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ABSTRACT: Physical dynamic reservoirs are well-suited for edge systems, as
they can efficiently process temporal input at a low training cost by utilizing the ——
short-term memory of the device for in-memory computation. However, the vision a
short-term memory of two-terminal memristor-based reservoirs limits the  .oreuon {||||-

duration of the temporal inputs, resulting in more reservoir outputs per sample  Timeseries I.{.
for classification. Additionally, forecasting requires multiple devices (20—25) for ™"
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the prediction of a single time step, and long-term forecasting requires the . 7
reintroduction of forecasted data as new input, increasing system complexity [z1° .\,?::::ﬂ:: %% | | || || S
g g g aael ooe >
and costs. Here, we report an efficient reservoir computing system based on a [ 517 — e
three-terminal nano-ionic solid electrolyte FET (SE-FET), whose drain current |3, A % e Lo
. . 240 Short term
can be regulated via gate and drain voltages to extend the short-term memory, oy F 20 memory
) ’ 3 . o0 2 4 2o
thereby increasing the duration and length of the temporal input. Moreover, the R 10 e 30

use of a separate control terminal for read and write operation simplifies the
design, enhancing reservoir efficiency compared to that in two-terminal devices. Using this approach, we demonstrate a longer mask
length or bit sequence, which gives an accuracy of 95.41% for the classification of handwritten digits. Furthermore, this accuracy is
achieved using 51% fewer reservoir outputs per image sample, which significantly reduces the hardware and training cost without
sacrificing the accuracy of classification. We also demonstrate long-term forecasting by using SO previous data steps generated by an
SE-FET-based reservoir consisting of four devices to predict the next S0 time steps without any feedback loop. This approach results
in a low root-mean-square error of 0.06 in the task of chaotic time-series forecasting, which outperforms the standard linear

regression machine learning algorithm by 53%.

KEYWORDS: physical reservoir computing, solid electrolyte FET, temporal data, classification, forecasting, edge systems

1. INTRODUCTION

Recurrent neural networks (RNNs)"” excel in handling
temporal input compared to traditional feedforward neural
networks (FNNs),” but their cyclic connections introduce
vanishing and exploding gradients, making the training
computationally expensive. To address these challenges,
variations of RNNs have been proposed, i.e., long short-term
memory4 and reservoir computing (RC).S’6 A dynamic
physical reservoir leverages short-term memory (fading
memory) to transform temporal inputs into space—time-
dependent features.” The states of the device (i.e., read current
(I4)) represent the feature space of the reservoir that is used to
train the readout network, as shown in Figure 1. This
fundamental idea of RC is versatile: one can solve many tasks
such as classification of spoken digits,” "' handwritten
digits,lz_14 and chaotic time-series forecasting.g’15 However,
most of these physical reservoirs exhibit an accuracy of 83—
86% when applied to real-world challenges, such as
classification of handwritten digits using the MNIST data
set.'® To improve accuracy, various methods have been
demonstrated, i.e. two different pulse rates for the same
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Figure 1. SE-FET reservoir system’s framework demonstrates in-
memory computing capabilities for processing temporal input.

input sequence,'” and a fast and slow read at the end of each
sequence (i.e., reading the reservoir states twice)."> These
methods result in doubling the reservoir output per hand-

Received: January 2, 2025
Revised:  February 20, 2025
Accepted: March 2, 2025

https://doi.org/10.1021/acsami.5c00092
ACS Appl. Mater. Interfaces XXXX, XXX, XXX—=XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ankit+Gaurav"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaoyao+Song"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sanjeev+Kumar+Manhas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Partha+Pratim+Roy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maria+Merlyne+De+Souza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsami.5c00092&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.5c00092?fig=fig1&ref=pdf
www.acsami.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsami.5c00092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsami.org?ref=pdf
https://www.acsami.org?ref=pdf

