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Abstract. Under the assumption of small violations of choice with seed S

(SVC(S)), the failure of many choice principles reflect to local properties of S,
which can be a helpful characterisation for preservation proofs. We demonstrate
the reflections of DC, ACλ, PP, and other important forms of choice. As a con-
sequence, we show that if S is infinite then S can be partitioned into ω many
non-empty subsets.

1. Introduction

It is often the case that violating a consequence of choice is easier than
verifying that a consequence of choice has been preserved. For example,
to violate ACω in a symmetric extension, one need only add a countable
family with no choice function. On the other hand, to ensure that ACω

has been preserved one must check ‘every’ countable family. Blass’s small
violations of choice affords us an alternative approach. In any symmetric
extension of a model of ZFC there is a ‘seed’ S such that SVC(S) holds: For
all non-empty X there is an ordinal η such that S×η surjects onto X (see [1,
Theorem 4.3]).1 In fact, under this assumption, many violations of choice are
reflected back and witnessed locally to S. For example, to verify ACω, one
need only check ACω(S). Indeed, already in [1] the idea of a local reflection
of choice was present, and the concept has appeared variously throughout
the literature, summarised by the following. All notation will be introduced
in the text as the results are proved.
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2 C. RYAN-SMITH

Theorem. Assume SVC(S) and SVC
+(T ).

1. (Blass, [1]) AC is equivalent to “S can be well-ordered”.
2. (Pincus–Blass, [1]) BPI is equivalent to “there is a fine ultrafilter on

[S]<ω”.
3. (Karagila–Schilhan, [7]) KWP

∗
α is equivalent to “there is η ∈ Ord such

that |S| ≤∗ |Pα(η)|”.
4. (Karagila–Schilhan, [7]) KWPα is equivalent to “there is η ∈ Ord such

that |T | ≤ |Pα(η)|”.

Continuing this, we prove local equivalents of several common forms of
choice, such as the principle of dependent choices and well-ordered choice.

Theorem. Assume SVC(S) and SVC
+(T ).

1. (Proposition 3.1) DCλ is equivalent to “every λ-closed subtree of S<λ

has a maximal node or a chain of order type λ”.
2. (Proposition 3.2) ACλ is equivalent to ACλ(S), which is in turn equiv-

alent to “every function g : S → λ splits”.
3. (Corollary 3.3) ACWO is equivalent to AC<ℵ∗(S)(S).
4. (Proposition 3.6) ACX is equivalent to ACX(S).
5. (Proposition 3.8) Assume that cf(ω1) = ω1. Then CUT is equivalent

to CUT(T ).
6. (Proposition 3.11) Wλ is equivalent to Wλ(T ).
7. (Proposition 3.12) W∗

λ is equivalent to W∗
λ(T ).

8. (Proposition 3.17) PP is equivalent to PP↾ T ∧ ACWO.
9. (Proposition 3.20) PP(S) ∧ ACWO implies SVC

+(S). Hence, PP is
equivalent to PP(S) ∧ PP↾ S ∧ ACWO.

1.1. Structure of the paper. In Section 2 we go over some prelim-
inaries for the paper. In Section 3 we describe reflections of various conse-
quences of choice in the context of small violations of choice.

2. Preliminaries

We work in ZF. We denote the class of ordinals by Ord. Given a
set of ordinals X , we use ot(X) to denote the order type of X . Given
an ordinal α, cf(α) is the cofinality of α (the least cardinality of a cofi-
nal subset). For sets X , Y , |X| ≤ |Y | means that there is an injection
X → Y , |X| ≤∗ |Y | means that X = ∅ or there is a surjection Y → X ,2

and |X| = |Y | means that there is a bijection X → Y . For a well-orderable
set X , we use |X| to mean min{α ∈ Ord | |α| = |X|}. By a cardinal we
mean a well-ordered cardinal, that is α ∈ Ord such that |α| = α. For a set Y

2Equivalently, there is a partial surjection Y → X .
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LOCAL REFLECTIONS OF CHOICE 3

and a cardinal κ, we write [Y ]κ to mean {A ⊆ Y | |A| = |κ|} and [Y ]<κ

to mean {A ⊆ Y | |A| < |κ|}. Given a set X , the Hartogs number of X is
ℵ(X) = min{α ∈ Ord | |α| � |X|}. Dually, we define the Lindenbaum num-
ber of X to be ℵ∗(X) = min{α ∈ Ord | |α| �∗ |X|}. It is a theorem of ZF
that ℵ(X) and ℵ∗(X) are well-defined cardinals. We denote concatenation
of tuples by ⌢, so if f : α → X and g : β → X then f⌢g is the function
α+ β → X given by

f⌢g(γ) =

{

f(γ) γ < α

g(δ) γ = α+ δ.

