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Contactless and Continuous Blood Pressure
Detection with FMCW Millimeter-Wave Radar

Luyao Liu, Graduate Student Member, IEEE, Jie Zhang, Member, IEEE, Ziyang Feng, Sen Zhang,
Zhigiang Zhang, Member, IEEE, and Wendong Xiao, Senior Member, IEEE

Abstraci— Blood pressure (BP) is a vital sign that could provide crucial informa-

tion for the prevention, diagnosis and treatment of many diseases. Most of the
existing BP detection solutions require physical contact between human skin o signal
and sensor, which may be frustrated due to uncomfortable experience and extra o

burden. Recently, millimeter-wave (mm-wave) radar based BP detection has MWW
attracted more attention, but it is confronted with the challenges on noise inter- - -
ference, fine-grained arterial pulse signal recovery and shortage of annotated CNNebased
samples for training BP estimation model. In this paper, we develop mmRBP, Z
a contactless and continuous BP detection system with a single frequency v

modulated continuous wave (FMCW) mm-wave radar. nmRBP consists of three W\M\J‘\M’\“\J‘kﬁ\
modules. The arterial pulse motion extraction module is designed to mitigate 8 = T
the noise interference, in which the range fast Fourier transform (range-FFT) pulse signal ()
and digital beamforming (DBF) are applied to scan the space and the direction with the strongest arterial pulse motion
is identified. Then, the arterial pulse signal translation module is devised to transform the mm-wave reflections to fine-
grained arterial pulse signal by the convolutional neural network (CNN) based translation filter. Finally, the BP estimation
module is designed to address the issue of shortage of annotated radar training samples, where a deep transfer learning
(DTL) model is employed to transfer the knowledge of the source network trained by the public BP dataset to the
target network trained by the collected radar dataset. Results of extensive experiments show that the error of mmRBP
is 0.87+6.12 mmHg (Mean error+Standard Deviation) and 0.59+3.78 mmHg for systolic BP (SBP) and diastolic BP
(DBP), which satisfy both the British Hypertension Society (BHS) and the Association for the Advancement of Medical
Instrumentation (AAMI) BP measurement standards.
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. INTRODUCTION LOOD pressure (BP) is one of the vital signs that refers

to the lateral pressure of blood per unit area against
the aortic wall [1]. BP varies between systolic BP (SBP)
and diastolic BP (DBP), embodying rich information about
health status of the human subject [2], [3]. Hypertension is
a risk factor for many diseases, such as arrhythmia, heart

attack, blindness, and brain stroke [4], [5]. It is estimated
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that there are 1.13 billion people worldwide who suffer from
hypertension [6]. However, most patients are unaware that they
have hypertension until a cardiovascular event occurs, which
could be avoided by continuous BP detection in the daily life.

In the past decades, a variety of BP detection solutions
have been developed. The traditional solutions are to place
particular medical devices to the arterial line of the human
subject [7]. Although the solution is regarded as “gold stan-
dard”, it is invasive and may cause pain or risk of infection.
Non-invasive BP detection has been advocated as a promising
alternative due to its safety and convenience. Most of existing
non-invasive BP detection solutions require cuffs or other
wearable sensors to be in contact tightly with human skin
during BP detection [8]-[11], which may cause extra burden
and uncomfortable experience, especially for those special
patients who suffer from skin allergy and burn. To achieve
BP detection in a contactless manner, camera-based solutions
[12]-[16] and radio frequency (RF) based solutions [17]-



[22] have been proposed. Camera-based solutions exploit the
property of video/image data caused by arterial pulse motion to
estimate BP [12]. However, they are sensitive to the lighting
conditions and might cause severe privacy concerns, which
are further limited in the practical deployment. Ditferently,
RF-based sensing does not depend on lighting conditions,
and can bring better privacy protection. It has attracted more
attention in numerous applications, such as vital sign detection
[23]-[25], seismocardiogram and electrocardiogram recovery
[26], [27], heart sound detection [28]. RF-based solutions
leverage on the variations of RF signals caused by arterial
pulse transmission to estimate BP [29]. Among them, mm-
wave radar has demonstrated its promising potential due to its
high frequency and wide bandwidth [30], [31].

In recent years, many efforts have been focused on radar-
based BP detection, leveraging the pulse wave velocity (PWV).
The relationship between BP and PWV has been studied
extensively, ultimately revealing that PWV is proportional to
BP [32], [33]. PWV is measured by the pulse transit time
(PTT) between two nodes in different parts of the body. Some
attempts employed radar in conjunction with wearable ECG
or PPG sensors to obtain PTT and infer BP [34]-[36]. Buxi
et al. [35] applied 1.1 GHz continuous wave (CW) radar in
the neck/chest and impedance echocardiography sensors in the
waist/shoulder to measure the PTT and pulse arrival times
(PATs), which were calibrated to the SBP and DBP via the lin-
ear regression. However, these attempts may cause discomfort
and are not applicable to patients with skin diseases or burns
due to the usage of the contact sensors. Subsequently, some
solutions attempted to employ multiple radars to calculate PTT
for inferring BP [37]-[39]. In [38], a dual-frequency radar
system was designed to detect the PTT and PWV for BP
estimation, which includes a 5.8 GHz single-antenna radar for
chest movement detection and a 120 GHz miniaturized radar
for pulse detection. Although these solutions only use radar,
they are far from practical as a strict synchronization between
the multiple sensors are needed, while those tricky placements
can be very unrealistic to achieve in the daily environment.
Morcover, PWV-based BP detection requires a calibration,
making it less robust regarding generalization ability.

Motivated by the above observations, we propose a novel BP
detection system, mmRBP, leveraging a single FMCW mm-
wave radar, which acquires the fine-grained pulse wave signal
and relies on the machine learning algorithm to estimate BP, by
skipping the explicit PTT calculation and calibration as done
in previous works. However, it is not a trivial task and several
fundamental challenges remain to be addressed. First, it is
challenging to extract mm-wave reflections containing arterial
pulse motion due to the noise interference from the body
and the environment. In practice, the mm-wave reflections
corresponding to arterial pulse motion are weak and usually
buried under the interference and background noise from the
environment. Most of the existing approaches selected the
bin with the maximum energy in the range-azimuth plane to
extract the phase signal [17], [40], [41]. Unfortunately, it might
not perform well especially when the wrist is not facing the
radar. This is because the direction of the strongest reflection
may not coincide with the arterial pulse motion but rather a

different location on the arm. As a result, the signal-to-noise
ratio (SNR) of extracted phase signal may be low.

Second, it is challenging to acquire the fing-grained arterial
pulse signal from the mm-wave reflections. Most of the
existing approaches applied the traditional filters [41], [42]
or signal decomposition approaches [40] to extract arterial
pulse signal. However, these approaches may filter out some
useful detailed information in the arterial pulse signal, such
as dicrotic waves, dicrotic north and so on, which makes it
difficult to extract pulse-related features effectively for BP
estimation.