ACS Applied Materials & Interfaces

www.acsami.org

Research Article

(b) (c)
I Scan Freq = 200mV/s ) )
~10°73 F Vps = +0.1V E VGS =4V, 0.4Hz
< WL = 100 um/1.5 ym 22
= k= 10} —lps > 0
g o I —ls
g 5107 %
£ o g7 VDS =-1.5V
= -9 — 50 Short term
1 [\ é 25 memory
4
10-11 N N N N K- 0 . ) -
4 -2 0 2 4 T 20 30
Ves (V) Time (s)
e) ()
(d) ( :
102 — VRead™ 01V — Vgeoq= 0.1V [ 4 150} +[D):z:z:; 200} —=-0.1Hz
3 Wi = Fo= —o-0.2Hz
VRead= 0.5V — Vggoa=-1.5V | 2 120} = Device 3 o =180} [+ o
—_ log = o
310-4 > :w 90| VGs =4V, 1 Hz 7~ 2 —v-1Hz
1 (2] 7, - y J L 3
£10 45 F el T 279 vas-av
g 2 5ol Vos=-1v
108 ’ 30¢ Gl <
-8 ° M .
10 20 30 40 0 4 8 12 16 0 1 2 3 4 5
Time (s) Pulse Number Pulse number

Figure 2. (a) Schematic of the SE-FET, showing vacancies (V**) and oxygen ions (O>”) separated at the respective opposite interfaces of Ta,Os,
upon application of a gate voltage. (b) Measured transfer characteristics of the fabricated ZnO/Ta,Og SE-FET as a function of scan frequency and
the corresponding gate current characteristics. (c) Short-term memory in the SE-FET. The device was first programmed by five write pulses of Vg
=4V at 0.4 Hz, and its response I is measured by read pulses of Vg = —1.5 V. (d) A single write pulse of S V is used to program the device, and
its subsequent Ipg is measured using four different Vy,q. The results show varying memory decay times (), with Vy.,q = —1.5 V achieving 7 > 40 s.
(e) Device-to-device variation across three different SE-FET devices when subjected to the same input of Vg = 4 at 1 Hz. (f) Response of the SE-
FET when subjected to input at four different frequencies, showing the uniqueness of the output response.

written digit, which subsequently increases the training costs
and complexity of the reservoir for a 2—3% improvement in
performance.

In another approach, the readout network consisting of an
FNN with one or two hidden layers was used instead of logistic
regression'”'® to give 95—96% accuracy without increment in
the reservoir output per input digit. Most of these reservoirs
use a volatile two-terminal memristor device in which a fast
diffusive species (e.g,, Ag) is used to achieve fading memory to
generate reservoir states.' 231919 However, in two-terminal
memristor reservoirs, the input signal duration and interval are
constrained by the time span of memory decay, typically a few
milliseconds. This severely limits the ability to handle longer
sequences, usually 4-bit for classification of MNIST digits. In
another study,'” RC was demonstrated using nonvolatile
memristors combined with circuit elements such as resistors
and capacitors to achieve not only fading memory but also
longer time constants, which results in additional cost and
complexity. Alternatives to two-terminal memristors are three-
terminal devices such as the solid electrolyte FET (SE-FET)’
and leaky FinFET.'® These devices offer benefits of low power
consumption by operating in the off state, i.e., in the absence of
a gate pulse.”' In an SE-FET, writing in the off-state minimizes
power consumption to nanowatt (nW) levels, even with a high
L/W ratio of the transistor. When benchmarked aﬁainst other
ReRAM devices in our previously reported work,”" it achieves
a competitive 8 nJ per transition, demonstrating lower power
consumption than filamentary devices. Additionally, the use of
a separate control terminal for read and write operations
simplifies the reservoir implementation compared with two-
terminal devices. On the other hand, in a leaky FinFET, an
absence of tunneling oxide led to reduced retention time,
resulting in short-term memory of a few microseconds. In our
previous work based on an SE-FET based reservoir,'"* the

classification accuracy was enhanced by reading the reservoir
states after each input in a sequence, rather than at the end.
Although this approach improved the accuracy to 91.19%, it
did not reduce the number of reservoir outputs per
handwritten digit.