2.1. Small violations of choice. Introduced in [1], for a set S (known
as the seed), SVC(S) is the statement “for all X there is an ordinal η such
that |X| ≤∗ |S × η|”, and SVC is the statement (∃S)SVC(S). We shall also
make use of the injective form, SVC+(S) meaning “for all X , there is an or-
dinal η such that |X| ≤ |S × η|”. See [10] for a more detailed overview of
SVC and SVC

+.

Fact. SVC
+(S) =⇒ SVC(S) =⇒ SVC

+(P(S)).

2.2. Forcing and symmetric extensions. While no knowledge of
forcing or symmetric extensions is required for the main results, forcing is
used in the proof of Propositions 3.19 and 3.22. For a thorough introduction
to forcing and symmetric extensions one can go to [5, Chapters 14 and 15],
and for a more specific overview of the notation and terminology used in the
proof of Propositions 3.19 and 3.22, one should see [6]. For a brief overview
of the specific ideas used in this paper, continue reading this section.

A forcing is a partial order 〈P,≤〉 with maximal element 1. We refer to
the elements of P as conditions. We force downwards, so we say that q is
stronger than p (or extends p) if q ≤ p. We say P has the countable chain
condition (c.c.c.) if every antichain A ⊆ P is countable. Given a set X of
P-names, we denote by X• the P-name {〈1, ẋ〉 | ẋ ∈ X}. By Add(A,B) we
mean the forcing with conditions that are partial functions p : B × A → 2
such that |dom(p)| < |A|, and q ≤ p when q ⊇ p. For all B, Add(ω,B) is
c.c.c. Given a generic filter G ⊆ Add(A,B), c =

⋃

G is a function B ×A
→ 2, which we think of as encoding B-many functions A → 2, so for b ∈ B,
the bth Cohen subset of A added is {a ∈ A | c(b, a) = 1}. This is formalised
by the name

ċb =
{

〈p, ǎ〉 | a ∈ A, p ∈ Add(A,B), p(b, a) = 1
}

.

In Proposition 3.19 we consider the Feferman-style model Nℵ1
from [11].

This is given by letting G be an L-generic filter of Add(ω, ω1), and taking
the least model Nℵ1

� ZF such that L ∪ {〈cβ | β < α〉 | α < ω1} ⊆ M . Here
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4 C. RYAN-SMITH

cβ is the βth Cohen real
{

n < ω |
⋃

G(β, n) = 1
}

as above. In [11], Truss
shows thatNℵ1

is a model of ACWO, V = L(w(R)), where w(R) is well-orders
of subsets of R, and that every subset of R in Nℵ1

is either well-orderable or
contains a perfect subset.

In Lemma 3.22 we consider Cohen’s first model M from [2]. This is given
by letting G be L-generic for Add(ω, ω) and taking the least model M � ZF

such that L ∪ {cn | n < ω} ⊆ M . Here cn is again the nth Cohen real. In
[2], Cohen shows that M is of the form L(A), where A = {cn | n < ω} is a
Dedekind-finite set of reals. Additional information on Cohen’s first model
can be found in [4, Sections 5.3 and 5.5].

2.3. Form numbers. Many of the forms of choice mentioned in this
text are described and thoroughly examined for interdependence and equiv-
alent statements in [3] (to the extent that the tools at the time allowed).
In particular, the consequences of the axiom of choice found are given nu-
merical form numbers, which many still find helpful as a cataloguing tool.
We therefore would like to remark the following form numbers of some of
the subjects of this paper: AC is Form 1; BPI is Form 14; CUT is Form 31;
cf(ω1) = ω1 is Form 34; ACWO is Form 40; Wλ is Form 71(α), where λ = ℵα;
KWPn is Form 81(n), where n < ω; ACλ is Form 86(α), where λ = ℵα; DCλ

is Form 87(α), where λ = ℵα; PP is Form 101; SVC is Form 191.

3. Reflections

3.1. The principle of dependent choices. A tree is a partially
ordered set 〈T,≤〉 with minimum element 0T such that, for all t ∈ T ,
{s ∈ T | s ≤ t} is well-ordered by ≤. This gives rise to a notion of rank
rk(t) = sup{rk(s)+ 1 | s <T t}, of height ht(T ) = sup{rk(t)+ 1 | t ∈ T}, and
of levels Tα = {t ∈ T | rk(t) = α}. For x ∈ Tα and β ≤ α, we denote by x↾ β
the unique y ∈ Tβ such that y ≤ x. A chain is a set C ⊆ T such that for all
s, t ∈ C, s ≤ t or t ≤ s. For an ordinal α, T is α-closed if every chain in T
of order type less than α has an upper bound. For an infinite cardinal λ,
DCλ is the statement “every λ-closed tree has a maximal node or a chain of
order type λ”.