Third, it is challenging to establish the BP estimation model
with small amount of training samples. The diverse features
were extracted from pulse signal to calculate BP based on
the machine learning algorithms, including pulse amplitude,
area under the curve (AUC), width, peak, derivatives, and
various delays [17], [43], [44]. Jung et al. [45] extracted
the characteristics of heart sounds and certain features in
the time and frequency domains from the radar pulse signal,
and employed support vector machine (SVM) to estimate
BP. In [41], the multiple related features were extracted
from radar pulse signals and a random forest based BP
regression model was established. However, when the mm-
wave reflections are contaminated by noise, it is difficult
to extract effective features from coarse-grained radar pulse
signal. Furthermore, deep learning techniques automatically
extracted features through neural networks to estimate BP.
Ran et al. [20] designed an encorder-decorder neural network
to derive the cardiovascular information from the extracted
radar signal to estimate BP. A transformer network based BP
estimation model was proposed to achieve radar-based BP
detection, which includes convolutional layers with different
scales, a gated recurrent unit (GRU) and multi-head attention
modules [40]. However, it is crucial for machine learning
based BP estimation approaches to collect a large amount of
training samples, which brings a heavy obstacle for most of
the existing radar-based BP detection approaches.

In this paper, to tackle the aforementioned challenges, the
proposed mmRBP consists of three key functional modules.
In the arterial pulse motion extraction module, the range fast
Fourier transform (range-FFT) and digital beamforming (DBF)
divide the space into different range-azimuth bins and the bin
with the strongest arterial pulse motion (also known as arterial
pulse bin) is identified to extract phase signal with high SNR.
In the arterial pulse signal translation module, the extracted
phase signal is translated to fine-grained arterial pulse signal
by convolutional neural network (CNN) based translation filter.
In the BP estimation module, a deep transfer learning (DTL)
based BP estimation model is designed. The source network
of DTL consists of several CNN blocks, a bidirectional GRU
(Bi-GRU) block, a self-attention (SA) block and three full
connected (FC) layers, which is trained using the public BP
dataset. The parameters of the first several layers in the source
network are transferred to the corresponding layers of the
target network, then the parameters of remaining layers are
fine-tuned using the radar samples. We implement mmRBP
using a commercial off-the-shelf mm-wave radar and perform
extensive experiments to validate the performance of mmRBP.



The experimental results satisfy both the British Hypertension

Society (BHS) and the Association for the Advancement of

Medical Instrumentation (AAMI) BP measurement standards.
Our major contributions are summarized as follows:

1) We develop a novel BP detection system, mmRBP, lever-
aging a single FMCW mm-wave radar, which enables
accurate and continuous BP detection in a contactless
manner.

2) We design an arterial pulse motion extraction module to
extract mm-wave reflections with high SNR by range-
FFT, DBF and arterial pulse bin identification, and an
arterial pulse signal translation module to recover fine-
grained arterial pulse signal by CNN-based translation
filter. These two modules effectively mitigate noise in-
terference and extract high-quality arterial pulse signal.

3) We design a DTL-based BP estimation model, in which
the parameters of a pre-trained source network can be re-
used, and the only last few layers in the target network
need to be trained with a small amount of radar samples.
Hence, the model reduces the amount of radar samples
and computational cost, potentially enabling the real-
world deployment.

The rest of this paper is organized as follows. The proposed
mmRBP is presented in detail in Section II. Experimental
performance is evaluated in Section III. The conclusions are
given in Section IV.

Il. SYSTEM DESIGN

As illustrated in Fig. 1, mmRBP emits electromagnetic
wave (EM) signals at the wrist and captures reflected signals.
By processing the reflected signal, mmRBP could achieve
BP detection, which is mainly composed of three modules:
arterial pulse motion extraction module, arterial pulse signal
translation module and BP estimation module. First of all,
mmRBP divides the space to different range-azimuth bins by
range-FFT and DBF, and focus on the arterial pulse bin. Then,
the extracted phase difference signal in the arterial pulse bin is
translated to fine-grained arterial pulse signal with the help of
CNN-based translation filter. Finally, the BP can be obtained
from the arterial pulse signal by transfer learning algorithm.

A. Signal Model

mmRBP is built on a FMCW mm-wave radar, which
transmits a series of waveforms named chirp signals. The
instantancous frequency of the chirp signal increases linearly
as time, as shown in Fig. 2, and can be written as

B
b) = Topi =1, 1
FE) = fonn + M
where f,.;, 1S the chirp starting frequency, T, is the chirp

duration and B is the bandwidth. The transmitted chirp signal
xr(t) can be written as

zr(t) = Ap cos (27r /Ot flr)dr + 4,0(15)) "
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Fig. 2. FMCW radar signal

where Ar is the amplitude of the transmitted signal, ¢ is the
phase noise. The received signal zp(t) can be denoted as

o
B
zp(t) = AR;COS |:27Tfmin (t—7)+ WE(t - )’ @)

+§0(t - Tl)] ’

where Ag is the amplitude of the received signal, 7; denotes
the round-trip delay caused by the subject in the ¢-th reflection
path, which can be expressed as 7, = 24:() \where ¢ is the
speed of light, d;(¢) is the range between the subject and radar,
Q is the number of reflection points in the environment.

The received signal is mixed with a replica of the trans-
mitted signal, and then the high-frequency components of
the mixed signal are filtered out to obtain the intermediate
frequency (IF) signal zrp(1):

Q

Br; B
t)=A 2 —lt 2 mint¢ — N7 i2
zrp(t) ;cos { IS T, + 27 finin T 7TTdT @
+Ap(t)],

where A is the amplitude of the IF signal. The residual phase
noise Ap(t) can be neglected for short range scenarios, and
the term W%Tf can be also ignored as it is very small. The
complex IF signal can be obtained by two orthogonal 1/Q

channels, which is written as

y(t) = A;Q;exp {j (47r Bj}it)t + 47 diit) )} .5

where A denotes the wavelength of the chirp.

The complex IF signal y(¢) is digitized by an analog to
digital converter (ADC). The dimension corresponding to N
samples per chirp is called the fast time. The dimension
corresponding to M different chirps is the slow time. Note
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Fig. 3. The processing flow of the arterial pulse motion extraction

that the chirp duration is very small, and the distance change
caused by arterial pulse motion is small (<2 mm) with low
frequency (<3 Hz), therefore, there is no appreciable change in
center frequency and phase during chirp time. Thus, the frame
is used as the observation window for radar-based BP detection
and only the first chirp in the frame is used for processing.
mmRBP is with multiple transmit (TX) antennas and receive
(RX) antennas, the chirps are transmitted in the time-division
multiplexing (TDM) mode by multiple TX antennas. For an
object at angle 6, an additional phase shift will occur due to
the relative distance on adjacent antenna elements d,, which
can be expressed as ZW%STM. Therefore, for the [th antenna
element, the digitized complex IF signal y(n, m, () for the nth
ADC sample and mth chirp is written as

0
, 2Bd;(ndYy)
y(n,m,l) = A;exp 71 2n B nly
Io
. 47Tdi(an + mTy) . 27r(l —1)d, sinf 7
A A
@b

(©)

where T’y and T are the time intervals, which correspond to
the fast time and the slow time, respectively.