Apart from temporal data classification, time-series forecast-
ing is also a crucial application of physical reservoir computing,
enabling the prediction of future data points based on
historical patterns and trends. A previous study’ of time-series
prediction using two terminal memristors relied on a reservoir
consisting of 20 devices, where SO previous states of each
device were used to predict the subsequent time step.
Moreover, the predicted data were fed back into the reservoir
as new input for autonomous prediction. However, this
procedure increases the system complexity, as it requires
continuous feedback of predicted data to the reservoir for
longer-term prediction. This technique was shown to work for
only 60—70 time steps of autonomous prediction, after which
the predicted signal diverges from the correct value. To address
this limitation, an update stage was introduced: the true input
(instead of the predicted value) was used for 25 time steps
after 50 steps of autonomous prediction, further increasing
system complexity. Similarly, another study using a tin
monoxide thin-film transistor (SnO TFT)-based reservoir
incorporates a feedback loop and update cycle to make long-
term predictions.”” In SnO TFT, electron trapping and time-
dependent detrapping at the channel interface cause the device
to exhibit short-term memory. Further, in another work,"> a
reservoir consisting of 25 memristor devices with increased
hardware costs was reported, where four previous states of
each device were used to perform only short-term prediction.

This work demonstrates a highly efficient physical reservoir
computing system based on a three-terminal nano-ionic solid
electrolyte ZnO/Ta,O; field-effect transistor (SE-FET) for
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temporal data classification and chaotic time-series forecasting.
By modulating gate and drain voltages, we significantly extend
the memory effect in SE-FET reservoirs, achieving memory
decay time (7 > 40 s). This enhancement enables improved
processing of longer temporal sequences while maintaining a
high classification accuracy (95.41%) and reducing the
required reservoir outputs per input by 51%. Furthermore,
we experimentally demonstrate, for the first time, the capability
of SE-FET-based reservoirs to process real-world analog
signals, moving beyond our previous studies limited to binary
sequences.'* Additionally, we introduce a novel long-term
forecasting framework, utilizing data from the past 50 steps
across four SE-FET devices to predict the next S0 steps,
achieving high predictive accuracy without the need for
feedback loops or update cycles. A systematic device-to-device
variability analysis further provides insights into interface
dynamics and their impact on the performance of the SE-FET,
ensuring reliability for large-scale reservoir computing
applications. These advancements enhance computational
efficiency while maintaining high predictive accuracy, demon-
strating the potential of SE-FET-based reservoir computing for
real-world analog signal processing and scalable neuromorphic
systems, especially suited for longer time scale applications
such as biomedical and the Internet of Robotic Things.

2. EXPERIMENTAL METHODS

2.1. Experimental Fabrication and Device Mechanism. Our
bottom-gated SE-FET is fabricated on a glass substrate. The
conducting indium tin oxide is used as a gate and 275 nm of
tantalum oxide (Ta,O;) as gate insulator over which 40 nm of zinc
oxide (ZnO) as channel is deposited via radiofrequency sputtering.*’
Aluminum is used as the top contact for the source and drain. The
electrical characteristics are measured using Keysight B2902A. The
device mechanism of the SE-FET is %overned by a distinct redox
reaction occurring within the insulator.”® When a positive gate voltage
(Vgs) is applied, oxygen ions and vacancies separate at the opposite
interfaces of Ta,0s, leading to an additional electrolytic capacitance,
as shown in Figure 2(a). During the reverse sweep of Vg, the rapid
collapse of the internal electric field drives the capacitance negative,*
enabling steep switching without relying on filamentary effects. This
electrolytic capacitance directly impacts memory decay by influencing
charge retention. The redistribution of oxygen ions and vacancies over
time leads to gradual changes in the internal field, resulting in a
collapse of the internal field and a change in the resistance state of the
channel. The gradual relaxation dynamics enable short-term memory,
allowing the SE-FET to efficiently map past inputs into a high-
dimensional state space and enhancing temporal pattern recognition,
which can be leveraged for physical RC. Figure 2(b) shows the
measured transfer and gate current characteristics of the SE-FET. The
short-term memory of the SE-FET is depicted in Figure 2(c). Initially,
the device is programmed using five write pulses at Vo = 4 V with a
frequency of 0.4 Hz. The response Ipg is then measured using read
pulses Vg = —1.5 V. In the absence of write pulses, the device current
gradually returns to its initial state, as indicated by the blue arrow.
Furthermore, unlike two-terminal devices, the drain terminal of the
SE-FET can be used to control its short-term memory, as shown in
Figure 2(d), where distinct decay constants are achieved by simply
varying the read voltage at the drain terminal. This is because, in the
off state, a positive Vp,,q increases the Vpg (drain—source potential)
compared to the Vg, resulting in faster decay. In contrast, a negative
VReada Makes Vg relatively higher than Vpg, increasing the
conductance and decay time.

