
This is a repository copy of Challenges in testing of cyclic systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224456/

Version: Accepted Version

Proceedings Paper:
Cavalcanti, A. and Hierons, R.M. orcid.org/0000-0002-4771-1446 (2023) Challenges in
testing of cyclic systems. In: Aït-Ameur, Y., Khendek, F. and Méry, D., (eds.) 2023 27th
International Conference on Engineering of Complex Computer Systems (ICECCS). 27th
International Conference on Engineering of Complex Computer Systems, 14-16 Jun 2023,
Toulouse, France. Institute of Electrical and Electronics Engineers (IEEE) ISBN 979-8-
3503-4004-4

https://doi.org/10.1109/iceccs59891.2023.00010

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a paper
published in 27th International Conference on Engineering of Complex Computer Systems
(ICECCS) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Challenges in testing of cyclic systems

Ana Cavalcanti

Department of Computer Science

University of York

York, UK

0000-0002-0831-1976

Robert M. Hierons

Department of Computer Science

University of Sheffield

Sheffied, UK

0000-0002-4771-1446

Abstract—The state of practice in design and verification of
control software for robotics is code centric. The RoboStar
framework supports a model-based approach, providing support
for modelling and simulation, and techniques for automatic
generation of artefacts. Existing results support test generation
using a reactive design model; in RoboStar such models can
be described using a diagrammatic notation called RoboChart.
Here, we describe the challenges involved in using such tests for
execution against simulations or cyclic implementations either
automatically generated or custom developed. While it is possible
to use a cyclic model to generate tests in the first place, reactive
models are akin to those normally used by the community.
Moreover, by linking design-based tests to the tests executed
against the cyclic mechanisms, we support traceability.

Index Terms—RoboStar, test generation, formal testing, simu-
lation

I. INTRODUCTION

The state of practice of testing in robotics is ad hoc.

The modern outlook, however, is on safety-critical, real-time

robotic applications operating in an uncertain environment;

these features make productive testing difficult, in terms of

achieving coverage, of observability, and of reaching reliable

conclusions. Recent experience reports [1], [2] recognise these

challenges, but indicate the existence of a culture of even

not believing in the value of testing. If we are, however, to

realise the potential of robotics, for the benefit of our society,

trustworthiness, and therefore verification, is paramount.

Two key questions are left unanswered by an ad hoc

approach to testing. (1) Effectiveness: if we do not find a fault,

what can we conclude? (2) Soundness: if we do find a fault, is

it a problem in the robotic system or in the test? Both questions

are hard, as they amount to deciding if enough tests have been

run, and if feasible inputs are being considered with the right

verdict. Model-based testing addresses both questions.

In the model-based testing approach, tests are generated

using a model of the robotic system. Such an approach allows

much of testing to be automated [3], leading to significant

cost reductions [4], and supports strong statements on test

effectiveness. In particular, the tester can use a test suite that

determines correctness in certain conditions [5].

Previous work has presented support for automatic test

generation using RoboChart [6], a domain-specific notation

This work has been funded by the UK EPSRC Grants EP/M025756/1,
EP/R025479/1, and EP/V026801/2, and by the UK Royal Academy of
Engineering Grant No CiET1718/45.

for modelling and verification of control software for robotic

systems. RoboChart uses state machines and a simple compo-

nent model, enriched with timed constructs, to specify a timed

platform-independent behavioural model for the software.

RoboChart has a formal semantics, defined using a discrete-

time variant [7] of the process algebra CSP [8], namely, tock-

CSP. Support for modelling, model checking, as well as test

generation is available via a tool called RoboTool1.

A RoboChart model characterises the reactive behaviour of

a robotic control software in terms of interactions representing

services of the robotic platform. Roughly speaking, these

are outputs of sensors (inputs to the software) and inputs to

actuators (outputs of the software) providing information and

affecting the environment of the robotic system. In the tock-

CSP semantics, we use CSP events to represent the services

of the RoboChart model, with the additional special tock-CSP

event called tock representing passage of time.