B. Arterial Pulse Motion Extraction

To achieve BP detection, mmRBP needs to extract mm-
wave reflections containing arterial pulse motion, but it is not
a ftrivial task because mm-wave reflections may be largely
contaminated by the interference and background noise from
the environment. Most of the existing approaches place a
subject at zero-degree bearing to ensure sufficient signal
quality and select the bin with the maximum energy in the
range-azimuth plane to extract the phase signal. However,
these proposals are far from practical as it is unrealistic to
ensure that subjects are placed at zero-degree bearing every
time in our daily environment. In addition, the subjects may

not remain stationary all the time, which would lead to the
location variation of the arterial pulse. As a result, the direction
of the strongest reflection may not coincide with the arterial
pulse motion but rather a different location on the arm.

In this section, we focus on the strongest reflection signals
from arterial pulse motion, where the range-FFT and DBF are
utilized to scan the space and the direction of the strongest
arterial pulse motion is identified to extract phase signal. The
processing flow is shown in Fig. 3.

1) Range-FFT and Digital Beamforming: As shown in (12),
the mm-wave reflections corresponding to the reflecting object
is a periodic signal in fast time, and the periodicity is related
to the distance. To obtain the range information, FFT is
performed over the fast time for the chirp (see Fig. 3), which
is called the range-FFT and denoted as

N—1
z2(r,m,l) = Z y(n, m, ) exp(—j2nrn/N ), 7
n=0
where z(r,m,[) is the mm-wave reflections for the r¢h range
bin, mth chirp and [tk antenna element.

Furthermore, to obtain the azimuth information, DBF is con-
ducted over all antenna elements for each range bin, as shown
in Fig. 3. The mm-wave reflections z, ¢(m) corresponding to
range bin r and azimuth é can be written as

zrp(m) = s (0)zr1(m) + e(m), ®)

where z,1(m) = [zr1(m), zr2(m), ..., 2 (m)] is the mm-
wave reflection vector at range bin r overall all antenna
elements. £(m) is the additive white Gaussian noise. s(0) =
[s1(8), s2(8),...,s.(8)]" is the steering vector towards angle
#. In mmRBP, Bartlett beamformer [46] is employed, and the
coefficient of the It/ antenna is
(l—1) xdgsiné
5 ) ©)
For each sample m in the slow time, there is a mm-wave
reflection matrix z(r, #) at different location bins with range
bin » and azimuth #. Therefore, mm-wave reflections are
separated to bins of range and azimuth by range-FFT and DBFE.
Fig. 4(a) shows the amplitude of the mm-wave reflections at

s(6) = exp(—j2r
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Fig. 4. Example of the reflecting object. (a) amplitude of mm-wave
reflections in the range-azimuth plane, (b) 2D-CFAR window, (c) result
of 2D-CFAR, and (d) the CFAR threshold and the amplitude of mm-wave
reflections in range domain.

the range-azimuth plane. As mentioned above, the direction
of the strongest reflection may not coincide with the arterial
pulse motion but rather a different location on the arm. Thus,
in the next section, we will try to identify the bin that has the
strongest arterial pulse motion to extract the phase signal.

2) Arterial Pulse Bin Identification: In this section, mmRBP
try to identify the bin that has the strongest arterial pulse
motion in the range-azimuth plane. The challenge in achieving
this is that, on the one hand, it does not know the exact
appearance of the arterial pulse motion reflection and, on the
other hand, this reflection may vary with the user, their wrist
position and heart rate. To overcome this challenge, mmRBP
exploits the fact that the arterial pulse signal is periodic, and
leverages this periodicity to identify the best bin of obtaining
the corresponding periodic signal. As shown in Fig. 3, the
process of arterial pulse bin identification consists of two steps.

Firstly, we need to identify the bins with reflecting objects
in the range-azimuth plane. In general, the energy of the
bins without any reflecting objects is smaller than those with
reflecting objects. However, it is difficult to find a threshold for
all reflecting objects because the energy of reflecting objects is
affected by many factors, such as the distance, and radar cross
section, etc. In mmRBP, 2D-CFAR is employed to estimate the
noise level, where the CFAR window (shown in Fig. 4(b)) is
convolved with the mm-wave reflections of the range-azimuth
bins. As a result, the range-azimuth bins with reflecting objects
are those whose energy is above the noise level, as shown in
Fig. 4(c). Fig. 4(d) shows the example of CFAR detection in
the range domain.

Then, autocorrelation function (ACF) is performed over
the candidate bins obtained by 2D-CFAR to evaluate the
periodicity, as shown in Fig. 3. In specific, the bin with
the highest peak for the first peak of the autocorrelation
coefficient is selected, which corresponds to the arterial pulse
bin with the strongest arterial pulse motion. Before ACEF, the
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Fig. 6. Phase signal processing result at different stages of mmRBP’s
arterial pulse motion extraction, chronologically from top to bottom. After
the Butterworth bandpass filter, the signal looks irrelevant to arterial
pulse signal. After the phase difference, its trend starts showing some
feature points. Besides, the extracted phase signal in arterial pulse
bin has sharper peaks and troughs with strong arterial pulse motion
compared with that in the bin with the maximum energy.

Butterworth bandpass filter is employed to remove baseline
drift and high-frequency noise. In Fig. 5, the phase signals
and their first peak values of the autocorrelation coefficients
are presented. It is obvious that the periodicity of the bin
with the maximum energy is not the best. Thus, instead of
this bin, we select the bin with the highest peak for the first
peak of the autocorrelation coefficients to extract phase signal
containing strong arterial pulse motion. The phase difference is
performed to convert the phased-based distance estimation to
an acceleration by designing the filter as a second derivative,
thus emphasizing the feature points related to arterial pulse
signal.

Fig. 6 plots the signal waveforms at different stages of
mmRBP’s arterial pulse motion extraction, chronologically
from top to bottom. The topmost plot shows the raw phase
signal extracted from the candidate bins obtained by 2D-
CFAR. The signal has the baseline drift due to the different
sources of noise and interference. Thus, after applying a
Butterworth bandpass filter, the baseline drift is removed as
shown in the second plot from the top. However, the plot
has no obvious variation and looks irrelevant to arterial pulse
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signal. Fortunately, after the phase difference, it is apparent
that there are some feature points related with arterial pulse
signal as shown in the third plot from the top. Besides, we
compare the phase difference signal between the bin with the
maximum energy and arterial pulse bin. Notice that the signal
of arterial pulse bin has sharper peaks and troughs with better
SNR. However, notice that the phase difference signal still
contains much noise and need to be processed in the next
section.