The device-to-device variation across three different SE-FET
devices subjected to the same input of Vg = 4 V at 1 Hz follows a
consistent trend, differing only in the current magnitude, as shown in
Figure 2(e). Additionally, when the same input is processed by the
SE-FET at varying frequencies, it produces distinct output responses,

as illustrated in Figure 2(f). This demonstrates the SE-FETs ability to
adapt to the different temporal dynamics of the input data.

2.2. Methods for Temporal Data Classification. To evaluate
our SE-FET-based RC system using the MNIST data set, we digitize
and crop the image sample from 28 X 28 to 24 X 24 by removing
unused pixels. We use 60 000 images and a separate 10 000 sample set
for training and testing, respectively. The readout network is
implemented by using feedforward neural networks (FNNs) with
one hidden layer consisting of 75 neurons. Training and testing are
performed in Python using the Keras library.** The neurons in the
input layer are identical to the reservoir output per image, whereas 10
output neurons are labeled corresponding to digits “0” to “9”. Note
that without a reservoir, an FNN requires 576 input neurons to
represent all 24 X 24 pixels. However, with a reservoir, depending
upon the length of the sequence (L) (often referred to also as a
mask), the total number of reservoir outputs is 576/L. This is because
only a single read operation is performed at the end of each sequence.
A rectified linear unit (ReLU) is used as an activation function
defined as f(x) = max(0, x) in the hidden layer. Where « is the input
value and for positive input values, ReLU returns the input value itself,
whereas for negative input values, ReLU outputs zero. For the output
layer, the SoftMax activation function is used, defined as

exp(z)

S =
X, exp(z) (1)
where z is the input vector, Zle exp(zj) is a normalization term to
ensure that the value of the output vector S(z); sums to 1, and n is the
total number of output classes. The performance of the readout
network is evaluated by the loss function categorical cross-entropy

(CE)* defined by

n

CE(loss) = —  log(5)
2y es( @)

where y; is the true label for class i (1 for the correct class, 0
otherwise), 7 is the predicted probability for class i, and n is total

number of output classes. The weight and bias in the readout network
are updated during training using the Adam (Adaptive Moment
Estimation) optimizer.

2.3. Methods for Time-Series Forecasting. A common way to
test the performance of time-series forecasting in a physical reservoir
is to use a chaotic system, such as the Mackey—Glass time series”®>”
with a positive Lyapunov exponent.28 Such a system is sensitive to
initial conditions such that a small error in the starting state can lead
to significant differences in future behavior. A nonlinear time-delayed
differential equation forms the basis of the Mackey—Glass time series.

dx x(t — 1) — (t)

dt U1+ (- 0)" (3)

This equation can display various kinds of behavior depending on the
value of 7. Chaotic behavior occurs when 7 is greater than 16.8. In this
work, the goal of the task is to predict the next few steps (t + 1, t + 2,
.., t + p) of the time series by using the previous few times steps (t,t —
1, .., t — x) of the response of the reservoir, where t is the present
time step, p is the length of the predicted time step, and x is the length
of the previous time step. The data set for this prediction task is
obtained by solving the Mackey—Glass equation using the fourth-
order Runge—Kutta for 1500 time steps. To obtain chaotic behavior,
the parameters are set to f = 0.2, y = 0.1, n = 10, and 7 = 18. The
time-series data obtained are then normalized between [0, 1] to
reduce training time and improve the accuracy of prediction. The
normalized Mackey—Glass time series is then fed as input, with a time
step of 100 ms into a reservoir consisting of the SE-FET, and its
temporal response recorded. The recorded response is then used to
train the readout network with linear regression using scikit-learn
library,” which directly maps the recorded response to outputs using
a simple weighted sum. During training and testing, the first 700 time
steps are used for training, and the remaining 800 time steps are used
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for short-term prediction (p = 1); for long-term prediction p is set to
50. The performance of the readout network is evaluated by the loss
function root mean squared error (RMSE) defined by

(4)

where y; is the actual values, j/: is the predicted values, and n is the

total number of observations.

