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Variation in wood density across South
American tropical forests

A list of authors and their affiliations appears at the end of the paper

Wooddensity is a critical control on tree biomass, so poor understanding of its
spatial variation can lead to large and systematic errors in forest biomass
estimates and carbon maps. The need to understand how and why wood
density varies is especially critical in tropical America where forests have
exceptional species diversity and spatial turnover in composition. As tree
identity and forest composition are challenging to estimate remotely, ground
surveys are essential to know the wood density of trees, whether measured
directly or inferred from their identity. Here, we assemble an extensive dataset
of variation in wood density across the most forested and tree-diverse con-
tinent, examine how it relates to spatial and environmental variables, and use
these relationships to predict spatial variation in wood density over tropical
and sub-tropical South America. Our analysis refines previously identified east-
west Amazon gradients inwooddensity, improves themby revealingfine-scale
variation, and extends predictions into Andean, dry, and Atlantic forests. The
results halve biomass prediction errors compared to a naïve scenario with no
knowledge of spatial variation in wood density. Our findings will help improve
remote sensing-based estimates of aboveground biomass carbon stocks
across tropical South America.

Understanding spatial and temporal variation in forest biomass carbon
stocks is critical for numerous applications and research questions,
including national carbon stock inventories [e.g. ref. 1], assessments of
forest responses and recovery from disturbance2–4, and investigation
of climate feedbacks [e.g. ref. 5]. However, quantifying the distribution
of aboveground live carbon stocks across the tropical forest biome
remains challenging. Despite decades of fieldwork6 and investment in
satellite and airborne remote sensing to measure canopy structure
with Lidar or vegetation volume through radar scattering1,7, there is
still considerable uncertainty about the amount and distribution of
aboveground carbon in tropical forests. Indeed, marked differences
among recent global maps of biomass carbon8–10 reflect the challenge
of large-scale calibration and validation across tropical forests.

The challenge partly arises because remote-sensing approaches,
which allow large-scale and spatially continuous measurements, can-
not provide all the information available from ground-based surveys.
Wood density is a fundamental determinant of tree biomass11–13, and
estimating it requires skilled botanical surveys to identify trees.

Airborne and satellite remote-sensingmethodsprovidemeasurements
that allow estimates of tree height or volume, but not their identity or
wood density14. While some inferences about taxonomic composition
canbemade fromhyperspectral imagery [e.g. refs. 15, 16], this remains
limited compared to what can be obtained by a ground-based bota-
nical survey. Lack of wood density information can lead to marked
discrepancies between remote sensed and ground-based estimates of
aboveground biomass17, including spatial biases in aboveground bio-
mass estimates of around 30% even within a single country18.

Future improvements in remote-sensing-based forest biomass
maps therefore require improved knowledge of spatial variation in
tree wood density. The need to tackle this huge challenge is especially
important in South America. Not only are tropical rain forests here the
most extensive in the world, but they also include many of the most
productive and carbon-rich forests on Earth19,20 and large carbon sinks
and fluxes [e.g. 21–23]. The nature of the challenge is alsomost profound
in South America, as ~40% of Earth’s 73,000 tree species are found in
forests here24. Amazonia alone is home to at least 15,00025, and beyond
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the Amazonmarked differences in species composition pertain across
South America’s diverse forest ecosystems26–28.

While the proximate driver of spatial variation in wood density is
turnover in species composition, it may ultimately relate to environ-
mental gradients, as wood density is an important ecological trait
mediating species responses to the environment. High wood density
trees experience lower mortality risks29,30, but as dense wood is costly
toproduce there is a trade-off betweenproducing less densewoodand
growing faster, and producing denser wood and having lower mor-
tality risk31. This lower mortality risk may arise through resistance to
mechanical breakage32, the dominant cause of tree death in Southern
and Western Amazonia30,33, although resistance to breakage may be
offset by greater flexibility of low wood density species34. Wood den-
sity is also linked to drought sensitivity, as higher wood density pre-
dicts lower vulnerability to cavitation35,36 and resilience of growth to
drought37, although these relationships are influenced by the alloca-
tion of xylem space to different tissues38. Species with high wood
density are therefore likely to tend to be more tolerant of environ-
mental stresses such as drought, while the growth advantage of low
wood density species may be most marked in competitive environ-
ments (e.g. with high soil fertility) and in frequently-disturbed forests
where rapid colonisation of gaps is key (e.g. unstable soils). There is
some empirical evidence to support these theoretical predictions. For
example, Chave et al.32 found that wood density varied across North
and South America with gradients of temperature and precipitation,
while Quesada et al.39 found that wood density was lower on more
fertile andmore poorly structured soils, as well as tending to be higher
where precipitation was lower and temperatures were higher (i.e.
greater potential for drought stress). These studies highlight the
potential for improved prediction of spatial variation in wood density
by incorporating relationships with environmental variables. However,
it is unknown how such different drivers acting at multiple spatial
scales combine to influence variation in wood density across tropical
South American forests.

