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Abstract

Social media’s global reach amplifies the spread of infor-
mation, highlighting the need for robust Natural Language
Processing tasks, like stance detection, across languages and
modalities. Prior research predominantly focuses on text-only
inputs, leaving multimodal scenarios, such as those involv-
ing both images and text, relatively underexplored. Mean-
while, the prevalence of multimodal posts has increased sig-
nificantly in recent years. Although state-of-the-art Vision-
Language Models (VLMs) show promise, their performance
on multimodal and multilingual stance detection tasks re-
mains largely unexamined. This paper evaluates state-of-the-
art VLMs on a newly extended dataset covering seven lan-
guages and multimodal inputs, investigating their use of vi-
sual cues, language-specific performance, and cross-modality
interactions. Our results show that VLMs generally rely more
on text than images for stance detection and this trend persists
across languages. Additionally, VLMs rely significantly more
on text contained within the images than other visual content.
Regarding multilinguality, the models studied tend to gener-
ate consistent predictions across languages whether they are
explicitly multilingual or not, although there are outliers that
are incongruous with macro F1, language support, and model
size.1

Introduction

The ubiquity of social media has led to an increased reliance
on these platforms for news and science communication,
often surpassing traditional, slower-to-publish sources such
as print news media and peer-reviewed scientific journals
(Matsa and Eva 2015; Gürer, Hubbard, and Bohon 2023). A
side-effect of this is an increase in the speed of information
spread, including rumors and fake news (Ceylan, Anderson,
and Wood 2023). Understanding the spread of information
on social media requires knowing the viewpoints users take
with respect to claims, topics, or entities. This is the purview
of stance detection, a key task within Natural Language Pro-
cessing (NLP), which aims to automatically classify an au-
thor’s viewpoint with respect to a specific target.

While stance detection has been studied extensively on
English text, efforts to extend it to modalities beyond text
and languages beyond English are relatively sparse (cf.

1We will make our code and data publicly available upon pub-
lication.

Küçük and Can (2020) sections 9.1 and 9.2). Additionally,
the studies that do go beyond tend to investigate only one or
the other, and in the case of other languages tend to focus
on one or a few languages at a time. One potential reason
is that obtaining high quality data requires significant time
and resources. Still, extending stance detection systems to
other modalities and languages is crucial, as rumors on so-
cial media often spread across languages (Singh, Bontcheva,
and Scarton 2024), and posts often make use of images or
videos to reinforce their message. For example, a user might
comment on a news segment, use an image as supporting ev-
idence for a scientific claim, or post a meme that expresses
their view of a political figure.

Recent development of Vision Language Models
(VLMs), available within easy-to-use tools such as Chat-
GPT2 and Huggingface3, provides powerful and accessible
means to perform stance detection using both text and im-
ages. Furthermore, the Large Language Models (LLMs) that
form the backbone of VLMs are often capable of processing
and analyzing text in a variety of languages. However, to
our knowledge, there has been no study investigating the
ability of VLMs to perform stance detection using both text
and image modalities, nor has there been any examination
of their performance on this task across languages.

Given this research gap, this paper investigates the perfor-
mance of state-of-the-art VLMs for stance detection at the
intersection of modalities beyond text and languages beyond
English. Our specific contributions are threefold.

• Image Use in Multimodality: an analysis of the extent
to which VLMs can effectively use information from im-
ages when performing stance detection.

• Multilinguality: an investigation into the performance of
VLMs on stance detection across languages.

• Joint Multimodality and Multilinguality: an explo-
ration of the interaction between text and images across
languages in VLMs for stance detection.

Our experiments make use of a recently developed multi-
modal stance detection dataset in English, which we extend
to cover six additional languages (Liang et al. 2024).

2https://openai.com/index/dall-e-3
3https://huggingface.co
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Background

We begin with an overview of the stance detection task,
highlighting previous efforts on multimodal and multilin-
gual approaches, including a discussion of currently avail-
able datasets. We then provide a review of the general archi-
tecture of VLMs, as well as previous research that attempts
to use them for stance detection.

Stance Detection

Stance detection is the task of automatically determining the
viewpoint, position, or sentiment of an author regarding a
target. This target could be a topic (e.g., a news event or
scientific theory), an entity (e.g., a political figure), or even
the viewpoint of another author (e.g., another tweet express-
ing a viewpoint about a political figure) (Küçük and Can
2020). Generally, stance detection is formulated as a paired
text classification problem where the input is a stance text
and a target text (e.g., a tweet and the name of a political
figure) and the output is one of Favour, Against, or Neutral.

Stance detection is fundamental to wrangling the spread
of rumors online. Interest in this task has therefore grown
alongside the increased popularity of social media, which
has both lowered the barrier to content publishing and in-
creased the speed at which content can be disseminated (AL-
Dayel and Magdy 2021). Early efforts focused on supervised
classification with SVMs (Elfardy and Diab 2016; Moham-
mad, Sobhani, and Kiritchenko 2017), naive Bayes (Walker
et al. 2012), or neural networks (Siddiqua, Chy, and Aono
2019; Li and Caragea 2019), which led to models based
on pretrained transformers (Fajcik, Smrz, and Burget 2019;
Kawintiranon and Singh 2021; Khandelwal 2021). The re-
cent development of LLMs has introduced the possibility of
0-shot stance detection, although research so far has evalu-
ated mostly GPT models (Lan et al. 2024; Liyanage, Gokani,
and Mago 2023; Suppa et al. 2024). The exception is Cruick-
shank and Ng (2023) who performed evaluations with both
0-shot and fine-tuned LLMs, finding that fine-tuning does
not necessarily increase performance.

