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A B S T R A C T

This paper introduces a neural network model designed for autonomous navigation in complex environments.
It combines DRL methodologies to capture critical environmental features in the neural network. These features
encompass data about the robot, humans, static obstacles, and path constraints. The representation, combined
with weighted features from humans and environmental limitations, is processed through three multi-layer
perceptrons (MLP) to calculate the value function and optimal policy, thereby enhancing navigation tasks. A
novel reward function is proposed to accommodate path constraints and steer the robot’s navigation policies
during neural network training. Additionally, common metrics like success rate, collision avoidance, time to
reach the goal, and new comprehensive log information are included to provide an overview of the robot’s
performance. The model’s efficacy is demonstrated through navigation in simulation scenarios involving curved
and cross pathways, with the agents’ random position and velocity occasionally exceeding the maximum
robot speed, as well as real experiments in limited spaces. The paper provides a GitHub repository that
includes comparative performance videos with state-of-the-art models in path-constrained scenarios, along
with strategies for reward functions. Link: https://github.com/nabihandres/Wallproximity_DRL.

1. Introduction

Autonomous robot navigation technology has advanced to meet a
variety of practical applications, demanding intelligent systems capable
of decision-making in dynamic and uncertain surroundings without
collisions. These environments include crowded spaces like shopping
malls, airports, and branding events. Warehouses and factories have
seen the widespread adoption of mobile robots for tasks such as pa-
trolling and material handling, to improve workflow efficiency. Ser-
vice robots equipped with artificial intelligence capabilities operate in
restaurants, assisting in serving or picking up food. In hotels, tasks are
complicated by limited spaces in hallways, requiring them to manage
distances between environmental objects and humans to complete their
tasks. Deep Reinforcement Learning (DRL) has emerged as a promis-
ing solution, leveraging neural networks to learn intricate navigation
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government(MSIT) (No. 2022-0 01025, Development of core technology for mobile manipulator for 5G edge-based transportation and manipulation).
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policies directly from experiences of trial and error [1–3]. Previous

work has primarily focused on solving crowd navigation environments

with human behaviors characterized by similar velocities in flexible

spaces. However, in real-world scenarios, static and dynamic agents

move at varying velocities, posing challenges for DRL models to adapt

due to limitations in training. Common challenges encountered with

DRL methods include the necessity for a substantial number of inter-

actions with the environment to acquire proficient policies. Moreover,

certain algorithms trained within the same scenarios may cause neu-

ral networks to memorize specific challenges, thereby complicating

decision-making in diverse environments. Poorly designed reward func-

tions can lead to undesired behaviors, hindering task achievement.

For example, when navigating through narrow spaces, as illustrated
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Fig. 1. Sensing the environment, including the proximity of the wall in narrow spaces.

in Fig. 1, previous approaches may fail to make intelligent decisions.
This can result in freezing, getting stuck, or colliding during the nav-
igation task, primarily due to the absence of path constraints in the
training environment. This paper aims to integrate DRL techniques
with insights from human–robot interaction, obstacle avoidance, and
path constraint information, which have not been extensively addressed
in prior models. The neural network is trained for proper decision-
making in navigation tasks with path limitations. LiDAR scan data
is processed to extract the positions and velocities of humans, static
obstacles, and their proximity to walls. These data are combined with
odometry information for robot location, providing high-level insight
into the state of the environment. Therefore, the main contributions of
this paper are:

• A neural network that captures essential environmental features,
including information about robots, humans, static obstacles, and
walls for navigation tasks through a series of multi-layer per-
ceptrons (MLP), creating a higher-level representation before cal-
culating the value function, and facilitating intelligent decision-
making.

• A new reward function is designed to accommodate path lim-
itations, guide the robot through limited spaces, and provide
comprehensive reward log information.

• A comparative analysis of robot performance using state-of-the-
art neural networks and our proposed model with custom re-
ward functions, validating it in both simulation and real-world
scenarios.

The rest of the paper is organized as follows: Section 2 presents the
related work on autonomous navigation tasks for mobile robots. Sec-
tion 3 discusses the problem formulation, agents, state information,
reward functions, and optimal policy calculation. Section 4 introduces
the proposed neural network, trained parameters, the navigation strat-
egy for path-constrained spaces, and log information collected during
navigation.

Section 5 discusses simulation and experimental results. Finally, in
Section 6, presents the conclusions.

2. Related work

Navigating through crowds presents a significant challenge for au-
tonomous systems. Traditional navigation methods have relied on var-
ious techniques, including obstacle–robot interaction, path planning,
SLAM algorithms, and terrain recognition to adapt to diverse envi-
ronments. Model predictive control has emerged as an alternative
approach to improving robot performance [4,5]. Algorithms like Social
Force [6], Reciprocal Velocity Obstacles [7], and ORCA [2] replicate
human behaviors during training phases in reinforcement learning ap-
proaches before real-world experiments. In [8], a warning zone around
humans was proposed based on their orientation and speed to indicate

