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Abstract

Accurate biome delineation is difficult where biomes occupy 
the same climatic space, as is the case for tropical dry for-
est and savanna. The resulting confusion limits our ability to 
understand and manage impacts of global change on these 
biomes. To address this, we developed an unsupervised, 
repeatable method to delineate biomes and their compo-
nent functional ecosystems, based on landscape-level veg-
etation structure measured using remote sensing and an 
understanding of the ecology of the region. This approach 
contrasts with previous definitions, based on climate differ-
ences amongst savanna, dry forest and rain forest.

Using the heterogeneous north-east Brazil, where sev-
eral biomes interdigitate, as a case study, a hierarchical 
functional ecosystem classification is proposed that 
aligns with both the IUCN Global Ecosystem Typology 
(GET) and previous work. Based on fuzzy clustering of re-
motely sensed vegetation attributes, seven groups were 
found, identified as rain forest, cerrado (savanna) and five 
caatinga vegetation groups. These groups broadly align 
with the literature, for example, sedimentary and arboreal 
caatinga. These groups align with three ‘Ecosystem Func-
tional Groups’ (EFGs) described by the IUCN GET and, ad-
ditionally, suggest there is a new, fourth EFG in the region: 
non-pyric shrublands. Random Forest models showed soil 
pH was the most important environmental variable distin-
guishing these vegetation groups.
These results suggest a remotely sensed structure-based 
approach is an effective method for operationalising the 

IUCN GET. North-East Brazil – where many EFGs are inter-
digitated – serves as a challenging case study and, there-
fore, we hope our approach will have generality for other 
regions globally.

Highlights

•	 There are seven vegetation groups in northeast 
Brazil, including savanna, rain forest and five types 
of caatinga.

•	 Most of these vegetation groups align with the IUCN 
Global Ecosystem Typology 2.0, but non-pyric shru-
bland (caatinga) vegetation may represent a new 
Ecosystem Functional Group.

•	 Soil pH is the strongest determinant of vegetation 
distribution in northeast Brazil.

•	 Remote sensing can provide objective, spatially explic-
it information on vegetation types in the region, largely 
consistent with previous vegetation classifications.

•	 Accurate biome mapping is vital for management, 
as biomes differ in ecosystem function and conse-
quently require different management.
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Introduction
Biomes are a key concept in ecology and biogeography 
and are generally now understood to be vegetation units 
that occupy a large geographical area across continents 
and have distinct ecosystem functioning (Moncrieff et 
al. 2016; Mucina 2019). Most biome definitions are part 
of hierarchical classification systems, grouping eco-
systems together into broader categories that can be 
used at a global scale. Biome classifications, therefore, 
provide a framework for understanding similarities and 
differences between major ecosystems and additionally 
for monitoring change and managing these ecosystems. 
Biome classifications and maps are commonly applied 
in research on global conservation, land-use dynamics, 
fluxes of matter and energy and climate change (Mucina 
2019). They are also a useful tool for communication 
outside academia, given the intuitive nature of many bi-
ome maps, which show vegetation formations, such as 
tropical rain forests and deserts, which are familiar to 
the general public.

Classically, biome definitions and classifications have 
often been climate-based, with an emphasis on precipita-
tion and temperature to delineate global biomes (Schim-
per 1903; Whittaker 1970; Mucina 2019). However, this 
does not reflect the modern concept of biomes defined 
by distinct ecosystem functioning (Moncrieff et al. 2016; 
Mucina 2019). If biomes could be defined on climate 
alone, accurate mapping would be straightforward. Al-
though macroclimate is important in structuring biomes, 
it fails as a single predictor in many cases, especially 
where multiple states are possible under the same cli-
mate conditions (e.g. rain forest – savanna transitions; 
Bond et al. (2005); Moncrieff et al. (2014)). The situation 
of multiple biomes in the same climate space is partic-
ularly the case in dry tropical regions (Holdridge 1967; 
Whittaker 1970; Bond 2005; Higgins et al. 2016; Mucina 
2019; Ocón et al. 2021) such as the South American ‘dry 
diagonal’, which encompasses seasonally dry systems 
from north-eastern Brazil to Argentina, Paraguay and Bo-
livia. In this region, several studies have found climate 
to be a poor predictor of biome distribution (Murphy and 
Bowman 2012; Silva de Miranda et al. 2018; Castro Ol-
iveira et al. 2019). Here, edaphic differences and distur-
bance regime (fire and herbivory) are important drivers 
as in other dry tropical regions (Dantas et al. 2016; Dexter 
et al. 2018; Silva de Miranda et al. 2018; Castro Oliveira 
et al. 2019). However, other drivers such as soil proper-
ties and herbivory either lack accurate global scale maps 
(e.g. SoilGrids global data are highly interpolated, Poggio 
et al. (2021)) or are intrinsically hard to quantify, as in 
the case of herbivory. This means fine scale biome maps 
are unavailable to users designing appropriate land man-
agement and conservation planning, whilst modelling the 
response of vegetation to climate and other global chal-
lenges is compromised.

The IUCN have recently designed a global, hierar-
chical classification system, the Global Ecosystem 

Typology 2.0 (GET), to provide a global foundation for 
ecosystem assessments, sustainable management and 
conservation (Keith et al. 2020b, 2022). The IUCN GET 
describes the first three tiers of the hierarchical system 
as: 1) ‘realms’ (terrestrial, freshwater, marine, subterra-
nean and atmosphere); 2) ‘biomes’ and 3) ‘ecosystem 
functional groups’ (EFGs). Division of the IUCN biomes 
into EFGs is based on relevant ‘assembly drivers’ such 
as resource filters, disturbance regime filters and biot-
ic interactions. These EFGs are equivalent to biomes in 
many other systems and general usage, for example, 
the ‘T1 Tropical-subtropical forests’ biome includes the 
EFGs ‘T1.1 Tropical subtropical lowland rainforests’ 
and ‘T1.2 Tropical subtropical dry forests and thickets’, 
which elsewhere have been distinguished as distinct 
biomes (e.g. by Dexter et al. (2018); Pennington et al. 
(2018)). EFGs are functionally (and, in practice, struc-
turally) different groups determined by the expression 
of ecological drivers along temporally variable multidi-
mensional gradients and can be geographically scat-
tered in patches across continents and the world. As 
an example, within the GET ‘T1 Tropical-subtropical for-
ests’ biome, the ‘T1.1 Tropical subtropical lowland rain 
forest’ and ‘T1.2 Tropical subtropical dry forests and 
thickets’, are separated by both contrasting vegetation 
structure and phenology and differences in drivers, such 
as water availability, linked to soil and substrate proper-
ties (Pennington et al. 2020; Keith et al. 2020a, 2022). 
EFGs are the hierarchical level that allows correspon-
dence between local and global classification systems 
(UN 2021) and have recently been compared to Brazil-
ian biome maps by the Brazilian Institute of Geography 
and Statistics (IBGE 2021).

The IUCN GET tries to address many of the critiques 
of biome classification noted above, presenting a hi-
erarchical approach to global vegetation delimitation 
which emphasises the processes that shape ecosystem 
properties and the interactions between processes and 
vegetation form. It aims to meet six criteria: 1) incor-
porate ecosystem functions and ecological process-
es; 2) encapsulate characteristic biota of ecosystems; 
3) conceptual consistency at the global scale; 4) scal-
ability; 5) provide spatially explicit units; and 6) parsimo-
ny (Keith et al. 2020b; Keith et al. 2022). There has been 
some work towards the fifth criterion for the IUCN GET 
(providing spatially explicit units as a wall-to-wall map 
at the level of EFGs), for example, by providing indica-
tive maps of the likely occurrence of each EFG (Keith et 
al. 2020b). However, further development in mapping of 
EFGs is required, at a suitable resolution for monitoring 
change and designing effective conservation measures 
(Nicholson et al. 2021; Keith et al. 2022). This has been 
done for some individual EFGs including tidal mud flats 
(Murray et al. 2019) and tropical cloud forests (Karger 
et al. 2021), but not over a contiguous area with sever-
al contrasting and interdigitating EFGs. This work aims 
to address this gap, by mapping multiple interdigitated 
EFGs in northeast Brazil.