The tock-CSP testing theory [9] defines how to construct

tests from minimal forbidden traces of a process, includ-

ing input and output events and tock. RoboTool generates

such traces automatically. To illustrate the ideas, we con-

sider a simple ranger robot that moves about in an arena,

avoiding obstacles. To model this robot in RoboChart, we

can use a RoboChart event obstacle to represent the in-

put from an infrared sensor, for instance, and operations

move(l,a) and stop() to represent a motor or set of motors

with an API that implements facilities to set the linear and

angular velocities l and a of the robot, and to stop it.

For such a model, RoboTool can generate traces such as

⟨move.out.lv.0, tock, obstacle.in,move.out.lv.0 ⟩, where tags

.in and .out distinguish inputs and outputs. This trace

records an immediate operation call move(lv,0) (first event

move.out.lv.0), followed by the passage of one time unit (tock),

followed by an input that flags an obstacle (obstacle.in). The

last event move.out.lv.0 is forbidden, since the RoboChart

model defines that after an obstacle is detected, we do not

set the robot to move(lv,0) in a straight line.

The shape of the tests derived from a forbidden trace is

defined by the testing theory. Roughly speaking, the test drives

the system under test (SUT), here a robotic control software,

via the trace, and then attempts the forbidden event. If the

SUT cannot be driven to just before the forbidden event, the

1https://robostar.cs.york.ac.uk/robotool/

test is inconclusive. If the SUT can be driven to that point,

but the forbidden event does not occur, the test passes. If the

forbidden event is observed, the test fails.

The SUT is a proposed implementation of the robotic con-

trol software. Such implementations are typically cyclic mech-

anisms, particularly so in the case of simulations. RoboChart

models are akin to those used in the robotics literature [10]–

[13]. They are, however, reactive, not cyclic models.

In each cycle, a simulation reads the inputs, corresponding

to registers of the sensors, executes computations to process

those inputs and calculate outputs, and then writes the outputs

to the registers of the actuators. A simulation takes an idealised

view of time: input, computation, and output are infinitely fast

at the sample times, defined by the period, that is, the size of

the cycle, and then no input, computation, or output occurs

while the time advances to the next sample time.

Unsurprisingly perhaps, using a reactive design model to

judge the correctness of a simulation (or of a cyclic imple-

mentation) must be done in a context where the assumptions

embedded in the cyclic paradigm are taken into account.

For instance, if in the reactive RoboChart model there is an

immediate response to the obstacle event, perhaps in the form

of a call to the stop() operation, this cannot be necessarily

reflected in a simulation. As explained above, a simulation

does not perceive any inputs during the quiescence period.

Therefore, correctness can only be established if we assume

that events only happen at the sample times of the simulation.

We have previously defined (and formalised in tock-CSP) a

conformance relation that can be used to compare reactive and

cyclic models [14]. Our work is in the context of cyclic (sim-

ulation) models defined using another diagrammatic domain-

specific language, called RoboSim. RoboChart and RoboSim

are part of the RoboStar [15] framework for model-based

design and verification of control software in robotics.

Just like conformance between a reactive and a cyclic

model needs to take into account the assumptions of the

cyclic paradigm, test generation and execution also need to

be adapted. Tests generated from a RoboChart model cannot

be directly used to test a cyclic SUT. For example, the test

for the trace presented above starts with an observation of

a call move(lv,0). In a simulation, however, such an output

cannot be observed until all the inputs are read. So, use of

a straightforward implementation of the test always leads to

an inconclusive verdict. For the simulation, the test needs to

provide all inputs before any output can be observed.

One possible solution is to use RoboSim, rather than

RoboChart, to generate tests. There is, however, value in

understanding tests results in the context of the design of

the software. So, we discuss here the challenges involved in

connecting the tests generated using RoboChart to tests that

can be run against a simulation or cyclic implementation.

Next section, we present in more detail the discrepancies

between reactive and cyclic models, using RoboChart and

RoboSim in examples. In Section III, we discuss the possibility

of test conversion as an approach to deal with such challenges.

In Section IV we indicate an agenda for future work.

