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Abstract: When controlling difficult industrial processes characterised by open-loop insta-

bility and/or poor damping, predictive functional control (PFC) practitioners often face

two critical design challenges. The first one arises due to the intrinsic simplicity of the PFC

control algorithm that, instead of optimising the future control trajectory in real time like

other predictive controllers, simply assumes constant control action, thereby producing un-

reliable model predictions in the long range and thus inconsistent closed-loop performance.

The second issue is related to the controller tuning, which may become ambiguous and

unsystematic due to the existence of an inconsistent relationship between the controller

parameters and closed-loop behaviour. This paper presents a dual-loop control strategy

that aims at mitigating both weaknesses simultaneously by combining the concepts of

pre-stabilisation and relative tuning within the framework of predictive functional control.

Two challenging industrial case studies have been analysed through computer simulations

that successfully validate the efficacy of the proposal under various real world scenarios.

Keywords: PFC; receding horizon; pre-stabilisation; dual-loop control; classical feedback

compensation

1. Introduction

Predictive functional control (PFC) is a simplified Model Predictive Control (MPC) al-

gorithm that was developed in the late 1970’s primarily to compete with PID (Proportional,

Integral and Derivative) in petrochemical industries [1]. Since then, its applications have

steadily grown to numerous other fields, as reported in the available literature [2–7]. How-

ever unlike the more mainstream MPC approaches that perform computationally expensive

real-time optimisation for decision making [8–11], conventional PFC operates by assuming

constant future control inputs to generate model predictions [2,12]. Though this approach

significantly reduces the associated computational costs and improves transparency, it also

nevertheless restricts the overall utility of the algorithm as a consequence. More specifically,

while PFC generally performs well for stable and well-damped dynamic systems [2,12],

many important industrial processes exhibit poorly damped and/or unstable open-loop

dynamics for which this simplified predictive controller often proves ineffective [13]. This

is because for such difficult processes [12,13], the following applies:

(i) the use of constant input inevitably leads to ill-defined predictions in the long range;

the decision making is, therefore, unreliable and prone to failure under the influence

of external perturbations and/or constraints.

(ii) controller tuning is no longer simple and straightforward; it is rather unsystematic

with no clear linkage between the tuning parameters and the achieved performance.

Processes 2025, 13, 862 https://doi.org/10.3390/pr13030862
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To tackle (i), a common remedy is to implement a more flexible parametrisation of the

degree-of-freedom, for example, by using input shaping or model decomposition [14–16].

Nevertheless, these techniques are more complicated and thus somewhat more difficult to

implement and manage in general purpose industrial controllers. In contrast, recent studies

have advocated the use of pre-stabilisation, a straightforward and well-established mechanism

in the mainstream MPC literature [17,18], to achieve a more efficient parametrisation of the pre-

dicted input. In essence, pre-stabilisation is a dual-loop (this may also be called dual-mode [17]

and/or a cascade structures) control strategy which requires the unstable/oscillatory predic-

tion model to be first compensated using a well-understood classical inner-loop controller

before implementing an outer-loop PFC in a cascade structure [19–21]. If designed properly,

consistent and reliable long-range predictions can be ensured, but along with a slightly more

complicated constraint management as compared to the original PFC algorithm [19].

Since pre-stabilisation simply transforms the internal prediction model without alter-

ing the basic PFC mechanism, implementing it alone may not resolve the tuning deficiencies

mentioned in (ii). This is because controller tuning in PFC requires a prudent selection

of two parameters, namely the target pole and the coincidence point, which directly in-

fluence the closed-loop performance, but their non-linear and non-standard relationship

usually makes a meaningful selection somewhat difficult [12,13]. Consequently, one has to

rely on some less systematic approaches, such as empirical suggestions or global search

algorithms [2], to find the best possible parameter pairing. Furthermore, a recent study has

highlighted the inconsistent use of target/disturbance information in the original control

law, which causes additional lag in the response and weakens the expected link between

the selected parameters and the achieved performance/behaviour [22].

To overcome these challenges, a unique PFC algorithm, called Relative PFC (RPFC),

was recently proposed, which performs controller tuning relative to the steady-state bench-

mark response of the system [23]. Its core advantage over Conventional PFC (CPFC) is

a drastic tuning simplification, which reduces to just answering the following statement:

how much faster or slower does one want the closed-loop system to behave as compared to the

open-loop performance? This, however, implicitly assumes stable and monotonically con-

vergent prediction dynamics which, in many challenging applications, may be achieved

using the dual-loop control strategy [23]. Nevertheless, a few important questions are still

unanswered, such as (i) which pre-stabilisation strategy is the most effective and (ii) how

should one select the most appropriate inner-loop design for a specific problem?

Therefore, the primary focus of this study, besides exploring the concept of relative

tuning more closely, is to assess the efficacy of various simple pre-stabilisation strategies in-

tegrated within the framework of RPFC. The idea is to identify the most suitable alternative

for a particular type of difficult system for which various simple and well-known classical

control approaches, such as proportional compensation [24], Root Locus-based designs [25],

Pole Cancellation [20], and Pole Placement [19], have been evaluated. The main findings of

the study are summarised below:

• Pole Cancellation is more efficient in handling poorly damped (stable) dynamics than

the other discussed techniques.

• For unstable processes, pre-compensation based on dominant first- or second-order

models usually performs better than Pole Placement.

• Pre-stabilisation designs based on Pole Placement may over-actuate the controller,

possibly leading to constraint violations and instability in practice, and therefore

should be used with caution.