We leverage our extensive collective effort to measure and iden-
tify trees in forests across South America to describe spatial variation
in community wood density, and use relationships with environmental
variables to map estimated wood density at 1km resolution across
tropical and sub-tropical South American forests. This builds on early
descriptions of spatial variation in wood density [e.g. 17,40] by utilising

newly available forest plot data, and expands the analysis to include
non-Amazonian forests, providing a resource to support remote-
sensing analyses quantifying aboveground biomass.

Results
Variation in wood density
Basal-area weighted wood density varied two-fold across tropical and
sub-tropical South American forests (mean = 0.63 g cm-3, Fig. 1). Wood
density varied significantly between regions (linearmodel, F7,973 = 71.6,
P <0.001, R2 = 0.34). Within Amazonia, forests in East-Central Amazon
and the Guiana Shield had the highest wood density on average, fol-
lowed by the Brazilian Shield, with the lowest wood density in western
areas (Fig. 1b).Wooddensity in the Atlantic Forest was similar to that in
the Brazilian Shield. Dry forests tended to have high wood density, but
there was a cluster of plots (distributed across dry forest areas) with
some of the lowest wood density in the dataset. Montane forests had
the lowest average wood density (Fig. 1b).

Spatial patterns in wood density
To understand this variation, models (generalised additive models
[GAMs] and random forests) were constructed with three sets of
explanatory variables; (1) latitude and longitude only, (2) environ-
mental (climate, soil and topography, see Table 1) variables only, and
(3) both environmental and spatial variables. Longitude was the most
important explanatory variable across all models it was included in
(Fig. 2), with a west-to-east gradient in increasing wood density
(Fig. S1). Latitude, soil texture and soil chemistry (cation exchange
capacity and pH) were the next most important variables (Fig. 2),
although there were differences between models, with greater
importance of pH and soil texture in GAM models compared to ran-
dom forests (Fig. 2). Wood density decreased with cation exchange
capacity in the GAM and random forest models without spatial cov-
ariates (Fig S1), but these relationships were weaker when latitude and
longitude were included (Fig. 2, Fig. S1). While climate variables were
generally less important than soil variables, their importance varied
between models. Mean annual temperature was the most important
climate variablewhen spatial covariateswere not included,while cloud
frequency and maximum cumulative water deficit were more impor-
tant climate variables in the GAMwith spatial covariates (Fig. 2). GAMs
modelled positive relationships with wind speed and negative
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Fig. 1 | Variation in wood density across South American tropical forests.
a Location of forest inventory plots wherewooddensity was quantified.b Variation
in basal-areaweightedwooddensity between regions. Colours in a relate to regions
in (b). N = 981 plots (Lowland-NW= 182 plots, Lowland-SW= 168, East-central

Amazon=205, Guiana Shield= 123, BrazilianShield= 119, Atlantic forest =69, Andes
= 71, Dry forests = 44). Black points showmean values in each region estimated by a
linear model with wood density as the response variable and region as the expla-
natory variable; lines show 95% confidence intervals from that model.
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relationships with lightning frequency, but these relationships were
less evident in random forest models (Fig. S1). Topography, height
above nearest drainage and rock depth had limited effects in all
models (Fig. 2).

Thewest-to-east gradient in Amazonia of increasingwood density
was evident in predictions of spatial patterns in wood density from all
models, with the highest predicted values along the East and Central
Amazon basin and in the Guiana Shield (Fig. 3). Some differences were
evident between models (Fig.S2, S3), for example the GAM trained on
environmental explanatory variables predicted a region of high wood
density in the south-east of Brazil’s Amazonas state (Fig. S2). Allmodels
predicted high wood density in seasonally dry tropical forests to the
south and east of theAmazonBasin, but lower valueswere predicted in
northern South America. As well as capturing broad-scale gradients,
models predicted substantial local-scale variation in wood density,
which are likely to reflect local variation in soil characteristics (Fig S4).
However, when comparing observed and predicted wood density
values in plots, it was notable that models predicted a more restricted
range of wood density values (Fig S5). Uncertainty in predictions
between models varied spatially, with greater uncertainty in Andean
montane forests, southernVenezuela, and the south-east fringes of the
Amazon basin, and strong agreement between models in part of
Western Amazonia and the Guiana Shield (Fig. S3).