Research on multimodal and multilingual stance detec-
tion is more sparse. There are only a few studies using im-
ages alongside text (Hu et al. 2023; Wang et al. 2024a; Niu
et al. 2024), including Liang et al. (2024) which introduced
the dataset used in this work. Stance detection on languages
besides English has generally focused on one or a few lan-
guages at a time. These include Zotova et al. (2020) (Cata-
lan and Spanish), Vamvas and Sennrich (2020) (German,
French, Italian), Alhindi et al. (2021) (Arabic), and Zheng
et al. (2022) (Hindi, Arabic). To our knowledge the only ex-
ception is the COFe dataset, which contains comments from
a debate platform covering 26 languages (Barriere, Jacquet,
and Hemamou 2022).

Vision Language Models

Vision Language Models (VLMs) are an extension of LLMs
to images and videos. Generally, they are comprised of a
vision model and an LLM. The vision model encodes the
image input, which is then projected using a neural network
into a latent space consistent with the text embeddings of

Topic Target # F A N

COVID-
19

Cloroquinine 141 35.5% 33.3% 31.2%

Russia-
Ukraine

Russia 111 2.7% 67.6% 29.7%
Ukraine 108 60.2% 3.7% 36.1%

2020 US
Election

Trump 170 78.9% 14.1% 7.1%
Biden 128 50.8% 37.5% 11.7%

Taiwan
Question

China 140 24.3% 62.1% 13.5%
Taiwan 193 77.7% 4.1% 18.1%

Mergers * 787 16.9% 8.3% 74.8%

Total 1778 29.5% 26.2% 44.4%

Table 1: Number of examples (#) and proportion of each
stance label for each topic and stance target in the validation
split of the dataset released by Liang et al. (2024). The stance
labels are indicated by (F)avour, (A)gainst, (N)eutral. The
Mergers and Acquisitions topic covers 5 targets, which we
combine here to save space.

the LLM. These “image tokens” are then concatenated with
the text tokens and input to the LLM which generates text
output. An in-depth review of VLMs can be found in Yin
et al. (2024).

To the best of our knowledge, the only existing evaluation
of VLMs on multimodal stance detection is given in Liang
et al. (2024), who evaluate Qwen-VL and GPT4-Vision.
While they compare these to a variety of other text-only,
vision-only, and multimodal models, these belong to dif-
ferent model families (e.g., BERT (Devlin et al. 2019), ViT
(Dosovitskiy et al. 2021), and CLIP (Radford et al. 2021)). It
is thus not possible to directly compare their results to gain
insight into models’ use of the text and image modalities, as
we aim to do here.

Evaluation Methodology

This section describes the dataset used in our experiments,
how we chose which models to evaluate, and an overview of
each of our three experiments.

Dataset

Despite the importance of treating text and images together
when performing stance detection on social media data,
there is a lack of datasets that include both modalities, not
to mention both modalities covering languages other than
English. We therefore use the dataset introduced by Liang
et al. (2024), which contains tweet-image pairs in English
collected from X covering 5 news topics. A summary of the
dataset is given in Table 1.

Preprocessing
In line with X’s developer agreement4, the dataset released
by Liang et al. (2024) contains only post IDs. We therefore
obtain the tweets and their paired images via the X developer

4https://developer.x.com/en/more/developer-terms/agreement-
and-policy



API5. All tweets are normalized and anonymized by replac-
ing all URLs with the string HTTPURL and all user mentions
with the string @USER. Following Liang et al. (2024) and
for fair comparison with their results, we use examples with
videos and GIFs by extracting the first frame as an image.

Translating the dataset
The dataset as released contains English-language tweets
only. In order to study the performance of VLMs across lan-
guages, we produce machine translations of this dataset into
6 additional languages: German (de), Spanish (es), French
(fr), Hindi (hi), Portuguese (pt), and Chinese (zh). These lan-
guages were chosen to represent a range of language fami-
lies (Germanic, Romance, other Indo-European, and Sino-
Tibetan) and scripts (Latin, Devanagari, Simplified Chi-
nese). A fair comparison across languages is paramount, so
we opted to translate the dataset to obtain parallel texts –as
opposed to sourcing disparate datasets in other languages–
in order to ensure model predictions are comparable across
languages. We obtained translations using the Google Trans-
late API.6 While it would be ideal to obtain human transla-
tions of the dataset to eliminate errors introduced by ma-
chine translation and remain faithful to the natural idiomatic
variability that occurs across languages, this was not pos-
sible because human translation is a cumbersome and ex-
pensive task, that cannot be easily reproduced for multiple
languages. Still, Google Translate has been shown in previ-
ous evaluations to perform well on these languages, and we
maintain that the benefits of having parallel texts outweigh
the potential pitfalls of using machine translation (Aiken
et al. 2019; Taira et al. 2021). The result is 7 datasets: the
original English dataset plus its translations into the 6 lan-
guages.