The rest of the article is organized as follows: Section 2 presents a technical overview

of the dual loop, i.e., pre-stabilised PFC followed by a comprehensive discussion on the

concept of relative tuning in Section 3. Section 4 then discusses some simple classical
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feedback compensator designs that integrate comfortably within the dual-loop PFC frame-

work. Two simulation case studies have been presented and discussed in detail in Section 5.

Finally, the paper concludes in Section 6.

2. Technical Overview of Dual-Loop PFC

Consider a challenging open-loop process modelled as follows:

G(z) = z−nd G0(z); G0(z) =
ŷk

ûk
=

b(z)

a(z)
(1)

where ŷk and ûk are the model output and input, respectively, the polynomials a(z) and b(z)

represent plant estimates with a(z) = 1 + a1z−1 + · · ·+ anz−n, b(z) = b1z−1 + · · ·+ bnz−n,

nd is the process delay in samples, and a(z) factors the open-loop unstable and/or complex

conjugate poles.

For a difficult dynamic process modelled as (1), the conventional pre-stabilised PFC

works by first compensating the delay-free prediction model G0(z) using a classical feed-

back compensator before implementing PFC as an outer control loop [19]. The technical

details of the framework are summarised in the following sections.

2.1. Pre-Compensating the Prediction Model

In order to obtain stable and well-damped output predictions, the model G0(z) in

(1) is compensated using a bi-proper feedback controller C(z), as shown in Figure 1a (or

Figure 1b; see Remark 1). Note the following:

C(z) =
q(z)

p(z)
(2)

where p(z) = 1+ p1z−1 + · · ·+ pmz−m and q(z) = q0 + q1z−1 + · · ·+ qmz−m. The resulting

pre-stabilised delay-free prediction model is then given as follows:

Gs,0(z) =
ŷk

vk
=

q(z)b(z)

p(z)a(z) + q(z)b(z)
=

β(z)

α(z)
(3)

where vk is the transformed decision variable which is computed via PFC, as shown in

Figure 2. Hence, the i-step ahead output predictions can be obtained (see [12,19] for details)

recursively from (3), i.e., α(z)ŷ(z) = β(z)v(z) such that:

yk+i+nd |k
= Hi v−→k + Pi v←−k−1 + Qi ŷ

←−
k + dk (4)

where dk = yk − ŷk−nd is added to remove prediction bias due to disturbance and/or uncer-

tainties, and Hi, Pi, and Qi depend on the model parameters α(z) and β(z). Furthermore,

v−→k =













vk

vk+1
...

vk+i−1













; v←−k−1 =













vk−1

vk−2
...

vk−l













; ŷ
←−

k =













ŷk

ŷk−1
...

ŷk−l+1













(5)

where l = n + m.
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Figure 1. Pre-stabilisation loop structure with compensation in (a) forward path, and (b) feedback path.
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Figure 2. Dual-loop PFC control architecture.

2.2. Establishing a Pre-Stabilised PFC Control Law

For simplicity, it is assumed that the output yk approaches the set-point R monotoni-

cally, i.e., exhibiting an ideal exponential trajectory. Thus, the desired i-step ahead tracking

error can be expressed as follows:

ēk+i+nd |k
= (R− E[yk+nd |k

])ρi; i ≥ 1 (6)

where ρ is the target pole (0 < ρ < 1) representing the desired error reduction rate and

E[yk+nd |k
] = ŷk + dk is the expected delayed output. One may also obtain the actual error

convergence using the output predictions (4):

ek+i+nd |k
= R−

(

Hi v−→k + Pi v←−k−1 + Qi ŷ
←−

k + dk

)

; i ≥ 1 (7)

Keeping vk constant, i.e., vk+i = vk, ∀i ≥ 1, the desired and true errors, in (6) and (7)

above, are matched at only one future instant ny, known as the coincidence point, such that

ēk+ny+nd |k
= ek+ny+nd |k

. Enforcing this coincidence defines the corresponding Pre-stabilised

PFC control law as follows:

vk =
1

hny

[

R− (R− E[yk+nd |k
])ρny − (Pny v←−k−1 + Qny ŷ

←−
k + dk)

]

(8)

where hny = Hny Lny with Lny = [1 1 . . . 1]T1×ny
.



Processes 2025, 13, 862 5 of 21

2.3. Computing the True Process Input

As shown in Figure 2, the actual process input uk is related to vk indirectly via the

model input ûk, where uk = ûk only in the absence of uncertainties, i.e., when dk = 0

(see [19] for a complete derivation). Here, we state the final result:

uk = B0vk + fk; fk = −A u
←−k−1 + B v←−k−1 + E d

←−k (9)

where A, B, and E are obtained from the parameters a(z), α(z), p(z), and q(z) as follows:

A(z) = α(z)p(z) = 1 + A1z−1 + A2z−2 + . . .

B(z) = q(z)a(z)p(z) = B0 + B1z−1 + B2z−2 + . . . (10)

E(z) = −α(z)q(z) = E0 + E1z−1 + E2z−2 + . . .

Evidently, after pre-stabilisation, the degree-of-freedom (d.o.f.) is reparametrised

appropriately, given a suitable inner controller C(z), which can now work well, notwith-

standing any difficult open-loop dynamics.

Remark 1. If C(z) is positioned in the feedback path of the pre-compensation loop, as shown

in Figure 1b, rather than the forward path, the numerator of the pre-stabilised model Gs,0(z) in

(3) changes to β(z) = p(z)b(z). Hence, the computation of B(z) in (10) must also be updated

accordingly with B(z) = p(z)a(z)p(z). In this case, the coefficient B0 will be equal to 1 as both

p(z) and a(z) are monic polynomials.