Frontiers of Biogeography 18, 2025, e145498

Satellite remote sensing can operationalise the IUCN GET in NE Brazil

3

Here, we identify vegetation structural groups using 
remotely-sensed metrics that describe ‘vegetation expres-
sion’. This is an unsupervised, bottom-up approach that 
does not make any a priori assumptions about what veg-
etation types are found in the region (see Higgins et al. 
(2016, 2023) for examples of similar work). This contrasts 
with supervised classification (“top down”) approaches 
whereby maps are made of vegetation types expected in 
the region (Olson et al. 2001; Dinerstein et al. 2017). Our ap-
proach is more objective as it is not based upon a precon-
ceived idea of what the resulting vegetation groups should 
be and is repeatable, as the maps are not dependent upon 
the authors’ ideas of a particular vegetation type (Higgins 
et al. 2016; Conradi et al. 2020). The term ‘vegetation ex-
pression’ is used to describe the overall behaviour of the 
vegetation, as a combination of attributes representing 
vegetation structure, phenology and, as an indicator of fuel 
load, fire regime. We identify vegetation structural groups, 
which are subsequently aggregated into EFGs according 
to the IUCN GET. The approach is designed to fulfil the fifth 
criterion of the GET (Keith et al. 2022), providing spatially 
explicit maps, based upon an understanding of vegetation 
ecology, structure and function, using recent advances in 
remote sensing that have improved our ability to distin-
guish vegetation types in the dry tropics. Overall, this pa-
per aims to address three questions:

•	 Which structural vegetation groups are present in 
the NE of Brazil and how do they differ in terms of 
previously hypothesised biome determinants, such 
as climate, geology, soil and human influence?

•	 How do vegetation groups that emerge from an un-
supervised classification relate to previous descrip-
tions of the vegetation in the region?

•	 How do the observed vegetation groups correspond 
to EFGs in the IUCN GET?

We focus on NE Brazil because of its well-known hetero-
geneity of vegetation types and biomes, which has made it 
a useful case study to test biome conceptualisations and 
mapping in previous work (Beuchle et al. 2015; Silva de 
Miranda et al. 2018; Moonlight et al. 2020; Cardoso et al. 
2021). The region largely comprises the caatinga – a com-
plex set of vegetation types variously – and controversially 
– ascribed to dry forest, scrub, savanna and the succulent 
biome (Ringelberg et al. 2020). In addition, the study region 
includes areas of tropical rain forest and pyric savanna 
(cerrado), which provide useful, less controversial, groups 
for comparison. The study region also includes highly hu-
man-disturbed areas, which are likely to have been altered 
in terms of vegetation structure, some of which is pre-Co-
lombian and extends to more recent intensive cattle and 
soybean agriculture, especially in cerrado vegetation. It is 
estimated that up to 60% of the Caatinga Region has been 
converted into anthropogenic ecosystems (Silva et al. 
2017, chapter 13). Small-scale shifting agriculture and free 
grazing by livestock, predominantly cattle and goats, are 
an important land use in the region, in addition to fuelwood 

harvesting, mining and charcoal production (Schulz et al. 
2017). The generally small-scale land use has created a 
fuzzy mosaic of land cover across the region, which is diffi-
cult to study and map. Chronic anthropogenic disturbance 
is complex, mediated by water availability (Silva et al. 2017, 
chapter 13) and spatially uneven, although it is generally 
higher in the east of the region (Antongiovanni et al. 2020).

Methods
Description of the study region

The study was undertaken in NE Brazil, including the edg-
es of the Amazon and Atlantic Rain Forest regions and 
parts of the cerrado savanna, but consisting primarily of 
the Caatinga Region. In the scientific literature, “caatinga” 
refers to both the region and various types of vegetation. 
In the Brazilian lexicon, the Atlantic Forest, Amazon For-
est, Cerrado and Caatinga were previously referred to as 
Domains and are now referred to as Biomes (IBGE 1993; 
Souza Jr and Azevedo 2017), but here we use the term ‘re-
gion’ to not confuse with specific vegetation types, EFGs 
or biomes. Caatinga vegetation is highly variable, but is 
generally seasonal with physiognomies ranging from 
open shrublands to tall seasonally dry tropical forests with 
a closed canopy (Andrade-Lima 1981; Quieroz et al. 2017). 
A grassy understorey is absent and fire is rare. Transition 
zones around the core Caatinga are estimated to be 14% 
larger than the core itself (Cardoso et al. 2021).

NE Brazil has globally high levels of species endemism 
and floristic compositional heterogeneity (Santos et al. 
2012; DRYFLOR 2016; Bueno et al. 2018). In addition, the 
region is likely to experience temperature increases and 
increased aridity with climate change (Pörtner et al. 2022). 
Interaction between human disturbance and climate 
change is likely to have a strong negative impact on woody 
plant diversity (Rito et al. 2017). Furthermore, NE Brazil is 
the world’s most populated semi-arid land, whilst also one 
of Brazil’s poorest regions (Melo 2017). Consequently, ex-
pected effects of climate change will impact many of the 
country’s most vulnerable citizens. Caatinga biodiversity 
has a long and complex relationship with humans and is 
often considered to be highly anthropogenically disturbed, 
predominantly as a result of small-scale agriculture, but 
increasingly through irrigated crop production (Silva et al. 
2017, chapter 13).

Remote sensing of vegetation expression 
and clustering

The characteristics of tropical biomes in terms of attri-
butes describing vegetation expression were identified via 
a literature review of all biomes potentially present within 
the region of interest. Remote sensing products were iden-
tified and obtained that could describe a subset of these 
attributes (Table 1).
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Data cleaning

All data were resampled to 1 km resolution using bilinear in-
terpolation, calculated using the ’resample’ function in the R 
package ‘raster’ (Hijmans 2022). Resampling allowed anal-
ysis to be of fine enough resolution to identify transitions 
between vegetation types, whilst allowing reasonably fast 
computation. The burn count data was highly right-skewed 
and so was transformed by taking the natural logarithm (af-
ter adding one) to increase the normality of the data.

Exclusion of non-natural vegetation is important to pre-
vent conflation of human-dominated areas with naturally 
different structural vegetation groups. We thus removed 
areas with non-natural land covers using the MapBiomas 
land cover product for 2015 (along with water covered ar-
eas; MapBiomas 2022). However, there remains potential 
for areas with some human modification to be present in 
the analysis and, for land use change to have occurred 

over the time period examined (2000–2022) – see Suppl. 
material 1: table S1 for a full list of land-cover types re-
moved from the study.

Clustering

Fuzzy spatial clustering was used to investigate the degree 
to which pixels belonged to multiple groups. This was im-
plemented by using the geocmeans package in R, version 
0.3.3 (Gelb 2021, 2023). Fuzzy clustering was used because 
it allowed the inclusion of an ‘unclassified’ group where the 
probability of the pixel being in any identified group was low 
(< 0.45). This approach has been used in similar studies 
and is often appropriate ecologically due to the continuous 
nature of vegetation transitions, particularly in dry tropical 
regions (Torello-Raventos et al. 2013; Feilhauer et al. 2021). 
In addition, a fuzzy clustering approach aligns with the 

Table 1. Sources of vegetation attribute data used in the clustering analysis and justification for their inclusion.

Vegetation Attribute Data Source Justification
Above ground woody biomass 
density (AGB, Mg/ha)

Globbiomass AGB data product for the year 2010 
(+/- 1 year) (Santoro et al. 2018), with 150 m 
resolution.

Above ground woody biomass is highly correlated 
to variation in caatinga physiognomies (Castanho 
et al. 2020) and so was included as a measure of 
amount of woody vegetation.

AGB Heterogeneity Coefficient of Variation (CV) of the Globbiomass 
AGB product (Santoro et al. 2018), measured using 
a 5 × 5 pixel moving window (using the function 
‘focal’ from the package ‘terra’ (Hijmans 2024).