Models

We chose 4 state-of-the-art open-source VLMs to evaluate
on the above datasets, detailed in Table 2. We chose these
particular models as they have similar overall model size and
they provide a diverse sample of language model (LM) and
vision model (VM) components. Additionally, the LM com-
ponents of each model are either explicitly multilingual (e.g.
Llama 3.1) or have demonstrated multilingual capabilities
despite being advertised as English only (e.g., Gemma2). We
provide a summary of each model’s multilingual capabilities
later in Table 5.

VLM # LM VM

InternVL2 7B InternLM2.5 7B InternViT 300M
Qwen2-VL 8B Qwen2.5 7B ViT 675M
Ovis 1.6 9B Gemma2 9B SigLIP 400M
Llama-Vision 11B Llama 3.1 10B ViT 860M

Table 2: Vision Language Models (VLMs) evaluated or-
dered by total model size in number of parameters (#) as
well as their Language Model (LM) and Vision Model (VM)
components.

5https://docs.x.com/x-api/introduction
6https://cloud.google.com/translate/docs/reference/rest/

<|image|> From the image and tweet,

determine the stance regarding

{target}. The possible stance labels

are "favor", "against", or "neutral".

Answer with the label first, before

any explanation. Tweet: {tweet}

From the tweet and the text extracted

from the image, determine

the stance regarding {target}. The

possible stance labels are "favor",

"against", or "neutral". Answer with

the label first, before any

explanation. Tweet: {tweet},

Image Text: {image_text}

Figure 1: The instruction prompt templates for the Tweet
& Image (top) and Image Text (bottom) experiments.
<|image|> is the special token whose embedding is set
according to the vision model, {target} is the stance tar-
get for the given example, such as “Joe Biden” or “Merger
and acquisition between Aetna and Humana”, {tweet} is
the tweet text, and {image text} is the plain text ex-
tracted from the image by the OCR tool.

Our implementation uses Huggingface and Pytorch
(Paszke et al. 2019). In all experiments, we evaluate the
models using 0-shot prediction on the validation split. We
fix the random seed to 0 for all experiments to ensure repro-
ducibility. All experiments were run on a single A100 GPU
with 40GB of VRAM. The instruction prompt is always pro-
vided to the model in English no matter the language of the
target dataset, as we found this to perform better overall than
translating the prompt into the target language. The prompt
template is given in Figure 1.

In the following sections we describe our three sets of ex-
periments, which target multimodality, multilinguality, and
their intersection, respectively.

Experiment 1: Multimodality

According to Liang et al. (2024), 46% of images contained
in the dataset convey stance information. It is thus crucial to
determine whether the VLMs are actually leveraging infor-
mation contained in the images to predict the stance. There-
fore, the goal of this set of experiments is to determine the
extent to which each model uses its vision component. We
conduct two experiments. The first examines the overall con-
tribution of the text and image modalities. The second delves
deeper into which portions of the images are most useful for
prediction. These evaluations are conducted on the original
English dataset only, since this is free from any noise intro-
duced by the machine translations and is the primary lan-
guage for each model’s LM component.

Contribution of text and images
First, it is important to establish the general contribution of
the text and image modalities to the overall performance of
the VLM. We therefore compute the performance in terms



Figure 2: Left: An image which contains text that would be useful for prediction of the stance regarding Donald Trump.
Middle: The same image after covering up the text using the bounding box output of the OCR tool, as used in the Text Blackout
experiments. Right: Likewise for the Content Blackout experiments. Bottom: The plain text extracted by the OCR tool as used
in the Image Text experiments.

of macro F1 of each model in three scenarios:

• Tweet & Image: We input the instruction prompt con-
taining the tweet text as well as the image. This is the
default evaluation scenario.

• Tweet only: We input the instruction prompt containing
the tweet text, but replace the image with Gaussian noise.
This way the model is still forced to use the vision com-
ponent but obtains no useful information from the image.

• Image only: We input the instruction prompt and the im-
age, but leave the tweet text empty. I.e., the {tweet}
variable in the instruction prompt is an empty string.

We then compare the Tweet/Image Only macro F1 scores to
that of the Tweet & Image scenario. Statistical significance
between predictions in each scenario is computed using Mc-
Nemar’s test, which determines whether the errors made by
two systems on the same data points are equal, with a signifi-
cant result indicating different error distributions (McNemar
1947). The results of this experiment will indicate the ex-
tent to which the text and image components on their own
contribute to each model’s overall performance.

The role of text in images
According to the analysis performed by the dataset authors,
24% of the images contain text that is useful for making a
correct stance prediction (cf. Table 2 of Liang et al. (2024)).
Applying the GATE OCR tool7 to the images, we further
found that 67% contain text of any sort. The VLMs we eval-
uate have demonstrated OCR capabilities (cf. Wang et al.
(2024b) appendix A), suggesting that they should be able to
obtain useful information from text contained in the images.
We therefore investigate whether the models’ VM compo-
nents are able to leverage this in-image text when making a
prediction. To test this we introduce three additional experi-
ment scenarios, which ablate certain portions of the images.