Performance of models
When tested using cross-validation, predicted values of wood density
were positively correlated with observed values for all modelling
methods (r = 0.62 – 0.75, coefficient of determination = 0.37–0.57
Table 2), with mean prediction errors (i.e. the difference between
observed and predicted stand-level wood density values) of 0.049-

0.057 g cm−3 (Table 2). These prediction errors were lower than would
be obtained by comparing the overall mean wood density in our
dataset with observed values (prediction error = 0.105 g cm−3). When
model predictions were tested on independent spatial clusters (e.g.
fitting models without dry forests, and testing predictions on dry
forests), correlations with observed values were lower but remained
positive on average (r = 0.272 for ensemble, Table 2), and prediction
errors were larger (0.068 g cm-3 for ensemble, Table 2) but on average
were still lower than if an overall mean had been used (Table 2).
However, negative coefficients of determination for models tested on
independent clusters (Table 2) indicates that differences between
model predictions and observed values were larger than if the mean
for that region was used.

Using the databasemean value for wood density to estimate plot-
level carbon stocks led to amedian error of 8.4% (interquartile range =
4.0 – 14.0%), while using the observed plot-level mean wood density
value resulted in a median error of 0.8% (interquartile range = 0.4 –

1.7%). Using the ensemble mean of model predictions resulted in a
median error of 4.5% (interquartile range = 2.2-8.7%), with individual
models having median errors between 4.5% and 5.4%. Our model
predictions therefore lie close to midway between the naïve scenario
with no knowledge of spatial variation in wood density and the best-
case scenario with perfect locally-based knowledge of spatial variation
in wood density.

Discussion
We assembled an unprecedented dataset of variation in wood density
within and across the biomes of Earth’s most forested and tree-diverse
continent, and employ multiple methods to relate wood density to
environmental and spatial variables to produce predictions of wood

Table 1 | Explanatory variables used in this study and their hypothesised link to wood density

Variable Potential effect on wood density Source

Mean annual tempera-
ture (bio1)

Greater potential for drought stress at higher temperatures, so community-weighted
mean wood density expected to increase with temperatures.

Worldclim V259

Mean annual precipita-
tion (bio12)

Greater drought stress (and hence expectation for higher wood density) when pre-
cipitation lower.

Worldclim V259

Maximum cumulative water
deficit (MCWD)

Higher wood density expected when moisture availability most limited. Calculated using data from Worldclim
V259 and TerraClimate.60

Mean wind speed in the wind-
iest month

Proxy for potential for wind damage. High wind speeds could favour high wood-
density species. Alternatively, frequent disturbances77 could favour low wood density
pioneers.

Worldclim V263

Cloud frequency Frequent cloud could reduce drought stress from evapotranspiration. 61

Lightning frequency Potential to cause canopy gaps favouring pioneers.77 Trunk properties influence
impacts of lightning strikes.78

TRIMM LIS Very High Resolution Gridded
Climatology.79

Soil cation exchange capacity A proxy for soil fertility (other metrics such as total exchangeable bases would be
preferable but are not available in gridded form across the study area). More fertile
soils are expected to favour faster life-history strategies, leading to lower average
wood density.

SoilGrids62

Soil pH Potential control on tree species distributions, with specialist communities in low or
high pH environments.

SoilGrids62

Depth to rock Shallower soils are potentially unstable, and frequent disturbances would be expec-
ted to favour pioneer species, which tend to have low wood density.

SoilGrids62

Soil texture Relates to soil stability (more disturbances leads to more low wood density pioneers)
and to soil moisture holding capacity.

SoilGrids62

Topography - rugosity More disturbances likely on steeper slopes, which favours pioneers, which tend to
have low wood density.

Calculated from SRTM V464

Topography - slope More disturbances likely on steeper slopes, which favours pioneers, which tend to
have low wood density.

Calculated from SRTM V464

Topography - HAND Height above nearest drainage relates to soil drainage. Wood density may be lower in
soils that retain moisture due to lower drought stress.

Donchyts et al.65

Spatial coordinates Wood density is expected to vary independently of the environment due to biogeo-
graphic variation in species distributions.Additionally, spatial coordinates can capture
variation in wood density caused by environmental factors not included in the
analysis.
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density and associate error estimates in mature forests across tropical
and sub-tropical South America. These provide important new pro-
ducts for the remote sensing community, approximately halving
errors in carbon stock estimates compared to having a single mean
value of wood density. Additionally, our work advances the under-
standing of spatial variation in wood density by (1) mapping fine-scale
variation, which field data shows is substantial11,18 but which is not
captured in previous analyses using spatial interpolation of plot
data17,40, (2) extending predictions of wood density across Andean,
seasonally dry and Atlantic forests, and (3) establishing that previously
described gradients in wood density across Amazonia [e.g. 41] largely
hold in this substantially larger dataset.