Captures spatial variation, to help distinguish areas 
which may have uniform biomass in comparison 
to those with high heterogeneity. This may capture 
distinct vegetation formations like cerrado 
savanna, which have high variability in tree cover.

Seasonality Calculated from NDVI data from MODIS 
MOD13A1 V6.1 product, between 10/06/2000 and 
10/06/2022 (Didan 2021). Raw resolution of the 
NDVI product is 500 m. Seasonality was calculated 
as (NDVI90th – NDVI10th)/ NDVI50th using Google Earth 
Engine. NDVI90th NDVI50th and NDVI10th are the 90th, 
50th (median) and 10th percentile of all the images 
within the time period. Only good quality pixels were 
used for these calculations, as determined using 
the products’ quality reliability flags (Didan 2021).

Deciduousness of caatinga is conspicuous, with 
leaf flushing at the start of the wet season, but 
there is phenological variation across caatinga 
vegetation. For example, caatinga on sedimentary 
soils is less strongly influenced by rainfall (Rocha 
et al. 2004; Queiroz et al. 2017). Therefore, 
including seasonality in the analysis may be able 
to distinguish different ecosystems, including 
different forms of caatinga.

Wet Season Leaf Area Index 
(LAIwet). LAI represents half the 
total area of green elements of 
the canopy per unit horizontal 
ground area. This incorporates 
all the canopy layers, including 
the understorey.

Data from the Copernicus Global Land Service, 
over the period 2000–2020, at 1 km resolution. 
December to mid-June were considered to be the 
wet season. All images within these months were 
used to make a mean wet season LAI data layer.

Inclusion of LAI in different seasons aimed to 
capture both bulk difference in total leaf area and 
responses to seasonal conditions.

Dry Season Leaf Area Index 
(LAIdry)

As above, but for mid-June to November. This layer aimed to represent the LAI in the driest 
part of the seasonal cycle of each pixel.

Fire Count (no. fires in 21 
years)

Calculated from burned area data from the MODIS 
MCD64A1.061 product between 01/01/2001 
and 11/01/2021, with the raw resolution of 
500 m (Giglio et al. 2021). We used the burn date 
information to calculate fire frequency as the total 
number of days that the pixel had experienced fire 
during the time period, using Google Earth Engine.

A proxy for the presence of a grassy underlayer, 
which is otherwise difficult to determine directly 
using remote sensing. It is assumed areas with 
a grassy understorey represent a regime with fire 
disturbance. This also aims to reduce the reliance 
upon tree structure in defining dry tropical biomes, 
which should reduce misclassification of grassy 
biomes as forest (Parr et al. 2014).

Canopy Height (m) Global canopy height product for 2019. The product 
was made by interpolating GEDI LiDAR estimates of 
canopy height (RH95) with 2019 Landsat analysis-
ready time-series data. The data was accessed via 
Google Earth Engine (Potapov et al. 2021). Raw 
resolution of the data was 27 m.

Torello-Raventos et al. (2013) found canopy height 
was important for differentiating between dry 
vegetation types.
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IUCN GET theoretically, as the GET acknowledges partial 
membership of locations to multiple EFGs. Spatial cluster-
ing allows consideration of the spatial proximity between 
observations, improving the suitability of clustering for spa-
tial data (Cai et al. 2007; Zhao et al. 2013; Gelb and Appari-
cio 2021). Clustering was done using the ‘robust’ function 
in the geocmeans package, which improves the ability of 
the clustering to identify groups of different sizes, shapes 
and density. This is done by normalising the distance be-
tween the observations and the centre of the groups (Tsai 
and Lin 2011). We used the silhouette index, explained 
inertia and Xie-Beni index to assess cluster quality, select 
the optimum number of clusters (k) and the parameters of 
the clustering algorithm (Gelb and Apparicio 2021). The al-
gorithm parameters were: m, which controls the degree of 
fuzziness, β, which controls the speed of convergence and 
classification crispness, α, which represents the weight of 
space in the analysis and the moving window size (Gelb 
and Apparicio 2021). Selecting the most appropriate num-
ber of clusters – and other parameter values – is subjective 
and here we need to balance multiple indices and parame-
ters. We selected the parameter values sequentially, opti-
mising them one by one. The parameters k and m were first 
selected, based on classifications using the standard fuzzy 
c-means algorithm. We aimed to: i) maximise the silhouette 
index, ii) find the k at which increases in explained inertia 
were marginal and iii) minimise the Xie-Beni index. Then 
we used the selected values of k and m in the generalised 
fuzzy c-means algorithm to explore cluster quality metrics 
for a range of values of β, selecting the value of β, based on 
the minimised combined rank of the Xie-Beni and Silhou-
ette indices. Finally, we optimised the value of α and the 
moving window size for spatial generalised fuzzy c-means 
clustering, again aiming to minimise the combined rank of 
the Xie-Beni and Silhouette Index.

Random forest models to quantify the 
determinants of vegetation groups

To understand the determinants of each cluster, hypothe-
sised explanatory variables were selected that have previ-
ously been used to explain biome distribution in NE Brazil 
(e.g. Silva de Miranda et al. (2018); Moonlight et al. (2020); 
Cardoso et al. (2021)). These were: the climatic variables 
Mean Annual Temperature (MAT), temperature seasonality 
(standard deviation of monthly temperature * 100), Mean 
Annual Precipitation (MAP), precipitation seasonality (co-
efficient of variation of monthly precipitation), precipitation 
in the wettest and driest months and precipitation in the 
warmest quarter (Fick and Hijmans 2017); edaphic factors 
(soil water capacity, Cation Exchange Capacity (CEC), soil 
sand content, soil organic carbon content (SOC), soil pH 
and soil depth, Height Above Nearest Drainage (HAND) 
(Yamazaki et al. 2019; Poggio et al. 2021), geology, eleva-
tion (Yamazaki et al. 2017); and measures of human dis-
turbance (population density, road density and length of 
time to nearest city (Meijer et al. 2018; Weiss et al. 2018; 

WorldPop 2018). Climate data were sourced from World-
Clim (Fick and Hijmans 2017) and soil data from SoilGrids 
(Poggio et al. 2021). Although non-natural land cover was 
removed from the clustering, human-disturbance variables 
were included in the determinants analysis to account for 
the fact that intensity of disturbance is experienced as a 
gradient, rather than a dichotomy. In addition, these mea-
sures of human disturbance were included as a check for 
residual impacts not removed by the removal of non-nat-
ural land cover classes. The predictor data were cleaned 
and processed in the same manner as the vegetation at-
tributes. To check for correlation in the predictors, which 
can complicate interpretation of random forest outputs, a 
Pearson’s correlation test was carried out. Where r > 0.8, 
one of the correlated predictors was removed, based on 
which variable was considered more mechanistically 
meaningful. Data sources and justification for their inclu-
sion are found in Suppl. material 1: table S2 and the cor-
relation matrix from the Pearson’s correlation test is found 
in Suppl. material 1: table S3.

The IUCN GET identifies five types of ecological drivers 
of biome distribution, three of which are encapsulated in 
our random forest analysis as variables ecologically rele-
vant to NE Brazil (resource drivers, ambient environment 
and human activities). Given that only a few drivers shape 
the properties of ecosystems (Keith et al. 2020b), it is rea-
sonable to select specific drivers for this analysis focused 
upon dry tropical ecosystems rather than a global analysis. 
Resource drivers include those related to the availability of 
water, carbon and nutrients. Ambient environment factors 
include climate variables and are important for modifying 
resource availability. Thirdly, human activities are included 
in the random forest classification. Although disturbance 
regime is another driver highlighted by the IUCN GET, nat-
ural disturbance was not included in the random forest 
analysis (note that fire was used in the clustering methods 
as a proxy for the presence of grass, which is difficult to 
measure using remote sensing techniques).