• Text Blackout: Using the bounding boxes detected by
the GATE OCR tool, we cover all text in each image with
a black box. In other words, we remove the text cues from
the images while retaining all other visual information.

7https://cloud.gate.ac.uk/shopfront/displayItem/ml-ocr

• Content Blackout: This scenario is the inverse of Text
Blackout. Instead of covering up all text in the image, we
cover up all but the text. The goal of this experiment is to
isolate the text from all other visual information.

• Image Text: We extract the plain text from the images
using the OCR and craft a new prompt that provides the
models with both the tweet and the image text, shown
in Figure 1. Like Content Blackout, this isolates the text
cues from other visual cues but also bypasses the visual
encoder entirely. In this case, the VM is only ever given
Gaussian noise.

In each scenario, we evaluate the models in the Image
Only and Tweet & Image scenarios, using the blacked out
image or the plain text extracted from the image. Compar-
ing the results from each to the original, unmodified Image
Only and Tweet & Image results will provide insight into
how the visual component of each model is using the con-
tent of the images. Additionally, comparing the Image Text
experiments to the Content Blackout experiments specifi-
cally will tell how how effectively the visual components
are leveraging text contained in the image. Examples of the
model inputs in each scenario are given in Figure 2.

Finally, we further explore the effect of in-image text on
model predictions by estimating a logistic regression model
to predict whether a VLM’s prediction changes from correct
to incorrect after blacking out portions of the image. The
resulting regression coefficients will show whether, on av-
erage across the dataset, removing a portion of the image is
correlated with a model changing a correct prediction to an
incorrect one, which would suggest that content is helpful
for making correct predictions.

Experiment 2: Multilinguality

As discussed in the introduction, information online often
spreads across geographic regions and languages. Given that
the LM components of many VLMs demonstrate multilin-
gual capabilities, it is important to determine whether pre-
diction performance is consistent across languages given in-
put that is semantically identical. Thus, in this set of exper-
iments we compare the performance of each model across



languages, using the translated datasets to control for seman-
tic content. We first conduct a brief evaluation regarding the
extent to which each VLM supports each language. Then,
we perform a comparative model evaluation that investigates
the following two ways in which predictions may differ.

Performance across languages
As in Experiment 1, we compare the macro F1 score of each
model across the dataset languages in the Tweet Only, Im-
age Only, and Tweet & Image scenarios, and perform a Mc-
Nemar’s test between predictions in each language and the
English results to determine whether there is a statistically
significant difference in the prediction errors.8

Agreement between languages
A model may have similar performance in two languages
as measured by F1 score but high disagreement at an in-
stance level. For example, two evaluations may have similar
numbers of a certain class predicted (in)correctly, but the
precise examples that they predict (in)correctly don’t over-
lap. In essence, we are interested in measuring the extent to
which a model agrees with itself when the tweet language
changes. We measure this by computing the Cohen’s kappa
between the predictions in each language for each model.
Because the inputs in two languages are semantically iden-
tical and their label distributions are the same, we would ex-
pect that a model “fluent” in each language would produce
exactly the same labels for each language and produce ran-
dom labels for any language it does not understand.

Experiment 3: The Intersection of Multimodality
and Multilinguality

Experiments 1 and 2 investigate modality and language sep-
arately. Here, we investigate how the impact of input lan-
guage on each VLM’s reliance on the text and image modal-
ities. To do this we conduct the following experiments.

• Because the image input is language-independent, the
amount of information it is able to provide to the model is
the same for each language (this is confirmed later in Fig-
ure 4). We therefore investigate the contribution of the vi-
sion modality on top of the tweet by measuring the differ-
ence in F1 between the Tweet & Image and Tweet Only
scenarios for each language. A larger positive difference
suggests a greater reliance on the image input.

• To investigate the effect of in-image text vs. other im-
age content, we estimate a logistic regression model for
inputs in each language besides English as we did in Ex-
periment 1. We then compare the resulting regression co-
efficients to those for English. A difference in coefficients
suggests the model is more or less reliant on that type of
image content for the target language.

Results

We here present and discuss the results of each set of ex-
periments in turn. We provide a high-level summary of our

8Because the prompt is always in English and the translated
tweet is not provided, we expect the performance in the Image Only
scenario to be identical across languages.

Figure 3: Performance of each VLM on the English dataset
for each evaluation scenario. Statistical significance vs.
Tweet & Image indicated as * p ≤ 0.05, ** p ≤ 0.005.

findings as well as key takeaways later in the Discussion sec-
tion.