3. RESULTS AND DISCUSSION

3.1. Temporal Data Classification. Figure 3 shows the
response of the SE-FET (i.e., the reservoir states) measured at

" @ 4-bit 9
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Figure 3. Reservoir states (Ipg) show uniqueness in the temporal
response of the SE-FET for binary sequences: (a) 2-bit (4 reservoir
states) ‘00’- ‘11’; (b) 4-bit (16 reservoir states) ‘0000'—1111’; (c) 6-
bit (64 reservoir states) for ‘000000'— ‘111111’.

the end of each sequence for different lengths of 2-bit, 4-bit,
and 6-bit. To carry out these tests, each binary sequence is
converted into a pulse stream, where each pulse with a period
of 2.5 s, with 60% duty cycle, represents an input “1” @ 3 V
and “0” @ 0 V, measured at Vy,q = —1.5 V. To achieve a
complete temporal response, the pulse stream duration should
align with the memory decay time of the device. This is
because pulses within this decay range influence the device
state, whereas earlier pulses outside this range do not, as the
device returns to its initial state.

The decay time of the SE-FET depends on factors such as
the magnitude of Vg.4 and the applied input frequency.
Different Vi,,q values lead to varying memory decay times (see
Figure 2d). Additionally, the input frequency influences the
magnitude of Is, where a higher input frequency results in a
lower Ipg value (see Figure 2f), causing the device to decay
more rapidly. For a given experimental setup, the duration of
the input sequence is determined by both Vg4 and the applied
input frequency.

With the above considerations, it becomes necessary to have
a memory time decay of at least 15 (2.5 X 6) s for a 6-bit
sequence; therefore, a Vy,,q of —1.5 V is motivated by the need
to achieve a longer memory decay time. The process flow of
our SE-FET-based reservoir system for classification of
handwritten digits is shown in Figure 4.The preprocessed
image is first converted into a voltage sequential input by

(a)

/ 000000000T1TT1T111110000 — 4™ Row
s

[000000] [000111] [111111] [110000]

<
_1m [SEFET | -t i
Iml'lmm = Reservoir 8 .
I-“-L —

Reservoir oulpul

24 %24 Temporal Input Readout (4" ;:w)
(b) Network » utput
I ;

0 16 32 48 64 80 96
Reservoir output

Figure 4. Process flow of the SE-FET-based reservoir system for
classification of handwritten digits. (a) The reservoir response to a
temporal input for row 4 of the image is exemplified. (b) The
recorded reservoir output for digit 3 with a sequence length of 6-bits.

breaking down an entire row (containing 24 pixels) of an
image into 24/L subsections. This is carried out in order to
enhance the reservoir states, as an increment in L leads to
exponential growth in reservoir states (2"), which may lead to
redundancy. Furthermore, L is also restricted by the memory
decay time of the device, as discussed above. With these
considerations, each row of the image is fed into the SE-FET
reservoir (as shown in Figure 4(a) for row number 4 with L =
6), and its output response (reservoir states) is recorded once
at the end of each sequence. This is similarly repeated for all
rows. As an example, all 96 (576/6) reservoir outputs for digit
3 are shown in Figure 4(b). These are fed to a trained readout
network, for which an overall classification accuracy of 95.4% is
obtained. Note that the reservoir output acts as an input to the
readout network. Further, Figure S shows a stacked column
plot that illustrates the reservoir output corresponding to three
distinct examples.

A significant difference in reservoir output for each example
is observed, which contributes to the improved classification of
digits by the readout network. We first benchmark the
performance of our readout network with a reservoir against
that of an equivalent model of a readout network without any
reservoir, as shown in Figure 6. Here, the total number of input

HIMI ]

N W s

Ips (MA)

-
T

16 32 438 64 80 96
Reservoir output

Figure S. Stacked column plot showing reservoir output correspond-
ing to the three examples (inset image of digits 0, S, and 3) with
sequence lengths of 6-bits. A significant difference in the reservoir
output across three examples can be observed.
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Figure 6. Comparison of the classification accuracy of three systems:
the SE-FET-based RC system, a feedforward neural network (FNN)
with down-sampling, and a conventional FNN (C-FNN) without any
down-sampling, using the MNIST data set. The original input consists
of 576 features (from a 24 X 24 pixel image). Sequence-based feature
reduction reduces the input features for the readout network to 96,
144, 288, and 576, corresponding to sequence lengths (L) of 6, 4, 2,
and 1, respectively, as features are read only once at the end of the
sequence.

features is $76 (24 X 24); that is, pixels of the image are down-
sampled (e.g.,, in a ratio of 6 to 1 for L = 6). Without any
reservoir, an overall accuracy of 89.4% is achieved. An SE-FET-
based reservoir outperforms a readout network without any
reservoir by 6%, because its fading memory preserves temporal
information. Even for smaller L = 2 and 4 our RC system
shows performance improvement of 0.5% and 2.1%,
respectively. Further, for L = 2 our SE-FET-based reservoir
performs on par with normal FNNs (576 input features)
without any down-sampling. In this case, our SE-FET-based
reservoir achieves similar accuracy by using 50% less input
features compared to a conventional FNN (C-FNN), thus
reducing the training costs significantly without sacrificing
accuracy of classification.

