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Regulation of T Cell Signaling and Immune Responses by PTPN22

Rebecca J. Brownlie and Robert J. Salmond 

School of Medicine, University of Leeds, Leeds, UK 

ABSTRACT 
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal 
development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate 
the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single- 
nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the 
development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 
(PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and 
cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the 
impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches 
to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
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Introduction

Reversible protein tyrosine phosphorylation is controlled by 
opposing families of kinases (PTKs) and phosphatases (PTPs) 
and is essential for the regulation of gene expression, cellular 
growth, proliferation and division, and apoptosis. During 
immune responses, T cell antigen receptor (TCR), co-stimula
tory CD28 and cytokine-dependent signaling pathways are 
propagated by PTKs and lead to the activation and prolifer
ation of naïve T cells, and their subsequent differentiation 
into effector cell populations.1–3 To balance these activatory 
signals, inhibitory PTPs act to limit T cell activation and main
tain immune homeostasis. Redundant and nonredundant 
roles for several nonreceptor type PTPs (PTPNs) in the regula
tion of T cell signaling, autoimmunity and anti-cancer 
immune responses have been determined.4–9 In this mini- 
review, we describe the roles of PTPN22 in these processes 
with a focus on the most recent studies in this area.

Roles for PTPN22 in T Cell Signaling Pathways

PTPN22 is an �90 kDa protein that comprises an N-terminal 
catalytic domain, an interdomain region and a C-terminus 
that has four proline enriched regions, termed P1-P4. Human 
and murine PTPN22, termed lymphoid phosphatase (Lyp) and 
proline-, glutamic acid-, serine- and threonine enriched 
sequence (PEST)-enriched phosphatase (PEP) in some litera
ture, share 70% sequence identity.10,11 PTPN22 is predomin
antly expressed in the cytoplasm of cells of hematopoietic 
origin where it interacts with the src homology 3 (SH3) 
domain of the inhibitory C-terminal Src kinase (CSK) through 
the P1 region.12,13 Other potential binding partners for 
PTPN22 in T cells include growth factor receptor bound 

protein 2 (Grb2),14 ubiquitin-associated and SH3 domain con
taining protein A (UBASH3A),15 end-binding protein 1 (EB1),16

proline-serine-threonine phosphatase interacting protein 1 
(PSTPIP1)17 and 14-3-3 tau.18

Early studies showed that overexpression of PTPN22 in T 
cell lines inhibited TCR-induced cytokine production whilst 
substrate-trapping experiments suggested that tyrosine resi
dues in the TCR zeta chain, Lck and zeta-associated protein 
of 70 kDa (ZAP70) kinases were direct substrates,19–21 imply
ing that PTPN22 acts as a negative regulator of TCR signaling. 
More recent analysis has determined that PTPN22 expression 
is important for the re-recruitment of membrane-proximal 
CSK-containing nanoclusters that downregulate TCR signaling 
in late immunological synapses22 while in the absence of 
PTPN22, Lck phosphorylation and TCR-induced activation of 
downstream mitogen activated protein kinase (MAPK) and 
mechanistic target of rapamycin (mTOR) signaling is 
elevated.23–26

In addition to acting as a negative regulator of proximal 
TCR signaling, PTPN22 controls TCR-induced “inside-out” sig
naling via the Rap1 GTPase that regulates leukocyte function- 
associated antigen (LFA)-1-dependent adhesion.24,25 Thus, in 
the absence of PTPN22, the formation of LFA-1-dependent T 
cell-antigen-presenting cell (APC) conjugates is elevated.25

PTPN22 also acts as a direct negative regulator of LFA- 
1-dependent signaling,27–29 such that, in the absence of 
PTPN22, the velocity of migrating T cells and accumulation of 
LFA-1 and phosphorylated focal adhesion kinase (FAK) and 
Lck in the T cell leading edge is increased.28 Furthermore, 
recent studies have shown that PTPN22 may be recruited to 
and inhibit signaling downstream of the Type 1 interferon 
receptor (IFN-R) in CD4þ T cells, an effect blocked by tumor 
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necrosis factor (TNF) receptor associated factor (TRAF) 3.30 By 
contrast, Jofra et al., reported that PTPN22 may be required 
for Type I IFN-R signaling in P14 TCR transgenic CD8þ T 
cells,31 indicating that the effects of PTPN22 in this signaling 
pathway may be cell type- and context-dependent.