We note that DCλ was originally defined in [8] as follows: Let X be
a non-empty set and R a binary relation such that for all α < λ and all
〈xβ | β < α〉 ∈ Xα there is y ∈ X such that 〈xβ | β < α〉 R y. Then there is
f : λ → X such that, for all α < λ, f ↾ α R f(α). This alternative definition
is equivalent to the one that we are working with [13, Theorem 1].

Given a set X and a limit ordinal α, we endow the set X<α =
⋃

{Xβ |
β < α} with a tree structure given by end-extension: f ≤ g if and only if
f ⊆ g. A subtree of X<α is non-empty T ⊆ X<α such that whenever f ≤ g
and g ∈ T , f ∈ T . In this case, f ↾ β meaning “the function f restricted to
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domain β” is the same as f ↾ β meaning “the unique g of rank β such that
g ≤ f”.

Proposition 3.1. Assume SVC(S). For each infinite cardinal λ, the
following are equivalent :

1. DCλ;
2. every λ-closed subtree of S<λ has a maximal node or a chain of order

type λ.

Proof. Certainly if DCλ holds then DCλ holds for subtrees of S<λ, so
assume instead that every λ-closed subtree of S<λ has a maximal node or a
chain of order type λ. Let T be a λ-closed tree, and let η ∈ Ord and f : S× η
→ T be a surjection. We shall define a function ι : S<λ → T ∪ {⊥}, defining
ι(x) by induction on dom(x), as follows: For x ∈ Sα,

1. let ι(x) = ⊥ if there is β < α such that ι(x↾ β) = ⊥; otherwise
2. if x = y⌢〈s〉, then let ι(x) = f(s, γ), where γ is least such that f(s, γ)

is an immediate successor of ι(y), or ι(x) = ⊥ if no such γ exists; and
3. if x has limit rank, then let ι(x) = sup{ι(x↾ β) | β < α}.
Note that if ι(x) 6= ⊥ then ι(x) ∈ Tα, and that for all β < α, ι(x↾ β) =

ι(x)↾ β.
Let A = {x ∈ S<λ | ι(x) 6= ⊥}.

Claim 3.1.1. A is a λ-closed subtree of S<λ.

Proof. If x ∈ A and y < x, then since ι(x) 6= ⊥, ι(y) 6= ⊥. Further-
more, ι(∅) = 0T , so A 6= ∅ and is indeed a subtree. If C ⊆ A is a chain of
length less than λ, then let b =

⋃

C ∈ S≤λ. If b ∈ Sλ then {ι(b↾ α) | α < λ}
is a chain of order type λ in T . So assume otherwise, that b ∈ S<λ. If b has
limit rank α, say, then ι(b) = sup{ι(b↾ β) | β < α} 6= ⊥, since ι(b↾ β) 6= ⊥
for all β < α. Thus, b ∈ A. If instead b has successor rank, then b ∈ C, so
certainly b ∈ A as required. �

If x ∈ A is a maximal node, then ι(x) is maximal in T : Otherwise, ι(x)
has an immediate successor, say t, and t = f(s, γ) some γ. Then ι(x⌢〈s〉)
6= ⊥, and so x is not maximal in A, contradicting our assumption. Finally,
if A has no maximal nodes then there is a chain C ⊆ A of order type λ. In
this case, ι“C is a chain in T of order type λ as required. �

3.2. Well-ordered choice. For a set X , ACX is the statement “if
∅ 6= Y , ∅ 6∈ Y , and |Y | ≤ |X|, then

∏

Y 6= ∅”, where
∏

Y =
{

f : Y →
⋃

Y |

(∀y ∈ Y )f(y) ∈ y
}

is the set of choice functions. ACWO means (∀α ∈
Ord)ACα. For α ∈ Ord, AC<α means (∀β < α)ACβ . ACX(A) is ACX for
families of subsets of A: If Y ⊆ P(A) \ {∅} is non-empty and |Y | ≤ |X|
then

∏

Y 6= ∅. AC<α(A) means (∀β < α)ACβ(A).
Given a function g : X → Y , we say that g splits if there is a partial

function h : Y → X such that dom(h) = g“X and gh(y) = y for all y ∈ g“X .
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6 C. RYAN-SMITH

We say that a set X is Dedekind-finite if |ω| � |X|. Otherwise, it is
Dedekind-infinite.

Proposition 3.2. Assume SVC(S). For each infinite cardinal λ, the

following are equivalent :
1. ACλ;
2. ACλ(S);
3. every function g : S → λ splits.