Random forest classification (Breiman 2001) was car-
ried out using the remaining (non-correlated) explanatory 
variables with group identity as the response variable. The 
‘randomForest’ package in R was used for this analysis 
(Breiman et al. 2024). We used a random 70:30 train:test 
split, with model accuracy assessed by calculating the per-
centage of the pixels in the test group whose vegetation 
group was correctly predicted by the random forest model. 
Partial dependence plots were used to illustrate the partial 
effect of each predictor on the log odds of a pixel being in 
each group, when all other predictors are held at their mean.

Naming the outputs of the unsupervised 
classification

We reviewed the literature to identify the vegetation types 
that we expected the classification to detect. In order to 
describe the vegetation groups found by the clustering, 
these structural descriptions of differences between 
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vegetation groups were cross referenced with addition-
al sources of information: i) previous descriptions of the 
geographical distribution of the vegetation types com-
pared to our groups (Fig. 1A), ii) the mean and spread of 
the soil, climate and human disturbance variables used 
in the random forest analysis (Suppl. material 1: fig. S3, 
tables S5–S7), iii) quantitative descriptions of the vege-
tation properties of each group (Fig. 2, Suppl. material 1: 
table S4) and iv) floristic information (Suppl. material 1: 
table S8). We used data from Silva de Miranda et al. (2018) 
to match floristic groups in the region to our groups, based 
on spatial co-location. Silva de Miranda et al. (2018) used 
hierarchical clustering to assign 4,103 sites across low-
land South America and neighbouring subtropical areas 
into biomes, based upon tree species composition (Silva 
de Miranda et al. 2018). The floristic groups corresponded 
to: Amazon Forest, Atlantic Forest, savanna, seasonally 
dry tropical forest (SDTF) and chaco. All of these groups 
are present in our study region, except chaco vegetation. 
Sites with an assigned floristic group were joined to the 
structural map using qgis (QGIS Team 2021) and the per-
centage of each floristic group present in each vegetation 
group which we identified was calculated.

Comparison to the IUCN Global Ecosystem 
Typology

The structural groups identified in the clustering were 
compared to the descriptions of EFGs in the IUCN GET. 
We focused on ‘T1.1 Tropical subtropical lowland rain 
forests’, ‘T1.2 Tropical subtropical dry forests and thick-
ets’, ‘T3.1 Seasonally dry tropical shrublands’ and ‘T4.2 
Pyric tussock savannas’. We considered the ecological 
equivalence between our vegetation groups and the IUCN 
EFG descriptions, with a particular focus upon the links 
between vegetation structure and ecosystem processes 
emphasised in each EFG. Furthermore, we considered the 
results of IBGE’s analysis of EFGs in Brazil (IBGE 2021). 
Comparisons were also made to other vegetation and bi-
ome maps, including MapBiomas (MapBiomas 2022) and 
the Terrestrial Ecoregions of the World datasets (Olson et 
al. 2001); these comparisons can be found in the Suppl. 
material 1 (Suppl. material 1: figs S4, S5).

Results
Clustering output

The silhouette index, explained inertia and Xie-Beni indi-
ces gave varying results for the optimum values of k, the 
number of clusters (Suppl. material 1: fig. S1). The Xie-Be-
ni index suggested that five or six clusters is the optimum, 
depending on the value of m. Contrastingly, the silhouette 
index suggested seven or nine clusters, slightly depending 
on the value of m. The explained inertia values improved 
as k increased, although there were diminishing returns 

beyond k = 7 or 8 clusters, depending on the value of m. 
As such, it was not possible to fulfil all three of our condi-
tions for selecting the optimum value of k and m. In bal-
ancing the different criteria, we considered k = 7 as being 
the best value and focus our analyses and discussion on 
seven groups. This set of seven includes multiple caatinga 
vegetation groups besides the expected divergent vege-
tation groups (namely, rain forest and cerrado). Based on 
the silhouette score suggesting seven or nine clusters, 
we compared the clustering results for k = 7 and k = 9 in 
Suppl. material 1: appendix S1 and found that the change 
in k does not alter our main arguments, except that the 
definition of groups of caatinga vegetation is sensitive to 
the number of caatinga-type clusters. After selecting k = 7, 
we selected m = 1.4, β = 0.6, α = 0.7 and a 3 × 3 pixel mov-
ing window, following sequential optimisation which min-
imised the combined ranks of the silhouette and Xie-Beni 
indices (Suppl. material 1; Fig. 1).

We also conducted the clustering analysis using a hard 
clustering approach, but found little difference between 
fuzzy and hard clustering results. In addition, we also test-
ed whether using PCAs of the vegetation attributes as the 
clustering input altered our results and found that it did not. 
Details of these analyses are found in Suppl. material 1: 
appendix S2.

The seven groups are mapped in Fig. 1A (and individ-
ually in Suppl. material 1: fig. S2), with the vegetation at-
tributes summarised in Fig. 2. In the section, Naming the 
groups and linking to previous vegetation descriptions, we 
name the groups, based on our interpretation of the liter-
ature and, for simplicity, we use these names henceforth. 
The groups are named scrubby caatinga, hyper-seasonal 
caatinga, heterogeneous caatinga, transition caatinga, ar-
boreal caatinga, cerrado and rain forest. The seven groups 
are primarily distinguished by the amount of the vegeta-
tion in terms of canopy height, biomass and LAI. The pres-
ence of fire is the main defining factor separating cerrado 
from the other vegetation groups (Fig. 2). Most vegeta-
tion groups are identified by a particularly high value of at 
least one vegetation attribute, for example, rain forest has 
high biomass, LAI and canopy height and heterogeneous 
caatinga has high biomass heterogeneity. Only 0.24% of 
the clustered area had a probability < 0.45 of being in any 
group and was grouped as unclassified.

Determinants of vegetation type

Random forest classification was highly accurate at pre-
dicting cluster membership, based on the predictors listed 
in section Random forest models to quantify the determi-
nants of vegetation groups. The random forest model had 
an accuracy value of 81% for the held-out ‘test’ data set. 
The per group error rate from the random forest confusion 
matrix was below 24% for all groups, except the unclassi-
fied group, which had an error rate of 95%. Based on the im-
portance values (which quantify the mean decrease in Gini 
coefficient when that variable is randomised; Fig. 3), the 
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most important predictor of group membership was soil 
pH (mean decrease in Gini coefficient = 65,000). Following 
this were climate and soil variables (47,000 to 17,000) with 
travel time to nearest city the most important human use 
variable (27,000). The least important variables included 
all the other human disturbance related variables, soil cat-
ion exchange capacity, soil depth, Height Above Nearest 
Drainage, soil water content and geology. Surprisingly, ge-
ology was the least important variable by some distance 
– and repeating the analysis without soil variables (which 
might be somewhat correlated) gave the same result.

The partial dependence plots (PDPs; Fig. 4) for the 
three most important explanatory variables showed sub-

stantial, mostly non-linear effects. Overall, rain forest and 
arboreal caatinga groups show similar trends, being locat-
ed in wetter areas. For rain forest, there is a strong pH and 
precipitation seasonality threshold, being more likely to 
be located on soil with pH < 5.5 and in areas with precip-
itation seasonality < 90. The caatinga groups are located 
in drier areas, with high soil pH, with heterogeneous and 
hyper-seasonal caatinga, in particular, having a strong af-
finity with for soil pH > 5.8 and hyper-seasonal caatinga 
an affinity for precipitation seasonality > 95. The rain for-
est and hyper-seasonal caatinga groups showed opposite 
associations with all three of the most important environ-
mental variables.

Figure 1. Comparison of the vegetation structural groups identified by c-means clustering of vegetation attributes (A) with the IUCN Global 
Ecosystem Typology 2.0 Ecosystem Functional Groups in NE Brazil (B). The maps of the EFGs in B is produced by the aggregation of the 
structural groups in A, as per the lower panel, rather than the GET indicative maps. Scrubby caatinga, heterogeneous caatinga and hyper-sea-
sonal caatinga represent an additional EFG not yet described by the IUCN GET which we term ‘non-pyric shrublands’ as they consist of 
vegetation that does not burn, but which structurally resembles a shrubland or short-statured forest rather than a tall canopy, closed forest.
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Figure 2. Attributes of the vegetation in each group in NE Brazil. The scaled mean vegetation attribute for each vegetation group is 
shown, as a percentage of the maximum of each vegetation attribute. The vegetation attributes were (clockwise from top) aboveground 
woody biomass, aboveground woody biomass heterogeneity (bio.cv), fire frequency (burn), mean Leaf area index (LAI) in the dry sea-
son (LAI.dry), mean LAI in the wet season (LAI.wet), NDVI seasonality (seas) and canopy height (height).