Patterns and drivers of spatial variation in wood density
Previous studies have described a gradient in wood density across
Amazonia, with the highest wood density in forests in the Guiana
Shield, and lower values in western Amazonia17,40,41. While our results
largely support this pattern we find that wood density in parts of
Eastern and Central Amazonia are similar or higher to the Guiana
Shield. Our results are also consistent with previous studies reporting
lower wood density in montane forests18,42, and indicate that while
seasonally dry tropical forests on average have high wood density, dry
forests can have amongst the highest or very lowest wood densities of
all South American forests.

Despite the generally higher observed and predicted wood den-
sity in seasonally dry tropical forests, we did not find strong relation-
ships between dry season water availability, temperature or cloud
cover and wood density, so do not find clear support for the hypo-
thesised effects of water limitation leading to higher wood density.
This contrasts to previous studies which found negative relationships

between wood density and precipitation within Amazonia39 and
amongst tree species across the Americas32. It is possible that some
effects of these climate variables have been attributed to latitude and
longitude in our models, but this does not explain the lack of clear
relationships in models without spatial variables. Furthermore, by
simply considering observed wood density values, it is evident that
species in forests experiencing substantial water limitation can have
very high or very low wood density (Fig. S1), possibly reflecting the
diversity of strategies trees have for coping with water limitation,
which can result in high wood density (high vessel density) or low
wood density (water storage in tissues)43. Wood density tends to
decrease with succession in dry forests, with high wood density spe-
cies facilitating the establishment of other species44.While all our plots
were in mature forest, plots are subject to natural disturbance events
which is expected to lead to substantial variation in wood density.

There was some support for wood density being correlated with
factors associated with more frequent disturbances. Soil texture was
identified by models (especially GAMs) as important for predicting
wood density, which is consistent with the mechanism proposed by
Quesada et al.39 whereby less stable soils lead to more frequent dis-
turbances which promote low wood density species. We note that the
measures of soil properties available in gridded datasets are imperfect,
and that evaluation using in situ soil data would add stronger support
for this hypothesis, as well as for the relationships with soil chemistry
variables (CEC andpH) identified here.Wooddensity also tended to be
lower where lightning was more frequent, which would be consistent
with lightning disturbances promoting forest turnover, but more
observations are needed from forests experiencing frequent lightning,
especially as this negative effect of lightning was sensitive to sub-
sampling data (Fig. S6).

Performance and applicability of model predictions
Despite the size of our dataset, it still represents a small fraction of the
forested extent of tropical South America. We assessed the area we
could validly make predictions to in three ways. Firstly, we identified
areas where model predictions were especially sensitive to
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subsampling data. Secondly, we identified areas with explanatory
variable values outside the range seen in our data. Thirdly, we calcu-
lated a multivariate dissimilarity index describing environmental and
spatial variables, and calculated the area of applicability45 of our
models based on the dissimilarity index values of our different training
and testing datasets (Fig. S7). These mostly indicate that our models
are applicable to the majority of tropical South American forests, but
should bemore cautiously applied to higher-elevation Andean forests.
However, some dry forest areas and parts of lowland Amazonia had
dissimilarity indices higher than typically observed between non-
spatial cross-validation folds, meaning that non-spatial cross-valida-
tion metrics should be seen as an upper bound rather than central
estimate of model performance in these areas (Fig. S7).

Model performance was substantially lower when tested using
spatial cross-validation (i.e. leaving a region out of model training, and
using that for model testing). Indeed, while correlation coefficients
remainedpositive, negative coefficient of variation values indicate that
models were systematically over or underpredicting wood density,
leading to greater prediction errors than if the true regional mean was
used (although there were still substantial improvements over using
the dataset mean). This spatial cross-validation is expected to repre-
sent a lower bound of model performance46 as it requires predictions
to be extrapolated beyond the range of training data, whereas 97% of
tropical South American forests had dissimilarity index values of one
or less (indicating that the dissimilarity to the most similar training
data point is less than or equal to the mean dissimilarity of points
within the training dataset).