2.4. Constraint Handling with Pre-Stabilisation

Although reparametrising the predicted input uk slightly complicates the computation,

it is still possible to incorporate constraint handling into Pre-stabilised PFC in a systematic

way, and while retaining nominal feasibility, as demonstrated in several recent papers [19].

In practice, it is sufficient to check the following inequalities up to a long enough validation

horizon nc, where nc >> ny

Lnc ¯
u ≤ u
−→k ≤ Lnc ū

Lnc ∆
¯
u ≤ ∆ u

−→k ≤ Lnc ∆ū

Lnc
¯
y ≤ y
−→

k+1 ≤ Lnc ȳ (11)

However, as these details are not central to the contribution of this paper, they are

excluded for clarity.

2.5. Summary

In short, assuming the availability of a suitable inner-loop compensator, pre-

stabilisation ensures smooth, well-damped, and monotonically convergent prediction

dynamics. Nevertheless, the consequent reparametrisation of the predicted input, as given

in (9), also complicates to some extent the simplistic constraint management offered by the

conventional PFC algorithm, although given the modern computing capacity, this is not

likely to be a problem.

3. Pre-Stabilised PFC and Relative Tuning

The primary tuning parameter ρ in the control law (8) is central to achieving the desired

time response; nonetheless, its efficacy [13] is highly dependent on the judicious selection

of the coincidence point ny. For example, if ny is chosen closer to the system’s steady state,

the effect of ρ diminishes as ρny → 0. On the other hand, imposing coincidence early in
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the transient region may cause significant over-actuation. Furthermore, the inconsistent

use of target/disturbance information in (8) may also cause additional lag in the response,

which further weakens the desired link between the selected parameters and the achieved

performance. Consequently, the conventional PFC often fails to fulfil the control objectives

as per the desired specification [22].

To overcome these tuning deficiencies, this section examines a conceptually new

approach to PFC tuning using relative statements, such as faster or slower with respect to

the steady-state benchmark, as opposed to finding ρ and ny on absolute terms.

3.1. The Relative Tuning Proposal

Assuming zero initial conditions and no uncertainty for simplicity, it is straightforward

to show using (8) that for a change in R,

vk =
R

hny

(1− ρny) (12)

Moreover, the steady-state control in nominal conditions may be computed as follows:

vss =
R

Gs,0(1)
; ∵ yss = R (13)

where Gs,0(1) is the steady-state gain of the pre-stabilised system, given by the following:

Gs,0(1) =
β(1)

α(1)
=

β1 + β2 + · · ·+ βl

1 + α1 + α2 + · · ·+ αl
=

∑
l
i=1 βi

1 + ∑
l
i=1 αi

(14)

Now, define a new tuning parameter θ, the transient input aggression factor, as the ratio of

the input vk to the steady-state input vss, that is,

θ =
vk

vss
=

Gs,0(1)

hny

(1− ρny) (15)

from which it is obvious whether one uses the left-hand side with θ or the right-hand side

with (ρ, ny), the relationship in (15) will tune the controller by suitably adjusting vk with

respect to the steady-state input vss. Although both methods attempt to fulfil the same

performance specification, using θ directly as the sole tuning parameter appears more

efficient and transparent than the conventional methods of selecting ρ and ny [2,12,13].

Hence, the proposed relative tuning can benefit in the following ways:

(i) The controller tuning simplifies to merely answering one trivial question, i.e., how

much faster (or slower) one wishes the closed-loop system to respond as compared to

the open-loop behaviour.

(ii) Removing the explicit role of ρ and ny implicit in conventional PFC laws [22] prevents

the incorrect use of feedforward information in the control law, and consequently the

inadvertent addition of undesirable lag in the closed-loop response.

This, however, requires reformulating the control law, which is presented in the

following sections.

Remark 2. It is emphasised that the true estimate of the expected steady-state input must incorpo-

rate the error correction term dk to ensure bias-free tracking, which is necessary to accommodate the

effect of modelling uncertainty and/or disturbance. Thus, the following corrected expression of vss

will be employed in the following derivation, as well as the simulation studies presented in Section 5

of this article:
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E[vss] =
R− dk

Gs,0(1)
(16)

3.2. The Relative PFC Control Law

Just like the conventional PFC, the proposed Relative PFC also relies on three key

elements: a suitable prediction model, a benchmark response, and a mechanism to ensure

bias-free predictions. Nevertheless, instead of using an ideal exponential trajectory and

the concept of coincidence, the system’s response to the steady-state input is utilised as

a benchmark for the closed-loop performance tuning.

With vk = vss, the following ny-step ahead predicted error convergence is obtained:

ēk+ny+nd |k
= R− (hny vss + Pny v←−k−1 + Qny ŷ

←−
k + dk); (17)

which compares to (7) with i = ny (here, ny represents the length of the prediction hori-

zon). Thus, to ensure a faster convergence than the benchmark (17), one must select

a vk correspondingly more active than vss. Lemma 1 below formalises this concept.

Lemma 1. In the nominal state and zero initial conditions, the choice vk = θvss for the target R

provides an error convergence which is γ times (17) when

γ =
Gs,0(1)− hny θ

Gs,0(1)− hny

(18)

Proof. With dk, v←−k−1 and ŷ
←−

k all zero, and vk = θvss, the tracking errors are related

as follows:

R− hny θvss = γ(R− hny vss)

using (13) then implies

1−
hny θ

Gs,0(1)
= γ

(

1−
hny

Gs,0(1)

)

which simplifies to (18) after simple manipulations.