As well as these direct roles for PTPN22 in T cell signal 
transduction pathways, increased TCR-driven signals in 
PTPN22-deficient T cells have indirect effects on cytokine 
receptor signaling. Thus, PTPN22 does not directly influence 
transforming growth factor b-dependent signaling but 
instead elevated TCR-driven interleukin (IL)-2 secretion by 
PTPN22-deficient T cells overcomes the antiproliferative 
effects of TGFb.32 Similarly, enhanced TCR-induced CD25/IL-2 
receptor alpha expression in PTPN22-deficient T cells may 
influence the magnitude of IL-2-dependent signaling under 
conditions of chronic T cell stimulation.33 Together these 
studies have demonstrated that PTPN22 acts as a negative 
regulator of T cell activation and contributes to the integra
tion of antigen, integrin and cytokine receptor signals via 
both direct and indirect effects.

A key question is: how is PTPN22 activity and function 
regulated in T cells? Association with CSK is an important fac
tor in regulating PTPN22 subcellular localization and activity 
(Figure 1). Variants of PTPN22 that lack CSK binding (PTPN22 
R620W) have elevated membrane localization34 and have 
greater phosphatase activity.35 Of note, association of 
PTPN22 and CSK is low in resting T cells but enhanced fol
lowing TCR stimulation suggesting dynamic regulation of 
these negative regulatory proteins during T cell activation.36

PTPN22 is itself phosphorylated following TCR stimulation 
(Figure 1). Thus, protein kinase C-dependent phosphorylation 
of residue serine 751 (S751) prolongs PTPN22 protein half- 
life, by limiting its ubiquitinylation and proteosome- 
dependent degradation, and regulates membrane localization 
and association of PTPN22 with CSK.37 A phosphorylation- 
deficient PTPN22 S751A mutant protein was more prone to 
degradation and also demonstrated enhanced inhibitory 

activity due to altered cellular localization.37 PTPN22 is also 
phosphorylated at residue tyrosine 536 (Y536) by Lck follow
ing TCR stimulation.38 Mutation of Y536 results in gain-of- 
function activity, suggesting that phosphorylation of this resi
due has an inhibitory effect on PTPN22 phosphatase activity 
and serves to potentiate TCR signaling.38 Furthermore, 
PTPN22 R620W that lacks CSK binding capacity is less effi
ciently phosphorylated at Y536 by Lck.38 A recent study from 
the Bottini laboratory identified PTPN22 residue serine 325 
(S325) as being inducibly phosphorylated by glycogen syn
thase kinase 3 (GSK3) following TCR stimulation.39 In this 
study, S325 was substituted for either an alanine residue 
(S325A) or glutamic acid residue (S325E) to block phosphoryl
ation or mimic constitutive phosphorylation, respectively. In T 
cells expressing PTPN22 S325A, TCR-induced phosphorylation 
of PTPN22 substrates Lck and ZAP70 was elevated compared 
to control cells, suggesting loss of function, whereas the 
opposite was true in cells expressing PTPN22 S325E.39 These 
data suggest that TCR-driven, GSK3-dependent phosphoryl
ation of S325 enhances PTPN22 function and subsequent 
downregulation of TCR signaling.

Similar to other PTP family members, PTPN22 catalytic 
activity is dependent upon an active site cysteine residue 
(C227) and is subject to redox regulation (Figure 1). The crys
tal structure of the PTPN22 catalytic domain indicates that 
C227 forms a disulphide bond with noncatalytic residue 
C129.40 Recent studies from the Holmdahl group showed 
that mutation of C129 (C129S) renders PTPN22 more suscep
tible to oxidative inactivation, less able to be reactivated by 
reduction through the thioredoxin pathway and reduces 
phosphatase activity.41

Regulation of T Cell Homeostasis and Immune 
Responses by PTPN22

To decipher the role of PTPN22 in regulating the immune 
response, several research teams have generated Ptpn22- 