Whilemodels substantially improved predictions of wood density
compared to just using amean value across the dataset, improvements
in models with environmental explanatory variables compared to
those with just spatial explanatory variables was limited. Spatially
structured explanatory variables can show good predictive skill
despite having no causal effect47, and both GAMs and random forests
were capable of fitting complex relationships between wood density
and latitude and longitude. When environmental variables were also
included, the complexity of relationships with spatial variables
reduced (Fig. S1). This indicates that spatial-only models captured
environmental variation that was taken up by environmental variables
when both types were included in models. In models with both
environmental and spatial variables, latitude and longitude could still
capture gradients caused by unmodelled environmental variables (e.g.
soil phosphorus, which was not available as a fine-scale gridded vari-
able), or capture gradients due to biogeographic history. In the former
case, relationships may not extrapolate as spatial coordinates may not
prove a reliable proxy beyond the range of the training data, while in
the latter case spatial coordinates are more closely tied to a causal

mechanism. The relative superiority of models with both spatial and
environmental variables compared to those with spatial variables
alonewas greater when evaluatingmodels on spatially distinct training
data (Table 2), whichwould be consistentwith environmental variables
better capturing causal mechanisms.

Previous studies have modelled relationships between environ-
mental variables and wood density at larger (all Americas32,) or smaller
(Amazonia alone39,) scales than this study. Larger spatial extents, and
hence larger environmental gradients, means it is more likely that
environmental response curves are fully characterised48 but increases
the chances of spatial nonstationary and therefore missing regional
relationships49. We explored this by training models separately for
each spatial region, and comparing predictions to models trained to
the whole dataset. Predictions of regionally and dataset-wide trained
models were similar (Fig. S5), which indicates that our models were
sufficiently flexible to capture regional patterns.

We used gridded climate and soil data, which would have much
greatermeasurement error than in situ values. This is expected to lead
to regression dilution48,49, where relationships with climate and soil
variables are weaker than they would be if measured in situ. Compar-
isonsof relationshipswith soil variableswithprevious studies using the
smaller number of plots with in situ soil measurements39 should
therefore bemade cautiously. It is also important to note that analyses
relate to wood density treating wood density as a species-level attri-
bute. However, wood density also varies within species along envir-
onmental gradients50,51 and with stand characteristics52. In situ
measurements of wood density are sparse, so treating it as a species-
level variable was the only feasible approach for a study of this scale,
but patterns could be further refined by consideration of intra-specific
variation.

It is important to note that our predictions are for mature, closed
canopy forests, so should not be used for secondary forests. Wood
density is expected to be lower in secondary forests2, although in some
seasonally dry and montane forests wood density can decline with
succession44,53. These differences in trajectories of wood density
between forest types may be explained by differing successional
mechanisms44, so we may expect large-scale spatial patterns in sec-
ondary forests to differ from the old-growth forest patterns
described here.

We provide ensemble averaged predictions (Fig. 3) alongside
predictions of individual models (Fig. S2), inter-model uncertainty
(Fig. S3) and their spatial applicability (Fig. S7). Using these estimates
of spatial variation in wood density is anticipated to approximately
halve errors in carbon stock estimates compared to a naïve scenario
whereonly themeanwooddensity is known.While there is potential to
improve models further to reduce prediction errors, some errors will

Table 2 | Performance of models when applied to data not used in model fitting

Model Cross-validation (interpolation) Spatial cross-validation (extrapolation)

RMSE Correlation Coefficient of determination RMSE Correlation Coefficient of determination

Dataset 0.105 0.011 −1.091 0.105 0.061 −1.574

RF - spatial 0.051 0.749 0.536 0.069 0.055 −0.192

RF – environment 0.051 0.736 0.539 0.077 0.132 −0.449

RF – both 0.049 0.755 0.567 0.070 0.153 −0.253

GAM – spatial 0.054 0.701 0.480 0.081 0.149 −0.809

GAM – environment 0.057 0.618 0.369 0.070 0.212 −0.515

GAM – both 0.053 0.704 0.474 0.071 0.219 −0.388

Ensemble 0.049 0.759 0.567 0.068 0.272 −0.132

Model performance has been assessed using k-fold cross-validation (presumed to reflect interpolation performance) and spatial cross-validation (where an entire region was removed for model
testing, presumed to reflect extrapolation performance).
Model performance has been assessed as (1) root mean square error (RMSE), which indicates the average prediction error (g cm-3), (2) the correlation coefficient between observed and predicted
values and (3) the coefficientofdetermination [1-(residual sumof squares/ total sumof squares)]. Negative coefficient of determination values indicate that thedifference betweenmodel predictions
and the testing data are greater than the difference between the testing data mean and the testing data. Median values across cross-validation folds are presented.
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remain even with perfect knowledge of spatial variation in wood
density, as it would still not be known which trees within a plot have
higher or lower wood density. These remaining errors represent data
that can only be obtained with ground-based field surveys to identify
andmeasure every tree in a plot. In all, while our analysis reveals some
of the challenges of high-fidelity biomass mapping in species rich
forests it substantially advances the spatial extent, granularity and
environmental range of tropical American forest wood density mea-
surement and prediction. Our findings and maps will contribute to
better remote sensing-based estimates of biomass carbon stocks
across tropical South America.