Theorem 1. For the chosen input activity θ and the error convergence γ defined in (18) above,

the pre-stabilised relative PFC (PRPFC) control law is given as follows:

vk = γvss +
1− γ

hny

[

R−

(

Pny v←−k−1 + Qny ŷ
←−

k + dk

)]

(19)

Proof. Using Lemma 1, it is clear that ek+ny+nd |k
= γēk+ny+nd |k

, implying the following:

R− (hny vk + Pny v←−k−1 + Qny ŷ
←−

k + dk) = γ

[

R− (hny vss + Pny v←−k−1 + Qny ŷ
←−

k + dk)

]

which simplifies to the control law (19).

Note that the true process input uk can be easily computed using (9) as before.

3.3. Parameter Tuning in RPFC

The core benefit of relative PFC is obvious from the preceding discussion, as the closed-

loop performance tuning now reduces to simply answering one statement: how fast or slow

does one want the closed-loop system to respond as compared to the benchmark behaviour

based on steady-state inputs? More specifically, the proposal provides three distinct tuning

choices, i.e., 0 < θ < 1, θ = 1, and θ > 1, each with the following interpretation:
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• 0 < θ < 1 reduces the input activity, resulting in a slower closed-loop performance.

For example, θ = 0.5 uses an input only half as active as the benchmark to produce

a relatively slower response.

• θ = 1 is equivalent to the steady-state tuning.

• θ > 1 increases input activity with a faster performance. For example, θ = 2

uses an input twice as aggressive as the benchmark to produce a comparatively

faster response.

Remark 3. It is advised to practice caution while selecting θ, as large values may over-actuate the

controller. Clearly, a more sensible approach would be to keep the actuating capacity of the system

under consideration while making the ultimate tuning selection.

3.4. Managing Constraints with Pre-Stabilised Relative PFC

In addition to significant tuning simplifications, another benefit of the proposal is that

it does not modify or complicate the process of handling constraints any further, which

may be performed as discussed earlier in Section 2.4 of this paper.

3.5. Summary

The core conceptual novelty of this section is the introduction to relative tuning within

a dual-loop setting. This is simple, intuitive, and far more transparent than the conventional

tuning approaches adopted in PFC or even PID controllers. The obvious requirement

here is the availability of system dynamics that are broadly acceptable, i.e., ideally well-

damped, stable, and monotonically convergent to the steady state. Thus, in difficult

applications where this is not the case, the dual-loop control strategy presented earlier can

be implemented to benefit from simplified tuning offered by relative PFC.

4. Designing a Suitable Pre-Stabilising Compensator

In this section, we present a selection of four recently proposed pre-stabilisation

schemes that are simple, well-understood, and easily implementable with basic technical

know-how and, more importantly, without overly complicating the PFC design [19,20,24,25].

Note, as will be evident in the following subsections, the use of these strategies has been

classified according to the type of dynamics, i.e., first-, second-, or more generic higher-

order, for which they are designed.

4.1. Pre-Compensation of Unstable First-Order Dynamics

Consider an unstable first-order system given as follows [24]:

G0(z) =
b1z−1

1− a1z−1
; a1 ≥ 1 (20)

This system can be easily stabilised with a simple proportional gain C(z) = K as per the

proposed configuration shown in Figure 1a. The resulting pre-stabilised system has the

following transfer function:

Gs,0(z) =
β1z−1

1− α1z−1
=

Kb1z−1

1− (a1 − Kb1)z−1
(21)

Theorem 2. The compensated predictions in (21) are stable and monotonically convergent provided

K is selected within the following range:

1− a1

b1
< K < −

a1

b1
(22)
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Proof. For convergent predictions, the pre-stabilised pole α1 must be stable, i.e., must lie

within the range 0 < α1 < 1, implying the following:

0 < a1 − Kb1 < 1

which after simple manipulations leads to (22).

Although Theorem 2 in principle defines the upper and lower bounds on K for guar-

anteed stability, a more systematic choice of the pre-stabilised pole is α1 = 1/a1 (if a1 > 1),

which means the pre-stabilising compensator may be designed by selecting the following:

K =
a2

1 − 1

a1b1
(23)

In case the open-loop system exhibits integrator dynamics, i.e., a1 = 1, then one may simply

select α1 = 0.5 by choosing K = 0.5/b1. This pre-stabilises G0(z) in a straightforward manner.

4.2. Pre-Stabilising Second-Order Dynamics via Root Locus

This proposal (see [25]) is fairly generic and is based on the fact that a majority of

real-world processes can be adequately represented as dominant second-order dynamics,

for which simple tailored solutions are well understood.

Assume that a simple proportional controller, i.e., C(z) = K, is utilised in the feedback

path of the inner loop, as shown in Figure 1b, to compensate a difficult second-order system

G0(z), resulting in the following pre-stabilised transfer function:

Gs,0(z) =
β(z)

α(z)
=

G0(z)

1 + KG0(z)
=

b(z)

a(z) + Kb(z)
(24)

where a(z) = 1 + a1z−1 + a2z−2 and b(z) = b1z−1 + b2z−2. A simple approach is to design

the proportional gain K via Root Locus, which is a powerful graphical tool for control

systems’ analysis and design [26]. Hence, one may analyse the effect of K on the pre-

stabilised pole polynomial α(z), with the goal to obtain critically (or, in practice, close to)

damped poles at the stable break-in/breakaway points, denoted by σ, on the root loci, as

shown in Figure 3. Consequently, at z = σ, the compensator K must satisfy the following

gain condition [27]:

K(σ) = −
1

G0(σ)
= −

a(σ)

b(σ)
(25)

where the function K(σ) demonstrates the local minimum/maximum at the break-

in/breakaway points. Thus, being stationary, these points can be obtained analytically by

taking the first derivative of (25) with respect to σ:

dK(σ)

dσ
= −

d

dσ

[

a(σ)

b(σ)

]

= 0

In practice, one could use computer tools to solve for K(σ) quite quickly, but for second-

order systems, simple analytic solutions exist, for example,

σi = −
b2

b1
±

1

b1

√

a2b1
2 − a1b1b2 + b2

2, i = 1, 2 (26)

Depending on the open-loop model parameters, two values of σ are obtained from (26),

but only the one within the range 0 < σ < 1 can be implemented for pre-stabilisation.

