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Abstract: GaN HEMTs based on polarization super junction (PSJ) technology offer signifi-

cant improvements in efficiency and power density over conventional silicon (Si) devices

due to their excellent material characteristics, which enable fast switching edges and lower

specific on-resistance. However, due to the presence of an uninterrupted channel between

drain and source at zero gate bias, these devices have normally-on characteristics. In this

paper, the performance of a 1200 V GaN FET utilizing PSJ technology in cascode configura-

tion is reported. The device working principle, characteristics, and switching behavior are

experimentally demonstrated. The results show that cascoded GaN FETs utilizing the PSJ

concept are highly promising for power device applications.

Keywords: cascode; polarization super junction; 1200 V; GaN-FET

1. Introduction

GaN-based power switches have gained significant traction in recent years due to

their excellent performance, which enables high efficiency and high-power density power

electronic systems. The unique material characteristics of GaN, such as its high critical elec-

tric field of 3.3 MV.cm−1 and wide bandgap of 3.45 eV, make it possible for the fabrication

of high-voltage devices with short drift regions. One of the distinct attributes of GaN is the

ability to grow thin, high-quality epitaxial layers on widely available foreign substrates

such as Si, SiC, and sapphire. However, the use of Si substrate for high-voltage devices of

1200 V and above presents substantial challenges such as crack formations due to thick GaN

layers that compromise reliability, performance, and costs [1]. On the other hand, sapphire

offers superior cost performance due to its insulating properties, which allow for the use

of thin substrate and buffer layers [1]. Lateral GaN HEMTs utilizing GaN/AlGaN/GaN

double heterostructures of appropriate dimensions and material properties can benefit

from the polarization properties unique to group III–V materials, which can lead to the

formation of the high density and high mobility of electrons (2DEG) and holes (2DHG) at

respective heterointerfaces. These unique characteristics enable the design of high-voltage

devices with low specific on-state resistance, particularly in the form of polarization super

junction (PSJ) technology [2–5]. These PSJ devices can make use of the charge balance

principle to achieve low specific on-resistance, ideally beyond the one-dimensional (1D)

material limit [6,7]. Meanwhile, conventional GaN devices rely on several field plates to

enhance breakdown voltage, which adds to processing and fabrication difficulties [1,8].

Due to the presence of a polarization-based 2DEG channel between drain and source

in the absence of gate bias (i.e., VGS = 0 V), conventional GaN HEMTs have normally-on
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characteristics. This behavior necessitates the application of a negative gate voltage to turn

off the device, which is not considered desirable from an application viewpoint. Normally-

off devices are preferred from a fail-safe point of view in the event of gate drive failure and

to avoid shoot-through during circuit power-up sequence. There are various techniques

that can shift the threshold voltage into a positive regime to create an enhancement mode

(e-mode) of operation. One such popular method is the implementation of a p-GaN or

p-AlGaN gate to deplete the 2DEG beneath the gate area to achieve an e-mode device [9].

Another method works by employing a recessed gate structure, where the thickness of the

AlGaN layer beneath the gate is sufficiently reduced to interrupt the 2DEG channel [10].

Similarly, a recessed MOS gate structure has been demonstrated [11]. Many of the reported

techniques rely on reducing the conductivity of the channel regions, which leads to an

increase in on-state resistance. Moreover, these methods do not offer compatibility with

standard MOSFET-based gate drivers. Another approach is the implementation of a cascode

structure, which combines a high-voltage GaN HEMT with a low-voltage Si MOSFET in

series configuration that enables compatibility with MOSFET-based gate drivers. Although

several studies have reported 650 V cascode configurations [12–16], characteristics of higher-

voltage devices are yet to be addressed in detail. In this paper, a 1200 V cascode GaN FET

utilizing the state-of-the-art PSJ GaN HEMT is demonstrated. The device is evaluated

through experimental measurements of static and dynamic characteristics to determine

power losses.