Methods
Plot selection and field sampling
We identified and measured trees in forest inventory plots in tropical
and sub-tropical South America. These plots were established and
maintained by networks of researchers (RAINFOR, DBTV, COL-TREE,
TROBIT, DRYFLOR, ATDN, PPBIO, FATE, RAS, MonANPeru, Nordeste,
sANDES, SECO, BDFFP) using shared protocols54, and are curated and
stored in the online ForestPlots.net database6,55. These networks and
ForestPlots.net aim to promote equitable research collaborations in
tropical ecology, and the development of this study followed the
ForestPlots code of conduct (https://forestplots.net/en/join-
forestplots/code-of-conduct). Plots for this study were selected
basedon being inmature, structurally intact and closed canopy forests
(i.e. excluding secondary forests, forests with a known history of log-
ging or burning, and savannah formations). While no restrictions in
terms of soil type, edaphic factors or elevation were applied, plots
were filtered to exclude those in which fewer than 80% of stems were
identified to genus level, giving a dataset of 981 plots (Fig. 1). Formulti-
census plots, we use data for the first census for comparability with
single-census plots and because a higher proportion of stems were
identified to species in this census in >80% of instances. Plots were
predominantly established following standardised RAINFOR
protocols54 although plots varied in area (0.04 to 25 ha, mean area =
0.76 ha). In each, the diameter of all stems ≥10cm were measured at
breast height (1.3m) or above buttresses or other deformities. Stems
were identified by botanists to species level where possible (85.1% of
stems identified to species and 95.4% to genus).

Wood density metrics
The wood density of each stem in our dataset was estimated by cross-
referencing the taxonomic identify of each tree with a database of
wood density values56. We note that this approach does not capture
intra-specific variation in wood density57, and that even mean wood
density ismissing formany species56. Stemswerematched to themean
species-level valuewherepossible (46.4%of stems), followedbygenus-
level (38.6%), family-level (11.0%) and plot-level mean values (4.0%),
with taxonomic matches performed using the getWoodDensity func-
tion in the BIOMASS R package58.

Stand-levelwooddensity canbe summarised from these tree-level
values in a variety of different ways, each requiring increasing amount
of information about the composition of the stand. Firstly, wood
density can be calculated as themean value across all taxa present in a
stand (WD1). For this, we took the arithmeticmean of wood density for
each taxonomic entity (i.e. the set of fully identified species, genera
with indeterminate species identifications, families with indeterminate
genus, and fully unidentified stems, with taxon-level wood density
obtained as described above). This discounts information about taxon
abundance, simply considering which taxa are present. Secondly,
wood density can be calculated as the abundance weighted mean of
taxa present in the stand (i.e. themeanwood density of all stems in the
stand, WD2). For this, we took the arithmetic mean of wood density
across all stems in the plot. This includes information about abun-
dance, but discounts information about stem size. Thirdly, the basal-

area weightedmeanwooddensity can be calculated, which givesmore
weight to stems that account for a larger proportionof standbasal area
(WD3). For this, we took the basal-area weightedmean ofwooddensity
of all stems in the plot. This therefore includes information about the
size of stemsaswell as their abundance.We calculated all threemetrics
but only present results for WD3 (basal-area weighted wood density).
This incorporates the most information about stand composition and
is the most directly linked to aboveground biomass; all three metrics
were strongly correlated (Fig. S8).