Proof. Certainly ACλ implies ACλ(S). Assuming ACλ(S), if g : S → λ

then we define

Y =
{

g−1({α}) | α ∈ g“S
}

.

Then if c ∈
∏

Y , h : g“S → S given by h(α) = c(g−1(α)) splits g.
Finally, assume that every g : S → λ splits and let X = {Xα | α < λ}

be a collection of non-empty sets. Let f : S × η →
⋃

X be a surjection
for some η ∈ Ord. For α < λ, let βα = min{β < η | (f“S × {β}) ∩Xα 6= ∅},
and let Sα = {s ∈ S | f(s, βα) ∈ Xα}. Let g(s) = min{α < λ | s ∈ Sα} for
all s ∈ S. If h : λ → S is a partial function splitting g, then setting γα =
min{γ < λ | h(γ) ∈ Sα} is well-defined, and C(α) = f(h(γα), βα) is a choice
function for X . �

The following corollary was also proved independently by Elliot Glazer
(private communication).

Corollary 3.3. Assume SVC(S). The following are equivalent :
1. ACWO;
2. AC<ℵ∗(S)(S).

Proof. Certainly ACWO implies AC<ℵ∗(S)(S), so assume AC<ℵ∗(S)(S).
Let g : S → λ, A = g“S, and α = ot(A) < ℵ∗(S). Taking ι : A → α to be the
unique isomorphism, we have ι ◦ g : S → α. By AC<ℵ∗(S)(S), ι ◦ g is split,

say by f : α → S. Then f ◦ ι−1 splits g. Since g was arbitrary, Proposition
3.2 gives us ACλ. Since λ was arbitrary, we obtain ACWO as required. �

Corollary 3.4. Assume SVC(S). Then ℵ∗(S) 6= ℵ0.

Proof. If ℵ∗(S) = ℵ0 then there are no surjections S → ω, so every
function S → ω has finite image and hence splits. Therefore, ACω holds.
However, ACω implies that for all X , ℵ∗(X) 6= ℵ0. �

We also have the following more direct (albeit longer) proof of this corol-
lary.

Alternative proof. Assume SVC(S), where S is infinite (the case of S
finite immediately gives ℵ∗(S) 6= ℵ0), and let f : S×η → S<ω be a surjection
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LOCAL REFLECTIONS OF CHOICE 7

for minimal η, where Sn is the set of injections n → S and S<ω =
⋃

n<ω S
n.

For s ∈ S, let

Xs =
{

α < η | 〈s, α〉 ∈ dom(f) ∧ (∀β < α)f(s, β) 6= f(s, α)
}

and ηs = ot(Xs). If {ηs | s ∈ S} is infinite then |ω| ≤∗ |S| as required. Oth-
erwise, {ηs | s ∈ S} is finite. We consider two cases:

Case 1: There is s ∈ S such that ηs ≥ ω. Then we can obtain an injec-
tion g : ηs → S<ω by setting g(α) to be the αth element of Xs. Hence S is
Dedekind-infinite, and in particular |ω| ≤∗ |S|.

Case 2: Otherwise. Then ηs is finite for all s, and hence η is finite.
We have ℵ∗(S × η) ≥ ℵ∗(S<ω) ≥ ℵ1, but by the additivity of Lindenbaum
numbers,3 we have ℵ∗(S × η) = ℵ∗(S), and hence ℵ∗(S) ≥ ℵ1. �

The idea behind Corollary 3.4 extends to certain other cardinals κ,
though we additionally have to assume AC<κ, as (unlike AC<ω) it is not
automatic.

Proposition 3.5. Let κ be a limit cardinal or singular. Assume SVC(S)
and AC<κ. Then ℵ∗(S) 6= κ.

Proof. If ℵ∗(S) = κ then, by Corollary 3.3, ACWO holds. However, by
[10, Theorem 3.4], ACWO is equivalent to “for all X , ℵ∗(X) is a regular
successor”, contradicting that ℵ∗(S) = κ is singular or a limit. �

In fact, the method of Proposition 3.2 applies more generally.

Proposition 3.6. Assume SVC(S). Then for all X , the following are

equivalent :
1. ACX ;
2. ACX(S).

Proof. Certainly ACX implies ACX(S). So assume ACX(S) and let
p : Y →X be an injection. Let f : S×η →

⋃

Y be a surjection. For y∈Y , let

βy = min
{

β < η | (∃s ∈ S)f(s, β) = y
}

,

Sy =
{

〈s, βy〉 | s ∈ S, f(s, βy) = y
}

.