Hence, the pre-stabilised pole polynomial α(z) must be equal to α(z) = z2 − 2σz + σ2 with
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K evaluated from (25). It is also reiterated that one can easily find K using modern software

tools and thus avoid explicit use of the algebra above.

Remark 4. The open-loop zero dynamics of G0(z) may be significant in some instances, i.e., the

root of b(z) may appear in the vicinity of the system poles, hindering the successful implementation

of this approach. In such cases, it is recommended to design a lead or lag type controller if possible to

cancel and replace the problematic zero in order to minimise its undesirable effect. Interested readers

are referred to [25] for details.
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Figure 3. Root locus design of a difficult second-order dynamic system with (a) complex pole pair,

(b) one unstable pole.

4.3. Pre-Compensation of Poorly Damped Systems via Pole Cancellation

Assume that G0(z) represents a nth-order under-damped, i.e., oscillatory, but other-

wise stable system, such that [20]

G0(z) =
b(z)

a(z)
; a(z) = a−(z)a+(z) (27)

where a+(z) represents pu complex conjugate poles and a−(z) factors the remaining n− pu

well-damped open-loop poles. As shown in Figure 1a, the cascade compensation of G0(z)

with C(z) results in the following pre-stabilised transfer function:

Gs,0(z) =
β(z)

α(z)
=

C(z)G0(z)

1 + C(z)G0(z)
(28)

which after simple manipulations leads to the following:

C(z) =
β(z)a(z)

b(z)[α(z)− β(z)]
(29)

Evidently, the open-loop zeros b(z) become compensator poles that could possibly

destabilise the system due to non-minimum phase dynamics. To avoid this issue, we set

β(z) = Kb(z) with K ̸= 0 and therefore obtained the following:

C(z) = K
a(z)

α(z)− Kb(z)
(30)

where K can be evaluated easily, for example, via Root Locus. Hence, this compensator

actually cancels the open-loop poles a(z) and places the new poles defined by the polynomial

α(z), which means it is necessary to select the pre-stabilised pole polynomial first before

designing C(z). Ideally, one would want the compensated model to exhibit non-oscillatory

behaviour, for which a good starting point is to place the new poles of Gs,0(z) at the
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projection of the dominant oscillatory poles of G0(z) along the real axis on the z-plane.

The resulting pre-stabilised transfer function has the following form:

Gs,0(z) = K
b(z)

α(z)
; α(z) = a−(z)α+(z) (31)

where α+(z) represents the pu pre-stabilised poles, such that α+(z) = ∏
pu

i=1

[

z−ℜ(zp,i)
]

for each open-loop complex conjugate pole zp,i present in a+(z).

It is worth emphasising that despite being simple and intuitive, this method is not

suitable for stabilising open-loop unstable systems due to the explicit pole cancellation in

the control law [20].

4.4. Pre-Stabilisation via Pole Placement

Assume that a (n− 1)th-order bi-proper compensator C(z) is used to modify the open-

loop model G0(z), as shown in Figure 1a, resulting in the pre-stabilised transfer function

Gs,0(z), with a smooth and monotonically convergent prediction behaviour. Then, the

resulting (2n− 1)th-order pole polynomial α(z) is given by the following relationship [19]:

p(z)a(z) + q(z)b(z) = α(z) (32)

which is commonly known as the Diophantine Equation. In order to design C(z), one

must define the desired pre-stabilised characteristic polynomial α(z) and then utilise linear

algebra to obtain the coefficients of p(z) and q(z) as follows:

M = S−1D (33)

where M = [pn−1 . . . 1 qn−1 . . . q0]
T , D = [α2n−1 . . . α0]

T , and S is the Sylvester Matrix [28]

given as follows:

S =

































an 0 . . . 0 bn 0 . . . 0

an−1 an . . . 0 bn−1 bn . . . 0
...

... . . .
...

...
... . . .

...

1 a1 . . . an−1 0 b1 . . . bn−1

0 1 . . . an−2 0 0 . . . bn−2

...
... . . .

...
...

... . . .
...

0 0 . . . a1 0 0 . . . b1

0 0 . . . 1 0 0 . . . 0

































(34)

Note that α(z) is factorised as follows:

α(z) = o(z)a−(z)α+(z) (35)

where o(z) is the (n− 1)th-order observer, generally selected as o(z) = zn−1, a−(z) factors the

stable open-loop poles, and α+(z) represents the pu pre-stabilised poles. If a+(z) = ∏
pu

i=1(z− zp,i),

then the following is true.

Proposal for Unstable Poles. With zp,i > 1, design α+(z) = ∏
pu

i=1(z − 1/zp,i). In case

an integrator factor (z− 1) is present, one may simply replace it with (z− 0.5).