2. Principle of Operation

The concept of super junction in silicon (Si) devices has paved the way for the de-

velopment of low-resistance devices with geometrically optimized drift regions that can

operate beyond the 1D material limit. This is normally achieved by charge balance through

precise control over doping profiles of n-type and p-type regions [17,18]. Meanwhile, PSJ

devices benefit from the charge balance arising out of polarization properties, and there is

no impurity doping involved. The charge balance is achieved by the simultaneous presence

of positive and negative polarization charges confined in respective double heterojunction

interfaces [19]. As the device turns off, the 2DEG and the 2DHG are depleted through

respective terminals, which leads to an even distribution of the electric field, which enables

the device to withstand high voltages without the need for field plates. The p-GaN layer

provides an ohmic contact to the 2DHG, which can be connected to the gate [19] or the

source [3], depending on the design. Due to the uniform distribution of the electric field,

PSJ devices do not suffer from the current collapse phenomenon [2]. A cross-sectional view

of the depletion mode PSJ GaN HEMT with the p-GaN connected to the gate is shown in

Figure 1.

Overall, PSJ devices offer excellent performance and high-reliability features at a low

cost. Competing technologies such as SiC MOSFETs offer the benefits of wide bandgap

materials. However, the fabrication costs and environmental impact associated with SiC

devices pose major challenges to the widespread acceptance of the technology. A detailed

discussion on the benefits of PSJ technology compared to SiC MOSFETs has been reported

in [1].

A detailed analysis of the device characteristics and performance of the PSJ GaN

HEMT is reported in [2,4]. In this work, as illustrated in Figure 2, a cascode configuration

utilizing a high-voltage (HV) PSJ GaN HEMT and a low-voltage (LV) Si MOSFET that are

rated for 1200 V and 30 V, respectively, is presented.
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Figure 1. The electric field distribution (left) and a cross-sectional view of the PSJ GaN HEMT (right).
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Figure 2. Cascode configuration (left) and the top view of a 1.2 kV PSJ GaN HEMT (right). Gate,

drain, and source are marked as G, D, and S, respectively. The device image is reproduced from [4].

The voltage is effectively supported by the 1200 V PSJ GaN HEMT featuring an

active area of 17 mm2. The device is fabricated on a sapphire substrate. The length of the

drift region (LPSJ) is 20 µm, which determines the voltage blocking capability. The actual

avalanche breakdown is more than 3.1 kV. The turn-on is initiated by the application of a

positive gate bias above the threshold of the LV MOSFET. Once the MOSFET is turned on,

the gate of the HEMT is shorted to its source, thereby causing the device to turn on. The

turn-off occurs by removing the MOSFET’s gate voltage, which leads to the drain potential

to increase, which is equivalent to a negative gate voltage being applied to the HEMT. Once

the drain voltage surpasses the threshold voltage of the HEMT, both devices are turned

off. Under turn-off conditions, the output capacitances of the HEMT and the MOSFET

form a capacitive voltage divider. The voltage distribution across these two capacitors can

cause avalanche breakdown of the MOSFET. To mitigate this issue, various techniques can

be utilized such as placing a parallel capacitor [20] with the MOSFET. However, no such

additional circuitry is added in this cascode configuration. Since the gate of the HEMT is

controlled through the MOSFET, the effect of the gate driver is expected to be minimal in

terms of controlling the switching slew rates. A summary of the devices is presented in

Table 1.
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Table 1. Summary of key parameters of the cascode and its constituents. Tamb = 25 ◦C.

PSJ GaN HEMT Cascode GaN FET Si MOSFET

Breakdown voltage 1200 V 1200 V 30 V
On-resistance 93 mΩ/120 mΩ * 125 mΩ 5 mΩ

Threshold voltage −4.75 V 2 V 2 V

* Measured at 3 V and 0 V, respectively.

3. Experimental Methodology

The device is evaluated through a variety of static and dynamic measurements. The

measurements were performed at a room temperature of 25 ◦C unless otherwise specified.

A curve tracer/power device analyzer was employed to perform the static characterizations.

These tests include pulsed I–V characterization of the output, transfer, and leakage current

characteristics at various temperatures. To analyze the switching behavior of the device, a

standard double pulse test, as shown in Figure 3, was set up.
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Figure 3. Circuit diagram of the experimental setup (left) and typical switching waveforms (right).