By ACX(S), we have c ∈
∏

{Sy | y ∈ Y } (noting that Sy 7→ p(y) is an injec-
tion), giving f ◦ c ∈

∏

Y . �

Question 3.7. Does ACX imply “for all Y , if ∅ 6∈ Y and |Y | ≤∗ |X| then
∏

Y 6= ∅”?

3That is, if A is infinite then for all B, ℵ∗(A ∪B) = ℵ∗(A) + ℵ∗(B). In particular, if n < ω
and A is infinite then ℵ∗(n× A) = ℵ∗(A).
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8 C. RYAN-SMITH

3.3. The countable union theorem. For a set X , we write CUT(X)
to mean “a countable union of countable subsets of X is countable”, and
CUT to mean the countable union theorem (∀X)CUT(X).

Proposition 3.8. Assume SVC
+(S) and cf(ω1) = ω1. The following

are equivalent :
1. CUT;
2. CUT(S).

Proof. Certainly CUT implies CUT(S), so assume CUT(S). Let {An |
n < ω} be a countable family of countable sets, and let A =

⋃

n<ω An, as-
suming without loss of generality that A ⊆ S × η for minimal η.

For n < ω, let zn = {α < η | (∃s ∈ S)〈s, α〉 ∈ An}, so |zn| ≤
∗ |An| ≤ |ω|,

and so |zn| ≤ |ω|. By minimality of η and cf(ω1) = ω1, we have η =
ot(

⋃

n<ω zn) < ω1. For n < ω, let Bn =
{

s ∈ S | (∃α < η)〈s, α〉 ∈ An

}

, so
Bn ⊆ S is countable for all n. By CUT(S), B =

⋃

n<ω Bn is countable, and
hence |A| ≤ |B × η| ≤ ℵ0 as required. �

Question 3.9. Can Proposition 3.8 be improved to “CUT is equivalent
to CUT(S)” without assuming that ω1 is regular? Since the singularity of
ω1 is already a violation of CUT, this is equivalent to “does SVC

+(S) and
cf(ω1) = ω imply ¬CUT(S)?”.

3.4. The axiom of choice. The following was remarked by Blass
in [1].

Proposition 3.10 (Blass). Assume SVC(S). The following are equiva-
lent :

1. AC;
2. S can be well-ordered.

Proof. Certainly AC implies that S can be well-ordered. On the other
hand, if S can be well-ordered and |X| ≤∗ |S × η| then |X| ≤ |S × η|, so X
can be well-ordered. �

3.5. Comparability. WX is the statement “for all Y , |X| ≤ |Y | or |Y |
≤ |X|” and W∗

X is the statement “for all Y , |X| ≤∗ |Y | or |Y | ≤∗ |X|”. We

write W
(∗)
X (B) to mean “for all A ⊆ B, |X| ≤(∗) |A| or |A| ≤(∗) |X|”. Note

that “every infinite set is Dedekind-infinite” is equivalent to Wℵ0
.

Proposition 3.11. Assume SVC
+(S). For each infinite cardinal λ, the

following are equivalent :
1. Wλ;
2. Wλ(S).

Proof. Certainly Wλ implies Wλ(S), so assume Wλ(S). Let X ⊆
S × η, and let A = {s ∈ S | (∃α < η)〈s, α〉 ∈ X}. Note that |A| ≤ |X|, since
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s 7→ 〈s, αs〉 is an injection, where αs is least such that 〈s, αs〉 ∈ X . If |A|
≤ |λ| then |X| ≤ |A× η| is well-orderable, so certainly |λ| ≤ |X| or |X| ≤ |λ|.
On the other hand, if |A| � |λ| then |λ| ≤ |A| ≤ |X| as required. �

Replacing ≤ by ≤∗ in the proof of Proposition 3.11, we obtain Proposi-
tion 3.12.

Proposition 3.12. Assume SVC
+(S). For each infinite cardinal λ, the

following are equivalent :
1. W∗

λ;
2. W∗

λ(S).

Question 3.13. As a consequence of Propositions 3.11, 3.12, assuming
SVC(S) (and hence SVC

+(P(S))), Wλ(P(S)) implies Wλ, and W
∗
λ(P(S))

implies W∗
λ. Under the assumption of SVC(S), can we obtain a ‘better’ set X

such that Wλ(X) implies Wλ? What about the W∗
λ case?

3.6. Boolean prime ideal theorem. The Boolean prime ideal theo-
rem BPI is the statement “every Boolean algebra has a prime ideal”, though
it has many equivalent forms (see [3, Form 14]). In [1], Blass presents the
following local reflection of BPI under the assumption of SVC, attributing
the idea behind the proof to Pincus.