Experiment 1: Multimodality

Figure 3 shows the performance of each VLM in the Tweet
Only, Image Only, and Tweet & Image scenarios on the En-
glish data. Three of the four models (InternVL2, Qwen2,
and Ovis) perform significantly better in the Tweet Only
and Tweet & Image scenarios than the Image Only scenario.
This is intuitive, as the analysis in Liang et al. (2024) found
that only 46% of images contain information relevant to the
stance label. The exception is Llama-Vision, which performs
the worst in the Tweet Only scenario and the worst overall
among the models, despite having the greatest number of
parameters at 11B. Llama-Vision does, however, have the
largest vision model of those evaluated, so it may be that it
is more reliant on the image modality. It is also interesting
to note that for InternVL2, inclusion of the image modality
hurts performance over the Tweet Only scenario, where for
all other models it either improves or does not significantly
change the results. InternVL2 does have the smallest vision
model at 300M parameters and performs worst overall in
the Image Only scenario, so it may be that its vision model
is simply not powerful enough to encode useful information
from the images.

A more in-depth investigation of each model’s use of each
modality is given in Table 3, which shows results for the
image ablation experiments. To better understand the role of
text and other content in the images, we split the evaluation
according to whether the image does or does not contain text
according to the output of the OCR tool.

We first discuss results in the Image Only scenario. We
note that removing any visual information (i.e., Text or Con-
tent Blackout) reduces performance. However, on those im-
ages that contain text (T columns), blacking out the text por-
tion of the image has a greater negative effect on the F1
score than blacking out other content. For example, Qwen2’s
F1 drops by 0.18 when blacking out the text, but only 0.05
when blacking out other image content. This suggests that
when text is present in the image, it is helpful for making a
correct prediction. We also notice that using the plain image
text only performs worse than Content Blackout for all mod-
els, suggesting that the visual organization of the text in the
image is important, since this is the only aspect that is lost



InternVL2 Qwen2-VL Ovis 1.6 Llama-Vision
T N T N T N T N

Tweet Only 0.518 0.452 0.521 0.432 0.597 0.565 0.266 0.264

Image Only 0.277 0.190 0.370 0.246 0.409 0.286 0.294 0.261
v. Text Blackout 0.176** 0.190 0.187** 0.246 0.313** 0.286 0.260 0.262
v. Content Blackout 0.257** 0.129** 0.318** 0.127** 0.352** 0.099** 0.274 0.149**
v. Image Text 0.252** 0.120** 0.218** 0.114** 0.285** 0.093** 0.202** 0.130**

Tweet & Image 0.394 0.462 0.527 0.479 0.614 0.563 0.441 0.379
v. Text Blackout 0.444** 0.462 0.527 0.477 0.621 0.563 0.376** 0.378
v. Content Blackout 0.400 0.493 0.508 0.423* 0.611 0.570 0.419 0.364*
v. Image Text 0.392 0.461 0.452** 0.433** 0.585* 0.560 0.332** 0.290**

Table 3: Comparison of macro F1 scores on the English data for the Blackout and Image Text scenarios vs their unmodified
counterparts. Subcolumns under each model indicate results on examples with text (T) and without text (N) in the images.
Statistical significance vs. the Image Only or Tweet & Image row is indicated as * p ≤ 0.05, ** p ≤ 0.005.

Blackout Intern Qwen Ovis Llama

I
Text 0.546** 0.549** 0.560** 0.546
Content 0.509** 0.508** 0.514** 0.535

T&I
Text 0.523** 0.525** 0.526* 0.558*
Content 0.512** 0.510* 0.510 0.548

Table 4: Probability of each model changing a correct pre-
diction to an incorrect one after removing text or other con-
tent from the images. I indicates results for the Image Only
scenario. T&I indicates results for the Tweet & Image sce-
nario. Statistical significance of the regression coefficient
used to compute the probability indicated as * p ≤ 0.05, **
p ≤ 0.005.

between the Image Text and Content Blackout experiments.

Trends are less clear in the Tweet & Image scenario. Only
a few results are significant and those that are occasionally
go against intuition. For example, InternVL2 performs bet-
ter after blacking out the image text and for Qwen2 and Ovis
blacking out Text or Content does not significantly change
model performance. This may suggest that these models are
more reliant on the text modality when it is available. Nev-
ertheless, these models do obtain some information from
the image modality, as indicated by a significant perfor-
mance decrease when using only the plain text extracted
from the images (i.e., the Image Text rows). Like in the
Image Only scenario, Image Text underperforms Content
Blackout across models on examples that contain in-image
text, suggesting that the visual organization of the text is im-
portant.

We can gain more insight into the role of text in the im-
ages by controlling for the proportion of the images that con-
tain text, as indicated by the areas of the bounding boxes
identified by the OCR tool. To determine the effect of text
coverage on performance, we estimate a logistic regression
model with text coverage as the independent variable to pre-
dict whether the VLM’s predictions changed from correct to
incorrect after blacking out the text or other content in the

images. The resulting coefficients for the intercept and in-
dependent variable are then used to compute the probability
that each model would change a correct prediction to an in-
correct one after blacking out a portion of the image.9 These
probabilities are shown in Table 4.