Proposal for Complex Poles. With zp,i ∈ C, place the pre-stabilised poles at the real part of the

complex open-loop poles, i.e., α+(z) = ∏
pu

i=1

(

z−ℜ(zp,i)
)

. This will effectively filter out

the undesirable oscillations but without changing the convergence speed.
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4.5. Summary

This section has presented a selection of classical feedback control techniques that

integrate systematically into the dual-loop PFC framework. Though there are many choices

available for a particular system at hand, ideally one should try the simplest controllers

first, i.e., those based on proportional or proportional plus derivative elements, before opt-

ing for more complex higher-order designs based on, for example, pole cancellation or pole

placement. This is important because a simpler inner loop naturally implies computation-

ally efficient closed-loop constraint handling as well as simple coding and maintenance,

akin to the original PFC algorithm, despite the added complexity of pre-compensation.

5. Simulation Results and Discussion

In this section, we investigate, compare, and contrast the closed-loop performance

achieved with the proposed dual-loop control strategy. To highlight the benefits of the

approach, the analysis also includes a comparison with the Conventional PFC (CPFC) and

PID control algorithms in real world scenarios, i.e., in the presence of process constraints,

disturbances, measurement noise, and modelling mismatches.

5.1. Description of Case Studies

Let us begin by introducing the two challenging open-loop industrial processes that

will be used as case studies in the following sections.

Position Control of Single Link Robotic Arm. Robotic manipulators have played a vital

role in global industrialisation, leading to better-quality products with cheaper manufac-

turing costs. This study implements the dual-loop relative PFC algorithm to control the

angular position of a single-link robotic arm driven by a brushed DC motor, as shown

in Figure 4a. The non-linear model of the manipulator has three coupled states, i.e., the

angular position φ, the angular velocity φ̇, and the motor current i, related to each other

according to the following dynamic relationship [29]:

L R

J, B

Φ

i

u

g

m, l

(a)

AB

TJ

F, CAf , Tf

F, CA , T

(b)

Figure 4. Schematic representation of (a) DC motor-driven single-link robot, and (b) jacketed

CSTR process.

J
d2φ

dt2
+ B

dφ

dt
+ mglsinφ = Kτ i (36a)

L
di

dt
+ Ri + Ke

dφ

dt
= u (36b)

where u is the input voltage (manipulated variable), J is the inertia of the robotic arm, B

represents the actuator damping, m and l denote the mass and length of the arm, g is acceler-

ation due to gravity, L and R represent the inductance and resistance of the motor winding,

Kτ is the torque constant, and Ke represents the voltage constant of the motor. These parame-

ters are assumed to have the following numerical values: J = 0.1 kgm2, B = 0.05 Nms/rad,
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m = 2 kg, l = 0.75 m, g = 9.8 m/s2, Kτ = 0.768 Nm/A, Ke = 0.768 Nms/rad, R = 2.6 Ω,

and L = 25 mH. Moreover, the motor voltage supply is limited between 0 ≤ u ≤ 24 volts

with |∆u| ≤ 0.5 volts/s.

Temperature control in Jacketed CSTR. The Continuous Stirred Tank Reactor (CSTR) is

a common industrial unit widely employed in different chemical manufacturing processes.

In this study, we consider a specific type of CSTR equipped with an outer jacket in which

the temperature of a flowing fluid TJ is used to regulate the inside reaction temperature T,

as shown in Figure 4b. The overall coupled model has two-state non-linear dynamics, as

given below [30]:

dCA

dt
=

F

V

(

CA f
− CA

)

− k0e
− E

RgT CA (37a)

dT

dt
=

F

V

(

Tf − T
)

+

(

−∆H

ρCp

)

k0e
− E

RgT CA −
UA

VρCp

(

T − TJ

)

(37b)

where CA is the concentration of component A, T is the reaction temperature, CA f
is the

feed concentration, Tf is the feed temperature, TJ is the jacket temperature, F is the in-

put flow rate, V is the reactor volume, k0 is the frequency factor, E is the activation en-

ergy, Rg is the ideal gas constant, −∆H is the heat of reaction, U is the heat transfer coeffi-

cient, A is the area of heat transfer, ρ is the fluid density, and Cp is the fluid heat capacity.

The following parametric values have been used in simulations [31]: k0 = 16.96× 1012 h−1,

E = 32,400 Btu/lb mol, Rg = 1.987 Btu/lb mol◦F, ρCp = 53.25 Btu/ft3◦F, UA = 23,200 Btu/h◦F,

V = 500 ft3, F = 2000 ft3/h, CA f
= 0.132 lb mol/ft3, and Tf = 60 ◦F. Furthermore, the jacket

fluid temperature is limited to a maximum value, such that TJ ≤ 2640 ◦F.

5.2. Linearisation of Models

The single-link robotic arm (36) is linearised, using a sampling period of 10 ms, around

the operating point φss = 0.314 rad (18◦) and uss = 15.4 volts, leading to the following:

G1 =
φ′(z)

u′(z)
=

4.011z2 + 12.596z + 2.384

z3 − 2.320z2 + 1.681z− 0.352
× 10−5 (38)

where φ′ and u′ are the output and input deviation variables around their corresponding

steady-state values. A second-order model is also constructed using the model reducer app

available in MATLAB 2021a [32]:

G1,r =
φ′(z)

u′(z)
=
−1.192z + 4.133

z2 − 1.962z + 0.972
× 10−2 (39)

Note that both linear transfer function models (38) and (39) exhibit significant oscillations

with open-loop poles positioned at z = 0.362, 0.979± j0.117 for G1 and z = 0.981± j0.101

for G1,r.

Similarly, the jacketed CSTR process (37) is linearised using a sampling period of

0.01 min (0.6 s) around the operating point Tss = 560.8 ◦F and TJ,ss = 2637.9 ◦F, re-

sulting in an unstable second-order dynamic model (assuming a measurement delay

of nd = 25 samples) given as follows:

G2 =
T′(z)

T′J(z)
=

0.00895z− 0.00825

z2 − 1.972z + 0.9719
z−25 (40)



Processes 2025, 13, 862 14 of 21

where both T′ and T′J are deviation variables around the corresponding steady-state values.

