn ` 1qq
plnpn ` 1qq2 “ lnpnq ` lnplnpn ` 1qqq

lnp2qplnpn ` 1qq2 ď 2

lnp2q ,

since lnpxq ď x for all x ą 0 and lnpn ` 1q ą 0. Hence,

∥wt∥
2 ě n ´ 3

plnpn ` 1qq2 ´ 2

lnp2q .
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The right side goes to infinity in n and, since for every n there is a t at which an is chosen

due to d.4, the norm of wt crosses any boundary at one time t.

Corollary 2. There exists a continuous kernel on r0, 1s, a Borel probability measure on

r0, 1s which assigns positive measure to open subsets of r0, 1s and an initialization for

which the algorithm does not converge with a 1{t rate to m.

Proof. We consider the Hilbert space pH, x¨, ¨yq from Proposition 6 with the corresponding

feature map ϕ : r0, 1s Ñ H. Define the continuous kernel function kpx, yq :“ xϕpxq, ϕpyqy
on r0, 1s and let the corresponding RKHS be pK, p¨, ¨qq. The geometry of the two spaces is

closely related. We have for scalars ai, bj and xi, yj P r0, 1s, i “ 1, . . . , n, j “ 1, . . . ,m,

that
C

nÿ

i“1

aiϕpxiq,
mÿ

j“1

bjϕpyjq
G

“
nÿ

i“1

mÿ

j“1

kpxi, yjq “
˜

nÿ

i“1

aikpxi, ¨q,
mÿ

j“1

bjkpyj, ¨q
¸
.

Furthermore, we know that the Bochner-integral m P H lies in cchϕrX s which equals

the closure of chϕrX s [30][Thm. 5.2, p.71] and there exists a sequence tniuiPN, ni P
N, elements xij P r0, 1s, and non-negative weights aij with

řni

j“1 aij “ 1 such that the

sequence tsi “ řni

j“1 aijϕpxijquiPN converges to m in norm, i.e. ∥m ´ si∥ Ñ 0 for i Ñ 8.

The corresponding sequence ts̄i “ řni

j“1 aijkpxij, ¨qquiPN is a Cauchy sequence in K since

∥s̄i ´ s̄j∥K “ ∥si ´ sj∥H

and has a limit n P K because K is complete. In particular, for any x P X

|pn, kpx, ¨qq ´ xm, ϕpxqy| “ |pn ´ s̄i, kpx, ¨qq ` ps̄i, kpx, ¨qq ´ xsi, ϕpxqy ` xsi ´ m, ϕpxqy|
ď kpx, xq ∥n ´ s̄i∥K ` ∥ϕpxq∥

H
∥m ´ si∥H Ñ 0 (in iq

and pn, kpx, ¨qq “ xm, ϕpxqy for every x P X . Furthermore, for arbitrary l points x1, . . . , xl P
X and scalars a1, . . . , al it holds that pn,řl

i“1 aikpxi, ¨qq “ xm,řl

i“1 aiϕpxiqy and

|∥n∥
K

´ ∥m∥
H
| ď | ∥n∥

K
´ ∥s̄i∥K| ` | ∥s̄i∥K ´ ∥si∥H| ` | ∥si∥H ´ ∥m∥

H
|

which also goes to 0 in i and therefore ∥n∥
K

“ ∥m∥
H

.

The function kpx, ¨q : X Ñ H is continuous and therefore Bochner-integrable with

respect to P . Denote the Bochner integral with n1 “
ş
kpx, ¨q dP . For any x P X

npxq “ pn, kpx, ¨qq “ xm, ϕpxqy “ E xϕp¨q, ϕpxqy “ Ekpx, ¨q “ pn1, kpx, ¨qq “ n
1pxq

and n “ n1.
Now if the algorithm is applied in pK, p¨, ¨qq with the initialization kpx0, ¨q, where x0

is the element in X that maps to the initialization ϕpx0q that we use in Proposition 6, then
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sequences of elements xt and of weights wt are generated. The weights wt are of the form

kpx0, ¨q ` řt

i“1 kpxi, ¨q ´ tn. The sequence x1, x2, . . . also maximizes the objective in

pH, x¨, ¨yq. This can be seen by an induction over the weights w̃t P H that are generated by

the algorithm. The induction step is the following.

max
xPr0,1s

xw̃t, ϕpxqy “ max
xPr0,1s

˜
xϕpx0q, ϕpxqy `

tÿ

i“1

xϕpxiq, ϕpxqy ´ t xm, ϕpxqy
¸

“ max
xPr0,1s

˜
pkpx0, ¨q, kpx, ¨qq `

tÿ

i“1

pkpxi, ¨q, kpx, ¨qq ´ tpn, kpx, ¨qq
¸

“ pwt, kpxt`1, ¨qq

“ pkpx0, ¨q, kpxt`1, ¨qq `
tÿ

i“1

pkpxi, ¨q, kpxt`1, ¨qq ´ tpn, kpxt`1, ¨qq

“
A
ϕpx0q `

tÿ

i“1

ϕpxiq ´ tm, ϕpxt`1q
E

“ xw̃t, ϕpxt`1qy .

From Proposition 6 we can now infer that the sequence t∥w̃t∥HutPN “ t∥wt∥KutPN is un-

bounded and the algorithm does not converge with the fast rate in K.
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