Figure 3. Variable importance plot illustrating the importance of explanatory variables in determining the structural groups. Values 
indicate the mean decrease in Gini Index after removal of each variable from the random forest classification. Shapes indicate the type 
of variable; cross = soil variables, circle = climatic variables, square = human-related variables, triangle = geology.
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The hyper-seasonal caatinga group generally was more 
sensitive to environmental variables compared to hetero-
geneous caatinga, although they exhibit similar trends. 
This could suggest the hyper-seasonal caatinga group has 
stricter environmental requirements and is less likely to be 
found in unfavourable conditions.

Naming the groups and linking to previous 
vegetation descriptions

Our review of the literature identified nine vegetation groups 
we would expect to find in this region: rain forest, cerrado 
savanna, restinga, campos rupestres, cerradão and four 
groups of caatinga vegetation: crystalline, sedimentary, 
karst and arboreal (Fig. 5). Arboreal caatinga is forest-like, 
but crystalline, sedimentary and karst caatinga have dis-

tinct forms, determined by their underlying geology (Que-
iroz et al. 2017; Fernandes et al. 2022). Crystalline caatinga 
is the most typical caatinga phytophysiognomy, with de-
ciduous, spinescent trees, a high diversity of herbaceous 
climbers and non-woody plants and few grasses (Quieroz 
et al. 2017). Crystalline caatinga is commonly found in the 
Sertaneja Depression, with shallow, fertile, stony soils and 
flat to slightly hilly topography (Queiroz 2006; Moro et al. 
2016; Queiroz et al. 2017). Sedimentary caatinga – which 
has a more scrub-like formation – is found in Mesozoic sed-
imentary basins, with sandy, deep, oligotrophic soils (Ro-
cha et al. 2004; Queiroz 2006; Moro et al. 2016; Queiroz et 
al. 2017) which may have a greater capacity to retain water. 
Thirdly, karstic caatinga is found on karst outcrops in small 
islands within sedimentary basins and has the richest soils 
in the region, distinct physiognomies and many endemic 
species (Queiroz et al. 2017; Fernandes et al. 2020).

Figure 4. Partial dependence plots showing the effect of the three most important variables predicating vegetation type in northeast 
Brazil. A. Soil pH; B. Precipitation in the wettest month; C. Precipitation seasonality (coefficient of variation of monthly precipitation). 
The y axis shows the log odds of a pixel being in each vegetation type, given varying levels of the focal predictor variable, with all other 
predictors held at the mean of the dataset.
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We found the following links between the previous de-
scriptions of vegetation in NE Brazil and our vegetation 
structural groups. One group clearly represented rainforest 
(of both the Atlantic and Amazon Regions). Cerrado and 
campos rupestres were represented together in the cerra-
do group and the remaining five groups represented differ-
ent formations of caatinga. These caatinga groups were 
named arboreal caatinga, scrubby caatinga, transition caat-
inga, hyper-seasonal caatinga and heterogeneous caatin-
ga. Arboreal caatinga is equivalent to the caatinga type of 
the same name as described in literature. Scrubby caatinga 
is equivalent to sedimentary caatinga and restinga. The 
hyper-seasonal caatinga and heterogeneous caatinga may 
collectively comprise the crystalline caatinga, given their 
geographical distribution, characteristics of high seasonal-
ity and shallow soils with high soil pH, which are typical of 
crystalline caatinga (Quieroz et al. 2017). Finally, transition 
caatinga seems to be a type of caatinga that is transitional 
between the more typical caatinga vegetation groups and 
arboreal caatinga. We did not identify a structural group 
corresponding to cerradão or karst caatinga vegetation.

Descriptions of the vegetation structural 
groups

Detailed descriptions of the vegetation groups can be 
found in Suppl. material 1: appendix S3; below we briefly 
outline each group.

Scrubby caatinga

What we term scrubby caatinga broadly matches the de-
scription and geographic distribution of sedimentary caat-
inga and restinga in past work (Fernandes et al. (2022), see 

Suppl. material 1, Fig. A3). Scrubby caatinga has intermedi-
ate biomass (28 ± 13 Mg/ha) with a low canopy height (3.5 
± 1.2 m) that is slightly taller than the hyper-seasonal (3.0 
± 1.0 m) and heterogeneous caatingas (1.7 ± 1.1 m). This 
could suggest a low shrubby layer contributes most bio-
mass in this vegetation group. Restinga, or coastal wood-
land, is structurally variable and influenced by its sandy 
soils and location along the coast, but often has a shrubby 
structure and can be an extension of Atlantic Forest, Cer-
rado or Caatinga (Santos-Filho et al. 2015). Fernandes et 
al. (2022) summarise sedimentary caatinga as ‘open scrub 
occupying patchily distributed nutrient-poor sandy soils’.

Hyper-seasonal caatinga

This group was identified as a distinct type of caatinga in this 
analysis and as part of the crystalline caatinga when com-
pared to literature. Hyper-seasonal caatinga was the most 
frequent caatinga vegetation group found in the study re-
gion, comprising 21% of the clustered area. Hyper-seasonal 
caatinga had spatial distribution in the central north-east of 
the study area, within the core Caatinga Region (Cardoso et 
al. 2021). This group has the highest NDVI seasonality (1.00 
± 0.13) (Fig. 2). Hyper-seasonal caatinga is much more like-
ly to be found where precipitation in the wettest month is 
low (170 ± 49 mm) and where precipitation seasonality is 
above the threshold of 95 – this is the group with the most 
seasonal rainfall (Suppl. material 1: table S5; Fig. 4).

Heterogeneous caatinga

This group aligns as a subset of the crystalline caatinga, 
along with hyper-seasonal caatinga. We describe this 
group as heterogeneous caatinga because it has low, but 

Figure 5. Comparison of vegetation groups in NE Brazil according to the literature and structural groups identified in this work by un-
supervised classification of vegetation attributes. Solid lines indicate clearly identified parallels between the literature definition and 
our structural groups and dotted lines identify more tenuous relationships between the structural groups and literature definitions.
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spatially heterogeneous biomass (biomass cv: 1.4 ± 0.5), 
likely due to intermittent large trees or patchy tree distri-
bution within the 1 km2 grids used. This may suggest that 
this group represents human-disturbed caatinga. It is lo-
cated alongside areas masked as ‘non-natural’ land cover. 
As human disturbance also exists to some degree in ‘nat-
ural’ land covers, heterogeneous caatinga may represent a 
human – disturbed form of caatinga.

Arboreal caatinga

Arboreal caatinga is often found in areas of transition be-
tween biomes. Structurally, it could be described as ‘tall 
caatinga’, with a canopy of intermediate height between 
other caatingas and rain forest (Andrade-Lima 1981; San-
tos et al. 2012). However, its definition is contested, de-
scribed as both a transition between cerrado and caatinga 
(Veloso et al. 1991; Santos et al. 2012) or alternatively be-
tween rain forest and caatinga (Oliveira-Filho et al. 2006; 
IBGE 2008; Castro Oliveira et al. 2019). Overall, we find our 
arboreal caatinga group to have structural characteristics 
intermediate between the rain forest and the other caat-
inga groups, having the second highest values after rain 
forest for biomass (65 ± 14 Mg/ha), LAIdry (2.1 ± 0.7), LAIwet 
(3.4 ± 0.7) and canopy height (6.8 ± 2.0 m). The geograph-
ical distribution of arboreal caatinga is between the rain 
forest and core caatinga; we, therefore, suggest that it is 
transitional between rain forest and caatinga, as opposed 
to cerrado and caatinga.