II. REACTIVE AND CYCLIC MODELS

In Fig. 1, we present the RoboChart model for the simple

ranger described above. Two small boxes at the top, labelled

MovementI and ObstacleI, declare the operations and event

representing the services of the robotic platform already de-

scribed. Control software is modelled in RoboChart using a

component called module. In the example, it is represented by

the box CMovement on the lower right-hand side corner. A

module includes a robotic-platform block, here called Foot-
Bot, to represent the services of the platform needed by the

software. In the example, FootBot declares MovementI and

ObstacleI to record that the visible behaviour of the software

is defined in terms of uses of these services.

A robotic platform can be connected to one or more

controllers, running in parallel, whose behaviour is defined

by one or more state machines, also running in parallel. In

our example, we have just the controller Movement which

uses the machine SMovement to define its behaviour.

A RoboChart machine is similar in many ways to a UML

machine, for instance, but includes, first of all, a context of

declarations that define the variables, constants, clocks, events,

and operations used by the machine. RoboChart also has a

well-defined action language, and imposes simple restrictions,

such as absence of inter-level transitions, to enable definition

of a tractable compositional semantics. In addition, RoboChart

machines can specify time budgets and deadlines.

SMovement starts in the state Moving, where the call

move(lv,0) is urgently made upon entry. After that call,

SMovement pauses for one time unit, using the action

wait(1), to allow time for the robot to start moving. After-

wards, SMovement remains in Moving until an obstacle
is detected, when a transition to another state Turning is

enabled and immediately taken. Enabled transitions are urgent

for predictability. In that transition, a clock #MBC is reset,

stop() is called, and the robot pauses for another time unit.

In Turning, we have an urgent call move(0,av), a pause

for one time unit, and then for further time until the transition

out of Turning is enabled. This transition does not have a

trigger, but has a guard, which requires the value of the

clock (since(MBC)) to be high enough for the robot to have

had time to turn. The transition then leads back to Moving.

Although SMovement has a form of cycle, from Moving
to Turning and back, that is not a simulation cycle. First, it

has no fixed period: it is triggered by an obstacle detection.

In contrast, a simulation cycle determines when sensors are

read, and so it needs to be very fast. The RoboChart models

completely abstracts away from this cyclic behaviour, and how

its actions are allocated along these short cycles.

In addition, events in a simulation are treated as data. For

instance, in a state with transitions triggered by two different

events e1 and e2, if both events occur, a simulation typically

prioritises one of them. This is achieved by handling the event

with lower priority only when that of higher priority does not

occur. So, it needs to specify behaviour in the absence of an

event, something that is not possible in a reactive model.

Fig. 1. A RoboChart model for a small ranger robot. It is defined in a package called SimFW.

Fig. 2. A RoboSim state machine for the small ranger robot.

To model cyclic mechanisms, RoboStar provides RoboSim,

a diagrammatic notation that is similar to RoboChart, but

embeds the cyclic paradigm, where event occurrences are

captured by Boolean variables, associated with additional

variables when they communicate values. The definition of the

cycle period and the scheduling for each cycle are explicit in

RoboSim models. In Fig. 2, we present the RoboSim machine

SimSMovement for our example. The module and controller

from the RoboChart model can be adopted almost as they are,

except only that in RoboSim they define a period.

In a RoboSim state machine, we also define a period (in

a cycleDef clause), the context of variables, constants, and

clocks, and then the inputs and outputs separately. For exam-

ple, in SimSMovement the period is 1, and the declarations

indicate obstacle as an input, and the operations are outputs.

A RoboSim machine uses a single event, called exec, to

mark the end of the processing phase (at the sample time)

of the cycle. It also uses a $ to distinguish the Boolean

variables representing events and the calls to operations of

the platform. In SimMovement, the control flow starts in the

state SMoving, whose entry action calls move(lv,0), and then

moves to a state DMoving. There, a transition with an exec
trigger goes to a junction. As mentioned, with the exec, the

processing phase of the cycle ends, and time then advances

to the start of the next cycle. At that point, one of a pair of

transitions from the junction is taken, depending on whether

$obstacle is true or not, that is, depending on whether, at

the start of the cycle, the input obstacle has been flagged as

having happened or not. If it has not ($not obstacle), then

the transition leads back to DMoving, where another exec
event advances the cycle. Otherwise, the clock MBC is reset

and $stop() is called in the actions of the transition with guard

$obstacle. There is no point in checking an input twice in the

same cycle: a new value is read once per cycle, as mentioned.