However, compared to L = 6, using L = 2 and L = 4 uses
200% and 50% more input features per image, respectively, for
a slight improvement in accuracy of 1.7% and 1%, respectively.
Next, the performance of our SE-FET reservoir is bench-
marked against previously reported work in Table 1.

In refs 12—14 and 22 readout networks consisting of only
input and output layers are trained using logistic regression.
Although this reduces the network size (meaning fewer
parameters to train, (input + 1) X output), this results in a
significant reduction in training costs. However, this is

achieved at the expense of accuracy (83—91%). On the
contrary, a reservoir with a readout network consisting of one
or two hidden layers exhibits a much higher accuracy (95—

96%)."”'® This is because hidden layers enhance the model’s
ability to capture and leverage the intricate space—time
correlations within the reservoir output. They enable the
network to learn complex interactions between reservoir states,
which a simple linear classifier would otherwise fail to
recognize. This becomes especially crucial for classifying larger
data sets like MNIST, where the reservoir provides richer
feature extraction, and the hidden layers further refine these
representations, significantly improving accuracy and robust-
ness.

For a 4-bit sequence length in previous work, accuracies of
95.1% with a HfO, memristor'~ and 96% for a leaky Fin-FET'®
were reported using reservoir outputs of 196 per image. In this
work, by using a longer time frame reservoir with L = 6, a
similar accuracy of 95.41% is achieved, but with an
exceptionally small number of reservoir outputs per image
(96). This reduction in reservoir outputs per image leads to a
51% decrease in reservoir size (number of devices) compared
to refs 17 and 18, thereby reducing costs of hardware. Ideally,
the total number of devices required in each reservoir is
determined by the number of reservoir outputs per image,
ensuring optimal alignment for parallel processing. This setup
maximizes the efficient use of available devices, while
maintaining a fixed connection between each input sequence
and its corresponding device. Furthermore, the size of the
readout network of our RC system is comparable to that in ref
17 and significantly smaller than that in ref 18, as shown in
Table 1, which leads to a substantial reduction of training costs
compared to ref 18.

3.2. Time-Series Forecasting. The temporal response of
the SE-FET across four different devices demonstrates device-
to-device variability while effectively capturing the dynamic
behavior of the Mackey—Glass time series as shown in Figure
7. In our first approach, we use a single SE-FET as a reservoir
to implement the task of time-series forecasting. An excellent
agreement is achieved between the target and the trained data,
as shown in Figure 8(a). The network is then used to make
short-term (p = 1) and long-term predictions (p = 5S0) of the
time series as shown in Figure 8(b) and Figure 8(c)
respectively.

The short-term prediction results in a low RMSE = 0.01,
whereas the long-term prediction results in a slightly higher
RMSE = 0.12. This can be further improved using the

Table 1. Comparison of the Performance of the Solid Electrolyte FET-Based Reservoir with Reported Works for Image

Classification

Readout network size

Reservoir output per Accuracy
Description [ref] image (MNIST) Input
WO, memristor'> 88 85.60% 88
176 88.10% 176
Si02: Ag memristor'’ 220 83% 220
Zn0/Ta,OSE-FET"* 576 91.19% 576
SnO TFT* 196 90.73% 196
HfO,memristor'” 196 90% 196
95.10% 196
Si;N,Leaky Fin-FET'® 196 96% 196
Zn0/Ta,0;SE-FET [This 96 95.41% 96
work]
E

Sequence Write pulse for Trainable
Hidden Output length bit 1 parameters
- 10 S bits 1.5V, 0.5 ms 890
- 10 1.5V, 0.8 ms 1770
- 10 4 bits 1.25V, 50 us 2210
- 10 4 bits 3V, 1S5 s 5770
- 10 4 bits 5V,0.1 ms 1970
- 10 4 bits 4V, 100 pus 1970
38 10 7876
128 X 64 10 4 bits =5V, 10 us 34122
75 10 6 bits 3V, 1S5 s 8035
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Figure 7. Temporal response of the SE-FET to the Mackey—Glass
time series across four different devices.

responses from four devices instead of just one. In this
approach, four different devices operate in parallel to process
the same input, and their combined responses are
concatenated to train the readout network. For p = 50, a low
error rate of RMSE = 0.06 is achieved, which is a 50%
improvement from the single device-based reservoir, as shown
in Figure 8(d).