Proposition 3.14 (Pincus–Blass, [1]). Assume SVC(S). The following

are equivalent :
1. BPI;
2. There is a fine ultrafilter on [S]<ω. That is, an ultrafilter U on [S]<ω

such that, for all s ∈ S, {a ∈ [S]<ω | s ∈ a} ∈ U .

3.7. Kinna–Wagner principles. For a set X , we define the iterated
power set function Pα(X) by Pα(X) =

⋃

β<α Pβ(X) when α is a limit

ordinal, and in the successor case Pα+1(X) = P(Pα(X)). We also extend
this notation to Ord, so P(Ord) is the class of all sets of ordinals, P2(Ord)
is the class of all sets of sets of ordinals, et cetera. For an ordinal α, KWPα

means “for all X there is an ordinal η such that |X| ≤ |Pα(η)|”, and KWP
∗
α

means “for all X , there is an ordinal η such that |X| ≤∗ |Pα(η)|”. The
following observations, from [7], are consequences of the fact that, for all α,
there is a definable surjection from Pα(Ord) onto Pα(Ord)×Ord, and that
Ord ⊆ Pα(Ord).

Proposition 3.15 (Karagila–Schilhan, [7]). Assume SVC(S). The fol-

lowing are equivalent :
1. KWP

∗
α;

2. There is η ∈ Ord such that |S| ≤∗ |Pα(η)|.
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10 C. RYAN-SMITH

Proposition 3.16 (Karagila–Schilhan, [7]). Assume SVC+(S). The fol-
lowing are equivalent :

1. KWPα;
2. There is η ∈ Ord such that |S| ≤ |Pα(η)|.

Remark. Given that KWP0 and KWP
∗
0 are both equivalent to AC,

Propositions 3.15, 3.16 give new context to Proposition 3.10.

3.8. The partition principle. The partition principle PP says “for
all X and Y , |X| ≤ |Y | if and only if |X| ≤∗ |Y |”. Note that the forward
implication always holds. By PP↾ X we mean the partition principle for
subsets of X : If A,B ⊆ X and |A| ≤∗ |B| then |A| ≤ |B|. We instead write
PP(X) to mean “for all A, if |A| ≤∗ |X| then |A| ≤ |X|”.

Proposition 3.17. Assume SVC
+(S). The following are equivalent :

1. PP;
2. PP↾ S and ACWO.

Proof. Certainly PP implies PP↾ S, and PP implies “for all X , ℵ(X) =
ℵ∗(X)”, which is equivalent to ACWO.

4 So instead assume PP↾ S ∧ ACWO.
Let A,B ⊆ S× η be such that |A| ≤∗ |B|, witnessed by f : B → A. We treat
f as a partial surjection f : S × η → A. For 〈t, α〉 ∈ A, let

εt,α = min
{

ε < η | (∃s ∈ S)f(s, ε) = 〈t, α〉
}

.

Let B〈t,α〉 = {s ∈ S | f(s, εt,α) = 〈t, α〉}, and Bε =
⋃

{B〈t,α〉 | εt,α = ε}. Let
E =

{

ε < η | (∃〈t, α〉 ∈ A)εt,α = ε
}

= {ε < η | Bε 6= ∅}. For each ε ∈ E, let
Aε = {〈t, α〉 | εt,α = ε}. Then |Aε| ≤∗ |Bε|, witnessed by s 7→ f(s, ε). Hence,
by assumption, |Aε| ≤ |Bε| and Iε = {injections Aε → Bε} 6= ∅. By ACWO,
let c : E →

⋃

{Iε | ε ∈ E} be a choice function. Then

g : A → S × η , 〈t, α〉 7→ 〈c(εt,α)(t, α), εt,α〉

is an injection. Furthermore, for each 〈t,α〉 ∈ A, f(g(t,α)) ∈ Aεt,α . In partic-
ular, f(g(t, α)) is defined and so g is in fact an injection A → B as required.
�

Question 3.18. Can Proposition 3.17 be improved to “PP is equivalent
to PP↾ S”? Equivalently, is ACWO a consequence of SVC+(S) ∧ PP↾ S?

While we do not know if ACWO is unnecessary in Proposition 3.17, we
cannot weaken the requirement of SVC+(S) to SVC(S), as Proposition 3.19
demonstrates.

4 See the first lemma of [9, Theorem 7], proof of which is attributed to Pincus by the author.
In fact, the statement of the lemma in [9] is “PP implies ACWO”, but the proof only uses the
assumption (∀X)ℵ(X) = ℵ∗(X), and the converse direction is straightforward. A proof can also
be found in [10, Theorem 3.1].
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Proposition 3.19. Let M be the Feferman-style model Nℵ1
from [11].