collision risks with the robot, along with a strategy to assess the remain-
ing distance to reach the goal. Authors in [9] investigate the trade-off
between safety and efficiency in robot navigation. In [10], the authors
provide a comprehensive guide on the advantages and disadvantages
of multiple reward functions, addressing critical issues such as robot
freezing [11] and collision avoidance. Multi-objective reinforcement
learning (MODRL) develops control strategies and joint cost functions
for urban environments [12,13]. Fixed training scenarios, such as uni-
form agent velocities, often hinder the performance of DRL approaches
in real-world complex environments where robots encounter both static
and dynamic obstacles. To address this, [14] introduces modifications
to neural networks to enhance generalization across diverse environ-
ments. Similarly, the SOADRL neural network [15] separates pedestri-
ans and static obstacles to explicitly provide information related to the
type of obstacles, for dynamic obstacles used information from [16]
and two different representations for static obstacles: angular maps and
occupancy grids [17]. NavRep provides a simulation framework for
testing and training to compare end-to-end methods with unsupervised
methods, where sensor data is directly used as input without detection
or tracking algorithms [18]. The HGAT-DRL algorithm introduces the
human–robot environment in a heterogeneous graph with four types
of nodes as follows: human, robot, static obstacles, and large static
obstacles. The studies include the robots’ acceleration constraints [19].
Collision avoidance with deep reinforcement learning (CADRL) a pio-
neering algorithm in learning-based crowd navigation [15,16], utilizes
deep neural networks (DNNs) to extract the implicit reciprocal motion
features of human states, including positions and velocities. These
extracted features are then fed into a DRL-based policy to optimize
motion planning. A subsequent algorithm, long short-term memory
reinforcement learning (LSTM-RL) [20,21], leverages an LSTM net-
work to model interactions between the robot and all nearby humans
in dynamic crowd environments. It organizes input data by ranking
agents based on their proximity to the robot, ensuring that the closest
agent exerts the most significant influence on the robot’s decision-
making process. The SARL approach improves the modeling of social
interactions employing a self-attention mechanism [22]. This tech-
nique effectively captures pairwise interactions between the robot and
surrounding humans, allowing the robot to prioritize and respond to
critical interactions in complex scenarios. The 𝑆 𝑇 2 model improves
robot navigation by encoding both spatial and temporal states, crucial
for understanding interactions with pedestrians. The authors highlight
that traditional methods often neglect temporal interactions, resulting
in suboptimal decisions. The model uses a Transformer-based architec-
ture with two key components: a global spatial state encoder and a
temporal state encoder [23]. Recently, [24] introduced a radar-based
navigation system for wheeled robots that combines dynamic obstacle
detection with bi-directional gated recurrent unit (BiGRU)-enabled DRL
framework for robust navigation in dynamic environments. The system
utilizes filtering and tracking algorithms to enhance obstacle detection.
The BiGRU-enabled DRL model processes sequential environmental
data to generate robust navigation policy. Additionally, frameworks
such as MultiROS package enable training across multiple environ-
ments simultaneously [25]. Despite advancements, challenges persist,
especially regarding limited experiences or missing information in the
neural network, including path constraints. Drawing insights from prior
works and existing DRL models [14,16,20,22], we introduce a neural
network model in the subsequent sections that considers human be-
haviors and incorporates wall constraints to enhance robot navigation
capabilities.

3. Problem formulation

The robot navigates among multiple agents, it makes 𝑛 decisions
until reaching the goal. The surrounding agents can be static or dy-
namic in scenarios with walls and curves. For simplicity, the neural
network is trained in a 2D environment; human agents and the robot
are represented by circles with radii 𝑟𝑎𝑖 and 𝑟𝑜, respectively.
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3.1. Agents and states

The human agents have random starting positions 𝑝𝑎𝑖 and goals
𝑔𝑎𝑖. Their behavior in the scenarios is based on three motion patterns:
static, dynamic with random velocity until reaching their goals, and
dynamic without stopping. In the dynamic without stopping pattern,
humans move continuously between their starting point and goal with-
out pausing. Once they reach their goal, they reverse the direction
and return to their initial starting point, creating a cyclic motion.
This persistent motion ensures the robot encounters ongoing dynamic
challenges during navigation. The speed settings include speeds faster
than the maximum speed of the robot 𝑣max

𝑜
to teach the robot to stop

and let objects pass [10]. Agents make decisions 𝑎𝑖 at time 𝑡 based on
their observation 𝑂𝑎𝑖 of the environment, which includes the position
𝑝𝑎𝑖, velocity 𝑣𝑎𝑖, and radii 𝑟𝑎𝑖 of other agents 𝑖 using the Python-
RVO2 library. The following parameters are included in the state of
the agents 𝜏𝑎(𝑡): 𝑂𝑎𝑖 observation of the environment, 𝑑𝑎𝑖 are the dis-
tances between the agents. (NeighborDist) 𝑛𝑑 represents the maximum
distance at which an agent considers other agents. (MaxNeighbors)
𝑛𝑚 is the maximum number of neighbors that the agent considers in
the state. (TimeHorizon) 𝑡𝐻 is the time for the agent to compute its
velocity concerning other agents. (TimeHorizonObst) 𝑡𝐻 𝑜 is the time
the agent computes its velocity concerning obstacles, in our case, the
walls that are included in the simulation environment. The robot state
𝜏𝑜(𝑡) includes its current position 𝑝𝑜, velocity 𝑣𝑜, goal 𝑔𝑜, robot radius 𝑟𝑜,
velocity preferences 𝑣

pref
𝑜 , and 𝜃𝑜 the angle of a vector represented by

the velocity components 𝑣𝑜𝑥 (velocity in the 𝑥-direction) and 𝑣𝑜𝑦 (veloc-
ity in the 𝑦-direction). Eq. (1) shows the equation of the observation of
the agents 𝑂𝑎𝑖, human agent’s states 𝜏𝑎(𝑡), robot’s states 𝜏𝑜(𝑡), and 𝜏(𝑡),
the information of all the agents.

𝑂𝑎𝑖(𝑡) = [𝑝𝑎𝑖, 𝑣𝑎𝑖, 𝑟𝑎𝑖],

𝜏𝑎(𝑡) = [𝑂𝑎𝑖, 𝑑𝑎𝑖, 𝑛𝑑 , 𝑛𝑚, 𝑡𝐻 , 𝑡𝐻 𝑜], (1)

𝜏𝑜(𝑡) = [𝑝𝑜, 𝑣𝑜, 𝑔𝑜, 𝑟𝑜, 𝑣
pref
𝑜 , 𝜃𝑜],

𝜏(𝑡) = [𝜏𝑜(𝑡), 𝜏𝑎1(𝑡), 𝜏𝑎2(𝑡),… , 𝜏𝑎𝑛(𝑡)].