For the same input, different SE-FET devices follow similar
trends but vary in amplitude (Ipg) as shown in Figure 7. These
naturally occurring variations in device characteristics enrich
the reservoir’s computational diversity, leading to enhanced
performance particularly in tasks like chaotic time-series
forecasting. Instead of viewing variability as purely detrimental,
it can be strategically leveraged to improve adaptability and
generalization. Optimizing variations in fabrication, such as
tuning material properties, deposition uniformity, and device
heterogeneity, could further enhance the effectiveness of the

physical RC by balancing randomness and stability for
improved predictive accuracy.

The performance of our SE-FET-based reservoir is first
benchmarked with a conventional network (without any
reservoir), both trained using the same algorithm (linear
regression) for forecasting the Mackey—Glass time series, as
shown in Figure 9(a,b). The SE-FET-based RC system
outperforms a conventional machine learning algorithm for
both single- and four-device-based reservoirs. In Figure 9(a)
we compare the performance of our RC system to that of a
conventional network for long-term prediction with p = 50,
where we vary the number of previous states (x) to study its
impact on system performance. We train and test all three
systems with variable x and plot their performance in Figure
9(a). These results show that the performance of the
conventional and single-device-based reservoir saturates after
10 previous states. On the other hand, in a four-device
reservoir, gradual improvement up to 50 previous states is
observed with RMSE = 0.06. We also study the impact of the
predicted length (p), keeping the number of previous states
fixed at ¥ = 50. With an increasing number of predicted
lengths, it becomes much more challenging due to the chaotic
nature of the Mackey—Glass time series. Here also our four-
device-based reservoir outperforms conventional and single-
device-based reservoirs, showing lower deterioration in
performance with increasing predicted length, as shown in
Figure 9(b). These results reveal that using more SE-FET
devices to increase the reservoir size may lower prediction
errors and extend the duration of accurate prediction.
Additionally, we compared our SE-FET-based RC system
with a long short-term memory (LSTM) model for long-term
time-series forecasting. The LSTM, implemented in Keras,*®
featured a single 45-unit LSTM layer and a dense output layer
with 50 neurons, matching our four-device SE-FET reservoir in
a setup for prediction with (10760 vs 100S50) trainable

(a) (b)
——Target RMSE (Train) = 0.01 — Target RMSE (Test) = 0.01
1.0 } — Train 1.0 —— Short Term Prediction (P=1)
3 g
£ 2
g el ) s05}
< £
<
0.0 £ "
ingle Device Reservoir 0.0}
L L L . 1 1 1 ) Single Device Reservoir
0 100 200 300 400 500 600 700 700 860 960 r 0‘00 5 1'0 5
Time Steps X
Time Steps
(c) (d)
— Target RMSE (Test) = 0.12 —Target RMSE (Test) = 0.06
10l= Long Term Prediction (P=50) 10 —— Long Term Prediction (P=50)
3 3
2 2
gosf g o5}
< <
0.0} Single Device Reservoir 0.0 " Four Devic‘e Reservoir‘ X .
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Figure 8. Training and testing performance of the readout network for the prediction of the Mackey—Glass time series. (a) Training performance
of the readout network with a reservoir consisting of a single device. (b) Short-term prediction performance of the trained readout network using a
single-device reservoir. (c) Long-term prediction performance using a single-device reservoir, resulting in an RMSE of 0.12. (d) Long-term
prediction performance using a four-device reservoir, where four devices operate in parallel to process the same input. Their combined responses
are concatenated to train the readout network, achieving an RMSE of 0.06, which represents a 50% improvement over that of the single-device

reservoir.
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Figure 9. A comparison of performance of an SE-FET-based reservoir
with a conventional machine learning algorithm (linear regression) for
time-series forecasting. (a) The performance comparison for long-
term prediction p = SO as a function of number of previous states (x).
(b) A comparison of the performance for increasing predicted length
(p), keeping the number of previous states fixed at x = S0.