C. Arterial Pulse Signal Translation

In practice, the phase difference signal extracted through the
previous module is still contaminated by the noise, making it
difficult to accurately estimate BP. Hence, phase difference
signal needs to be translated to the fine-grained arterial pulse
signal. In general, the finite impulse response (FIR) filter is
utilized to perform such conversion, but in practice, it is chal-
lenging because mm-wave reflections and standard pulse wave
signal acquisition methods, such as photoplethysmography
(PPG), are fundamentally different acquisition mechanisms,
with different front-ends, characteristics, and channel features.
Due to these differences, it is difficult to derive a closed-
form signal transformation from one modality to the other.
As a result, FIR filter may filter out some useful detailed
information in the arterial pulse signal (see the second plot
from the top of Fig. 7(a)), such as dicrotic waves, dicrotic
north, crest, trough and so on. As shown in Fig. 7(b), arterial
pulse signal obtained by a FIR filter is coarse-grained and it
can be used to estimate heart rate but not sufficient for BP
estimation.

To tackle this challenge, CNN-based translation filter is
designed to recover the fine-grained arterial pulse signal.
Several CNN blocks are regarded as multiple FIR filters due
to the same mathematical representation. The translation filter
learns the filter’s coefficients from phase difference signal and
arterial pulse signal pairs. It enables us to recover fine-grained
cardiovascular information from phase difference signal by
the combination of various frequency components from mm-
wave signals. As shown in Fig. 8, the input of this filter is
the phase difference signal obtained from the output of the
arterial pulse motion extraction module. The translation filter
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Fig. 8. The architecture of the CNN-based translation filter
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consists of several CNN blocks, and each CNN block includes
one-dimension convolution (1D Conv) with a rectified linear
unit (ReLLU) activation function, a batch normalization (BN)
layer, and a dropout layer. ReLU functions are capable of
extracting more complex features due to its nonlinearity. BN
and dropout layers can prevent overfitting. Every CNN block
has the same length but different channels. To update the
coefficients of CNN blocks, the L2-norm is employed between
the final output and the ground truth of arterial pulse signal
(obtained from wearable sensor during training phase). Note
that the translation filter does not require the wearable sensor
during the test phase as it has already learned the translation
function during training.

As observed from Fig. 7(a), the arterial pulse signal transla-
tion module enables it to recover the fine-grained arterial pulse
signal from phase difference signal, and the cosine similarity is
0.98, which shows high consistency compared with the ground
truth. Some researches have studied the relationship between
BP and arterial pulse signal [20], [32], [39]. Scholars have
studied diverse feature parameters, such as hl, h2, h3, t1,
t2, t3 in Fig. 7(a). In the next section, we will attempt to
establish the relationship between the BP and arterial pulse
signal obtained from mm-wave reflections.

D. BP Estimation

There exists correlation between the arterial pulse signal
and BP [43], [47]. Some existing researches attempt to achieve
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BP estimation from the arterial pulse signal based on PWV.
PWYV describes the speed that a BP pulse travels through the
circulatory system. It is expressed as PWV = %—, where
L stands for the artery length that BP pulse passed through.
According to Moeans and Korteweg [48], the PTT in the
artery is calculated as

pD

PTT=L/K x T

where K is the Moens constant, s refers to the thickness of

the blood vessel wall, E stands for the young’s modulus of the

artery wall’s elasticity, D is the diameter of the inner wall of

the artery, and p denotes the fluid density. Based on Hughes

equation [48], the relationship between E and the difference
pressure P between internal and external wall is denoted as

an

where ¢ is the arterial material coefficient, and Fy refers to
the elastic modules of blood vessel when P is 0. Based on
(10) and (11), the mean BP (MBP) [49], [50] can be obtained
as

(10)

E = Eyexp(¢P),

1 2 2 b
MBP = -SBP +-DBP — MBP —In(—— 12
ot o+7n(PTT),( )
where M BP, and b are calibration factors, -y is a constant.

By the Bramwell-Hill equation, the PWV can be expressed as

PWV =, /S2F,
AG is the blood volume change, and AP is the variance

between SBP and DBP, which can be expressed as

2
AP—SBP—DBP_pA—G< L ) a

where G is the blood volume in the artery,

o \prr) ~Prm2 (P

where a is a calibration factor. Subsequently, SBP can be
obtained as

a
SBP = DBP + ———. 14
+ B (14)
According to (12) and (14), DBP can be expressed as
2 b 1 a
DBP = MBPy + ; ln(PTT) ~ 3P (15)

Specifically, the obtained P11, SBP, and DBP are substi-
tuted into (12), (14) and (15) to obtain a, b and M BPq,.

Once the calibration parameters have been calibrated, the
SBP and DBP can be calculated by the PTT extracted from ar-
terial pulse signal. However, PWV-based BP detection requires
a calibration, making it less robust regarding generalization
ability. Given the challenges encountered by the PWV, recent
radar-based BP detection solutions have resorted to machine
learning algorithm. However, such approaches are suffering
from the demand for a large amount of training samples to
train a model. In order to tackle this challenge, we design
a DTL-based model to achieve accurate and reliable BP
estimation with small amount of data, which mainly consists
of the source network and the target network.

1) Source Network: The source network is trained using the
BP public dataset as the feature extractor. It consists of several
CNN blocks, a Bi-GRU block, a SA block and three FC layers,
as shown in Fig. 9. The CNN blocks are employed to extract
spatial features, followed by a Bi-GRU, which is designed
to capture the temporal features. The output of the Bi-GRU
hidden state vector is weighted by a SA block, and then the
SBP, DBP and MAP results come out through three FC layers.

CNN is employed to extract spatial pattern features from
arterial pulse signal, which consists of the 1D Conv with a
ReLU, a BN layer, a max-pooling layer and a dropout layer.
The last layer of each CNN block is set as a max-pooling layer
to further extract effective features and reduce the dimension
of features. The output of the last CNN block is flattened to
one-dimension vector. Although CNN is capable of capturing
spatial features, it is difficult to extract temporal information.
To do that, we design a Bi-GRU block after the CNN block,
which consists of a forward direction GRU and a backward
direction GRU. The final output hidden vector h; of the Bi-
GRU can be written as

he = hi @ R, (16)
where hf is the forward hidden vector and h! is the backward
hidden vector.

The sequential feature vectors from the Bi-GRU block
may have different contributions for estimating BP, so a SA
block is developed to automatically find the important feature
vectors at each time step, as shown in Fig. 9. The important
feature vectors will be assigned to larger weights, in which
the importance score e,, is calculated through a score function
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score(-) as follows:

e, = score(Wehy + g), a7

where h,, is the Bi-GRU hidden state vector at every time
step u € [1,U], Wy is a trainable weight and ¢ is a bias. The
attention weight g, is evaluated with softmax function, which
is written as

exp(ew)

¢ = softmax(e,) = S exp(e)” (18)

The final output vector v is obtained by calculating the
weighted sum of the attention weight vector and the corre-
sponding hidden state vector, which is expressed as

U
V= Z Quju-
u

The output of the SA is flattened to one-dimension vector
through a flatten layer. Then, the SBP, DBP and MAP come
out through three FC layers.