3.2. Rewards

In reinforcement learning, reward functions guide the agent’s be-
havior for various purposes. During navigation tasks, the reward func-
tion may provide incentives for reaching the objective, avoiding obsta-
cles, staying on a safe path, or exhibiting any other desired behavior.
Conversely, it may impose penalties for colliding with obstacles, devi-
ating from the optimal path, colliding with walls, or engaging in any
other undesirable behavior. Three formulations of reward functions are
utilized to compare and validate the DRL approach: Eq. (2) depicts
the ‘‘if’’ and ‘‘else’’ clauses used in several previous works [16,26],
where 𝑅𝑔 = 10 represents a positive reward for reaching the goal.
𝑅𝑐 = −0.5 indicates a negative reward given to the robot when it
collides. 𝑅𝑑 = 0.5(𝑑𝑖 − 𝑑𝑢𝑑 ) denotes a reward that the robot receives
based on its proximity to others, where 𝑑𝑖 is the distance between the
robot and the agent, and 𝑑𝑢𝑑 is the maximum comfortable distance
allowed. Additionally, the robot obtains 𝑅ℎ𝑔 = 0.01(𝑑𝑔(𝑡) − 𝑑𝑔(𝑡 − 1)),
where it receives positive or negative incentives based on its position
relative to the goal 𝑑𝑔 . The reward function 𝑅1 is a combination of the
individual rewards described previously, and is defined as follows:

𝑅1 =

⎧⎪⎪⎨⎪⎪⎩

𝑅𝑔 = 10, if Reach the goal
𝑅𝑐 = −0.5, elif Collision
𝑅𝑑 = 0.5(𝑑𝑖 − 𝑑𝑢𝑑 ), elif Danger
𝑅ℎ𝑔 = 0.01(𝑑𝑔(𝑡) − 𝑑𝑔(𝑡 − 1)), otherwise

(2)

Eq. (3) summarizes the reward function at each time step, incorpo-
rating a novel reward 𝑅𝑠 = 0.02 when the robot stops, allowing other
agents to cross without collision [10].

𝑅2 = 𝑅𝑔 + 𝑅𝑐 + 𝑅𝑑 + 𝑅ℎ𝑔 + 𝑅𝑠 (3)

Eq. (4) defines the dynamic warning zone reward. These zones are
circular regions created around the obstacles, formulated according
to human size and velocity [8]. This enables the robot to anticipate
and predict human motion while ensuring safe navigation. The robot
incurs an exponential penalty when entering or exceeding these zones,
calculated as 0.2

(
𝑒(𝑑𝑎𝑖−𝑟𝑤𝑧−𝑟𝑎𝑖) − 0.3

)
, where 𝑑𝑎𝑖 denotes the distance

between the agents, 𝑟𝑤𝑧 is the radius of the circular region, and 𝑟𝑎𝑖 is
the agents radii.

𝑅3 =

⎧⎪⎪⎨⎪⎪⎩

𝑅𝑔 = 10, if Reach the goal
𝑅𝑐 = −0.1, elif Collision
𝑅𝑑 = 0.25(𝑑𝑖 − 𝑑𝑢𝑑 ), elif Danger
𝑅𝑤𝑧 = 0.2

(
𝑒(𝑑𝑎𝑖−𝑟𝑤𝑧−𝑟𝑎𝑖) − 0.3

)
, elif Warning zone

𝑅ℎ𝑔 = 0.01
(
𝑑𝑔(𝑡) − 𝑑𝑔(𝑡 − 1)

)
, otherwise.

(4)

Eq. (5) incorporates the 𝑅𝑝𝑓 reward, which encourages the robot
to prevent freezing, a common issue in autonomous navigation. The
robot gains a reward 𝑅𝑝𝑓 = 0.01 if the difference between its current
position and previous position exceeds a threshold of 0.03; otherwise,
it is penalized with 𝑅𝑝𝑓 = −0.01, indicating that the robot has stopped.
𝑅𝑠 represents the stop reward used in Eq. (3). To address the challenge
of navigating near walls in constrained environments, we introduce
a novel reward 𝑅𝑤𝑎𝑙 𝑙, which enhances the robot’s ability to maintain
safe distances from walls and avoid collisions. This aspect has not
been previously addressed in existing approaches and represents a key
contribution to our work.

𝑅4 = 𝑅𝑔 + 𝑅𝑐 + 𝑅𝑑 + 𝑅ℎ𝑔 + 𝑅𝑠 + 𝑅𝑝𝑓 + 𝑅𝑤𝑎𝑙 𝑙 (5)

𝑅𝑤𝑎𝑙 𝑙 consists of a summation of three reward functions: 𝑅𝑤𝑐 , a penalty
for collision with walls, and 𝑅𝑤𝑚𝑖𝑛

and 𝑅𝑤𝑚𝑎𝑥
are rewards used to

maintain a safe distance from the walls and ensure the robot’s motion
stays within the map boundaries, as detailed in the next section.

3.3. Optimal policy

The strategy and actions that the robot takes during navigation
tasks result from the optimal policy 𝜋∗(𝜏), which predicts its cumulative
reward over time in the environment through the states 𝜏(𝑡). This policy
is learned by training a neural network to approximate the optimal
value function 𝑉 ∗(𝜏), Eq. (6), representing the expected cumulative
reward for each state 𝜏(𝑡). In this equation, 𝑎 represents the robot’s
actions, 𝛾 is the discount factor determining the present value of future
rewards (with values close to zero emphasizing immediate rewards and
close to one emphasizing future rewards), 𝛥𝑡 is the interval between two
actions, and 𝑅(𝜏 , 𝑎) is the reward received when the optimal action 𝑎∗

is taken from state 𝜏(𝑡).

𝑉 ∗(𝜏𝑡) =
𝐾∑
𝑖=𝑜

𝛾 𝑖𝛥𝑡𝑣𝑝𝑟𝑒𝑓𝑅(𝜏𝑡, 𝑎𝑡∗). (6)

The optimal policy, as expressed in Eq. (7), maximizes the cumulative
reward and guides the robot to take the optimal action to reach the
goal based on the current state. In other words, it represents the sum
of the immediate reward and the discounted future reward.