Figure 1. Regulation of PTPN22 activity. 
PTPN22 activity is regulated through post-translational modifications and protein-protein interactions. Residue C227 within the PTPN22 PTP domain is essential for catalytic activity and is 
subject to oxidation via reactive oxygen species (ROS) and reduction via thioredoxin (Trx). Formation of a disulphide linkage between C227 and noncatalytic C129 regulates these events. 
Interdomain region residue S325 is inducibly phosphorylated by GSK3 and residue Y536 by Lck, resulting in enhanced and reduced PTPN22 activity, respectively. Residue R620 in the P1 
region is essential for PTPN22 association with the CSK SH3 domain and regulates PTPN22 activity and cellular localization. Residue S751 within the C-terminal region is phosphorylated by 
PKC which reduces ubiquitin (Ub)-dependent degradation of PTPN22.
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deficient or mutant mouse strains. Deletion of PTPN22 does 
not markedly impact on T cell developmental processes in 
the thymus either in the context of a polyclonal repertoire or 
in TCR transgenic models,23–25,42 although one study did 
report increased selection of thymic regulatory T cells (Treg) 
in Ptpn22-/- mice.43 More recently, a study showed that trans
genic overexpression of a phosphatase-dead mutant PTPN22 
in mice reduced thymic cellularity with minor effects on 
negative and positive selection of double-positive thymo
cytes.44 Initial analysis of T cell phenotypes in Ptpn22-/- 

mouse models demonstrated that in the absence of PTPN22, 
naïve T cell functions were comparable to wild-type T cells 
whereas effector T cell responses were enhanced leading to 
lymphadenopathy, splenomegaly and the accumulation of 
elevated numbers of effector/memory phenotype T cells and 
increased serum immunoglobulin (Ig).23,24 Follicular helper T 
cell numbers and functions are elevated in the absence of 
PTPN22, contributing to an increased number of splenic ger
minal centers and increased antibody levels.45 In addition, 
knock-in mice expressing a PTPN22 C129S protein had ele
vated CD4þ T helper 1 (Th1) cell responses and developed 
more severe disease in a glucose-6-phosphate isomerase 
peptide-induced model of inflammatory arthritis41 demon
strating the importance of this noncatalytic cysteine residue 
and suggesting a role for redox regulation of PTPN22 func
tion in vivo.

These data are consistent with a predominantly inhibitory 
function for PTPN22 in T cells while the more marked impact 
of PTPN22-deficiency on effector T cells has been linked to 
higher PTPN22 expression levels in these subsets as com
pared to naïve T cells.46 Indeed, it is possible that upregula
tion of PTPN22 expression serves as a feedback mechanism 
to limit inflammatory effector T cell responses. However, 
experiments using Ptpn22-deficient mice crossed to a TCR 
transgenic background demonstrated that naïve T cell 
responses are also impacted by the absence of PTPN22. In 
this regard, when activated with a high-affinity ovalbumin- 
derived peptide ligand (pOVA), control and Ptpn22-deficient 
naïve CD8þ OT-I TCR transgenic T cell responses were com
parable. However, in the absence of PTPN22, responses of 
naïve OT-I T cells to low affinity pOVA antigens were ele
vated, indicating that PTPN22 acts as a key determinant of 
TCR ligand discrimination.25 In effector and memory-pheno
type CD8þ T cells, the absence of PTPN22 results in markedly 
enhanced inflammatory cytokine production and cytotoxic 
capacity, particularly in response to weak antigenic stimula
tion.25,32,47 Of note, earlier studies investigating Ptpn22- 
deficient mouse phenotypes predominantly used CD3/ 
CD28-antibodies, which trigger a strong activating signal, for 
in vitro T cell experiments.23,24 Subsequent work has deter
mined that clustered regularly interspaced short palindromic 
repeats (CRISPR)-Cas9-mediated deletion of PTPN22 also pre
dominantly impacts upon responses to low affinity antigen, 
with a more modest effect on responses to strong antigens, 
in human T cells.26,48

To define the underlying mechanisms underpinning the 
observed accumulation of effector-memory T cells in Ptpn22-/- 

mice, several studies have determined the impact of PTPN22 
on lymphopenia-induced T cell proliferation. Adoptive 

transfer of either naïve TCR transgenic CD8þ T cells or poly
clonal CD4þ T cells to lymphopenic Rag1-/- or nonobese dia
betic (NOD) severe combined immunodeficiency (SCID) 
common-c chain-deficient (NSG) mice or sublethally irradi
ated hosts demonstrated that proliferation of CD8þ and 
CD4þ Ptpn22-/- T cells was markedly enhanced in vivo com
pared to Ptpn22þ/þ counterparts.25,31,46 Similarly, following 
induction of lymphopenia by antibody-mediated T cell deple
tion, reconstitution of the T cell pool was accelerated in 
Ptpn22-/- as compared to control mice.49 Neutralization of IL- 
7, a known driver of T cell expansion in lymphopenic envi
ronments, did not prevent the increased proliferation of 
Ptpn22-/- T cells,25,46,49 indicating that TCR triggering by low 
affinity self- or environmental antigens was likely responsible 
for driving this phenotype.