2) Target Network: The target network is trained using the
radar arterial pulse signal and termed as the BP estimation
model. According to the previous analysis in the arterial pulse
signal translation module, there is a high correlation between
the radar arterial pulse signal and the ground truth of arterial
pulse signal (shown in Fig. 7(a)). Therefore, the knowledge of
the source network could be transferred to the target network
based on DTL, when the well-trained source network with BP
public dataset can decode all the representative information of
BP.

Specifically, the well-trained source network is regarded as
the feature extractor of the target network. The target network
keeps part or all of the structure consistent with the source
network, as shown in Fig. 10. For the training strategy with
DTL, the parameters of CNN, Bi-GRU and SA blocks in
the source network are transferred to the target network, and
then be frozen. Only the parameters of three FC layers are
trained using radar samples. However, for the training strategy
without DTL, all layer parameters are obtained by training the
whole target network using large amount of radar samples. As
a result, DTL-based target network is capable of achieving
accurate and reliable BP estimation with small-scale radar
dataset.

19)

I11. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the evaluation details of the proposed mm-
RBP is introduced, including experimental setup and setting,
performance analysis, and the comparison with the state-of-art
work.

mm-wave
~ FMCW radar
—

g TIIWR1642Boost

Fig. 11. The experimental scene used for human BP detection.

A. Experimental Setup and Setting

1) Experimental Setup: We conduct experiments us-
ing a commercial off-the-shelf Texas Instruments (TI)
IWR1642Boost mm-wave radar with two TX antennas and
four RX antennas. The device can achieve a theoretical az-
imuth resolution of 15°, and the field of view (FoV) is 120° in
the horizontal plane and 30° in the vertical plane. Each frame
is configured to have 2 chirps. The frame sampling rate is 100
Hz, the start frequency of a chirp is 77 GHz, the idle time of
between chirps is 7 us, the duration time of a chirp is 60 us,
the slope of a chirp is 64.985 MHz/s, the actual bandwidth of
a chirp is 3.24925 GHz, the samples per chirp is 256, the ADC
sample rate is 5.12 MHz. To collect raw mm-wave signals, TI
DCA1000 board is used with IWR1642Boost mm-wave radar.
The mm-wave signals are processed by a desktop PC.

2) Experimental Setting: All the experiments are carried out
in an office, as shown in Fig. 11. The human subject is asked
to sit on the chair and place his/her wrist on the desk (palms
facing up). The FMCW mm-wave radar is set up at 15 cm
above the human subject’s wrist on the desk and emits the
EM signals to the wrist and captures the echo signals. HKG-
08B is used to collect the ground truth of BP simultaneously
with the mmRBP during the experiment. Moreover, since the
arterial pulse signal is used as the ground truth in the arterial
pulse signal translation module, we record it synchronously
with HKG-07C arterial pulse sensor, a wearable device on
human subject’s finger. 15 volunteers (10 males and 5 females,
weighted between 45 and 93 kg, aged from 26 to 55 years
old) are included in this study. The volunteers were free of
known cardiac, respiratory, or any other diseases. They are
university students, professions, and janitorial staffs. During
data collection, volunteers are asked to remain stationary for
60 s. The data collection is performed on seven days, and
1500 samples are collected. To evaluate the performance of
mmRBP, the mean error (ME), standard deviation (STD),
Pearson’s Correlation Coefficient (PCC) and root mean square
error (RMSE) are utilized.

3) System Setting: In the arterial pulse signal translation
module, we adopt three data augmentation approaches, in-
cluding overlapping, stretching, noising, to train CNN-based
translation filter. First, we use a sliding window function to
divide the input signal into segments. The window consists
of 1000 points and is shifted by 200 points to extract over-
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Fig. 12.  Examples of arterial pulse signal recovery. The blue line
indicates the FIR filter, the red line is mmRBP, and the yellow line is
the ground truth.

lapping segments. Second, each signal segment is stretched
or squeezed to represent a large number of heart rates (50-
140) beats per minute(bpm), at 10 bpm intervals) using the
cubic spline data interpolation. Third, each signal segment is
replicated 10 times using different power of random noise.
It generates 42000 samples for training, which can avoid
overfitting. The Adam optimizer is used and the kernel size of
1D Conv is 101x1 with stride of 1. The batch size is set to
64, learning rate is set to le-5, and dropout rate is set to 0.2.

In the BP estimation module, the University of California
Irvine BP (UCI-BP) dataset from UCI machine learning repos-
itory II is employed to train the source network. It consists of
PPG and intra arterial blood pressure (IABP) signals from
12000 instances. The IABP signals are considered as the
ground truth, from which SBP, DBP and MAP can be obtained:
SBP = max(ABP), DBP = min(ABP) and MAP =
SBELADBE The recordings of the insufficient length (less
than 3 minutes) are removed from the dataset. Moreover, some
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Fig. 13. Cosine similarity of arterial pulse sigal to ground truth under
different heart rate ranges.

very high or low BP values (SBP>180, SBP<80, DBP>130,
and DBP<60) have been filtered from the dataset to ensure
high signal reliability. The PPG signal is processed by a
second-order Butterworth bandpass filter to remove baseline
wandering and power-line noise. A sliding window function
is used to divide the PPG signal, and the window consists of
1000 points and is shifted by 200 points. Finally, the PPG
signal is normalized and split into 80% for training and 20%
for testing.

The kernel size of 1D Conv is 3 x 1 with stride of 1 and
the fitting method is “same”. The size of maximum pooling
is 3 and the step size is 1. Bi-GRU has 64 hidden nodes for
the the forward and backward layers, and there will be 128
features at each time step. Three FC layers contain 512 units,
256 units and 1 units, respectively. The Adam optimizer is
used and the learning rate is set to 1072, The loss function
is the mean squared error (MSE). During the source network
training, the early stopping method is applied, which is with
the patience of 10 in a maximum of 50 epochs. The batch size
is set to 128. To avoid overfitting, L, regularize is applied. As
for the target network, the obtained radar arterial pulse signal
samples are split into 80% for training and 20% for testing.

B. Overall Performance

1) Arterial Pulse Signal Recovery: In this section, we present
mmRBP’s performance in recovering the arterial pulse signal
from mm-wave reflections. The dataset is divided into a
training set and testing set and the cross validation is employed
to ensure that the training and testing are mutually exclusive.
Specifically, for each subject, the model is trained on other
subjects and evaluated on the untrained subject. In Fig. 12,
we show the arterial pulse signals obtained by mmRBP for
5 individuals with different heart rates, and also compare
mmRBP to a baseline approach that performs range-FFT, DBF,
arterial pulse bin identification and FIR filter. It is obvious that
the mmRBP outperforms the baseline approach.