Also, there is no support for actions such as wait(1), since

passage of time is dictated by the cycle evolution.

The tock-CSP semantics of RoboChart and RoboSim reflect

the differences between the reactive and cyclic control flows.

A tock-CSP model that defines the semantics of a RoboChart

model uses CSP events to represent the services of the robotic

platform. For example, ⟨move.out.lv.0, tock, obstacle.in ⟩ is

a trace of the RoboChart model of our ranger in Fig. 1.

Inputs and outputs are distinguished in the semantics via tag

values in and out for the CSP events as previously indicated.

In contrast, in the semantics of RoboSim, the tock-CSP

process uses events read and write to represent the interaction

points via registers of sensors and actuators in the processing

phase. For instance, for SimMovement, we have a trace

⟨read.obstacle.false,write.move.lv.0, tock, read.obstacle.true⟩,
recording that in the first cycle the event obstacle has not

happened, then the call to move is output, before time passes

and we move to the next cycle and read the input again.

In the next sections, we discuss the challenges of comparing

a RoboChart and a RoboSim models via testing.

III. TEST CONVERSION

RoboTool implements a mutation-based technique for auto-

matic generation of tests from a RoboChart model [16]. In this

approach, mutation operators (to remove or change transitions,

for instance) are applied to the RoboChart model, generating a

series of mutated models. There are several mutation operators

available in RoboTool, and support for the definition of more.

For each operator, several mutated models can be generated,

by applying that operator at several points of the model: all

its transitions, for example. Based on a mutated model, model

checking can be used to generate a trace of the original

RoboChart model, followed by an event that is not allowed

by that model. This trace, including the last forbidden event,

is a minimal forbidden trace of the RoboChart original model

that reveals the visible error that arises from the mutation.

The tock-CSP testing theory defines how to construct a test

from such a trace. It also guarantees that such tests are sound,

that is, they give the correct verdict, and if we consider all

possible minimal forbidden traces, the resulting test set can

determine whether any SUT is correct or not, with respect

to traces refinement (in the tock-CSP semantics). The testing

theory caters for the distinction between inputs and outputs,

and, accordingly, as said, RoboTool traces indicate implicitly,

via the in and out tags, the input and output events.

To use a test derived from a RoboChart model for exper-

imenting with an SUT that is posed as a cyclic implemen-

tation of that model, we need to convert the test, as already

illustrated. For that, we propose conversion of the minimal

forbidden traces of the RoboChart model that defines the test.

With the new converted trace, we can then use the tock-CSP

testing theory to define the converted test.

To explain the issues involved in conversion, we consider

that the SUT can be described by an unknown RoboSim

model. This kind of assumption is standard in testing theories,

and does not mean that we require a RoboSim model to carry

out testing. Our proposed approach does not require even

use the RoboStar framework to generate simulation code (via

translation from RoboChart to RoboSim, and then to code) or

not. With the assumption about an unknown RoboSim model,

however, we can study test conversion in the context of tock-

CSP, because, since RoboSim has a tock-CSP semantics, the

converted traces are also tock-CSP traces.

Examples of conversions are given in Table I. The second

column includes forbidden traces of the RoboChart module

CMovement in Fig. 1. Examples 2 and 6 are not converted

because they do not satisfy properties that ensure the resulting

tests are useful. Below, we describe and motivate these restric-

tions: we should consider only the minimal forbidden traces

of a reactive model that are output constraining, p-compliant,

where p is the period of the SUT, and output cyclic.

a) Output constraining: In a simulation, we cannot

observe refusal of an input, as characterised by a reactive

event. In a reactive model, an input captures an interaction,

synchronous or asynchronous, where the environment, here,

the robotic platform, provides an input and it is read by

the software. In a simulation, the events are of a different

nature. The platform provides, via registers, values for all

inputs, indicating whether input data is available or not. The

simulation accesses that information in every cycle, but may

or not use it, and this is not directly observable.