Despite evidence for enhanced basal T cell activation and 
increased sensitivity to TCR stimulation in Ptpn22-/- mice, 
PTPN22-deficiency alone does not provoke spontaneous 
autoimmunity23,24 and has variable effects when crossed with 
other risk alleles and/or autoimmune-prone genetic back
grounds.42,45,50–52 In this regard, PTPN22-deficiency favors 
CD4þ Th1 differentiation and may subsequently limit Th17- 
dependent inflammation.29,42 Moreover, regulatory T cell 
(Treg) cell numbers and function are elevated in Ptpn22-/- 

mice24,43,53 suggesting that elevated inflammatory T cell 
activation is balanced by corresponding suppressive Treg 
activity. In this regard, naïve Ptpn22-/- CD4þ T cells more 
readily adopt a Treg phenotype under conditions of weak 
TCR stimulation in vitro, compared to control T cells,54 whilst 
Ptpn22-/-, but not Ptpn22þ/þ, Tregs are able to limit Ptpn22-/- 

effector T cell-mediated inflammation in an adoptive T cell 
transfer model of colitis.24

Regulation of T Cell Self-Reactivity by PTPN22

Mechanisms to prevent T cell-mediated autoimmunity 
include the deletion of self-reactive thymocytes (central toler
ance) and suppression of peripheral T cell reactivity via 
inhibitory cell types such as Tregs (peripheral tolerance). 
However, when these mechanisms are circumvented, inflam
matory T cells can provoke organ-specific or systemic inflam
mation. Expression of specific human leukocyte antigen (HLA) 
haplotypes are the strongest genetic risk factors for auto
immunity, indicating the vital role for T cells in these dis
eases. The phenotype of CD4þ T cells responsible for 
provoking autoimmunity varies depending on the disease 
but can broadly be divided into either T helper 17 (Th17) 
cells, involved in diseases such as multiple sclerosis (MS), or 
Th1 cells implicated in diseases such as Type 1 diabetes 
(T1D). Of note, single nucleotide polymorphisms (SNPs) in 
PTPN22 have been identified as risk factors for the develop
ment of autoimmune diseases.55–59 In particular, expression 
of a missense SNP (1858T) results in an amino acid substitu
tion (R620W) within the P1 region that abrogates PTPN22 
association with CSK. Expression of PTPN22 R620W is associ
ated with increased risk of T1D,60 rheumatoid and juvenile 
idiopathic arthritis (RA/JIA),61–64 systemic lupus erythemato
sus (SLE),65 Grave’s disease66 and pernicious anemia,67 but 
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not psoriasis63,68 or MS.63,69 By contrast, expression of 
PTPN22 R620W reduces the risk of developing Crohn’s dis
ease70 whilst expression of a loss-of-function variant PTPN22 
R263Q is associated with a reduced risk of developing RA 
and SLE.71,72 It is likely that effects on T cells,73,74 B cells,75,76

myeloid cells77,78 and granulocytes79–81 all contribute to 
autoimmunity phenotypes associated with expression of 
PTPN22 R620W. Autoimmune diseases associated with the 
production of autoantibodies have been linked to expression 
of the R620W variant, whereas those in which autoantibodies 
play less of a role have not.55

As described above, disease-associated PTPN22 R620W 
fails to bind CSK, has elevated phosphatase activity and 
altered cellular localization, implying that this SNP results in a 
gain-of-function mutation.34,35,38 Indeed, T cells from healthy 
individuals73,82 as well as T1D patients74 with homozygous 
expression of the PTPN22 1858T allele were reported to be 
hyporesponsive to TCR stimulation consistent with the notion 
that PTPN22 R620W is a gain-of-function variant that blocks T 
cell activation. The disease-associated allele may also impact 
on T cell development and/or homeostasis as suggested by 
elevated numbers of circulating Tregs in SLE83 and T1D84