The circuit employs an inductive load of 444 µH in parallel with a 1200 V SiC Schottky

diode. A standard isolated gate driver generates two pulses with an amplitude of 15 V and

0 V for turn-on and turn-off, respectively. The rise time and fall time are measured as the

time taken for the drain voltage to switch from 10% to 90% of its final value. The switching

energy losses are derived from the integration of the dissipated power over the switching

period as given by Equation (1).

ETotal = EOn + EO f f =

∫
VDrain.IDraindt (1)

Additionally, the unclamped inductive switching (UIS) capability of the constituent

GaN HEMT is evaluated using the same circuit presented in Figure 3 without the free-

wheeling diode. The supply voltage is fixed at 50 V. The device is subject to UIS at different

pulse widths until failure.

4. Experimental Results and Discussion

4.1. Static Characteristics

The output I–V characteristics of the device were measured in pulse mode at various

gate voltages at 25 ◦C, as illustrated in Figure 4. Additionally, the normalized on-resistance

was extracted from the measurements at different temperatures at a drain current of 5 A.
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Figure 4. Measured (a) output I–V characteristics at RT and (b) normalized on-state resistance at

different temperatures. The pulse width is 250 µs.

The total on-state resistance corresponds to 125 mΩ at RT and a gate voltage of 15 V.

The on-resistance contribution of GaN HEMT is dominant in this case, accounting for

approximately 120 mΩ. For this reason, the on-resistance variation (slope) as a function of

gate voltage is minimal in cascode devices. The device exhibits a strong positive tempera-

ture coefficient of on-resistance due to the unipolar current flow. In the reverse conduction

mode, the cascode GaN FET behaves similarly to conventional power MOSFETs. The

measured reverse I–V characteristics of the device are illustrated in Figure 5.
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Figure 5. Measured reverse I–V characteristics of the 1.2 kV PSJ cascode GaN FET as a function of

different gate voltages at RT. The pulse width is 250 µs.

The body diode of the LV MOSFET provides a path for current flow in the absence of

gate bias. Applying a positive gate bias lowers the conduction threshold, and eventually

the entire current flows through the channel, bypassing the body diode.

The transfer characteristics of the device were measured as a function of temperature

and are shown in Figure 6a. The device exhibits a positive threshold voltage of 2 V at RT,

which is governed by the constituent MOSFET. At a higher temperature, the threshold

voltage decreases because of the increased amount of charge carriers [21]. However, the

drain current is reduced due to the increase in the on-resistance of the GaN HEMT.
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Figure 6. Measured (a) transfer I–V characteristics and (b) off-state leakage current characteristics at

different junction temperatures. VGS = 0 V.

The off-state leakage current was measured as a function of different junction temper-

atures at a gate-source voltage of 0 V, as illustrated in Figure 6b. The device shows a very

small leakage current of less than 0.5 µA at 25 ◦C, which increases to 20 µA at 175 ◦C due

to the wide bandgap nature of PSJ GaN HEMTs. This feature is considered to be important

for the HEMT to have a low-leakage current to prevent premature avalanche breakdown of

the LV MOSFET under switching conditions.

4.2. Dynamic Switching Characteristics

4.2.1. Switching Characteristics

The switching characteristics of the device at different load currents, including its on

and off states, are illustrated in Figures 7a and 7b respectively.
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Figure 7. Measured (a) turn-on and (b) turn-off switching waveforms of the 1.2 kV PSJ cascode GaN

FET at different load currents. RG = 22 Ω, Tamb = 25 ◦C, VGS = 15/0 V.
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It can be observed that under low load conditions, the slew rate is lower. This is at-

tributed to the parasitic capacitances of the device and circuit being charged and discharged

at a slower rate during the switching transients. Based on the measurements, the switching

energy losses were extracted, as shown in Figure 8.
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Figure 8. Measured switching energy losses of the 1.2 kV PSJ cascode GaN FET at different load

currents. VDS = 600 V, Tamb = 25 ◦C.