To quantify the similarity between arterial pulse signal
obtained by mmRBP and the ground truth, we calculate the
cosine similarity under different heart rate ranges, as shown
in Fig. 13, which represents how closely two variables move
together. It shows that mmRBP enable it to learn representative
transformations between the mm-wave reflections and the on
body pulse sensor.
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2) BP Estimation: In this part, we evaluate the overall BP
estimation performance of mmRBP. At first, we compare the
error of mmRBP and the acceptable detection error defined by
the AAMI standard, as shown in Table I. As observed from this
table, the errors of mmRBP for both SBP and DBP are smaller
than the error boundaries defined by the AAMI. To further
verify detection performance, Table II compares the accuracy
of mmRBP and requirement defined in the BHS standard.
The results show that both SBP and DBP reach Grade A.
The performance comparison between mmRBP and two BP
measurement standards demonstrates that mmRBP achieves
accurate and reliable BP estimation.

Then, we present the Bland-Altman plots of estimated
SBP, DBP and MAP with mmRBP, as illustrated in Fig.
14. The green solid line denotes ME and the red dashed
line denotes the limits of agreement (LLoA), which is defined
as ME£1.96xSTD. As observed from this figure, mmRBP
achieves accurate and reliable BP estimation, in which more
than 95 % data is within the area of LoA. Finally, to further
verify the performance of mmRBP, we present the PCC of
SBP, DBP and MAP estimated by mmRBP in Fig. 15. As
illustrated in this figure, mmRBP achieves a high correlation
(at least 0.86) for SBP, DBP and MAP. In other words, the
estimated SBP, DBP and MAP have a high consistency with
the corresponding ground truth, which verifies the feasibility
and reliability of mmRBP.

C. Performance Comparison of Key Modules

In this section, we will compare the performance of mm-
RBP’s modules. To do so, we evaluate the error of partial
implementations of the overall system: (1) mmRBP’s full
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TABLE |
PERFORMANCE COMPARISON OF MMRBP wITH AAMI STANDARD

ME STD

M T

ethod ype (mmHg) (mmHg)
SBP £ 5 <8
AAMI DBP <5 <8
R SBP 0.87 6.12
BP DBP 0.59 3.78
TABLE Il

PERFORMANCE COMPARISON OF MMRBP wITH BHS STANDARD

b <10 <15
Method Type (mmHg) (mmHg) (mmHg)
Grade A 60% 85% 95%
BHS Grade B 50% 75% 90%
Grade C 40% 65% 85%
MmRBP SBP 74.7% 91.3% 97.0%
DBP 87.0% 96.3% 99.7%

architecture with its arterial pulse motion extraction, CNN-
based translation filter and DTL-based BP estimation, (2) the
phase signal of bin with the maximum energy is extracted and
a FIR filter is applied to acquire arterial pulse signal (HP-FIR),
(3) deep learning based BP estimation approach (DL).

Fig. 16(a) depicts the estimated error for mmRBP’s full
implementations and partial implementations (HP-FIR). It is



observed that HP-FIR achieves significantly higher errors than
mmRBP’s full implementation. As declared in Section II-B,
the bin with the maximum energy may correspond to the static
objects or other body parts with reflections caused by the weak
arterial pulse motion. So the SNR of extracted arterial pulse
motion may be low, and the FIR filter could not recover fine-
grained arterial pulse signal from mm-wave reflections, which
might lead to a large BP estimation error. Instead, in mmRBP,
we apply range-FFT and DBF to divide the space into different
range-azimuth bins and the arterial pulse bin is identified to
extract mm-wave reflections containing the strongest arterial
pulse motion. In addition, CNN-based translation filter is able
to recover fine-grained arterial pulse signal from mm-wave
reflections.

Fig. 16(b) depicts the estimated error of mmRBP’s full im-
plementations and partial implementations (DL). As observed
from this figure, the BP estimation error of DL is higher than
mmRBP. The main reason is that the small amount of data
could not train a deep network model well, leading to a large
BP estimation error. Differently, in mmRBP, we design a DTL-
based model to achieve accurate and reliable BP estimation
with small amount of radar samples.

D. Comparison Against State-of-the-art Work

In this section, we compare mmRBP with four baseline
methods, including mmBP [20], NBPM [41], SMBP [45] and
PhysioChair [38]. mmRBP, mmBP, NBPM and SMBP all
require a single radar to achieve contactless BP detection. Dif-
ferently, PhysioChair designed a dual-frequency radar system
to achieve BP detection. The absolute error of BP detection
is less than 5 mmHg. However, PhysioChair brings some
challenges in the complexity of BP detection system because
it needs a strict synchronization between the two radars.

As observed from Fig. 17, mmRBP outperforms other three
baseline methods using a single radar with lower RMSE and
STD. Random forest of NBPM and SVM of SMBP need to
extract features from the arterial pulse signal. However, the
signal obtained by radar is susceptible to noise, which brings
a challenge in extracting effective pulse-related features. In
mmBP, an encorder-decorder neural network is proposed to
estimate BP, which needs to be trained by large amount of
data, and it has a poor performance when there is small amount
of data. In mmRBP, we apply the range-FFT and DBF to scan
the space and identify the direction of the reflection coming
from the strongest arterial pulse motion. Then, the CNN-based
translation filter is designed to acquire fine-grained arterial
pulse signal from mm-wave reflections. Finally, DTL-based
BP estimation model is proposed, whose training requires only
small amount of radar samples. Therefore, mmRBP achieves
better performance for BP detection with mm-wave FMCW
radar.

IV. CONCLUSION

In this paper, we develop mmRBP, a novel contactless
and continuous BP detection system with FMCW mm-wave
radar. It consists of three modules, including the arterial pulse
motion extraction module to extract mm-wave reflections with
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high SNR by range-FFT, DBF and the arterial pulse bin
identification, the arterial pulse signal translation module to
acquire the fine-grained arterial pulse signal via CNN-based
translation filter, and the BP estimation module to achieve con-
tinuous BP estimation with small-scale radar training samples
by DTL. Extensive experimental results show that mmRBP
satisfy both the BHS and AAMI BP measurement standards,
and outperforms other approaches with small amount of data.
In the future, there are still some challenges that need to
be addressed, including overcoming the interference of ran-
dom body movements, multi-person BP detection, and long-
distance BP detection.

REFERENCES

[1] Y. Chen, D. Zhang, H. R. Karimi, C. Deng, and W. Yin, “A new
deep learning framework based on blood pressure range constraint for
continuous cuffless bp estimation,” Neural Networks, vol. 152, pp. 181—
190, 2022.