𝜋∗(𝜏) = ar g max
𝑎𝑡∈𝐴

𝑅(𝜏𝑡, 𝑎𝑡) + 𝛾𝛥𝑡𝑣𝑝𝑟𝑒𝑓 𝑉 ∗(𝜏𝑡+𝛥𝑡 ). (7)

4. Neural network

During the navigation task, environmental observation plays a cru-
cial role in path planning and determining the robot’s actions at each
step. In previous research, the primary challenge lay in the interaction
between humans and robots, and the training simulations typically oc-
curred in open spaces across most scenarios [16,20,22]. Consequently,
when the robot operates in environments with limited space, it may
struggle to adopt appropriate behavior to reach its goal, potentially
leading to freezing or rotating in place. This drove us to develop a neu-
ral model that incorporates comprehensive information about neigh-
boring humans, as suggested by [20,27,28], along with the positions of
walls in our work.
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Fig. 2. Network architecture for autonomous navigation: Integration of humans and robot states with wall constraints.

4.1. Overview of neural model

Fig. 2 illustrates a flow diagram of the neural network model
used in this work, where inputs from robots, humans, and walls are
integrated to extract essential features, enabling intelligent responses
in autonomous navigation tasks. Drawing on previous research [16,
20], we employed a multi-layer perceptron (MLP), widely used for
various machine learning tasks. The first MLP captures crucial in-
formation about the environment and wall constraints. Subsequently,
the extracted features undergo processing through the second MLP to
create a higher-level representation, capturing complex relationships
and context, that serves as an input for the third MLP to calculate
the value function, prioritizing actions based on expected outcomes,
and incorporating weighted features from humans. The final output
corresponds to the action to be taken by the robot in terms of linear
and angular velocity. In the training environment, we define a list of
coordinates that represent the path constraints marked in red. This list
also guides the random positioning of humans and goals inside the map.
Additionally, it guides the agents’ trajectory in the ORCA algorithm,
preventing them from crossing blocked areas. In the real world, this
information is obtained from the map through a mapping process by
LiDAR in PNG and YAML files. The PNG file is a grayscale image format
that contains the dimensions and pixel data from the map. The YAML
file includes the path of the PNG file, the resolution of the occupancy
grid map in meters per pixel, the origin of the occupancy grid map
in the coordinate system, and the threshold value for considering a
grid occupied or free for navigation. Both files serve as inputs for an
algorithm that takes the environmental constraint coordinates in pixel
units and transforms them into meters. The neural model receives them
and calculates the value function to obtain the optimal robot actions.

4.2. Neural network training process

The aim is to train the robot to maximize cumulative rewards
by learning from experience and iterative optimization. As detailed
in Algorithm 1, the model initializes the parameters of training and
simulation for the DRL model (steps 1–2). In step 3, the experience
memory 𝐸 is initialized through imitation learning, providing the agent
with a set of demonstrations to approximate the optimal policy from the
beginning. Following this, the value function 𝑉 ∗(𝜏𝑡), which estimates
the expected reward for a given state (𝜏𝑡), is initialized based on
the experiences stored in 𝐸 (step 4). From steps 6 to 17, the model
undergoes a series of iterations, where the agent interacts with the
environment until it reaches the goal, collides, or exceeds the maximum
allowed time for the scenario. At each step, the agent selects an action
𝑎𝑡 following an 𝜖-greedy policy, balancing exploration and exploitation

Algorithm 1 Neural Networking Training

1: Set DRL parameters
2: Set simulation parameters
3: Initiate experience memory 𝐸 ← Imitation
4: Initiate 𝑉 ∗(𝜏𝑡) ← 𝐸

5: procedure Compute(𝑉 ∗
← 𝑉 ∗)

6: for episode=1,2,..,N do
7: Initiate joint state 𝜏(𝑡 = 0)
8: repeat
9: Random 𝑎 with 𝜖 probability

10: Calculate Reward:
11: 𝑅4 = 𝑅𝑔 + 𝑅𝑐 + 𝑅𝑑 + 𝑅ℎ𝑔 + ... + 𝑅𝑤𝑎𝑙 𝑙;
12: 𝑎𝑡 ← ar g max

𝑎𝑡∈𝐴
𝑅(𝜏𝑡, 𝑎𝑡) + 𝛾𝛥𝑡𝑣𝑝𝑟𝑒𝑓 𝑉 ∗(𝜏𝑡+𝛥𝑡 )

13: Value ← 𝑅(𝜏𝑡, 𝑎𝑡) + 𝛾𝛥𝑡𝑣𝑝𝑟𝑒𝑓 𝑉 ∗(𝜏𝑡+𝛥𝑡 )

14: Store 𝐸 ← (𝜏𝑡, 𝑎𝑡, 𝜏𝑡+𝛥𝑡 )
15: Mini-batches are sampled from 𝐸

16: Optimize 𝑉 ∗(𝜏𝑡) by gradient descent
17: until goal, collision or 𝑡 ≥ 𝑡𝑚𝑎𝑥
18: Update 𝑉 ∗(𝜏𝑡) ← 𝑉 ∗(𝜏𝑡)

19: end for
20: end procedure

(step 9–12). 𝜖 represents the probability of taking a random action
(explore), while 1 − 𝜖 indicates the probability of selecting the best-
known action based on the current policy (exploit). Initially, 𝜖 is set
to 0.5, meaning that 50% of the actions are chosen randomly to
explore new rewards. Over the first 2000 episodes, 𝜖 gradually decays
to 0.1, reducing randomness and increasing reliance on the learned
policy, i.e., in the subsequent episodes, 90% of decisions are derived
from stored experiences, while 10% are exploratory actions. The agent
receives 𝑅4 and determines the optimal action by 1 − 𝜖 probability
(steps 10–12). From steps 13 to 14, the agents store their experience
(state, action, next state) in the memory buffer 𝐸. Subsequently, in
steps 15 to 16, mini-batches of experiences are sampled from 𝐸 to
train 𝑉 ∗(𝜏𝑡). The function is optimized using gradient descent, which
minimizes the difference between the predicted and actual values. The
gradient descent method is selected over other methods, such as Gauss–
Newton, due to its simplicity and computational lightweight nature,
which aligns with the real-time processing requirements. At the end
of each episode, 𝑉 ∗(𝜏𝑡) is updated for the current state (steps 18–20).
The training process continues across 𝑁 episodes (steps 5–20), and the
neural network finally converges to an optimal policy.
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Table 1
Neuronal network and simulation parameters.