A first-order model is also constructed using the model reducer app available in MATLAB

2021a [32]:

G2,r =
T′(z)

T′J(z)
=

0.0205

z− 1.004
z−25 (41)

Note that both linear transfer function models (40) and (41) exhibit output instability with

open-loop poles positioned at z = 0.969, 1.004 for G2 and z = 1.004 for G2,r.

5.3. Pre-Stabilisation and Parameter Tuning

The third-order model G1 (38) and the reduced second-order model G1,r (39) of the

robotic arm were pre-stabilised using the Pole Placement (PP), Pole Cancellation (PC), and

Root Locus (RL) methods. The associated pre-stabilising compensators, designed using the

strategies discussed in Section 4, are as follows:

• CPP
1 =

−66.29z2 + 18.2z + 2.09

z2 + 0.00266z + 0.00014

• CPC
1 =

0.3z3 − 0.696z2 + 0.5042z− 0.1055

z3 − 2.32z2 + 1.67z− 0.347

• CRL
1,r = −32

Consequently the following pre-compensated transfer function models were obtained:

• GPP
1 =

−265.90z4 − 761.96z3 + 79.55z2 + 69.71z + 4.98

z5 − 2.32z4 + 1.67z3 − 0.346z2
× 10−5

• GPC
1 =

1.20z2 + 3.78z + 0.715

z3 − 2.32z2 + 1.67z− 0.347
× 10−5

• GRL
1,r =

−15z + 44.5

z2 − 1.96z + 0.958
× 10−5

The dominant pre-stabilised poles positioned at z = 0.979, 0.979 in each case warrant

an equivalent closed-loop behaviour in nominal conditions, which is indeed obvious from

Figure 5a, depicting the benchmark (mean-level) system outputs with θ = 1. Furthermore,

Figure 5b clearly indicates the tuning efficacy of the proposed pre-stabilised PFC algorithms,

i.e., PPFC-PP, PPFC-PC, and PPFC-FO, with θ = 5, as the robotic arm now settles relatively

quickly to its target steady-state angular position as compared to the benchmark responses

shown in Figure 5a; the increase in the corresponding transient input magnitude is also clear.

In the unstable jacketed CSTR example, the original second-order model G2 (40) along

with its reduced first-order model G2,r (41) are pre-stabilised using the Pole Placement (PP),

Root Locus (RL), and First-Order (FO) methods. Note that due to the presence of the open-

loop unstable mode, the Pole Cancellation method was not utilised for pre-compensation.

• CPP
2 =

9.834z− 9.525

z− 0.0808
, GPP

2 =
0.088z2 − 0.166z + 0.079

z3 − 1.965z2 + 0.965z
, poles at 0, 0.997, 0.969

• CRL
2 = 0.556, GRL

2 =
0.00895z− 0.00825

z2 − 1.967z + 0.9673
, poles at 0.984, 0.984

• CFO
2,r = 0.389, GFO

2,r =
0.00798

z− 0.996
, pole at 0.996

The Root Locus method here provides relatively faster dominant poles than the other

two techniques; hence, its pre-stabilised benchmark response (PPFC-RL) is correspondingly

faster, as shown in Figure 6a. Nevertheless, the selected tuning parameter θ = 3 works

effectively by producing relatively faster closed-loop outputs (Figure 6b). However, pre-

compensation via pole placement in this case is likely not a good choice since the sharp

initial input peak (for both θ = 1, 3) is large compared to other methods; this could cause

constraint violations and even worse lead to instability in consequence.
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Figure 5. Tuning efficacy of dual-loop PFC for single-link robotic arm process with Pole Placement,

Pole Cancellation, and Root Locus compensation schemes using (a) θ = 1 (benchmark), and (b) θ = 5.
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Figure 6. Tuning efficacy of dual-loop PFC for jacketed CSTR process with Pole Placement, Root

Locus, and First-Order compensation schemes using (a) θ = 1 (benchmark), and (b) θ = 3.
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5.4. Comparison in Practical Scenarios

We further analysed the closed-loop performance of these pre-stabilisation methods in

more practical scenarios by incorporating the effect of external disturbances, measurement

noise, and modelling uncertainties.

For the single-link robot, a constant disturbance of 0.1 rad was introduced at the

process output, whereas for the unstable CSTR, a constant input disturbance of 1 ◦F was

added. The results are shown in Figure 7, from which it is evident that the Pole Placement

method in both cases demonstrates relatively sluggish disturbance rejection as compared

to the other two methods. Notably, Pole Cancellation provides by far the best performance,

with significantly faster disturbance rejection and output normalisation. A similar trend

is observed in the noise and uncertainty management (see Figure 8), which shows the

PPFC-PP being far more adversely affected than any of the other methods, especially for

the unstable process example.
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Figure 7. Comparison of disturbance rejection between various compensation schemes for (a) single-

link robotic arm with θ = 5 and a constant output disturbance of 0.1 rad, and (b) jacketed CSTR with

θ = 3 and a constant input disturbance of 1 ◦F.

Table 1 quantifies the achieved closed-loop performances, as discussed above, using the

Mean Absolute Error (MAE), where MAE = 1
N ∑

N
i=1 |yi − R| and N are the size of the vectors

involved. Thus, in summary, for the case studies considered here, the following is concluded:

• Pole Cancellation is more efficient in handling poorly damped (stable) dynamics than

the other discussed techniques.

• For unstable processes, pre-compensation based on dominant first- or second-order

models usually outperforms Pole Placement.