[2] D. Barvik, M. Cerny, M. Penhaker, and N. Noury, “Noninvasive contin-
uous blood pressure estimation from pulse transit time: A review of the
calibration models,” IEEE Reviews in Biomedical Engineering, vol. 15,
pp. 138-151, 2021.

[3] M. Yavarimanesh, R. C. Block, K. Natarajan, .. K. Mestha, O. T. Inan,
J.-O. Hahn, and R. Mukkamala, “Assessment of calibration models for
cuff-less blood pressure measurement after one year of aging,” I[EEE
Transactions on Biomedical Engineering, vol. 69, no. 6, pp. 2087-2093,
2021.

[4] N. Aguirre, E. Grall-Maés, L. J. Cymberknop, and R. I.. Armentano,
“Blood pressure morphology assessment from photoplethysmogram and
demographic information using deep learning with attention mecha-
nism,” Sensors, vol. 21, no. 6, p. 2167, 2021.

[51 T. W. Gress, F. J. Nieto, E. Shahar, M. R. Wofford, and F. L. Brancati,
“Hypertension and antihypertensive therapy as risk factors for type 2
diabetes mellitus,” New England Journal of Medicine, vol. 342, no. 13,
pp. 905-912, 2000.



[6]

(7

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Al-Makki, D. DiPette, P. K. Whelton, M. H. Murad, R. A. Mustafa,
S. Acharya, H. M. Beheiry, B. Champagne, K. Connell, M. T. Cooney
et al., “Hypertension pharmacological treatment in adults: a world health
organization guideline executive summary,” Hypertension, vol. 79, no. 1,
pp. 293-301, 2022.

J. Liu, B. Yan, S.-C. Chen, Y.-T. Zhang, C. Sodini, and N. Zhao, “Non-
invasive capillary blood pressure measurement enabling early detection
and classification of venous congestion,” IEEE Journal of Biomedical
and Health Informatics, vol. 25, no. 8, pp. 2877-2886, 2021.

D. Nachman, Y. Gepner, N. Goldstein, E. Kabakov, A. B. Ishay,
R. Littman, Y. Azmon, E. Jaffe, and A. Eisenkraft, “Comparing blood
pressure measurements between a photoplethysmography-based and a
standard cuff-based manometry device,” Scientific reports, vol. 10, no. 1,
p. 16116, 2020.

L. Li, Y. Li, L. Yang, F. Fang, Z. Yan, and Q. Sun, “Continuous and
accurate blood pressure monitoring based on wearable optical fiber
wristband,” IEEE Sensors Journal, vol. 21, no. 3, pp. 3049-3057, 2020.
A. Chandrasekhar, M. Yavarimanesh, K. Natarajan, J.-O. Hahn, and
R. Mukkamala, “Ppg sensor contact pressure should be taken into
account for cuff-less blood pressure measurement,” IEEE Transactions
on Biomedical Engineering, vol. 67, no. 11, pp. 3134-3140, 2020.

S. Shin, A. S. Mousavi, S. Lyle, E. Jang, P. Yousefian, R. Mukkamala,
D.-G. Jang, U. K. Kwon, Y. H. Kim, and J.-O. Hahn, “Posture-
dependent variability in wrist ballistocardiogram-photoplethysmogram
pulse transit time: implication to cuff-less blood pressure tracking,” IEEE
Transactions on Biomedical Engineering, vol. 69, no. 1, pp. 347-355,
2021.

B.-l. Wu, B.-F. Wu, and C.-P. Hsu, “Camera-based blood pressure
estimation via windkessel model and waveform features,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 72, pp. 1-13, 2023.
Y. Zhou, H. Ni, Q. Zhang, and Q. Wu, “The noninvasive blood pressure
measurement based on facial images processing,” IEEE Sensors Journal,
vol. 19, no. 22, pp. 10624-10634, 2019.

C. Zhang, E. Jovanov, H. Liao, Y.-T. Zhang, B. Lo, Y. Zhang, and
C. Guan, “Video based cocktail causal container for blood pressure
classification and blood glucose prediction,” IEEE Journal of Biomedical
and Health Informatics, vol. 27, no. 2, pp. 1118-1128, 2023.

D. Djeldjli, F. Bousefsaf, C. Maaoui, F. Bereksi-Reguig, and A. Pruski,
“Remote estimation of pulse wave features related to arterial stiffness
and blood pressure using a camera,” Biomedical Signal Processing and
Control, vol. 64, p. 102242, 2021.

H. L. Seldon, B. T. Lau, and Y. L. Ong, “New ways to estimate blood
pressure, heartrate variability and spo2 via smartphone camera—proof of
concept,” in MobiQuitous 2020-17th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services,
2020, pp. 451-457.

Z. Shi, T. Gu, Y. Zhang, and X. Zhang, “mmbp: Contact-free millimetre-
wave radar based approach to blood pressure measurement,” in Pro-
ceedings of the 20th ACM Conference on Embedded Networked Sensor
Systems, 2022, pp. 667-681.

J. Shi and K. Lee, “Systolic blood pressure measurement algorithm with
mmwave radar sensor,” KSII Transactions on Internet and Information
Systems (TIIS), vol. 16, no. 4, pp. 1209-1223, 2022.

B. Jana, K. Oswal, S. Mitra, G. Saha, and S. Banerjee, “Windkessel
model-based cuffless blood pressure estimation using continuous wave
doppler ultrasound system,” IEEE Sensors Journal, vol. 20, no. 17, pp.
9989-9999, 2020.

Y. Ran, D. Zhang, J. Chen, Y. Hu, and Y. Chen, “Contactless blood
pressure monitoring with mmwave radar,” in GLOBECOM 2022-2022
IEEE Global Communications Conference. 1EEE, 2022, pp. 541-546.
S. Ishizaka, K. Yamamoto, and T. Ohtsuki, “Non-contact blood pressure
measurement using doppler radar based on waveform analysis by
Istm,” in ICC 2021-1IEEE International Conference on Communications.
IEEE, 2021, pp. 1-6.

R. Kawasaki and A. Kajiwara, “Continuous blood pressure monitoring
with mmw radar sensor,” [EICE Communications Express, vol. 10,
no. 12, pp. 997-1002, 2021.

F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, “Smart homes
that monitor breathing and heart rate,” in Proceedings of the 33rd annual
ACM conference on human factors in computing systems, 2015, pp. 837—
846.

L. Liu, J. Zhang, Y. Qu, S. Zhang, and W. Xiao, “mmrh: Noncontact vital
sign detection with an fmew mm-wave radar,” IEEE Sensors Journal,
vol. 23, no. 8, pp. 8856-8866, 2023.

L. Liu, S. Zhang, and W. Xiao, “Noncontact vital signs detection using
joint wavelet analysis and autocorrelation computation,” Chinese Journal
of Engineering, vol. 43, no. 9, pp. 1206-1214, 2021.