DRL parameters Simulation parameters

Parameter Value Parameter Value

Discount factor 𝛾 0.9 Agents (𝑎𝑖) 8-15
Time step 0.25 s Static (𝑎𝑖) 0–8
Test Size 3000 Dynamic (𝑎𝑖) 0–8
Min Dist Human–robot 0.3 m Robot Radius 0.2 m
collision penalty −0.5 m Agent Radius 0.1-0.5 m
Evaluation Interval 1000 Object Velocity 0.3-1.5 m/s
Il episodes 3000 Pref robot speed 0.8 m/s
RL Learning Rate 0.001 Kinematics Unicycle
Train Batches 100 Robot Position (4,−4)
Train Episodes (N) 2000 Goal (−4,4),(0,4)
Scenarios 4 Time Limit 45 s

4.3. Neural network parameters

The neural network parameters and simulation environment out-
lined in Table 1 are crucial for enabling effective learning of navigation
tasks. The training and evaluation of our proposed neural network
model were conducted on a system running Ubuntu 18.04.6. The
hardware setup included an Intel i5-8400 CPU and an NVIDIA GeForce
GTX 1050 Ti GPU. The entire training process spanned 48 hours for
the curve path scenario and 62 hours for the cross path scenario. The
model was trained for 8000 episodes, each with a maximum duration
of 45 𝑠 per scenario and a time step of 0.25 𝑠. We evaluated the neural
network’s performance every 1,000 episodes and collected log data
for the entire duration of the episodes. Each episode simulated four
scenarios: no obstacles, static obstacles, dynamic obstacles, or a mix of
both, involving static and dynamic agents. The training set comprised
scenarios with varying numbers of humans, where the robot success-
fully avoided between 8 and 15 humans simultaneously, demonstrating
the potential scalability of our approach.

The agents exhibited random positions, velocities, and radii, with
the robot’s maximum velocity set at 0.8 m/s and the human agents’
velocities ranging from 0.3 to 1.5 m/s. The inclusion of human agents
with random velocities, some exceeding the robot’s maximum velocity,
was motivated by the need to simulate realistic and crowded environ-
ments, rather than assuming that all objects move at the same speed.
This design introduces a challenge, as the robot’s constrained speed
makes it more difficult to navigate among faster-moving agents. Similar
challenges were observed in previous research, where a TurtleBot3 with
a maximum velocity of 0.22 m/s was used [8,14]. In crowded scenarios,
robots typically operate at moderate speeds for safety, while other
agents maintain higher velocities. This setup can be visualized in our
GitHub repository, where the robot demonstrates adaptive behaviors,
such as reducing its velocity to avoid collisions and allowing other
agents to pass, ensuring safe and efficient navigation. This variabil-
ity ensures that our model generalizes effectively across diverse and
challenging navigation tasks.

4.4. Wall proximity functions

In previous research, training was conducted in open spaces, caus-
ing the robot to learn collision avoidance without considering walls.
Although the robot acquires information about the environment during
mapping, it often falls short in making optimal decisions to avoid
dynamic and static objects by maintaining a safe distance from walls.
Therefore, this section elaborates on the reward function and subfunc-
tions designed to enhance the robot’s navigation, specifically address-
ing proximity to walls, denoted as 𝑅𝑤𝑎𝑙 𝑙. The robot incurs a penalty
when it is close to the wall and receives a reward when it maintains a
safe distance. The robot’s and the wall’s position is continually assessed
during the navigation task. The Euclidean distance between two points
is calculated using Eq. (8), determining the closest and furthest points

Fig. 3. Minimum and maximum distances between the robot and the walls for
calculating 𝑅𝑤𝑎𝑙 𝑙 .

of the robot concerning each wall.

distance =

√
(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 (8)

Algorithm 2 outlines the procedure for calculating 𝑅𝑤𝑎𝑙 𝑙. The function
ComputeMinDistance takes the coordinates of walls as arguments (steps
1-10). 𝑑min represents the minimum distance from the robot to each
wall, and 𝑝min denotes the coordinates of the closest point on the wall
to the robot (step 2). The algorithm iterates over each wall, updating
𝑑min whenever a distance smaller than the current minimum is found
(steps 3-9). A similar procedure, ComputeMaxDistance, is used to find
the maximum distance between the robot and the walls, logging 𝑑max

and 𝑝max (step 11). The distances 𝑑min and 𝑑max are illustrated in Figure
Fig. 3.

Algorithm 2 Wall Proximity Functions

1: procedure ComputeMinDistance(𝑝𝑜𝑠, 𝑤𝑎𝑙 𝑙 𝑠)
2: 𝑑min, 𝑝min ← ∞,None
3: for 𝑤 in 𝑤𝑎𝑙 𝑙 𝑠 do
4: 𝑑 ← DistToWall(𝑝𝑜𝑠, 𝑤)

5: if 𝑑 < 𝑑min then
6: 𝑑min ← 𝑑

7: end if
8: end for
9: return 𝑑min

10: end procedure
11: ComputeMaxDistance adjusts the comparison accordingly by replac-

ing 𝑑min with 𝑑max.
12: procedure Reward(𝑝𝑜𝑠, 𝑤𝑎𝑙 𝑙 𝑠)
13: 𝑑min ← ComputeMinDistance(𝑝𝑜𝑠, 𝑤𝑎𝑙 𝑙 𝑠) − 𝑟𝑜
14: 𝑑max ← ComputeMaxDistance(𝑝𝑜𝑠, 𝑤𝑎𝑙 𝑙 𝑠)
15: 𝑅𝑤min ← if (𝑑min < 0.1) then − 0.5 else 0.01

16: 𝑅𝑤max ← if (𝑑max > 13) then − 0.05 else 0.1

17: 𝑅𝑤c ← if (𝑐 𝑜𝑙 𝑙 𝑖𝑠𝑖𝑜𝑛) then − 0.5
18: 𝑅wall ← 𝑅𝑤c + 𝑅𝑤min + 𝑅𝑤max

19: return 𝑅wall
20: end procedure
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Fig. 4. Comparison of metrics for curve path and cross path scenarios across 8000 episodes in state-of-the-art neural models CADRL, LSTM, SARL, ST2 and OURS with the reward
functions (𝑅1), (𝑅2), (𝑅3) and (𝑅4).