parameters for the LSTM and RC, respectively. As shown in
Figure 10, the LSTM achieved a lower RMSE (0.04) than our

Il Single Device Reservoir|
I Four Device Reservoir
I Linear Regression

0.04

SE-FET based RC
System

Machine Learning Model

Figure 10. Comparison of long-term time-series forecasting perform-
ance (p = 50) between the SE-FET-based RC system and state-of-the-
art machine learning models such as linear regression and long short-
term memory (LSTM) on the chaotic Mackey—Glass data set.

SE-FET RC system (0.06). This is consistent with literature
highlighting the superiority of state-of-the-art machine learning
models such as LSTM in capturing long-term dependencies
and complex temporal patterns over reservoir computing.”"
However, despite having a similar number of trainable
parameters, LSTMs are significantly more computationally
expensive due to their recurrent connections and four internal
weight matrices (input, forget, cell, and output gates), leading
to increasing complexity per time step. Backpropagation
through time further adds to memory overhead due to the
requirement to store intermediate states. In contrast, our SE-
FET-based RC system captures temporal dependencies

through computation-in-memory processing, eliminating re-
current computations. With a simpler linear regression readout,
it reduces memory and computational costs while maintaining
competitive performance, making it ideal for resource-con-
strained, low-latency edge computing applications.

Next, we benchmark the performance of the SE-FET-based
reservoir with previously reported work, as shown in Table 2.

Table 2. Summary of Various Physical Reservoir Computing
Implementations for the Task of Time-Series Forecasting

Number
Description of Prediction Time-
[ref] devices length series data Error
WO, 20 50 Mackey— ~0.2 (MASE)
memristor’ Glass
TiOx/TaOy _ 25 1 Henon 0.04 (NRMSE)
memristor map
$nO TFT* 3 50 Mackey— 0.08 (NRMSE)
Glass
ZnO/ 4 50 Mackey— 0.06 (RMSE)
Ta,O4SE- Glass
FET | this
work]

In this work, we demonstrate an SE-FET-based RC system that
uses S50 previous states to predict the next 50 states without
any feedback loop (i.e, no predicted data fed back into the
reservoir as new input) or update cycle in contrast to
previously reported work.”** This makes the implementation
of this approach eflicient and straightforward. Further, our
reservoir consists of four devices, with each device considering
SO previous states, resulting in a total of 200 (4 X S0) input
features to the readout network. This is a significant reduction
compared to a WOx memristor-based reservoir,” which uses
1000 features for predicting a single time step.

Our longer time scales, though slower than conventional
two-terminal devices, offer advantages in energy-efficient,
event-driven Al systems, making them well-suited for
applications such as smart sensors, IoT, and wearable devices.
In these scenarios, slower dynamics align naturally with input
signals, enabling efficient processing. However, if a faster
operation is required, the device speed can be significantly
enhanced through scaling and optimization.

Beyond MNIST classification and Mackey—Glass series
forecasting, scaling to larger data sets or more complex tasks
such as high-resolution color image classification, which
involves multichannel (RGB) dependencies and intricate
spatial relationships, or large-scale speech processing, which
requires fine-grained temporal pattern extraction over long
durations, will demand handling higher input dimensionality,
complex feature interactions, and high computational
resources. Extending the system to these applications may
benefit from hierarchical reservoirs,”” where multiple layers
progressively extract more abstract features, and adaptive
learning mechanisms, which dynamically tune reservoir
properties (e.g., conductance, short-term memory) to enhance
scalability and performance.

4. CONCLUSIONS

We experimentally demonstrate a read voltage controlled
decay time of the SE-FET, which enables an extended
temporal input of 6 bits to a reservoir, with a classification
accuracy of 95.41%, while utilizing a notably lowest number of
reservoir outputs (96) per image. Consequently, this reduces
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the hardware and training costs of edge systems significantly.
We demonstrate a simple enhanced framework for long-term
chaotic time-series forecasting without feedback and with a
reduced number of devices. Further, the use of a separate
control terminal for read and write operation simplifies the
reservoir implementation compared with that in two-terminal
devices.
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