That is, for G ⊆ Add(ω, ω1) an L-generic filter, we set

M = L
({

〈cβ | β < α〉 | α < ω1

})

,

where cβ is the βth Cohen real introduced by G. Then

M � ACWO ∧ PP↾ R ∧ SVC(R) ∧ ¬PP.

Proof. Firstly, by [11, Lemma 2.4], M � ACWO.
By [11, Theorem 3.2], every set of reals in M can either be well-ordered

or contains a perfect subset. If A,B ⊆ R and |A| ≤∗ |B| then: If B can be
well-ordered, |A| ≤ |B|; and if B contains a perfect subset then |A| ≤ |R|
≤ |B|. Hence PP↾ R holds.

By [11, Lemma 2.3], M � V = L(w(R)), where w(R) is the set of well-
orders of subsets of R. We aim to show that w(R) ⊆ L(R) and so M � V =
L(R). In particular, this will show that M � SVC(R).5 As a consequence
of [11, Theorem 3.1], a set X of reals in M is well-orderable if and only
if X ⊆ L[〈cβ | β < α〉] for some α < ω1. Hence, any well-ordered sequence
f : γ → R in M is in fact an element of L[〈cβ | β < α〉] for some α. Since
α < ω1, we may encode the entire sequence 〈cβ | β < α〉 as a single real c,
and so f ∈ L[c] for some c ∈ R. Hence, w(R) ⊆ L(R) ⊆ L(w(R)), and so
M � V = L(R).

It remains to show that M � ¬PP, which we shall do this by showing
that there is no injection [R]ω → R (noting that ZF ⊢ |[R]ω| ≤∗ |R|).

Suppose that F : [R]ω → R is such an injection, and assume that it is
L-definable. Let P = Add(ω, ω1) and, for p ∈ P, we define the support of
p, supp(p), to be {β < ω1 | (∃n < ω)〈β, n〉 ∈ dom(q)} ∈ [ω1]

<ω . Since F is

definable in L, F has a P-name Ḟ such that for all σ ∈ Aut(P) (where Aut(P)
is the automorphism group of P), σḞ = Ḟ .6 For β < ω1, we define

ċβ =
{

〈p, ň〉 | p ∈ P, n < ω, p(β, n) = 1
}

,

so ċβ is a name for cβ. Given a permutation π of ω1, define π̂ ∈ Aut(P) by
π̂p(π(α), n) = p(α, n) for all p ∈ P and 〈α, n〉 ∈ ω1 × ω. Note that for such

automorphisms, π̂ċβ = ċπ(β). Let Ċ = {ċn | n < ω}•.7 Then C = ĊG ∈ [R]ω

∩M . Let p0 ∈ P be such that p0  “Ḟ is an injection [Ṙ]ω → Ṙ”.
Suppose that for some P-name ẋ and some p ≤ p0, p  Ḟ (Ċ) = ẋ. Sup-

pose also that for some q ≤ p and some n < ω, q  ň ∈ ẋ.

5 If A is transitive and M = V (A), where V � ZFC then M � SVC([A]<ω) (see [1]). However,
ZF ⊢ |[R]<ω | = |R|.

6 In fact Ḟ = σḞ for all automorphisms σ of the Boolean completion of P.
7That is, Ċ = {〈1, ċn〉 | n < ω}.
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Claim 3.19.1. q ↾ supp(p)× ω  ň ∈ ẋ.

Proof. We shall show that for all r ≤ q ↾ supp(p)× ω, r 6 ň 6∈ ẋ. Let
r ≤ q ↾ supp(p)× ω be arbitrary. Then there is a permutation π of ω1 such
that π“ω = ω, π fixes supp(p) pointwise, and supp(r)∩π“ supp(q) ⊆ supp(p)
(noting that supp(p), supp(q), and supp(r) are all finite). Then π̂p = p,

π̂Ċ = Ċ , π̂Ḟ = Ḟ , and so π̂q  Ḟ (Ċ) = π̂ẋ. However, since π̂q ≤ π̂p = p,

π̂q  Ḟ (Ċ) = ẋ as well, and thus π̂q  π̂ẋ = ẋ. Furthermore, π̂q and r have
a common extension (namely π̂q ∪ r), and so π̂q ∪ r  ň ∈ ẋ. Therefore,
r 6 ň 6∈ ẋ. Since no r ≤ q ↾ supp(p)× ω forces ň 6∈ ẋ, we must have that
q ↾ supp(p)× ω  ň ∈ ẋ. �

By the claim, we may assume that ẋ is an Add(ω, supp(p))-name.
Let β, β′ ∈ ω1 \ supp(p) be such that β < ω and β′ ≥ ω, and let π be the

transposition
(

β β′
)

. Then π̂p = p and π̂ẋ = ẋ, so p  Ḟ (π̂Ċ) = ẋ. How-

ever, p  ċβ′ ∈ π̂Ċ \ Ċ , and so p  π̂Ċ 6= Ċ , contradicting that p  “Ḟ is an
injection”.