Next, the procedure for computing the reward functions is derived
from steps (12-20). In steps 13 and 14, the algorithm logs 𝑑min and 𝑑max.
A threshold of 𝑑min < 0.1 m indicates an imminent risk of collision
or a breach of the robot’s safe operating perimeter, penalizing the
robot with 𝑅𝑤min

= −0.5. Otherwise, the robot receives a small reward,
𝑅𝑤min

= 0.01, each time step for safe navigation (step 15). In step
16, If 𝑑max, represented by the green color in Figure Fig. 3, exceeds
a threshold of 13, the robot receives a penalty of 𝑅𝑤max

= −0.05 at
each time step when the robot moves away from the map boundaries.
Otherwise, if the robot stays within the map, it receives a reward
𝑅𝑤max

= 0.1 at the end of the scenario. This reward is particularly
valuable during the early stages of training, as it helps guide the robot
to stay within the map during exploration. In step 17, if the robot
collides with a wall, it receives a penalty of 𝑅𝑤𝑐

= −0.5. Finally, in
steps (18-20) 𝑅𝑤𝑎𝑙 𝑙 is computed as the sum of 𝑅𝑤min

, 𝑅𝑤max
, and 𝑅𝑤𝑐

ensuring the robot navigates effectively while avoiding wall collisions.

4.5. Log information

During the training and evaluation process, detailed logs are
recorded for each episode, covering four scenarios, to monitor the
agent’s performance and assess the effectiveness of the reward struc-
ture. Traditional key metrics, including success rate (𝑆 𝑅), collision rate
(𝐶 𝑅), time traveled (𝑇 ), distance to the goal (𝐷 𝐺), and cumulative
reward (𝑇 𝑅) obtained by the agent, are logged. Additionally, the values
of each reward component are analyzed to assess their impact on the
navigation task. These include the risk of robot collisions with other
agents (𝑅𝑑), stopping ability (𝑅𝑠), heading to the goal (𝑅ℎ𝑔), reach-
ing the goal (𝑅𝑔), collisions (𝑅𝑐), pushing forward (𝑅𝑝𝑓 ) to prevent
freezing, and the rewards associated with collisions with walls (𝑅𝑤𝑐),
(𝑅𝑤𝑚𝑖𝑛) and (𝑅𝑤𝑚𝑎𝑥), which represent the rewards or penalties for safe
distances with the walls. This comprehensive logging strategy ensures
a clear understanding of the agent’s learning progress and facilitates
fine-tuning of the training process.

5. Simulation and experiments

In this section, we detail the simulation and the experiment results,
as well as the metrics and log information, to provide a comprehensive
understanding of the neural network’s performance.

5.1. Simulation setup and results

The comparative analysis provided in this section employs four
state-of-the-art neural models: LSTM [20,21], SARL [14,22],
CADRL [15,16], and ST2 [23] with reward functions (𝑅1), (𝑅2), and
(𝑅3) compared with our model and reward function (𝑅4). The param-
eters used in the training are shown in Table 1. It is worth noting that
the velocities of some objects are approximately twice the maximum
velocity of the robot (1.5 m∕s versus 0.8 m∕s) to increase the com-
plexity of the environments and improve the robot’s decision-making.
In our previous study [14], we evaluated DRL approaches without
path constraints where the main goal was to avoid obstacles in crowd
environments with static and dynamic obstacles. SARL demonstrates
superior performance over LSTM and CADRL. In this case, including
the wall limitations, CADRL improves its adaptability and performs
better than the others. However, only our model, which includes
the wall information in the neural network, steadily achieved higher
performance in task navigation with path constraints, as shown in the
metrics results in Fig. 4. LSTM obtained the lowest performance in
both cross path and curve path scenarios using both rewards functions
𝑅1 and 𝑅2, with the robot reaching the goal in only a few cases.
SARL neural model had slightly better results, especially when using
𝑅2 functions, despite not receiving information on path constraints in
the state or having a corresponding reward function to avoid collisions
with walls. ST2 used the 𝑅1 reward function as proposed by the
authors, showing higher results than LSTM and SARL, and similar
results to CADRL. The implementation of a novel reward function,
𝑅𝑠𝑡𝑜𝑝, enables the robot to improve decision-making in challenging
scenarios with objects moving at higher velocities than the robot.
𝑅1, the commonly used reward function in most previous research,
exhibits lower performance during navigation tasks and collides more
frequently with dynamic obstacles. CADRL using 𝑅1 and 𝑅2 had similar
results, but in testing, CADRL with 𝑅2 shows higher performances.
The SARL method with 𝑅3 has superior performance than CADRL and
LSTM, it avoids the obstacles with a lower CR and achieves higher
SR. The robot with 𝑅3 prioritizes safety by adapting its navigation
behavior for environments with obstacles and various speeds. However,
the fact of not considering environmental limitations as walls and
constrained scenarios, the robot tended to collide with the walls. Our
proposed neural network model exhibits the highest performance. We
include path constraint information through the three MLP layers,
and 𝑅4 improves robot decision-making by enabling the robot to gain
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Fig. 5. Comparison of reward functions (𝑅1), (𝑅2),(𝑅3), and (𝑅4) is conducted across state-of-the-art neural network models (CADRL, LSTM, SARL, ST2, and OURS). The scenario
includes a curve path scenario with 8 dynamic obstacles.