Transition caatinga

The fifth group is similar to arboreal caatinga as it is for-
est-like, having an intermediate biomass (56 ± 14 Mg/ha) 
and biomass heterogeneity (0.3 ± 0.1). It also has taller 
canopy height (4.7 ± 1.0 m), similar to arboreal caatinga 
and cerrado, as opposed to the other caatinga groups. 
However, its NDVI seasonality (0.7 ± 0.2) is high, being 
just slightly less than hyper-seasonal caatinga (1.0 ± 0.1) 
(Fig. 2). This suggests it is a dry forest group. It does not 
correspond to any of the caatinga vegetation types in the 
literature and we regard it as transitional between the ar-
boreal caatinga and the more scrubby caatinga groups.

Cerrado

The cerrado is the main extent of savanna in Latin Ameri-
ca, found towards the south and west of the study region. 
This vegetation group was identified as cerrado primarily 
because it is the only group which experiences substantial 
fire, suggesting the presence of a flammable grassy layer. 
Pixels experienced fire on average 1.3 ± 0.4 times from 
2001–2021. The group is distributed in the west of the 
study region, with a significant patch in central Bahia, with-
in the Chapada Diamantina (Fig. 1A). This is as expected 

for the cerrado biome, corresponding to the Campo Maior 
transition between the cerrado and caatinga (Barros and 
Castro 2006) and campos rupestres vegetation in the Cha-
pada Diamantina (Fig. 1A).

Rain forest

This group has high values of all the vegetation abun-
dance attributes (biomass of 74 ± 13 Mg/ha and canopy 
height of 13 ± 3.5 m), a mostly evergreen canopy with 
the lowest NDVI seasonality (0.15 ± 0.05) (Fig. 2). It cor-
responds mostly to the Atlantic Forest on the coast, with 
some patches in the northwest of the study area, within 
the main block of arboreal caatinga, corresponding to 
the eastern edge of the Amazon Forest. In NE Brazil, the 
Atlantic Forest is a tropical rain forest with tall evergreen 
or semi-deciduous trees, having an intermediate degree 
of aridity between more southern Atlantic Forest and the 
interior of the Caatinga (Moro et al. 2015). It transitions 
towards caatinga vegetation via the agreste ecotone 
(Oliveira-Filho and Fontes 2000). In addition, the distri-
bution of rain forest displays some patches throughout 
the region; these likely correspond to Brejos de Altitude, 
which typically occur due to orographic rainfall, for ex-
ample, in the highlands around Araripe and the Chapada 
Diamantina (Fig. 1A).

Unclassified

A small number of pixels were not aligned to any structural 
group; 0.24% of the clustered area. These pixels displayed 
medium values of the vegetation attributes and low value 
for fire (Suppl. material 1: table S4), with generally quite large 
values of standard deviation for the vegetation attributes. 
The unclassified pixels were spatially spread out across the 
region and, therefore, they are not likely to represent a miss-
ing vegetation group and are not discussed further.

Relating the vegetation groups to the IUCN 
GET

The vegetation groups were assigned to the IUCN GET 
EFG groups present in the study region by comparing the 
descriptions of the EFGs (Keith et al. 2020b) and the vege-
tation descriptions above.

Rain Forest

This group corresponds to EFG ‘T1.1 Tropical and Subtrop-
ical Lowland Rainforest’, due to its similarities in terms of 
ecological traits to the IUCN description – such as high 
biomass and LAI and absence of grasses – and the driv-
ers including less seasonal precipitation and moist soil 
(Keith et al. (2020a), Fig. 1B).
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Cerrado

This group corresponds to the ‘T4.2 Pyric tussock savan-
nas’ EFG, which is described as dominated by C4 grasses, 
with variable tree cover and sub-decadal fire regimes (Leh-
mann et al. 2020). The MAP of 1030 ± 210 mm fits within 
the IUCN GET’s definition of 650–1500 mm (Lehmann et 
al. 2020). In addition, some of the cerrado structural group 
may correspond to campos rupestres, which is described 
as ‘T3.1 Seasonally dry tropical shrublands’. Campos rup-
estres (rupestrian grasslands) are a type of rocky grass-
land comprising herbaceous and shrubby vegetation. The 
northern portion of the core campos rupestres is located 
in the highlands of the southern caatinga, including the 
Chapada Diamantina (in Bahia State) (Conceição et al. 
2016). Campos rupestres are floristically and functionally 
related to cerrado vegetation; several traits of rupestrian 
species demonstrate fire tolerance (Figueira et al. 2016).

Dry forest and shrublands

Arboreal caatinga and transition caatinga have a forest-like 
structure, with a higher biomass and taller canopy than the 
three other caatinga groups we found. Therefore, we have 
placed these groups in the ‘T1.2 Tropical and subtropical 
dry forests and thickets’ EFG (Pennington et al. 2020). Our 
data-driven descriptions are a good match for the EFG de-
scription of closed canopy forest, with seasonally high LAI 
and deciduous or semi-deciduous phenology and absence 
of grasses due to canopy shading (Pennington et al. 2020).

In contrast, scrubby, hyper-seasonal and heteroge-
neous caatinga do not easily align to an EFG within the 
GET. They structurally align with the GET description of 
‘T3.1 Seasonally dry tropical shrublands’ (low open forests 
less than 6 m tall, with spatially heterogeneous vegetation 
(Keith and Russell-Smith 2020)), but, because they do 
not burn, they functionally align with the GET-defined dry 
forests and so would be placed in ‘T1.2 Tropical and sub-
tropical dry forests and thickets’ (Fig. 2; Suppl. material 1: 
table S4). On balance we consider that their fit with T1.2 is 
poor. These caatinga groups share the functional charac-
teristics of T1.2, especially the absence of fire (Pennington 
et al. 2020) due to limited ground fuels (and are, therefore, 
often included in a widely defined “seasonally dry tropical 
forest” biome, for example, by Pennington et al. (2020)), 
but do not structurally align with T1.2, as they have a low 
canopy height and biomass, unlike forests and thickets.

Discussion

We find seven structural vegetation groups, which overall 
match well with previous descriptions of the vegetation of 
the region. Broadly, these mappable, locally relevant vege-
tation groups can be classified within three IUCN EFGs or 
biomes: T1.2 Tropical subtropical dry forests and thickets, 
T4.2 Pyric tussock savannas and T1.1 Tropical-subtropical 

lowland rainforests. However, we also find three vege-
tation groups that are similar to each other, but not well 
aligned with the GET. The attributes of these three groups 
may indicate a new IUCN GET EFG category is required. 
The distribution of all the vegetation groups is well ex-
plained by our hypothesised drivers, with an accuracy of 
81% for predicting the test dataset. Overall vegetation 
group appears mostly to be determined by soil pH, with 
only a secondary role for climate, highlighting how these 
biomes do not fit with a climatically deterministic view of 
vegetation classification (e.g. the classic Holdridge Life 
Zone system (Holdridge 1967)).

Seven structural vegetation groups in 
northeast Brazil

The clustering method identifies seven ecologically mean-
ingful groups with different physiognomies. These struc-
tural groups align with previously recognised vegetation 
groups in the region – categorised using a variety of meth-
ods including floristic classifications (Queiroz 2006; Moro 
et al. 2016; Queiroz et al. 2017) (Fig. 5). Although we do 
not identify a single group corresponding to the previously 
described crystalline caatinga, our hyper-seasonal caatin-
ga and heterogeneous caatinga together may comprise 
this formation. This suggests that our work may have gen-
erated more subdivisions within the crystalline caatinga, 
due to the emphasis on vegetation structure as opposed 
to floristic composition and evolutionary history.