The switching losses increase with the load as the overlap of current and voltage

becomes larger. The turn-on losses are higher than the turn-off, particularly noticeable at

higher-load currents due to the impact of freewheeling diode on switching performance,

which in this case is a SiC Schottky diode to minimize this impact.

4.2.2. dV/dt Controllability

GaN HEMTs exhibit high speed switching performance, which is ideal for high-

frequency operation. However, the fast-switching edges of GaN can be challenging in

certain applications such as motor drives. High dV/dt leads to degradation or failure of

motor winding, as well as electromagnetic interference (EMI) [22,23]. This is particularly

problematic in turn-off, as the overshoot voltage can exceed the components’ rating. Con-

ventionally, these issues can be mitigated via optimizing the gate resistor value to fit the

application requirements. In the cascode configuration, the gate of the GaN HEMT is con-

trolled via the LV MOSFET through an indirect control. The turn-off switching waveforms

of the cascode GaN FET are shown in Figure 9.

As evident from the graph, the slew rate remains constant regardless of the gate

resistance. It is noteworthy that the switching delay increases with the gate resistance.

Therefore, to control the slew rate, cascode devices require external circuitry such as a

snubber in parallel with the device, which can potentially impact the efficiency and require

additional components.
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Figure 9. Measured (a) turn-off switching waveforms and (b) turn-off dV/dt controllability and rise

time of the 1.2 kV PSJ cascode GaN FET at different gate resistances. Tamb = 25 ◦C, VGS = 15/0 V.

4.3. Power Loss Analysis

Based on the measured data, the power loss contributions from conduction and

switching losses at different frequencies are shown in Figure 10.
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Figure 10. Measured power loss contributions in the 1.2 kV PSJ cascode GaN FET at different load

currents and frequencies. RG = 22 Ω, VDC = 600 V, Tamb = 25 ◦C, VGS = 15/0 V.

The device exhibits low power losses under various load conditions, and these losses

are significantly lower than those of its silicon counterparts. At higher operating tempera-

tures, it is expected that the conduction losses will become more significant due to the strong

influence of temperature on the on-resistance. However, as reported in [2], the switching

losses in PSJ HEMTs do not significantly change at elevated operating temperatures. The

low switching loss profile of the PSJ GaN FET is ideal for high-frequency operation, which

allows for a reduction in the size of passive components, thereby resulting in lower system

costs and increased power density.
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4.4. UIS Capability

GaN HEMTs, unlike conventional Si unipolar devices, cannot withstand avalanche

transients. Consequently, most of the UIS energy is absorbed by the device parasitic

capacitances, leading to a destructive avalanche breakdown [24–26]. In this section, the UIS

capability of the constituent PSJ GaN HEMT is presented. The device was subjected to UIS

at different pulse widths until failure. The voltage and current waveforms of the device

prior to failure and at the moment of failure are shown in Figure 11.
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Figure 11. Measured (a) UIS waveforms and (b) avalanche energy of the 1.2 kV PSJ cascode GaN FET

at different pulse widths. VDC = 50 V, RG = 51 Ω, Tamb = 25 ◦C, VGS = 0/−15 V.

The measurements show that the device can withstand over 3.1 kV before the

avalanche breakdown. The voltage is not clamped, as the device operates below the

onset of avalanche breakdown. The negative current flow which occurs at the end of the

applied pulse is due to the capacitive responses of the devices. The discharge of stored

charges in parasitic capacitances generates a negative current flow. The absorbed energy

before the failure is about 0.5 mJ. This large margin of breakdown voltage guarantees that

the device remains protected from sudden surge voltage transients.

5. Conclusions

This work has presented, for the first time, a 1200 V PSJ GaN FET in cascode con-

figuration utilizing unique PSJ technologies. The device characteristics and switching

performance have been experimentally demonstrated. The device exhibits very low power

losses under various load conditions. In terms of the controllability of dV/dt, the cascode

device naturally switches at very high slew rates without any noticeable change, even

when the gate resistance changes. External circuitry may be added if slower slew rates are

needed. Overall, cascode GaN FET based on PSJ technology offers high performance and is

ideal for integration into high-power-density, high-efficiency applications.
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