These probabilities show similar trends to those given in
Table 3. In the Image Only scenario, there is a higher proba-
bility for each model to change a correct prediction to an in-
correct one after blacking out the text over blacking out con-
tent. This mirrors the larger drop in F1s reported in Table 3
after blacking out text. Again, Llama-Vision is an exception
to this trend: the coefficients estimated by the logistic re-
gression were insignificant as were the differences in F1s in
the Text and Content Blackout experiments in Table 3. Also,
where changes in F1s were somewhat inconsistently signifi-
cant in the Tweet & Image scenario in Table 3, the regression
coefficients are significant in all but three cases in Table 4.
This suggests that in both the Image Only and Tweet & Im-
age scenarios the in-image text content is generally more
important for prediction than other content.

Overall, these results alongside those from Table 3 indi-
cate that InternVL2, Qwen2-VL, and Ovis 1.6 are indeed us-
ing in-image text to a greater extent than other content when
making predictions. This is, despite the fact that the images
on average have only 28% of their total area occupied by
text, according to the bounding boxes identified by the OCR
tool.

Experiment 2: Multilinguality

We first attempt to establish the extent to which each VLM
supports each language beyond what each is reported to of-
ficially support in the documentation. Towards this, we per-
formed an evaluation of each model’s performance on each
language for 5 tasks: question answering, target language to
English translation, English to target language translation,
image description, and image question answering. We man-
ually evaluated the output of each model on each task ac-

9We compute these probabilities for a hypothetical image with
equal proportions of text and other content.



Figure 4: Macro F1 of each VLM on each language in each evaluation scenario. Statistical significance vs. the corresponding
English results is computed using a McNemar’s test and is indicated as * p ≤ 0.05, ** p ≤ 0.005.

VLM en de es fr hi pt zh

InternVL2 ✓ 2/5 3/5 2/5 0/5 3/5 5/5
Qwen2-VL ✓ ✓ ✓ ✓ 3/5 ✓ ✓

Ovis 1.6 ✓ 4/5 4/5 4/5 5/5 5/5 5/5
Llama-Vision ✓ ✓ ✓ ✓ ✓ ✓ 3/5

Table 5: Languages supported by each VLM. A ✓indicates
that the model officially supports that language according
to its documentation. For languages that are not officially
supported, fractions indicate the number of tasks for which
the given model demonstrated understanding and generation
capabilities in our evaluation.

cording to whether the output was fluent, and in the target
language. The results are given in Table 5, and additional de-
tails on these experiments are given in the appendix. We see
that all models support all of our target languages to some
extent, with the only exception being InternVL2 which did
not demonstrate any understanding of Hindi.

The F1 scores of each model across languages in each
evaluation scenario are given in Figure 4. Bars marked with
stars indicate results that are significantly different from the
corresponding English results according to a McNemar’s
test. We can determine the consistency of each model across
languages by examining the F1 discrepancy compared to
English as well as the number of languages whose pre-
dictions differ significantly from English. Overall, we see
that Ovis is the most consistent across languages as its F1
scores are all similar and only two languages (Hindi and
Chinese) have predictions that differ significantly from En-
glish. While Qwen2 has similar F1 scores across languages,
the McNemar’s tests revealed that its prediction errors for
five out of six languages differ significantly from English.
InternVL2 and Llama-Vision also differ significantly for five
languages and their F1 scores are less consistent. Again we

see that Llama-Vision performs poorly despite being the
largest model evaluated: in addition to being the worst per-
forming model overall it is also one of the least consistent
across languages.

We further investigate the consistency of each model’s
predictions across languages in Figure 5, which shows the
Cohen’s kappa between predictions in each pair of lan-
guages. First, we note that agreement seems to correlate
with performance, with better performing models achiev-
ing higher kappa scores. Again we see that Ovis is the most
consistent, with kappa scores ≥ 0.7 between all languages,
and that Llama-Vision is the least consistent with all scores
≤ 0.3. Hindi is the least consistent across all models, al-
though this is somewhat expected as it is only officially sup-
ported by Llama-Vision (cf. Table 5). Additionally, there is
notable disagreement between Chinese and all other lan-
guages on Qwen2. This is particularly interesting because
Qwen2 was developed with a specific focus on Chinese and
English, and officially supports 6 of the 7 languages investi-
gated here (Wang et al. 2024b).

Experiment 3: Joint Multimodality and
Multilinguality

As a first step towards understanding interactions between
modality an language across models, we reexamine the re-
sults for each language between Text Only, Image Only, and
Text & Image scenarios given in Figure 4. Because the Im-
age Only scenario is independent of the dataset language
(i.e., the results are identical across languages), we can view
the difference between the Tweet & Image and Tweet Only
F1 on each language as a proxy for the amount of informa-
tion contributed by the vision component.

The results of this comparison are shown in Figure 6. Ex-
amining the bars for each language, we see that all mod-
els besides InternVL2 show a positive reliance on the vision
modality (with Qwen2 on Chinese being a notable excep-
tion). For InternVL2 we see that the vision modality gen-



Figure 5: Cohen’s kappa values between predictions for each pair of languages in the Text & Image scenario. The Text/Image
Only scenarios exhibit the same trends so are not pictured for space reasons.