The number of groups identified is suitable for captur-
ing the heterogeneity of the region without being overly 
complex for interpretation at a regional scale. For further 
discussion of the effectiveness of our method, see Suppl. 
material 1: appendix S4 for an example of regions of topo-
graphic complexity; the Chapada Diamantina and Serra do 
Araripe. We used an unsupervised clustering approach, 
enabling us to categorise the vegetation as quantified 
by remote sensing products, rather than based upon pre-
conceived opinions on vegetation in the region. However, 
there are limitations to this method, including the difficul-
ties associated with labelling resulting groups. This in-
terpretation may introduce biases in a similar manner to 
supervised classifications. Furthermore, quantifying the 
accuracy of an unsupervised approach to check whether 
the labelled groups match existing ecosystems requires 
extensive field effort; this may be a particular challenge 
in human-modified areas, which add complexity within an 
already complicated region. For example, we suggest the 
heterogeneous caatinga group may, in part, represent hu-
man-modified caatinga or may result from high levels of 
encroachment of invasive species (Nogueira et al. 2019). 
However, verifying this would take considerable on-the-
ground effort. Finally, groups identified by unsupervised 
classification may not align with previous classification 
systems, as we found here for some caatinga groups, 
which may reduce the applicability of the research to some 
users. For example, we did not locate a group aligned to 
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karst caatinga. However, we have made considerable ef-
forts to relate our retrieved groups to previously described 
vegetation, in order to accurately place them within exist-
ing frameworks from literature.

Soil and rainfall determine vegetation type

Random forest classification showed that soil pH was 
the most important determinant of vegetation structural 
groups. Precipitation in the wettest month and precipita-
tion seasonality were the next most important variables. 
These results broadly agree with the argument that climate 
is not the main determinant of vegetation type in NE Brazil 
and align with the findings of several authors who describe 
edaphic factors as important drivers of vegetation in NE 
Brazil (Murphy and Bowman 2012; Terra et al. 2018; Castro 
Oliveira et al. 2019; Maia et al. 2020; Souza et al. 2020).

The importance of soil pH as a determinant of vege-
tation type, may be due to its relationship with soil fertili-
ty. Hyper-seasonal caatinga and heterogeneous caatinga 
(collectively comprising crystalline caatinga) were associ-
ated with higher soil pH (Fig. 4), which agrees with pre-
vious findings of crystalline caatinga vegetation having 
higher soil pH (Castro Oliveira et al. 2019). On the other 
hand, rain forest and arboreal caatinga (to a lesser extent), 
are more likely to be found in areas of lower pH (Fig. 4). 
The shapes of the pH partial dependence plot for rain 
forest and hyper-seasonal caatinga suggests there is an 
abrupt threshold pH value for these structural groups, ei-
ther side of which one is unlikely to be found. Other struc-
tural groups do not have such a strong association with a 
particular pH value (Fig. 4) and it is likely that different en-
vironmental variables determine their presence. However, 
it is also possible that pH may not be the key driver; other, 
correlated but unmeasured, environmental variables may 
also play a role. In particular, the use of climate variables to 
model pH in the SoilGrids product used here (Poggio et al. 
2021) makes causality hard to infer. Furthermore, previous 
work has demonstrated uncertainty in SoilGrids variables 
in dry ecosystems (Cramer et al. 2019; Dandabathula et 
al. 2022), particularly for chemical as opposed to physical 
soil properties (Miller et al. 2024). Although some previ-
ous studies have found climatic, fire and anthropogenic 
variables to be of greater importance than soil in determin-
ing vegetation type, for example, in tropical Africa, (Bond 
et al. 2005; Greve et al. 2011; Pausas and Ribeiro 2017), 
others acknowledge the importance of including soil prop-
erties in studies on vegetation distribution – particularly in 
savanna ecosystems (Campo-Bescós et al. 2013; Arruda 
et al. 2015; Arruda et al. 2017; Oliveira et al. 2021).

Variables describing precipitation were the most import-
ant climatic determinants of vegetation structural group. 
This makes sense in a dry region where water availability 
is important for plants and where elevational variation is 
relatively limited. The IUCN EFG descriptions for the groups 
present in the region all describe water availability as an 
important driver for these groups (Keith et al. 2020b; Keith 

and Russell-Smith 2020; Lehmann et al. 2020; Pennington 
et al. 2020), which matches the importance of the precip-
itation regime in the random forest results. In addition, 
precipitation regime interacts with edaphic and other en-
vironmental variables. Maia et al. (2020) found a negative 
impact of precipitation seasonality and a positive impact of 
precipitation in the driest quarter on tree species richness 
in Caatinga and Cerrado sites. Both of these effects were 
mediated by soil sand content, being stronger in soils with 
less sand. Interactions between environmental variables 
increases the complexity in understanding determinants 
of vegetation structure. Hyper-seasonal caatinga has a 
particularly strong relationship with precipitation (Fig. 4), 
being much more likely to be found in areas with wet-
test month precipitation below 200 mm and precipitation 
seasonality above 95. Finally, it is important to note that 
these drivers display interactions including feedback loops, 
which makes their interpretation in structuring vegetation 
groups complex (see Suppl. material 1: appendix S2, p. 6 
of Keith et al. (2022) for further discussion of interactions).

A difficulty in the analysis is that SoilGrids data do not 
include some relevant variables, including phosphorus and 
aluminium content which are known to be important deter-
minants of tree species composition (Bueno et al. 2018). 
For example, although correlated to soil pH, aluminium 
content is considered a key feature differentiating caat-
inga and cerrado soils (Castro Oliveira et al. 2019) and, 
consequently, would be particularly relevant for this study. 
Furthermore, a caveat in using SoilGrids is that these mod-
elled products utilise a number of covariate datasets, in-
cluding climate variables, vegetation indices such as NDVI 
and raw MODIS bands (Poggio et al. 2021). These data are 
also utilised in our vegetation structural attributes, which 
means that they are not entirely independent, leading to 
some potential circularity in the results of the random for-
est classification. As such, further work would be required 
using regional sampling and modelling to improve the 
accuracy of this analysis, as carried out by Cramer et al. 
(2019) for the Greater Cape Region, South Africa.

Advancing the IUCN Global Ecosystem 
Typology: a missing EFG?

We have identified both coherence and challenges with the 
existing IUCN’s GET EFGs, with the key issues surrounding 
the complexities of classifying dry forest, thicket and shru-
bland. We find that the transition caatinga and arboreal caat-
inga groups align well with the ‘T1.2 Tropical subtropical dry 
forests & thickets’ EFG, a finding supported by IBGE (2021), 
which demonstrated full equivalency of ‘forested caatinga’ 
to T1.2 (IBGE 2021). However, the placement of scrubby 
caatinga, hyper-seasonal caatinga and heterogeneous caat-
inga into existing EFGs is not clear. These groups might be 
considered to fall under either ‘T3.1 Seasonally Dry Tropi-
cal Shrublands’ or ‘T1.2 Tropical-subtropical dry forests 
and thickets’, but neither are a complete fit. This finding of 
non-alignment is also in agreement with IBGE (2021) which 
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suggested that the caatinga vegetation groups have only 
partial equivalence to multiple EFGs (IBGE (2021) consid-
ered the caatinga partially equivalent to ‘T1.2 Tropical-sub-
tropical Dry Forests and Thickets’, ‘T5.2 Thorny deserts and 
semi-deserts’ and ‘T3.1 Seasonally dry tropical shrublands’).

In the IUCN GET, dry forest and thickets are described 
as closed canopy forest, with seasonally high LAI and 
deciduous or semi-deciduous phenology and absence of 
grasses (Pennington et al. 2020). In contrast, T3.1 shrub-
lands are low, open forests, shrublands and shrubby grass-
lands, which are sometimes evergreen and have a canopy 
height below 6 m. C4 grasses may be co-dominant, but not 
continuous and there are recurrent fires (Keith and Rus-
sell-Smith 2020). Scrubby caatinga, hyper-seasonal caat-
inga and heterogeneous caatinga are more or less shrubby 
in terms of remotely-sensed vegetation attributes (Fig. 6) 
and fit the main IUCN GET structural description of T3.1. 
However, according to our remotely-sensed data, scrubby 
caatinga, hyper-seasonal caatinga and heterogeneous 
caatinga do not burn, which is a key ecosystem process of 
T3.1. This lack of fire means they are, in some ways, a bet-
ter fit for ‘T1.2 Dry forests and thickets’, but, in turn, classi-
fying these three caatinga groups as dry forest seems in-
appropriate as they are distinct in height, biomass, LAI etc. 
from the more forest-like arboreal and transition caatingas 
(Suppl material 1: appendix S3; Fig. 6). Whilst it is possible 
that there are misrepresentations in the remote-sensing 

data or that, recently, fire has been suppressed in these 
vegetation types, on balance, we think the difficulty in 
alignment with the GET is because it is missing an EFG. 
This conclusion agrees with IBGE (2021), which suggests 
a new EFG be added to the GET to accommodate the pre-
dominant vegetation formations in the caatinga.