Environmental variables
We obtained climate and soil variables that were hypothesised to
relate to spatial variation in wood density (Table 1) at 1km resolution.
Mean annual temperature and total annual precipitation were
obtained from Worldclim version 259. To represent seasonal drought
stress, we calculated maximum cumulative water deficit (MCWD) as
the cumulative balance between monthly precipitation (from
Worldclim59) and potential evapotranspiration (from
TerraClimate60,). For each plot, we calculated the balance between
precipitation and potential evapotranspiration in the wettest month,
and then calculated the water balance in subsequent months as the
difference between precipitation and potential evapotranspiration in
that month plus the cumulative water balance, if negative, in the
preceding month. The minimum value of this metric across the year,
representing the greatest cumulative water deficit, was obtained for
each plot. Cloud variables were obtained from Wilson and Jetz61, and
represent the proportion of Modis passes at each location where
cloud was present. Soil variables were obtained from the SoilGrids
database62. In situ soil data would be preferable for quantifying
relationships between wood density and soil variables [e.g.39], but
could not be used because of the need for a dataset with complete
spatial coverage for extrapolating wood density values. We used soil
cation exchange capacity (CEC) as a measure of soil fertility and
extracted soil pH, depth to rock horizon, and the percentage of sand,
silt and clay. The latter three variables were simplified into two
variables as Texture1 = ln(Sand/Clay) and Texture2 = ln(Silt/Clay). CEC
was chosen as a measure of soil fertility as it is available across the
study area, but we note that it is not a perfect proxy as it includes
saturation with H and Al. We included an interaction between CEC
and pH to account for this (see data analysis), and also explored the
sensitivity of our results to using an Amazon-only soil base cation
concentration dataset63; predicted wood density using CEC and soil
base cation concentration were strongly correlated (r = 0.97-0.99
across models). Topography was quantified from the hole-filled 90m
resolution SRTM64 as mean slope in a 200m diameter buffer around
plot locations and rugosity as the standard deviation of elevations in
this buffer. Height above nearest drainage (HAND) was obtained
from65. Topography metrics were processed in Google Earth
Engine66, other metrics were processed in Rv4.2.267.

Data analysis
Statistical analysis was motivated by the goal of prediction68. We
constructed models with three sets of explanatory variables. Firstly,
wooddensitywasmodelled as a functionof just longitude and latitude,
providing a spatial interpolation of the data. Secondly, wood density
was modelled as a function of environmental variables alone. These
variables have potential causal effects on wood density, but may also
capture variation due to unmodelled spatial gradients. Finally, we
modelled wood density as a function of both environmental variables
and spatial coordinates. This latter approach potentially allows spatial
gradients not included in the environmental explanatory variable set
to be captured by the spatial variables, and was chosen over methods
that account for non-independence of model residuals, which may be
preferable if our goal was inference, as our approach allows spatial
effects to be included in model predictions.
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We related wood density to these explanatory variables using
random forests and generalised additive models, with both approa-
ches chosen as they can capture complex non-linear relationships
between response and explanatory variables. We checked for colli-
nearity between explanatory variables prior to training models, and
found strong corelations (|r | >0.7) between slope and rugosity, slope
and HAND, and between mean annual precipitation and MCWD, and
therefore discarded one of each pair (slope and mean annual pre-
cipitation) from subsequent analysis. Following removal of these
variables, variance inflation factors for environmental variables were
all less than four.

Random forests were constructed using the randomForest R
package69. Hyperparameters for the number of trees to construct and
the number of variables to sample at each split were selected by trying
each combination of hyperparameter pairs (2-8 variables to try, and
100 to 1000 trees in increments of 100), and selecting the combination
with the lowest mean square error (800 trees, three variables tried at
each split).

Generalised additive models (GAMs) were constructed using the
mgcv R package70. The complexity of non-linear relationships in GAMs
was selected using restricted maximum likelihood. The basis dimen-
sion, which sets the maximum complexity of smooth terms, was set to
nine for environmental variables. While this allowsmore complex non-
linear relationships than might be theoretically expected, it ensures
the function space in the realm of ecologically expected relationships
(e.g, unimodal) is not overly constrained. Latitude and longitude were
modelled as a single interacting smooth termwith a basis dimensionof
50. GAMswere also fitted with a penalty term that selects variables out
of the model71, but these performed worse at predicting wood density
than models without the penalty term, so were not used further.
Residual spatial autocorrelation was not evident in any of the models
(Fig. S9). Variable importancewas assessed using approximate Shapley
additive explanations values, which provide additive contributions of
each feature to each observation72. Values were calculated using the
fastshap R package73 and summarised across the dataset to give the
global importance of each variable.