Figure 6: Differences in macro F1 between the Tweet & Im-
age and Tweet Only scenarios for each model and language.
Positive values indicate Tweet & Image performance greater
than Tweet Only and vice versa for negative values. The dark
red bar labeled “diff” indicates the variability of that model
across languages, computed as the absolute difference be-
tween the maximum and minimum values for each language.

erally harms performance, although the harm is greatest for
English. For Qwen2 and Ovis there is in general a greater
positive effect of the vision modality for languages other
than English, while the opposite is true for Llama-Vision.

The dark red bar in Figure 6 is a measure of variability,
computed as the absolute difference between the maximum
and minimum values of the other bars for a given model.
It can thus be viewed as a measure of consistency in the
effect of the vision modality across languages. From these
red bars, we see that Ovis is the most consistent overall in
its use of the vision modality, followed by Llama-Vision and
Qwen2. While the variability is greatest for InternVL2, we
note that because it expresses a fairly consistent decrease
in F1 from Tweet Only to Tweet & Image, it is difficult to
conclude the extent to which it relies on the vision modality
for each language.

To investigate the role of text in the images for languages
other than English, we proceed as in Experiment 1, esti-
mating logistic regression models for the other languages
and using the coefficients to compute the probability of each
model changing a correct prediction to an incorrect one after
removing in-image text or other content. We report the dif-

ferences in probabilities vs. the English results (cf. Table 4)
for each model-language pair in Figure 7. These results only
cover the Tweet & Image scenario since we are specifically
interested in how the tweet language affects the models’ use
of the image modality.

Figure 7 can be interpreted as follows. A significant posi-
tive difference indicates that the model is more likely to flip
a correct prediction for the given language than it is for En-
glish, while a significant negative difference indicates this
is less likely. A positive difference further suggests that the
model is more reliant on what was blacked out on the target
language vs. English, and vice versa for a negative differ-
ence.

Overall, the differences are small, in the range ±0.015

for all models and languages, which suggests that the mod-
els are generally consistent regarding their reliance on the
in-image text and other content across languages. It is no-
table that InternVL2 and Llama-Vision tend to have more
extreme differences than Ovis and Qwen2, for example on
Spanish and Hindi after blacking out the text and on Hindi
after blacking out content. Of particular interest is Llama-
Vision on Hindi in the Text Blackout scenario. According
to the figure we see that Llama-Vision is much less likely
to change a correct to an incorrect prediction in Hindi than
in English, as there is a significant difference in probability
of -0.017. The F1 scores support this: on English Llama-
Vision drops 0.065 F1 (0.441 → 0.376) after blacking out
text but only drops 0.038 on Hindi (0.349 → 0.311), sug-
gesting that Llama-Vision relies more on the in-image text
when the tweet is in Hindi than when it is in English.

Figure 7 also provides additional context to the consis-
tency results from Experiment 2. Ovis, as the most consis-
tent model across languages in terms of F1 score, is also
highly consistent with English across languages after black-
ing out the text, while it generally relies more on the non-
text content of the images in languages other than English.
On the other hand, Qwen2 is much more consistent when
blacking out content and more reliant on the text in the im-
ages on languages besides English.



Figure 7: Differences in probability of a prediction becoming incorrect after Text or Content Blackout for each model-language
pair vs. English in the Text & Image scenario, computed using the logistic regression coefficients. Statistical significance of the
corresponding regression coefficient is indicated as * p ≤ 0.05, ** p ≤ 0.005.

Discussion

In summary, we identified the following takeaways:

1. The VLMs are more reliant on the text modality than
the image modality for this task, with inclusion of the
image modality providing only small performance in-
creases over text alone (cf. Figure 3). The exception is
Llama-Vision, which is generally more reliant on the vi-
sion modality than text.

2. When provided with images, VLMs rely more on the text
contained in the images than the other content, as sug-
gested by the performance drops in Table 3 and differ-
ences in probabilities in Table 4. This is despite text oc-
cupying a minority portion of most images. Additionally,
our experiments using plain text extracted from the im-
ages suggest that the visual organization of the text in the
images is important, rather than only the text itself.

3. The VLMs produce generally consistent predictions
across languages, although with some idiosyncrasies.
These include performance drops on Hindi across mod-
els (cf. Figure 4) and Qwen2’s inconsistent predictions
on Chinese (cf. Figure 5). Despite officially supporting
English only, we found Ovis to be the most consistent
across the languages tested with its predictions differing
significantly from English for only 2 languages. It is also
the best performing model overall, obtaining a macro F1
score of 0.614 in the Text & Image scenario.

4. Each model exhibits a relatively consistent reliance on
the text and vision modalities across languages, evi-
denced by similar per-language trends in F1s across the
Text Only, Image Only, and Text & Image scenarios in
Figure 4. When it comes to reliance on the in-image text
and other content, Ovis is again highly consistent, yet we

see a slight increased reliance on non-text content on lan-
guages other than English.

The results emphasize that the largest model is not neces-
sarily the best performing (Llama-Vision), and just because
a VLM claims to support multiple languages, does not nec-
essarily mean that its predictions will be consistent across
those languages (Llama-Vision and Qwen2-VL, especially
on Chinese). Further, the high consistency exhibited by Ovis
1.6 suggests that its LLM, Gemma2, is in practice multilin-
gual, despite claiming to support English only.