Campos rupestres is a vegetation type in eastern Brazil 
that does align closely with EFG T3.1 (shrublands). This 
vegetation type has a different floristic and functional com-
position from the vegetation in our three caatinga groups. 
Most importantly, plant species in campos rupestres show 
many fire-resistance and fire-tolerance traits (Figueira et 
al. 2016) and there is floristic overlap with fire-prone sa-
vanna vegetation in the Cerrado. In contrast, many spe-
cies, which are characteristic of the caatinga, do not fea-
ture fire adaptations, notably members of the Cactaceae 
family and other stem succulent species, such as the large 
Malvaceous tree Cavallinesia umbellata (Pennington et al. 
2009; Oliveira-Filho et al. 2013; Queiroz et al. 2017). Fur-
thermore, plants typical of caatinga vegetation often have 
thorns and are deciduous, with leaves having a low LMA, 
whereas campos rupestres plants are often evergreen, un-
armed, with a high LMA (Queiroz et al. 2017; Mariano et al. 
2021). Finally, the caatinga woody flora is more similar to 
that of tall dry forests scattered through the Cerrado and in 
the Chiquitania dry forest region of Bolivia, as opposed to 
campos rupestres (Silva de Miranda et al. 2018).

Figure 6. Scaled mean vegetation structural attributes for the IUCN Global Ecosystem Typology’s Ecosystem Functional Groups in NE Bra-
zil. Axes show the percentage for that structural vegetation group of the maximum data point for each vegetation attribute. The vegetation 
attributes were (clockwise from top) aboveground woody biomass, canopy height (height), mean Leaf area index (LAI) in the dry season, 
mean Leaf area index (LAI) in the wet season, burn count (burn), aboveground woody biomass heterogeneity (bio.cv) and NDVI season-
ality (seas). Scrubby caatinga, heterogeneous caatinga and hyper-seasonal caatinga are placed in the Non-pyric shrublands group (blue). 
Arboreal caatinga and transition caatinga are placed in T1.2 Tropical-subtropical Dry Forests EFG (red) and the cerrado and rain forest 
structural groups in T4.2 Pyric tussock savannas (yellow) and T1.1 Tropical-subtropical Lowland rain forests (green) EFGs, respectively.
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Given the discussion above, we suggest a new EFG should 
be incorporated into the GET to describe scrubby caatin-
ga, hyper-seasonal caatinga and heterogeneous caatinga. 
However, it is beyond the scope of this paper to definitively 
determine the name of this new EFG and its location within 
the higher biome level of the Typology, given the regional na-
ture of this study in comparison to the international scope 
of the IUCN Typology. Solely from our NE Brazil perspective, 
we suggest that the new EFG should be ‘T1.5 Tropical-sub-
tropical non-pyric thickets and shrublands’. This is because 
of the lack of fire and the short stature, but closed canopy 
of our caatinga groups (Fig. 2; Dong et al., in review). This 
new EFG would correspond to the ‘T1 Tropical-subtropical 
forests’ biome and not the current T3.1 shrublands, as the 
latter are defined as open ecosystems (Keith et al. 2020a).

The new EFG which we propose would occupy the drier 
end of the seasonally dry tropical forest spectrum (sensu 
Pennington et al. (2000)) and be functionally distinct from 
‘T3.1. Seasonally dry tropical pyric shrublands’. It would 
be analogous to the “succulent biome” sensu Schrire et 
al. (2005), describing a non-fire-adapted, succulent-rich, 
grass-poor biome, mapped by Ringelberg et al. (2020) us-
ing distribution of stem succulents. This splitting of dry 
forests from thickets affirms a division suggested by oth-
er authors (Schrire et al. 2005; Oliveira-Filho et al. 2013; 
Ringelberg et al. 2020; IBGE 2021) and provides an alterna-
tive to the broad definition of dry forest suggested by Mur-
phy and Lugo (1986) and Pennington et al. (2000), which 
was adopted in the current definition of the T1.2 EFG. Our 
work suggests that splitting T1.2 into two EFGs is neces-
sary to accurately describe vegetation in NE Brazil.

Is the IUCN GET mappable?

Overall, we find that the remote sensing-driven approach 
which we develop here can be used to identify structural 
groups in a complex region. Using an understanding of the 
drivers of EFG distribution including disturbance regime, 
soil and climatic factors, the structural groups from an 
unsupervised clustering can largely be grouped into EFGs 
as described by the IUCN GET. Therefore, this approach is 
suitable for fulfilling the fifth criterion of the GET (Keith et 
al. 2020b, 2022), that of providing spatially explicit maps, 
based upon an understanding of structure and vegetation 
ecology, using remote sensing. By going one level deeper 
into the thematic legend to map structural groups within 
EFGs, we have addressed the trade-offs between hierar-
chical levels in the IUCN GET – increased local applicabil-
ity and realism at the local level, while methodologically 
and ecologically linking with the global EFGs. It is useful to 
understand highly complex regions with multiple interdig-
itated biomes and, as such, starting at the unsupervised 
structural level allows detailed information on the structur-
al heterogeneity within EFGs to be obtained.

This work, therefore, adds to the growing body of work 
implementing the IUCN GET in a range of ecosystems (Mur-
ray et al. 2019; Karger et al. 2021). In addition, it extends the 

use of NE Brazil as a model system for biome delineation 
and mapping and demonstrates improvement in the ability 
of remote sensing since the efforts of Beuchle et al. (2015). 
Further work could aim to incorporate other strands of in-
formation into biome mapping in order to develop more 
ecologically meaningful maps. This would align with other 
parts of the ‘Ecosystem Properties’ method of defining bi-
omes described by Keith et al. (2020b). For example, this 
could include the distribution of important functional traits 
such as CAM photosynthesis, C4 grasses, leaves with drip 
tips, deciduousness and spinescence (Conradi et al. 2020).

Conclusion

There is ongoing work within the IUCN assessing risks to 
ecosystems, through the Red List of Ecosystems, to help 
conservation prioritisation (Keith et al. 2015). Such work re-
quires accurate ecosystem mapping to be effective (Keith et 
al. 2015). Consequently, our work operationalising the map-
ping of EFGs is crucial for IUCN-style approaches to con-
servation. By using an unsupervised classification of veg-
etation expression as the starting point, this work reduces 
reliance upon expert opinion, aligning with the arguments of 
Higgins et al. (2016) and Conradi et al. (2020) for more ob-
jective vegetation mapping and allows consideration of the 
defining physiognomic features of EFGs and the ecological 
differences between them. The quantitative and hierarchical 
approach to describing groups, EFGs and biomes which is 
implemented here might provide utility for conservation at 
different scales. For example, the GET’s EFGs can be relat-
ed to Level 2 in the MapBiomas classification in Brazil and 
structural groups as a finer level within this. MapBiomas is 
increasingly utilised for legislative processes in Brazil (Vidal 
and Allen 2023). As such, the ability to spatially relate both 
EFGs and vegetation structural groups to legislative pro-
cesses through a hierarchical classification increases the 
applicability of academic biome mapping. Furthermore, 
considering all biomes together in a spatially explicit frame-
work can enhance conservation efforts (Lewis et al. 2023) 
and will be particularly important in areas where biomes are 
highly interdigitated, such as NE Brazil.
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