small rewards for maintaining a safe distance from walls and incurring
penalties for moving too close to them. Figs. 5 and 6 depict the
2D simulation test environments for the curve path scenario with 8

dynamic obstacles and the cross path scenario with 5 static and 10

dynamic obstacles, utilizing state-of-the-art neural network models.
Several video tests with the four reward functions are available in the
GitHub repository. A circle with a red arrow represents the robot, and
its purple trajectories are shown in the graph along with the simulation
test time. Dynamic objects’ trajectories are also displayed, while static
obstacles can be distinguished without any trajectory. In the curve path
test, ST2 (𝑅1) and OURS (𝑅4) reached the goal in 15.75 and 16 s,
respectively. LSTM (𝑅2) and SARL (𝑅1) collided with the walls. While,
CADRL (𝑅1) and SARL (𝑅3) navigated without collision until reaching
the goal in 19.25 and 19.75 s, respectively. Conversely, in the cross
path scenarios, CADRL (𝑅2) collided with a dynamic obstacle, LSTM
(𝑅1) collided with the wall. SARL (𝑅3) attempted to avoid the walls,
but this strategy resulted in a collision with the obstacle in front. SARL
(𝑅2), ST2 (𝑅1), and OURS (𝑅4) reached the goal in 20.75, 17.25 and
19.5 s, respectively. This demonstrates through simulation the capacity
of OURS (𝑅4) to complete the task even in less time. Figs. 7(a) and
7(b) illustrate the average rewards obtained by state-of-the-art models
and our model during navigation tasks across 8000 training episodes
in the curve-path and cross-path scenarios. These plots reinforce the
findings presented in Fig. 4, which displays metrics such as success
rate, collision rate, timeout rate, and wall collision rate. As observed,
our reward function consistently achieves higher rewards in both the
cross-path and curve-path scenarios.

5.2. Log information results

Table 2 presents the log information of our neural network and re-
ward functions (𝑅4) in both curve path and cross path scenarios during
the evaluation of 3000 episodes, after training is completed with the
8000 episodes. The goal is to assess the impact of each reward function,
highlighting its contribution to decision-making, human interaction,
obstacle avoidance, and maintaining safe distances from walls. Each
reward function is detailed in Section 3, and based on the results, we
can adjust the gain values according to task requirements. The average
total reward is shown in the first row, followed by the average of each
reward contributing to navigation tasks’ decision-making.

Particularly noteworthy are the new functions that enhance the
robot’s performance compared to previous works. The positive value
of 𝑅𝑠 enables the robot to navigate around objects moving faster than
itself by stopping and allowing them to pass, thereby avoiding colli-
sions. 𝑅𝑝𝑓 consistently provides a moderately high positive reward to
prevent freezing, while our novel reward function 𝑅𝑤𝑎𝑙 𝑙, a combination
of 𝑅𝑤𝑐

, 𝑅𝑤min
, and 𝑅𝑤max

, ensures the robot maintains safe distances
from walls. In these scenarios, 𝑅𝑤𝑐

and 𝑅𝑤min
play a significant role in

avoiding collisions with the walls and maintaining safe distances, while
𝑅𝑤max

rewards the robot for staying within the map boundaries.

5.3. Statistical analysis

To assess the statistical significance of differences between our
proposed method and baseline methods, a paired Wilcoxon Signed-
Rank Test was employed. This non-parametric test evaluates if the
median differences between paired samples are significantly different.
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Fig. 6. Comparison of reward functions (𝑅1), (𝑅2),(𝑅3), and (𝑅4) is conducted across state-of-the-art neural network models (CADRL, LSTM, SARL, ST2, and OURS). The scenario
includes a cross-path scenario with 5 static and 10 dynamic obstacles.

Table 2
The log information for the model(𝑅4) across 3,000 evaluation episodes, after training
is complete, in both cross-path and curved-path scenarios.

Curve path Cross path

Metric No Static Dyn Mix No Static Dyn Mix

𝑇𝑅 12.02 11.21 12.05 11.79 11.81 9.19 9.61 10.34

𝑅𝑔 9.98 9.22 9.04 9.32 9.99 7.94 7.51 7.83
𝑅𝑐 0.00 −0.01 −0.04 −0.02 −0.01 −0.01 −0.23 −0.31
𝑅𝑑 0.0 0.06 0.12 0.17 0.0 0.05 0.10 0.14
𝑅ℎ𝑔 0.98 0.73 0.82 0.70 0.91 0.89 0.85 0.92
𝑅𝑠 0.0 0.0 0.56 0.42 0.0 0.0 0.28 0.21
𝑅𝑝𝑓 0.48 0.53 0.80 0.62 0.42 −0.13 0.51 0.78
𝑅𝑤𝑐 −0.03 −0.01 −0.05 −0.09 0.0 −0.01 −0.06 −0.04
𝑅𝑤𝑚𝑖𝑛 0.51 0.60 0.72 0.58 0.40 0.38 0.56 0.72
𝑅𝑤𝑚𝑎𝑥 0.10 0.09 0.08 0.09 0.10 0.08 0.09 0.09

A one-tailed test with a less than alternative hypothesis was conducted
at a significance level of 0.05. As presented in Table 3, the Wilcoxon
statistic, W, was calculated for each metric. A 𝑝-value was less than
0.05, it indicated a statistically significant difference favoring our
proposed method. The results revealed that our method significantly
outperformed the baseline methods in terms of success rate (𝑝 < 0.05).
In contrast, the alternative hypothesis was accepted (𝑝 > 0.05) for
collision rate, timeout rate, and collision wall rate, indicating that
these metrics had higher values, demonstrating the effectiveness of our
method in improving them.