patients expressing PTPN22 1858T. However, these studies 
could not rule out the possibility that T cell hyporesponsive
ness associated with PTPN22 R620W expression was, at least 
in part, a consequence of chronic exposure to inflammation 
in vivo and/or secondary to effects of the variant protein on 
other immune cells’ function. Indeed, a recent study reported 
that overexpression of PTPN22 R620W had a lesser inhibitory 
effect on proximal TCR signaling in human CD4þ T cells com
pared to overexpression of the non-risk allele,85 suggesting 
that it may represent a loss-of-function variant. Furthermore, 
“knock in” mice expressing the disease-associated PTPN22 
R619W variant (the mouse orthologue of human PTPN22 
R620W) display a similar phenotype compared to Ptpn22-/- 

strains.29,49,86–89 Thus, PTPN22 R619W mice develop spleno
megaly, associated with accumulation of activated effector T 
cell populations, increased germinal center formation and 
elevated serum Ig levels, similar to PTPN22-deficient mice. 
Importantly, PTPN22 R619W mice on a mixed genetic back
ground develop autoantibodies and are more susceptible to 
drug-induced diabetes.87 Furthermore, Sherman et al., dem
onstrated that expression of the disease-associated R619W 
variant on the NOD genetic background results in earlier 
onset and penetrance of diabetes.90 Interestingly, whilst dele
tion of Ptpn22 also enhances disease penetrance on the NOD 
background, the phenotype is more severe in the R619W 
knock in as compared to knockout strains, suggesting a more 
complex phenotype associated with expression of the dis
ease-associated polymorphism.90 By contrast, and in accord
ance with human studies,70 expression of R619W protects 
against intestinal inflammation in an acute model of dextran 
sodium sulfate-induced colitis.91,92 Homozygous expression of 
PTPN22 R619W also influences negative and positive selec
tion in the thymus suggesting that the T cell/TCR repertoire 
may be altered in these mice.87 However, in contrast to the 
human data,73,74,82 TCR signaling was elevated in mouse cells 
expressing PTPN22 R619W,87 suggesting differences between 

the effects of disease-associated PTPN22 variants in human 
and mouse T cells.

Recent studies from the Rawlings laboratory have begun 
to reconcile these apparent discrepancies. These researchers 
have used CRISPR-Cas9 approaches to engineer PTPN22 
knockout or R620W knock-in alleles in naïve human cord 
blood T cells.48 Results demonstrated that PTPN22 R620W 
expression phenocopied PTPN22 knockout in human T cells; 
in both cases signaling was elevated in response to low affin
ity, but not high affinity, TCR ligands compared to control T 
cells.48 Taken together with data from mouse studies,25 these 
observations suggest that a principle function of PTPN22 is 
to limit activation of weakly self-reactive T cells and that in 
the absence of PTPN22, or in the presence of the disease- 
associated R619W/R620W variant, increased TCR signaling 
and activation of such cells is permitted, contributing to 
induction of autoimmune disease. It should be emphasized 
that disease-associated PTPN22 polymorphisms will affect the 
function of many leukocyte lineages in addition to T cells 
that may influence onset the autoimmunity.

Role of PTPN22 in T Cell Responses to Infection

During immune responses to infection, T cells play an impor
tant role in clearing pathogens. CD4þ T cells can adopt speci
alized effector phenotypes (e.g., Th1, Th2, Th17) that 
orchestrate responses to varied pathogen types (e.g., viral, 
bacterial, fungal, protozoal and helminth pathogens) whilst 
CD8þ T cells directly kill pathogen-infected cells. Following 
clearance of a primary infection, the generation of long-lived 
memory T cells protects against re-infection. Following the 
identification of PTPN22 R620W as a risk factor for auto
immunity, several studies have assessed its association with 
immune responses to infection. Carriers of the 1858T allele 
were found to be more at risk of invasive pneumococcal dis
ease within a UK patient cohort suggesting that expression 
of PTPN22 R620W also influences responses to bacterial infec
tion.93 An early study suggested that expression of the 1858T 
allele may be protective against mycobacterial infection94

although a recent meta-analysis did not reproduce this find
ing.95 Furthermore, variable effects of expression of PTPN22 
R620W on responses to influenza vaccination have been 
reported. Thus, one study reported that R620W expression 
was associated with impaired induction of flu-specific CD4þ T 
cells and antibody production following vaccination,96 while 
a second study suggested no such effect.97 Recent work 
identified PTPN22 itself as a target for the HIV Vpr protein 
during infection of primary human CD4þ T cells.98 However, 
the functional consequence of PTPN22 degradation in T cells 
during HIV infection has yet to be defined.