We assessed model performance using both spatial and non-
spatial cross-validation. These are expected to provide lower and
upper bounds of predictive performance respectively46. For non-
spatial cross-validation, data were divided into ten approximately
equal sized sets, with each set left out of model training in turn and
used as independent test data. A problem with this validation method
is that calibration and validation data, while different, may not be truly
independent because of spatial autocorrelation, so model predictive
performancemay be overestimated. We therefore also applied a more
stringent validation procedure where data were split into spatial
clusters, and one cluster left out in turn from model fitting to be used
for validation. We assigned plots to one of six biogeographic regions
(adapted from67,68). These were North-west lowland forests, South-
west lowland forests, East-central Amazon, Guiana Shield, Brazilian
Shield, with remaining plots (Atlantic Forest, montane forests > 1200
m asl, seasonally dry forests with < 1000 mm precipitation per year)
grouped together into a sixth region. This method ensures that test
data are truly independent of training data but is likely to be overly
harsh as it truncates environmental gradientsmeaning thatmodels are
forced to extrapolate into novel environmental space. Model perfor-
mance was assessed using three metrics; the square-root of the mean-
square error between predicted and observed values (RMSE), the
correlation coefficient between predicted and observed values, and
the coefficient of determination (1-(residual sum of squares/ total sum
of squares)). Thesewere calculated for eachmodel, and compared to a
null scenario where predicted wood density values were randomly
drawn from the distribution of observed values.

To assess the consequences of imperfect wood density estimates
for estimates of carbon stocks, we estimated aboveground carbon

stocks in each plot using (1) taxonomically matched wood density of
each stem (i.e. the data available from field surveys), (2) the observed
mean wood density for the plot (i.e. the data that would be available if
spatial variation in stand wood density could be estimated perfectly),
(3) predicted mean wood density from the different models, and (4)
thedatasetmeanwooddensity (i.e. a naïvepositionwith noknowledge
of spatial variation in wood density). The aboveground biomass of
each stem was estimated using the Chave et al.13 allometric equation
applied to measured diameters, the aforementioned wood density
values, with height estimated based on relationships between envir-
onmental stress and height-diameter allometries13. Calculations were
conducted using the BIOMASS R package58. Aboveground biomass
estimates were converted to carbon using a carbon fraction of 0.45674.

Mapping wood density
GAM and random forest models were used to predict wood density
based on the environmental conditions and latitude and longitude of 1
km2 grid-cells in tropical South America. Predictions were masked to
areas indicated as forest in GLC 200075. Environmental variables for
each grid-cell were obtained as described above (e.g. for MCWD, we
extracted monthly precipitation and evapotranspiration in each 1km
grid-cell, and then calculated the cumulative water balance from the
wettest month as described above), except for rugosity which was
obtained at 1 km resolution from GTOPO3076.

We evaluated the spatial applicability of model predictions in
three ways (Fig. S7). Firstly, we took 1000 samples (without replace-
ment) of half the dataset, refittedmodels, and predicted wood density
for the entire dataset. We could therefore calculate the standard
deviation for each observation in our data. We then related this stan-
dard deviation to each explanatory variable using locally-weighted
polynomial regression. Taking a standard deviation of 0.05 as an
arbitrary threshold for indicating high uncertainty, this allowed us to
map areas where predictions were less well constrained (i.e. explana-
tory variables had values where they were sensitive to subsampling).
Secondly, we identified areas with explanatory variables outside the
range seen in our training data (i.e. where models are extrapolating to
novel absolute conditions). Thirdly, we calculated a multivariate dis-
similarity index (DI) following45. This method firstly calculates the
Euclidean distance between pairs of locations based on their expla-
natory variables (which have first been scaled for comparability); we
did not weight variables by their importance as we wanted the metric
to be applicable across different models. The DI is then calculated as
the minimum distance to an observation in the training data, divided
by the mean distance between training data points. Values of more
than one thus indicate points that are more dissimilar to the nearest
training data point than the average dissimilarity amongst training
data points. We followed Meyer and Pebsma’s45 method for defining
binary threshold to denote the area of applicability (i.e. the zonewhere
model validation metrics are expected to give a true measure of per-
formance), noting that the threshold definition is somewhat arbitrary.
This approach calculates the DI between each data point and the
nearest data point that is not in the same cross-validation fold, and
then uses 1.5 times the interquartile range as the upper threshold DI
value. This was calculated for both the spatial and non-spatial cross
validation approaches.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The wood density data generated in the study and used to build
models of spatial variation in wood density are deposited in https://
doi.org/10.5521/forestplots.net/2024_4. Predictions of wood density
along with measures of uncertainty and areas of applicability are
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deposited in https://doi.org/10.6084/m9.figshare.27118437. Data
sources for climate, soil and topography variables used in analyses are
listed inTable 1, andextracted values for eachplot deposited in https://
doi.org/10.5521/forestplots.net/2024_4. Forest cover data are from the
Global Land Cover 2000 database [82, https://forobs.jrc.ec.europa.eu/
glc2000]. Source data are provided with this paper.

Code availability
The analysis code is available at https://doi.org/10.5521/forestplots.
net/2024_4.
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