Limitations and Future Work

Regarding our overall evaluation methodology, we used a
fixed random seed for all experiments in order to ensure re-
producibility and because we did not have the computational
resources to run each experiment over multiple seeds. How-
ever, we noticed anecdotally that the labels predicted by the
models were somewhat variable depending on the random
seed, so in the future it would be worthwhile to rerun all
experiments with different seeds to determine whether this
has any effect on the results. In addition, we only used one
dataset since it was the only stance detection dataset with
paired images and text available at the time our research be-
gan. Future work should extend this analysis to new mul-
timodal stance datasets such as MultiClimate (Wang et al.
2024a) (released after our research had begun) and may re-
quire the creation of novel datasets in this area.

Modality Limitations
A number of examples in the dataset used here contain
videos or GIFs. We followed the dataset authors by using the
first frame of these examples for our evaluation, but this cer-
tainly resulted in a loss of information. Future work ought to
leverage some VLMs’ (e.g., Qwen2’s) ability to process dif-



ferent types of vision inputs in order to realize the dataset’s
full potential.

This study investigated VLMs’ reliance on modalities by
analysing their overall prediction distributions. Future ex-
plorations might obtain more instance-level insights by us-
ing attention distributions or feature attribution methods to
1) quantify the effect of the text and vision modalities on sin-
gle examples and 2) investigate interactions (e.g., in terms of
attention weights) between text and images.

Language Limitations
As previously mentioned, using Google Translate to obtain
translations of the dataset is not ideal and may have intro-
duced errors into the dataset that we could not account for
in our evaluations. Additionally, we avoided translating the
dataset into low-resource languages as the quality of Google
Translate on these can be poor (Aiken et al. 2019). Future
work on evaluating the multilingual capabilities of these
models ought to obtain human translations and ideally in-
troduce lower-resource languages as well as additional lan-
guage families/scripts. VLMs are expected to perform worse
on these languages which may highlight inconsistencies in
predictions that were not noticeable here. Finally, it was too
resource-intensive for us to perform a full evaluation of each
VLM’s language support –covering a large variety of tasks
and examples– so our evaluation in Table 5 was cursory.

Conclusion

This study explored the performance of four VLMs –
InternVL2, Qwen2-VL, Ovis 1.6, and Llama-Vision– on a
stance detection task in terms of their reliance on the text and
image modalities as well as performance variability on lan-
guages other than English. We found that VLMs are highly
reliant on text for this task, both from the text modality and
text contained in the image modality. This latter finding is
surprising because of those images that contain any text at
all, the text occupies on average only 28% of their total area.
Additionally, the models’ predictions and reliance on the im-
age modality are relatively consistent across the languages
studied. Ovis, which officially only supports English, was
notably the most consistent among the VLMs evaluated, and
Llama-Vision, which officially supports all but one language
studied, was found to be one of the least consistent.
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Details of the Language Support Evaluations
We here provide additional details regarding our evaluation
of the languages supported by each VLM in this study, given
in Table 5.

Evaluation Tasks

The goal of this evaluation was to gain a preliminary un-
derstanding of how well each VLM understands each of the
seven target languages. We emphasize that this evaluation
was meant only to provide context to our findings regarding
multilinguality, and that a more in-depth analysis would be
required to draw confident conclusions regarding language
support in each model.

The evaluation consisted of 5 tasks, each comprised of
a single example. A given model was deemed to pass a
given task if its output was 1) fluent in the language ex-
pected by the task 2) demonstrated an understanding of the
task. E.g., output that is fluent but unrelated to the input re-
sulted in a fail. The tasks are given below in their English
version. Translations were obtained using Google Translate
and their consistency with the English was validated using
back-translation to English.

Text & Image Tasks:

1. Describe the image.

2. What does this animal eat?

Text Only Tasks:

3. What does a cat eat?

4. Translate the following sentence into {target language}:
This is my favorite kind of cat, with sleek fur and large
ears.

5. Translate the following sentence into English: {sentence
from Item 4 in target language}

The Text & Image tasks were provided the prompt shown as
well as a picture of a cat. The Text Only tasks were provided
with the prompt only.

As a control, we evaluated two additional low-resource
languages that we were certain the VLMs do not know: Ud-
murt (an Uralic language spoken in Udmurtia, a small re-
public within Russia) and Yucatec Maya (a Mayan language
spoken in the Yucatán Peninsula). For each task, these pro-
vided an example of model output for an unknown language
to which output for the target languages could be compared.

Results

The results of this evaluation for each task and language are
given in Table 6, which were summarized in Table 5. We
note that while not shown, the output for all models and tasks
on Udmurt and Yucatec Maya resulted in a fail.

Task intern qwen ovis llama

en 1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓

de 1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

es 1 ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

fr 1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

hi 1 ✓ ✓ ✓

2 ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓

pt 1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

zh 1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓

Table 6: Results of prompting each model on each of the
language support evaluation tasks. A checkmark ✓indicates
a pass. An empty cell indicates a fail.