Researchers recently identified a link between expression 
of the autoimmune associated PTPN22 R620W variant with 
onset of myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS).99 Interestingly, this association was only found in 
patients that reported onset of symptoms following acute 
infection.99 These data suggest that altered immune 
responses to pathogens may be more likely to precipitate 
ME/CFS in individuals expressing PTPN22 risk alleles. Further 
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work is required to elucidate the mechanism by which 
expression of PTPN22 R620W pre-disposes to ME/CFS and to 
define whether this is a T cell-dependent process.

Recent work by the Sherman group assessed the impact 
of PTPN22 disease-associated alleles on antiviral responses in 
mice. These researchers reported that PTPN22 R619W knock 
in mice had enhanced capacity to clear chronic lymphocytic 
choriomeningitis virus (LCMV-clone 13) infection as compared 
PTPN22 wild-type (WT) controls.100 The improved control of 
LCMV infection was associated with increased numbers of 
antiviral effector CD4þ Th1 and cytotoxic CD8þ T cells in 
PTN22 R619W mice compared to controls. Furthermore, 
adoptive cell transfer of PTPN22 WT or R619W virus-specific 
TCR transgenic CD4þ to either PTPN22 WT or R619W mice 
demonstrated that the enhanced virus-driven accumulation 
of R619W Th1 cells was mediated by a combination of cell 
intrinsic and extrinsic factors.100 A previous study from the 
same group demonstrated that Ptpn22-/- mice also clear 
LCMV-Clone 13 infection more efficiently than Ptpn22þ/þ con
trols, with PTPN22-deficient CD4þ T cells retaining functional 
capacity and being less prone to exhaustion in chronic infec
tion.101 Similar findings were reported by Jofra et al., 
although it was suggested that the lack of a T cell exhaustion 
phenotype in Ptpn22-/- mice may be a consequence of cell- 
extrinsic factors.102

PTPN22 as a Target for Cancer Immunotherapy

In recent decades, the development and implementation of 
immunotherapies that boost T cell reactivity to tumors 

has revolutionized cancer treatment and patient outcomes. 
These therapies fall broadly into two main categories; (i) 
those that boost endogenous immune responses to tumors 
by blocking immunosuppressive immune checkpoint recep
tors such as programmed death-1 (PD-1) and cytotoxic T 
lymphocyte antigen (CTLA)-4, (ii) adoptive T cell therapies 
(ACT) in which autologous T cells are engineered to express 
tumor-reactive receptors (e.g., chimeric antigen-receptors 
(CARs)) ex vivo prior to reinfusion. Studies have suggested 
that targeting inhibitory PTPN family proteins, including 
PTPN22, may also serve to boost anti-cancer immune 
responses and may be used in conjunction with established 
immune checkpoint blockade and ACT approaches.5,103

Studies have demonstrated that ACT using naïve or 
effector Ptpn22-/- OT-I TCR transgenic CD8þ T cells is superior 
to control OT-I ACT in mediating clearance of ID8 ovarian car
cinoma or EL4 lymphoma cells expressing weakly antigenic 
pOVA as tumor-associated antigens32,47,104 (Figure 2). 
Furthermore, in vitro polarization of Ptpn22-/- OT-I T cells to a 
memory-like phenotype prior to ACT enabled prolonged 
retention of adoptively transferred T cells in vivo following 
tumor clearance.47 In contrast, PTPN22-deletion did not 
enhance the functional capacity of Her-2-specific CAR T cells 
against Her-2-expressing tumors or OT-I T cells toward high 
affinity pOVA-expressing tumors.105 These data are largely 
consistent with findings indicating that the absence of 
PTPN22 predominantly impacts on T cell responses following 
weak antigenic stimulation.25,26,48

A recent study demonstrated that, despite showing 
enhanced anti-tumor effector capacity, under conditions of 

