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In their recent article for Statistics in Biosciences, DelRocco et al. presented a sum-

mary of methods for producing a confidence interval (CI) for relative risk ( �
RR

 ) from 

paired data, including a demonstration of the equivalence of the two established 

asymptotic score methods [1]. I congratulate the authors on deriving the closed-form 

solution to the asymptotic score method, with an optional continuity correction, and 

thank them for including clear details of the algebraic method in their Appendix. 

However, I would like to highlight a defect in the proposed continuity-corrected 

method, and provide an improved solution, followed by some additional comments 

about MOVER intervals.

Unfortunately, the proposed continuity correction does not satisfy the equivari-

ance property [2, 3], which in this context requires that the lower and upper lim-

its for an estimate of �RR = p
1
∕p

2
 are the reciprocals of the upper and lower lim-

its, respectively, of the estimate of ��
RR

= p
2
∕p

1
 . For example, the data for the first 

case study (AHR pre- and post-SCT study) produces an asymptotic score interval of 

(0.0653, 0.9069), and if the columns and rows of the table are transposed, the result 

is (1.1027, 15.3188) = (1/0.9069, 1/0.0653). For the ASCC-H method however, the 

interval from transposed data is (1.0918, 15.357) which does not equal the recipro-

cal of the results in Table 3 (1/0.9461, 1/0.0555).

To obtain an equivariant continuity-corrected interval, a modified correction 

term can be applied to the test statistic, using 
(

1 + �
0

)

 in place of (1∕n)
(

x
11
+ x

21
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in Eq. (9). A closed-form solution is derived by adapting the algebraic solution in 

Appendix 3 as follows, with z = z
1−�∕2

 , first for �
L
:

where the continuity correction � is a constant between 0 and 0.5.

Then for �
U

:

For simplicity of programming, I prefer to scale the correction using a param-

eter � instead of 1/δ, (e.g. � = 0.5 in place of δ = 2) so that the uncorrected method 

is obtained within the same code by setting � = 0. Using the above correction with 

� = 0.5, an interval is obtained which is consistent with the continuity-corrected 

McNemar test. (For example, using the AHR pre- and post-SCT study data in 

Table 2 of DelRocco et al., the p-value from a continuity-corrected McNemar test 

is p = 0.0771, and the corresponding 100 × (1 − 0.771)% confidence interval with 

� = 0.5 is (0.024, 1.000)). The same is not the case for DelRocco et al.’s ‘ASCC-H’ 

method. Although there might be some users who require an interval to agree with 

the standard continuity-corrected test in such a way (and thus emulate an exact inter-

val achieving the minimum coverage criterion), corrections of such a magnitude 

are usually excessively conservative. Therefore, smaller values of � (such as 0.25 or 

0.125) allow intermediate “compromise” corrections of varying strength.

Note that the MOVER intervals may also be adapted to incorporate a continuity 

correction (again, with scope for varying the strength of the correction), by applying 

continuity-corrected methods to the intervals for the individual proportions p
1
 and 

p
2
 [4]. Selecting an equal-tailed method such as Jeffreys, SCAS [4], or mid-p [5], is 

likely to result in improved location properties compared with the Wilson interval, 

which has been shown to have a systematic bias in one-sided coverage [6].
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Furthermore, a correction to the correlation estimate �̂� within the MOVER calcu-

lations has also been suggested by Newcombe [2], and labelled as “continuity cor-

rected �̂�”—somewhat confusingly, since its effect is quite different from other con-

tinuity corrections. Fagerland et al. [7] included this correction in their evaluation of 

MOVER intervals for the risk difference, but not for the ratio. As both methods use 

the same correlation estimate, I see no reason to omit the correlation correction in 

the estimation of θRR.

For software validation purposes, example confidence intervals for the above 

methods are displayed in Table  1, using the AHR case study data for reference 

against Table 3 of the original article. These are not intended for any formal com-

parative purpose, other than to illustrate the relative width increase induced by each 

of the various continuity corrections, and the shift in location for the MOVER Jef-

freys method. I include log width, for comparison with the results in Fagerland et al., 

but in my view interval location is more important than width. As such, the fact that 

the MOVER Wilson intervals for this example dataset are less wide than MOVER 

Jeffreys or SCAS does not necessarily mean they are superior. Full evaluation of the 

merits of these methods requires inspection of their coverage and location proper-

ties, which is a subject of further research.

All of the above proposed methods are included in a planned update to the ratesci 

package for R [8].
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Table 1  Illustrative 95% CIs for θRR for the AHR pre- and post- SCT study

Method Lower limit Upper limit Log width

Asymptotic score 0.0653 0.9069 2.63

ASCC ( � = 0.125) 0.0584 0.9571 2.80

ASCC ( � = 0.5) 0.0398 1.1195 3.34

‘ASCC-H’ (DelRocco) 0.0555 0.9461 2.84

MOVER Wilson ( �̂� uncorrected) 0.0686 0.8695 2.54

MOVER Wilson ( �̂� corrected) 0.0660 0.9048 2.62

MOVER Jeffreys ( �̂� corrected) 0.0513 0.8731 2.83

MOVER-cc Jeffreys ( � = 0.125) 0.0456 0.9072 2.99
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