• Pre-stabilisation based on Pole Placement often over-actuates the controller, possibly

leading to constraint violations and instability in practice, and therefore should be

used with caution.
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Figure 8. Comparison of tuning efficacy between various compensation schemes along with measure-

ment noise and plant-model mismatches for (a) single-link robotic arm with θ = 5 and an unmodelled

pole at z = 0.5, and (b) jacketed CSTR with θ = 3 and a 10% multiplicative uncertainty.

Table 1. Comparison of Mean Absolute Error (MAE) for different pre-stabilisation techniques used in

Sections 5.3 and 5.4.

S. No. Scenario Case Study 1 Case Study 2

θ = 1 θ = 1

MAEPP = 0.0384 MAEPP = 0.1166
MAEPC = 0.0386 MAERL = 0.0523
MAERL = 0.0383 MAEFO = 0.1082

1. No disturbance, noise, and/or modelling uncertainty θ = 5 θ = 3

MAEPP = 0.0208 MAEPP = 0.0423
MAEPC = 0.0210 MAERL = 0.0342
MAERL = 0.0208 MAEFO = 0.0426

θ = 5 θ = 3

MAEPP = 0.0279 MAEPP = 0.0663
2. Added disturbance MAEPC = 0.0212 MAERL = 0.0432

MAERL = 0.0254 MAEFO = 0.0645

θ = 5 θ = 3

MAEPP = 0.0428 MAEPP = 0.0490
3. Added measurement noise and modelling uncertainty MAEPC = 0.0320 MAERL = 0.0421

MAERL = 0.0383 MAEFO = 0.0532
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Naturally, given that offline simulation and testing is relatively cheap, for any given

scenario, it would be sensible to evaluate several alternatives, as it may not be possible to

give generic guidance on which method is most appropriate.

5.5. Analysis of Constrained Closed-Loop Performance

Based on the observations of the preceding sections, we selected PPFC-PC for the

robotic arm example and PPFC-RL for the unstable CSTR system, and present a comparative

analysis of the constrained closed-loop performance against the conventional PFC (CPFC)

and PID controllers. For a fair comparison, the CPFC uses the parameters ρ and ny chosen

according to the corresponding θ, albeit with difficult open-loop prediction dynamics

implemented directly within the control law. Furthermore, the PID was synthesised using

the robust PID tuning algorithm available in MATLAB [33]. The actual non-linear models

(36) and (37) acted as the plants for a more realistic evaluation.

Figure 9a depicts the scenario for the poorly damped robotic arm process, where

a set point change of 0.105 radians, i.e., 6◦, from the initial steady-state was introduced.

As evident, both the CPFC and PID controllers failed to compensate the open-loop under-

damping, though the performance of CPFC was far worse under the constraints. On the

other hand, the proposed PPFC not only successfully filtered out the unwanted oscillations,

but did so by maintaining feasibility despite a significant change in both the set point and

the disturbance.
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Figure 9. Closed-loop performance comparison with constraints and external perturbations for

(a) single-link robotic arm pre-stabilised via Pole Cancellation using θ = 5 subject to |∆u| ≤ 0.5 volts

and 0 ≤ u ≤ 24 volts, and (b) jacketed CSTR pre-stabilised via Root Locus scheme with θ = 3 subject

to TJ ≤ 2640 ◦F.
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For the unstable jacketed CSTR process, the closed-loop performance is displayed in

Figure 9b. A step change of 2.5 ◦F drove the process away from the nominal operating

point, causing large uncertainty, which alongside the imposed actuation limit proved too

demanding for both the CPFC and the PID. In this case too, the proposed PPFC algorithm

depicted superior performance, with highly commendable characteristics despite facing

the challenges.

Thus, these examples validate the rationale behind using pre-stabilised predictions

in predictive functional control law for a superior performance, as compared to the direct

utilisation of the difficult open-loop dynamics, which clearly fails to fulfil the desired

performance specification in an efficient and reliable manner.

6. Conclusions

This paper presents a dual-loop control architecture for challenging industrial pro-

cesses that combine two seemingly different concepts, i.e., pre-stabilisation and relative

tuning, in order to rectify the fundamental weaknesses of the conventional PFC algorithm.

More specifically, the proposal transforms the difficult open-loop prediction dynamics via

classical feedback compensation in an inner loop so as to obtain stable and well-damped

prediction behaviour that is more easily manageable by the outer loop PFC. Moreover,

the PFC employs a novel tuning technique that bases decision making relative to the

steady-state benchmark performance of the pre-stabilised system, making the overall im-

plementation much more transparent and intuitive than the original PFC, or indeed PID,

in industrial settings.

The paper has also consolidated and summarised numerous simple and well-

understood classical feedback compensation designs that work well within the proposed

dual-loop control framework. Notably, the work highlights the superior efficacy of Pole

Cancellation for poorly damped stable systems, which not only ensures reliable and con-

sistent prediction dynamics but also provides excellent performance under the influence

of disturbances, noise, and modelling uncertainties. For open-loop unstable processes,

however, the recommendation is to implement reduced second- or first-order models,

if possible, as compensating higher-order dynamics directly with Pole Placement often pro-

duces aggressive control action, which may in turn lead to constraint violation or instability

in practice.

While the current simulation results are highly promising, in future, the authors

plan to validate the proposal’s efficacy with hardware-based experiments on challenging

industrial processes. Furthermore, we plan to investigate the functionality of inner-loop

designs more closely using detailed frequency domain analysis so as to understand why

pre-stabilisation based on Pole Cancellation performs so efficiently as compared to other

techniques, especially in handling uncertainties and disturbances.
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