5.4. Experimental setup and results

The robot’s width is 0.48 meters. It utilizes a 2D LiDAR for mapping
and obstacle detection, along with odometry data and the AMCL pack-
age for robot localization. Communication between the sensors and the
neural network was implemented using ROS. During the experimental
test, we used the neural network models CADRL (𝑅2), SARL (𝑅3), and
OURS (𝑅4) based on their higher success rates in training results. The
validation test for the neural network was conducted in three scenarios:

Scenario 1: Involves navigating a narrow space with six static
obstacles, including empty and occupied chairs. The goal is located 7

meters from the initial position. The robot starts on a path with a width
of 1.20 m, which narrows to 0.8 meters due to the placement of chairs
in the lab scenario, making it challenging to navigate and reach the
goal without collisions (see Figs. 8(a) and 8(b)).

Scenario 2: Includes static and dynamic obstacles, with a total
distance of 12 meters from the start point to the goal. The robot begins
its navigation along a narrow, curved path with an average curvature
of 0.98 𝑚−1 and a width of 0.7 meters. It then moves into a larger
space containing static obstacles, including six chairs (either empty or
occupied) and a static humanoid robot positioned at the center of the
pathway. Additionally, five humans move around, attempting to avoid
the robot’s path, testing its navigation performance (see Fig. 8(c)).

Scenario 3: The robot moves through a map with static obstacles (six
chairs) and 7 moving people. The distance between the initial position
and the goal is 21 meters. The robot must cross the same narrow spaces
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Table 3
Statistical analysis on training results using Wilcoxon Signed-Rank Test.

Method vs. Ours

Metrics CADRL(R1) [15] CADRL(R2) [15] LSTM(R1) [20] LSTM(R2) [21] SARL(R1) [22] SARL(R2) [10] ST2 [23]

𝑊 𝑝-value 𝑊 𝑝-value 𝑊 𝑝-value 𝑊 𝑝-value 𝑊 𝑝-value 𝑊 𝑝-value 𝑊 𝑝-value
Success Rate 0.0 0.008 1.0 0.02 0.0 0.004 0.0 0.04 0.0 0.04 0.0 0.004 0.0 0.004
Collision Rate 18.0 0.942 16.0 0.876 21.0 0.986 21.0 0.986 21.0 0.986 19.0 0.962 19.0 0.962
Timeout Rate 15.0 0.978 8.0 0.863 15.0 0.978 15.0 0.978 36.0 1.0 21.0 0.986 36.0 1.0
Collision Wall Rate 24.0 0.954 21.0 0.986 28.0 0.991 36.0 1.0 19.5 0.971 28.0 0.991 28.0 0.991

Fig. 7. Comparison of the average reward in the 8000 scenarios across state-of-the-art
neural network models (CADRL, LSTM, SARL, ST2, and OURS).

and follow a curved path as in the previous experiments (see Fig. 8(e)).
This experiment is related to dynamic scenarios in the training set.

The RVIZ displays the map and the robot’s position in the instant of
the picture. The quantitative results are shown in Table 4. In scenario
1, the CADRL (𝑅2) model collided with a person sitting on a chair,
as illustrated in Fig. 8(a). Then, the robot proceeded with its naviga-
tion task until reaching the goal in 21 seconds. OURS (𝑅4) reaches
the goal without collisions in 14 seconds (Fig. 8(b)). In scenario 2,
CADRL (𝑅2) could not continue its path and became frozen in the

Table 4
Quantitative results from experimental tests with CADRL(𝑅2), SARL(𝑅3), and OURS(𝑅4):
number of dynamic objects (Dy), number of static objects (St), reach the goal (RG),
number of collisions with dynamic obstacles (C(dy)) and with static obstacles (C(st)),
navigation time (t), and travel distance (d).

Scenarios Model Dy St RG C(dy) C(st) t(s) d(m)

Test 1 CADRL (𝑅2) – 6 Yes – 1 21 7
OURS (𝑅4) – 6 Yes – – 14 7

Test 2 CADRL (𝑅2) 5 7 No – – 48 3
OURS (𝑅4) 5 7 Yes – – 58 12

Test 3 SARL (𝑅3) 7 6 Yes – – 93 21
OURS (𝑅4) 7 6 Yes – – 50 21

narrow space. The robot moved only 3 meters in 48 seconds. This
demonstrates that previous approaches and state-of-the-art methods
have difficulty navigating through limited spaces, resulting in the robot
failing to reach its destination. In scenario 3, SARL (𝑅3), as illustrated
in Fig. 8(d), encounters challenges when navigating narrow spaces,
resulting in a longer arrival time. However, it reaches its destination
while avoiding dynamic and static obstacles. In contrast, OURS (𝑅4)
required less time to traverse the constrained space before continuing
its path, successfully avoiding obstacles and reaching the goal, as shown
in Table 4. This experiment demonstrates that the robot can navigate
narrow environments and efficiently handle typical crowd scenarios,
a key challenge frequently addressed in previous research. Videos of
the experiments are available in the GitHub repository for further
analysis. Overall, our proposed model exhibits superior performance
by integrating path constraints into its decision-making process and
incorporating novel reward functions that ensure safe navigation in
real-world applications.

6. Conclusions

The paper’s results demonstrate a comprehensive approach to au-
tonomous navigation using deep reinforcement learning (DRL) tech-
niques. We compare our proposed neural network model with CADRL,
LSTM, SARL, and ST2 neural networks. Our OURS (𝑅4) model effec-
tively captures crucial environmental features, facilitating intelligent
decision-making in navigation tasks, achieving higher success rates,
and improving collision avoidance. Our experiments highlight the sig-
nificance of incorporating wall information into the neural network
and introducing novel reward functions to enhance navigation per-
formance. A key factor contributing to the model’s success is using
Euclidean distance to evaluate wall proximity. This method was chosen
for its lightweight computational nature, enabling real-time processing
during navigation tasks.

Future work will further optimize reward functions, explore ad-
ditional environmental factors, and test alternative methods, such as
the potential field approach. This will allow us to assess both its
performance and computational cost, particularly in more complex en-
vironments where dynamic obstacle avoidance and smooth navigation
are crucial.
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Fig. 8. Experimental tests were conducted in scenarios (a) and (b) (narrow space), (c)
(static and dynamic obstacles), and (d) and (e) (dynamic obstacles).
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