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

34

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Chen, D. Zhang, Z. Wu, F. Zhou, Q. Sun, and Y. Chen, “Contactless
electrocardiogram monitoring with millimeter wave radar,” [EEE Trans-
actions on Mobile Computing, 2022, doi:10.1109/TMC.2022.321472.
U. Ha, S. Assana, and F. Adib, “Contactless seismocardiography via
deep learning radars,” in Proceedings of the 26th annual international
conference on mobile computing and networking, 2020, pp. 1-14.

C. Will, K. Shi, S. Schellenberger, T. Steigleder, F. Michler, J. Fuchs,
R. Weigel, C. Ostgathe, and A. Koelpin, “Radar-based heart sound
detection,” Scientific reports, vol. 8, no. 1, pp. 1-14, 2018.

H. Zhao, X. Gu, H. Hong, Y. Li, X. Zhu, and C. Li, “Non-contact beat-to-
beat blood pressure measurement using continuous wave doppler radar,”
in 2018 I[EEE/MTT-S International Microwave Symposium-IMS. IEEE,
2018, pp. 1413-1415.

R. Kawasaki and A. Kajiwara, “Continuous blood pressure estimation
using millimeter wave radar,” in 2022 [EEE Radio and Wireless Sym-
posium (RWS). IEEE, 2022, pp. 135-137.

C. Liao, O. Shay, E. Gomes, and N. Bikhchandani, “Noninvasive
continuous blood pressure measurement with wearable millimeter wave
device,” in 2021 IEEE I7th International Conference on Wearable and
Implantable Body Sensor Networks (BSN). IEEE, 2021, pp. 1-5.

Y. Ma, J. Choi, A. Hourlier-Fargette, Y. Xue, H. U. Chung, J. Y. Lee,
X. Wang, 7. Xie, D. Kang, H. Wang et al.,, “Relation between blood
pressure and pulse wave velocity for human arteries,” Proceedings of
the National Academy of Sciences, vol. 115, no. 44, pp. 11 144-11 149,
2018.

R. Wang, W. Jia, Z.-H. Mao, R. J. Sclabassi, and M. Sun, “Cuff-free
blood pressure estimation using pulse transit time and heart rate,” in
2014 12th international conference on signal processing (ICSP). 1EEE,
2014, pp. 115-118.

M. Kuwahara, E. Yavari, and O. Boric-Lubecke, “Non-invasive, con-
tinuous, pulse pressure monitoring method,” in 2019 41st annual inter-
national conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, 2019, pp. 6574-6577.

D. Buxi, J.-M. Redouté, and M. R. Yuce, “Blood pressure estimation
using pulse transit time from bioimpedance and continuous wave radar,”
IEEE Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 917—
927, 2016.

M. Pour Ebrahim, F. Heydari, T. Wu, K. Walker, K. Joe, J.-M. Redoute,
and M. R. Yuce, “Blood pressure estimation using on-body continuous
wave radar and photoplethysmogram in various posture and exercise
conditions,” Scientific Reports, vol. 9, no. 1, p. 16346, 2019.

T. Lauteslager, M. Tommer, T. S. Lande, and T. G. Constandinou,
“Coherent uwb radar-on-chip for in-body measurement of cardiovascular
dynamics,” [EEE transactions on biomedical circuits and systems,
vol. 13, no. 5, pp. 814-824, 2019.

L. Wen, Y. Gao, C. Gu, and J. Mao, “Physiochair: A dual-frequency
radar system for noninvasive and continuous detection of physiological
signatures,” IEEE Sensors Journal, vol. 22, no. 8, pp. 8224-8233, 2022.
L. Singh, S. You, B. J. Jeong, C. Koo, and Y. Kim, “Remote estimation of
blood pressure using millimeter-wave frequency-modulated continuous-
wave radar,” Sensors, vol. 23, no. 14, p. 6517, 2023.

X. liang, J. Zhang, W. Mu, K. Wang, L. Li, and L. Zhang, “Trccbp:
Transformer network for radar-based contactless continuous blood pres-
sure monitoring,” Sensors, vol. 23, no. 24, p. 9680, 2023.

H. Shi, J. Pan, Z. Zheng, B. Wang, C. Shen, and Y. Guo, “Radar-based
blood pressure estimation using multiple features,” in 2022 IEEE MTT-
S International Microwave Biomedical Conference (IMBioC). IEEE,
2022, pp. 183-185.

F. Geng, Z. Bai, H. Zhang, Y. Yao, C. Liu, P. Wang, X. Chen, L. Du,
X. Li, B. Han er al, “Contactless and continuous blood pressure
measurement according to captt obtained from millimeter wave radar,”
Measurement, vol. 218, p. 113151, 2023.

W. Wang, P. Mohseni, K. L. Kilgore, and L. Najafizadeh, “Cuff-less
blood pressure estimation from photoplethysmography via visibility
graph and transfer learning,” IEEE Journal of Biomedical and Health
Informatics, vol. 26, no. 5, pp. 2075-2085, 2021.

D.-K. Kim, Y.-T. Kim, H. Kim, and D.-J. Kim, “Deepcnap: A deep
learning approach for continuous noninvasive arterial blood pressure
monitoring using photoplethysmography,” IEEE Journal of Biomedical
and Health Informatics, vol. 26, no. 8, pp. 3697-3707, 2022.

M. Jung, M. Caris, and S. Stanko, “Non-contact blood pressure esti-
mation using a 300 ghz continuous wave radar and machine learning
models,” in 2021 IEEE International Symposium on Medical Measure-
ments and Applications (MeMeA), 2021, pp. 1-6.

C. S. Marino and P. M. Chau, “High-resolution doa estimation from syn-
thetic aperture beamforming,” in 2005 IEEE Antennas and Propagation
Society International Symposium, vol. 3. IEEE, 2005, pp. 279-282.



[471

[48]

[49]

[50]

Y. Lu, C. Wang, and M. Q.-H. Meng, “Video-based contactless blood
pressure estimation: A review,” in 2020 IEEE International Conference
on Real-time Computing and Robotics (RCAR), 2020, pp. 62-67.
X.-R. Ding, N. Zhao, G.-Z. Yang, R. L. Pettigrew, B. Lo, F. Miao, Y. Li,
J. Liu, and Y.-T. Zhang, “Continuous blood pressure measurement from
invasive to unobtrusive: Celebration of 200th birth anniversary of carl
ludwig,” IEEE journal of biomedical and health informatics, vol. 20,
no. 6, pp. 1455-1465, 2016.

C. Poon and Y. Zhang, “Cuff-less and noninvasive measurements of
arterial blood pressure by pulse transit time,” in 2005 IEEE engineering
in medicine and biology 27th annual conference. IEEE, 2006, pp.
5877-5880.

Y.-L. Zheng, B. P. Yan, Y.-T. Zhang, and C. C. Poon, “An armband
wearable device for overnight and cuff-less blood pressure measure-
ment,” IEEE transactions on biomedical engineering, vol. 61, no. 7, pp.
2179-2186, 2014.