In our example, we have just one input obstacle. We recall

that, in the simulation, in every cycle, a register (represented in

the semantics by read.obstacle) is read to identify whether the

robotic platform has indicated the presence of an obstacle (via

a Boolean value). The interaction with the register, that is,

the input from the register, always happens, regardless of

whether obstacle has happened or not. Moreover, if the

robotic platform indicates the presence of the obstacle, it does

not mean that the software responds to that. For instance, when

in the states Waiting, STurning, and DTurning, the simulation

in Fig. 2 does not consider the value of $obstacle. Finally,

if there were more inputs, all the registers corresponding to

them would be read, in every cycle.

For this reason, we cannot confirm directly whether an

input is forbidden in a simulation. We can, however, check

whether the outputs that arise after such an input are as

expected. So, we need to convert only tests for traces

that define forbidden outputs, that is, traces whose final

event is an output. We call such traces output constrain-

ing, although, of course, they do define required values

for inputs leading to the forbidden output. For example,

⟨move.out.lv.0, tock, obstacle.in,move.out.lv.0 ⟩ is output con-

straining, but requires that an obstacle is detected before the

forbidden output is observed, so that input is needed.

b) p-compliance: A simulation with a period greater than

1 may eliminate the possibility of certain quiescence periods.

For example, when the ranger starts waiting for the detection

of an obstacle, an arbitrary amount of time may pass before

detection. So, there are tests that require an obstacle detection

immediately or after any amount of time units (tock events).

TABLE I
EXAMPLES OF TRACES CONVERTED USING TRCS(p, I, ft), WHERE ft IS THE FORBIDDEN TRACE,A ND p IS 1.

Forbidden trace Converted trace

1 tock tock

2 obstacle.in N/A: trace is not output constraining
3 stop.out read.obstacle.false,write.stop

4 move.out.lv.0, obstacle.in read.obstacle.false,write.move.lv.0, tock, read.obstacle.true

5 move.out.lv.0, stop.out read.obstacle.false,write.move.lv.0,write.stop

6 move.out.lv.0,move.out.lv.0 N/A: trace is not output cyclic
7 move.out.lv.0, tock, stop.out read.obstacle.false,write.move.lv.0, tock,

read.obstacle.false,write.stop

8 move.out.lv.0, tock, obstacle.in, tock read.obstacle.false,write.move.lv.0, tock, read.obstacle.true, tock

9 move.out.lv.0, tock, obstacle.in, stop.out, tock,move.out.0.1, tock, tock, tock read.obstacle.false,write.move.lv.0, tock,

read.obstacle.true,write.stop, tock,

read.obstacle.false,write.move.0.1, tock,

read.obstacle.false, tock, read.obstacle.false, tock

If, however, the period of the simulation were 2, then a test

that requires detection after one time unit can never conclude,

because after one time unit, the simulation will always advance

the time one more time unit before reading the inputs. So, the

test would never succeed in driving the simulation through the

trace. Such tests are useless and we should not convert them.

So, we define a trace t to be p-compliant if, for every

subsequence of tock events in t, either its length is a multiple

of p or it is a suffix of t. To explain the point of allowing an

arbitrary suffix of tock events, we consider first a suffix of size

1. In this case, the forbidden trace indicates that conclusion of

the processing phase at that stage is forbidden. This may arise

from a design model that requires an urgent output; the test

checks that the deadline is met by the simulation. For a suffix

of tock events of size 2, the penultimate tock event is required

by the test, but the second is forbidden. This may similarly

arise from a design that provides a deadline for an input or

output that runs out after one time unit. In this case, the

test checks that the simulation is responsive enough. Similar

observations arise for any number of trailing tock events.

The actual value of a time unit (whose passage is recorded

by a tock), in terms of simulation or real time, is left undefined,

in both the RoboChart and the RoboSim models. So, in

principle, we could have a tock event of the RoboChart model

corresponding to several tock events of the RoboSim model,

and vice-versa. This flexibility, however, is spurious, since the

point where flexibility is useful is when code is generated.