In the case that F requires a real parameter, say c, we note that by the
c.c.c. of Add(ω, ω1), c has an Add(ω,α)-name for some α < ω1. By working
in L[G↾ α] (where G↾ α = {p ∈ G | dom(p) ⊆ α× ω}) rather than L, and
noting that the quotient of Add(ω, ω1) by Add(ω,α) (the Add(ω,α)-name
for the ‘rest of the forcing’, so {〈p↾ α×ω, p〉 | p ∈ Add(ω,ω1)}) is isomorphic
to Add(ω, ω1), the same result follows (using {ċβ | α ≤ β < α+ ω}• instead
of C). �

Even though we cannot improve Proposition 3.17 to SVC(S) as written,
we can if we additionally assume the stronger axiom PP(S), rather than
merely PP↾ S.

Proposition 3.20. SVC(S) ∧ PP(S) ∧ ACWO implies SVC
+(S).

Proof. Let A be a set. By SVC(S) there is a surjection h : S × η → A for
some ordinal η. For a ∈ A, let αa = min{α < η | (∃s ∈ S)h(s, α) = a}. For
α < η, let Aα = {a ∈ A | αa = α}. Then s 7→ h(s,α) is a (partial) surjection
S → Aα for all α, and so, by PP(S), |Aα| ≤ |S|. Using ACWO, we may simul-
taneously pick injections iα : Aα → S for all α < η. Then a 7→ 〈iαa

(a), αa〉 is
an injection A → S× η; indeed, if 〈iαa

(a), αa〉 = 〈iαb
(b), αb〉 then αa = αb, so

iαa
(a) = iαa

(b), which implies a = b as the iα are injective. A was arbitrary,
so we conclude SVC

+(S). �

Corollary 3.21. Assume SVC(S). The following are equivalent :
1. PP;
2. PP↾ S, PP(S), and ACWO.

Proof. Certainly PP implies each of PP↾ S, PP(S), and ACWO, so in-
stead assume PP↾ S, PP(S) and ACWO. By Proposition 3.20, SVC

+(S)
holds, and so by Proposition 3.17, PP holds. �
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In Lemma 3.22 below, we prove that “PP↾ S ∧ACWO” cannot be omitted
from Corollary 3.21.

Proposition 3.22. Let M = L(A) be Cohen’s first model, where L ⊆
M ⊆ L[G] for L-generic G ⊆ Add(ω, ω). Then

M � SVC
+(R) ∧ PP(R) ∧ ¬PP.

Proof. For an overview of Cohen’s first model and the proof of
SVC

+(R), see [4, Sections 5.3 and 5.5]. Within is also a proof that there
is an infinite Dedekind-finite set of reals in M , contradicting ACWO (and
hence, by Proposition 3.17, PP).

The proof that M � PP(R) is due to Elliot Glazer and Assaf Shani.
Suppose that f : R → X is a surjection and, using SVC

+(R), assume that
X ⊆ R× η for some minimal η. In L[G], 2ℵ0 = ℵ1, and (since η is minimal)
f induces a surjection R → η. Therefore η < ω2. In M , |ω1| ≤ |R|, and so

|X| ≤ |R× η| ≤ |R× ω1| ≤ |R× R| = |R|. �

Furthermore, the modelNℵ1
from Proposition 3.19 shows that we cannot

omit the PP↾ S requirement from Corollary 3.21.

Proposition 3.23. Let M be the Feferman-style model Nℵ1
from [11]

(and Proposition 3.19). Then

M � ACWO ∧ PP(P(R)) ∧ SVC
+(P(R)) ∧ ¬PP.

Proof. We already saw in Proposition 3.19 that M is a model of ACWO

∧ SVC(R) ∧ ¬PP. By SVC(R), SVC+(P(R)) holds.
The proof of PP(P(R)) is similar to Lemma 3.22. Suppose |X| ≤∗

|P(R)|, witnessed by f . We may assume that X ⊆ P(R)× η for mini-
mal η. Since the outer model L[G] � |P(R)| = ℵ2, and f induces a surjection
P(R)M → η, we must have that η < ω3. In M , |ω2| ≤ |P(R)| and so

|X| ≤ |P(R)× η| ≤ |P(R)× ω2| ≤ |P(R)2| = |P(R2)| = |P(R)|. �
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