Figure 2. PTPN22 as a target to enhance T cell ACT responses in cancer. 
(A) Deletion of PTPN22 enhances the efficacy of T cell adoptive cell transfer (ACT) antitumor responses as compared to wild-type (WT) ACT, particularly in response to low affinity tumor- 
associated antigens. In tumor environments where adoptively transferred T cells are subjected to chronic antigenic stimulation (B), PTPN22-deficient T cells initially proliferate to a greater 
extent than control T cells but may be more prone to an exhausted phenotype, with high expression of immune checkpoint receptors. Blockade of receptors such as PD-1 may prevent 
functional exhaustion.
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chronic, strong antigenic stimulation, Ptpn22-/- CD8þ T cells 
adopt an exhausted phenotype more rapidly than WT coun
terparts33 (Figure 2). In particular, cotransfer experiments 
demonstrated that Ptpn22-/- CD8þ T cells initially proliferated 
more but assumed an exhausted PD-1þSlamf6- phenotype 
and died more rapidly than Ptpn22þ/þ cells in ID8-OVA 
tumor-bearing mice.33 The dysfunctional phenotype of adop
tively transferred Ptpn22-/- T cells in these experiments was 
driven by enhanced IL-2 signaling, resulting from elevated IL- 
2R expression, and could be partially reversed by PD-1 block
ade.33 These data indicate that balancing enhanced effector 
function with a propensity for exhaustion will be key to the 
future development of PTPN22 as a target for improving 
anti-cancer ACT therapy (Figure 2). In addition, the lack of 
enhanced efficacy following deletion of PTPN22 in CAR-T 
cells suggests that targeting PTPN22 might be most useful in 
combination with conventional TCR-engineered T cells or 
tumor infiltrating lymphocyte (TIL)-based ACT therapies.106

Several studies have demonstrated that Ptpn22-/- mice 
have strong antitumor immune responses following implant
ation of syngeneic cancer cells.107,108 Thus CD8þ T cell 
responses to MC38 colon carcinoma tumors are elevated in 
Ptpn22-/- mice as compared to controls, while PTPN22-defi
ciency combined with PD-1 checkpoint blockade effectively 
cleared tumors.107,108 Similarly, growth of B16 melanoma and 
MC38 tumors was suppressed in PTPN22 R619W knock-in 
mice compared to controls.109 These effects were also associ
ated with greater T cell recruitment to and activation within 
tumors and decreased numbers of inhibitory myeloid-derived 
suppressor cells.109 Furthermore, analysis of human patient 
cohorts indicates that expression of the autoimmune-associ
ated PTPN22 1858T allele may reduce the incidence of non
melanoma skin cancers107 and be associated with enhanced 
responses to immune checkpoint inhibitors.107,108 Together 
these data provide compelling evidence that PTPN22-defi
ciency or expression of PTPN22 R620W enhances T cell anti
cancer immunity.

The development of small molecular inhibitors that target 
phosphatases may represent a therapeutic approach for the 
treatment of cancer. Several compounds that target phospha
tases including PTPN11/SHP-2 and PTPN1/PTPN2 have shown 
remarkable efficacy in preclinical studies and are in early 
phase clinical trials for the treatment of cancer.5 Importantly, 
recent studies have shown that PTPN22 is also a druggable 
target.9,108,110 Thus, systemic administration of a PTPN22 
selective inhibitor, L-1, reduced syngeneic tumor growth in 
Ptpn22þ/þ, but not Ptpn22-/-, mice and synergized with PD-1 
blockade to mediate tumor clearance.108 The protective effect 
of L-1 was mediated via and dependent upon modulation of 
CD8þ T cell and macrophage function. These data indicate 
that PTPN22 inhibition may represent a viable approach to 
enhancing cancer immunotherapy.

Concluding Remarks

PTPN22 has attracted a great deal of interest over the past 
two decades due to the strong association of SNPs with 
autoimmune disease and its role as a key regulator of T cell 

and other leukocyte responses. As documented here, in 
recent years, the use of mouse models and newer gene-edit
ing approaches in T cells have begun to reconcile some of 
the controversies regarding the precise impact of disease- 
associated PTPN22 polymorphisms on T cell function. The 
role for PTPN22 in regulating T cell immune responses to 
infection have been less well studied, whilst recent data indi
cating a role for PTPN22 in modulating cancer immunity 
deserve further investigation. Ultimately, it is to be hoped 
that future studies of PTPN22 function will continue to pro
vide insight into the mechanisms underpinning the regula
tion of T cell signaling and activation, susceptibility to and 
pathogenesis of autoimmune disease as well as identifying 
novel therapeutic approaches for cancer immunotherapy.
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