With the assumption of a one-to-one correspondence between

time units in the RoboChart and RoboSim models, we signif-

icantly simplify the notion of conformance.

c) Output cyclic: A simulation cannot provide the same

output twice in the same cycle. So, traces of a RoboChart

model that record such behaviour lead to tests that are always

inconclusive or always pass. If both outputs are required in

the trace, the test is always inconclusive, because the SUT

cannot be observed to provide the second input. If the second

output is forbidden, the SUT always passes the test for the

same reason. Such traces, therefore, are discarded.

For a simulation, we can instrument the code to address

the issues related to the visibility of whether the software has

accepted an input or not. We can, in fact, implement a wrapper

that captures the reactive view of a simulation, abstracting

away the reading of input sensors and writing to actuators.

For code used in deployment, however, instrumentation is

not likely to be appropriate; for example, it interferes with

time performance. Moreover, instrumentation is application

dependent and cannot take advantage of the identification, and

consequent discarding, of useless tests suggested here.

Examples in Table I show that, for traces that satisfy the

above restrictions, conversion needs to: (a) identify the cycles;

(b) identify the required inputs in each cycle and record those

inputs in the converted trace; (c) record the absence of the

remaining inputs in the converted trace; and (d) record the

outputs and passage of time in the recorded trace. For instance,

in Example 9, we have a trace recording five cycles (with

period 1). In the last two cycles, there are no inputs or

outputs, but the converted trace still includes the read event

for obstacle. Extra read events are added to the record of

all cycles, but the input read.obstacle.true occurs only in the

cycle where obstacle.in is recorded in the original trace.

IV. CONCLUSIONS

There has been significant long-running interest in the

generation of test cases from a model or specification. Where

the model has a formal semantics, there is the potential to au-

tomatically generate sets of test cases that provide guarantees

regarding effectiveness and soundness.

This paper has explored the scenario in which we are testing

from a reactive design, written in RoboChart, and wish to

test a cyclic implementation. We are interested in generating

tests from the abstract reactive model since test results can

then be understood in terms of the context of the design. The

proposed approach is to start with minimal forbidden traces

of the RoboChart model. If testing a reactive SUT then we

can simply use these forbidden traces as the basis of testing.

We cannot, however, directly consider such forbidden traces

to define tests for a cyclic SUT since a number of assumptions

or restrictions are encoded into the cyclic paradigm, and the

inputs and outputs in a reactive model correspond to data read

and written every period of a cyclic model.

We suggest the use of a technique that takes a minimal

forbidden trace of a reactive (RoboChart) model and converts

it into a corresponding trace for a cyclic SUT, discarding traces

of the reactive model that lead to useless tests for a cyclic

SUT because they cannot fail. Although our observations

are concerned with RoboChart and RoboSim, the challenges

mentioned are relevant for timed reactive and cyclic models

in general. Although RoboSim is a simulation notation, a

RoboSim model describes a cyclic mechanism that may be

used also in deployment. In fact, the modular approach to

simulation adopted in RoboStar encourages such reuse of code.

There are several lines of future work. We need to formalise

the conversion and establish completeness: we need to have

enough sound tests to uncover any mistaken SUT. A practical

approach to generate the converted tests is also crucial. From

a theoretical point of view, there is also the question of

whether one should include the observation of the refusal

of output within a trace and, if one does, how this can be

converted. There is also the need for more substantial case

studies. RoboStar technology provides support for automatic

generation of simulations, with support for testing from RT-

Tester [17], [18]. We will implement the technique described

here in that setting, using RT-Tester to obtain code for the

tests. In this setting, we can consider significant case studies.

ACKNOWLEDGMENT

We are grateful to members of the RoboStar team for their

support of the work here and its overall agenda, in particular,

Pedro Ribeiro and Madiel Conserva Filho for their work on

the RoboSim semantics and verification technique.

REFERENCES

[1] A. Afzal, C. L. Goues, M. Hilton, and C. S. Timperley, “A study
on challenges of testing robotic systems,” in 13th IEEE International

Conference on Software Testing, Validation and Verification, 2020, pp.
96–107.

[2] A. Ortega, N. Hochgeschwender, and T. Berger, “Testing service robots
in the field: An experience report,” in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2022, pp. 165–172.

[3] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Derrick, M. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen, A. Simons,
S. Vilkomir, M. Woodward, and H. Zedan, “Using formal specifications
to support testing,” ACM Computing Surveys, vol. 41, no. 2, 2009.

[4] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, “Model-based
quality assurance of protocol documentation: tools and methodology,”
Software Testing, Verification and Reliability, vol. 21, no. 1, pp. 55–71,
2011.

[5] M.-C. Gaudel, “Testing can be formal, too,” in International Joint

Conference, Theory And Practice of Software Development, ser. Lecture
Notes in Computer Science, vol. 915. Springer-Verlag, 1995, pp. 82–96.

[6] A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis,
and J. C. P. Woodcock, “RoboChart: modelling and verification of
the functional behaviour of robotic applications,” Software & Systems

Modeling, vol. 18, no. 5, pp. 3097–3149, 2019. [Online]. Available:
rdcu.be/bh7dI

[7] J. Baxter, P. Ribeiro, and A. L. C. Cavalcanti, “Sound reasoning in tock-
CSP,” Acta Informatica, vol. 59, pp. 125–162, 2022.

[8] A. W. Roscoe, Understanding Concurrent Systems, ser. Texts in Com-
puter Science. Springer, 2011.

[9] J. Baxter, A. L. C. Cavalcanti, M. Gazda, and R. M. Hierons, “Testing
Using CSP Models: Time, Inputs, and Outputs,” ACM Transactions in

Computational Logic, vol. 24, no. 2, 2023.

[10] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, Simulation,

Modeling, and Programming for Autonomous Robots. Springer, 2012,
ch. RobotML, a Domain-Specific Language to Design, Simulate and
Deploy Robotic Applications, pp. 149–160.

[11] I. Pembeci, H. Nilsson, and G. Hager, “Functional reactive robotics: An
exercise in principled integration of domain-specific languages,” in 4th

ACM SIGPLAN International Conference on Principles and Practice of

Declarative Programming. ACM, 2002, pp. 168–179.
[12] S. G. Brunner, F. Steinmetz, R. Belder, and A. Domel, “Rafcon: A

graphical tool for engineering complex, robotic tasks,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2016, pp.
3283–3290.

[13] M. Wachter, S. Ottenhaus, M. Krohnert, , N. Vahrenkamp, and T. Asfour,
“The ArmarX Statechart Concept: Graphical Programing of Robot
Behavior,” Frontiers in Robotics and AI, vol. 3, p. 33, 2016.

[14] A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro,
M. C. Filho, A. Didier, W. Li, and J. Timmis, “Verified simulation
for robotics,” Science of Computer Programming, vol. 174, pp. 1–37,
2019. [Online]. Available: papers/CSMRCD19.pdf

[15] A. L. C. Cavalcanti, W. Barnett, J. Baxter, G. Carvalho, M. C.
Filho, A. Miyazawa, P. Ribeiro, and A. C. A. Sampaio, RoboStar

Technology: A Roboticist’s Toolbox for Combined Proof, Simulation,

and Testing. Springer International Publishing, 2021, pp. 249–293.
[Online]. Available: papers/CBBCFMRS21.pdf

[16] A. L. C. Cavalcanti, J. Baxter, R. M. Hierons, and R. Lefticaru, “Testing
Robots using CSP,” in Tests and Proofs, D. Beyer and C. Keller, Eds.
Springer, 2019, pp. 21–38. [Online]. Available: papers/CBHL19.pdf

[17] J. Peleska, E. Vorobev, and F. Lapschies, “Automated test case generation
with smt-solving and abstract interpretation,” in NASA Formal Methods,
M. Bobaru, K. Havelund, G. J. Holzman, and R. Joshi, Eds. Springer,
2011, pp. 298–312.

[18] J. Peleska and W. Huang, “Industrial-strength model-based testing of
safety-critical systems,” in FM 2016: Formal Methods, J. Fitzgerald,
C. Heitmeyer, S. Gnesi, and A. Philippou, Eds. Springer, 2016, pp.
3–22.

