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Abstract
Lagrangian multiform theory is a variational framework for integrable systems. In
this article, we introduce a new formulation which is based on symplectic geometry
and which treats position, momentum and time coordinates of a finite-dimensional
integrable hierarchy on an equal footing. This formulation allows a streamlined
one-step derivation of both the multi-time Euler–Lagrange equations and the clo-
sure relation (encoding integrability). We argue that any Lagrangian one-form for
a finite-dimensional system can be recast in our new framework. This framework
easily extends to non-commuting flows, and we show that the equations character-
ising (infinitesimal) Hamiltonian Lie group actions are variational in character. We
reinterpret these equations as a system of compatible non-autonomous Hamiltonian
equations.

Keywords Integrable hierarchies · Variational principle · Lagrangian multiforms ·
Hamiltonian group actions

1 Introduction

The geometry of integrable systems has been dominated by the Hamiltonian formal-
ism, symplectic and Poisson geometry, with the celebrated Liouville–Arnold theorem
as the cornerstone of this edifice. Comparatively very recently, much work has been
devoted to defining and describing integrability within a purely variational framework,
as an effort to restore the natural balance between Hamiltonian and Lagrangian for-
malisms in the realm of integrable systems. Pioneered in [1], Lagrangian multiform
theory offers a variational framework to describe and study (classical) integrability
by harnessing the concept of integrable hierarchies. It applies equally well in discrete
and continuous finite-dimensional (d = 1) integrable systems [2–6], discrete [1, 7–9]
and continuous [10–16] integrable field theories in 1+1 dimensions (d = 2), discrete
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[17, 18] and continuous [19, 20] field theories in 2 + 1 dimensions (d = 3) and even
in semi-discrete models [18, 21].

The underlying ideas are the same in all contexts: One considers a differential
(difference) d-form on an N > d space called a multi-time and forms an action by
integrating (summing) this form over an arbitrary d-dimensional submanifold (sub-
lattice) of the multi-time. A generalised variational principle is then applied to derive
the structural equations of the theory: 1) the multi-time Euler–Lagrange equations
obtained by varying over the degrees of freedom for an arbitrary choice of the sub-
manifold (sublattice) and requiring criticality of the action; 2) the closure relation
obtained by varying the underlying submanifold (sublattice) and requiring critical-
ity of the action on-shell (on solutions of the multi-time Euler–Lagrange equations).
Crucially, the closure relation is the variational equivalent [3, 5] of the well-known
Poisson involutivity of Hamiltonians defining Liouville integrability.

In the standard approach to multiform theory described above, dependent and
independent variables are varied separately in steps 1) and 2). In this sense, it is an
unsatisfactory realisation of the original paradigm, which intended to put dependent
and independent variables on an equal footing. In Sect. 2.2 of this article, we introduce
a new framework for Lagrangian one-forms in which dependent and independent vari-
ables are varied simultaneously. This results in a simpler derivation of the variational
equations.

Our new framework is formulated in phase space. This makes it is straightforward
to write down a Lagrangian one-form for any finite-dimensional Liouville integrable
system. Previously, position-space Lagrangian one-forms were constructed by ad hoc
methods, and it was not known whether every integrable system admits a Lagrangian
one-form. We will show in Sect. 3 how to write down a position-space Lagrangian
one-form for any Liouville integrable system by applying a generalised Legendre
transform to the phase-space Lagrangian one-form.

Our new framework is rooted in symplectic geometry and as a result is very flexible.
In particular, we show in Sect. 4 that abelian multi-time can be replaced by a non-
abelian (connected) Lie group, an idea first introduced in [22]. The resulting variational
principle delivers a Hamiltonian action of the Lie group. To our knowledge, this is the
first time that the notion of Hamiltonian group action is derived from a variational
principle. The moment map of this action plays a very natural role in our Lagrangian
one-form. It arises as the on-shell evaluation of a map which is the analogue of the
potential term in a traditional (Newtonian) Lagrangian. To summarise, ourmain results
are:

1. The equivalent reformulation of the previous two-step variational principle of
Lagrangianmultiform theory into a single variational principle applied to an action
for a phase-space Lagrangian one-form;

2. A systematic method to construct a Lagrangian one-form directly from the Hamil-
tonians and the symplectic form of a Liouville integrable system;

3. A variational formulation of Hamiltonian Lie group actions.

The paper is organised as follows. In Sect. 2, we review the known generalised vari-
ational principle for Lagrangian one-forms in a form suitable for our purposes. This
serves to introduce the objects and notations. Then we introduce our reformulation

123



On the geometry of Lagrangian... Page 3 of 28    38 

based on a phase-space Lagrangian one-form. In Sect. 3, we prove the equivalence
of the two pictures, give a simple illustration with the Toda chain, and discuss the
case where the Lagrangian one-form is linear in the velocities. The latter point is
motivated by the fact that Lagrangian one-forms constructed in [5, 6] for large classes
of integrable models are of this type. In Sect. 4, we present a generalisation of the
univariational principle to the case where multi-time Rn is replaced by a Lie group.
Applying this to a natural Lagrangian one-form, we establish for the first time that the
equations describing (infinitesimal) Hamiltonian group actions of a (connected) Lie
group on a symplectic manifold are variational: they appear as the Euler–Lagrange
equations of our univariational principle. We also give an interpretation of the equa-
tions as describing a collection of compatible non-autonomousHamiltonian equations.
Section5 contains our conclusions and some perspective on future directions.

2 Two variational problems

2.1 Position-space Lagrangian one-forms

The traditional perspective on Lagrangian one-forms is as follows. (We reformulate
the derivation and results in [3], see also [23].) Let qμ be m real functions of n real
variables t j . Let� be a curve inRn , written parametrically as s �→ t j (s) for s ∈ [0, 1].
We introduce an action

S[q, �] =
∫ 1

0
Lk[qμ, qμ

j ]dt
k

ds
ds. (2.1)

Here qμ
j = ∂qμ/∂t j . In this equation and throughout the article, repeated indices

are implicitly summed over, unless stated otherwise. We will also always assume that
boundary conditions are chosen so that boundary terms drop out when performing
integration by parts. The integrand Lkdtk is referred to as a Lagrangian one-form, and
Lk are theLagrangian coefficients. The action S depends on themap q : Rn → R

m and
the parametrised curve � ⊂ R

n . We seek a map q such that for all curves �, S[q, �] is
critical with respect to variations of both q and �. We refer to this requirement as the
bivariational principle (reflecting the fact that it involves two steps). We now derive
the associated variational equations.

First we consider variations qμ �→ qμ + δqμ. The variation of S is

δS =
∫ 1

0

(
δqμ ∂Lk

∂q
+ δqμ

j
∂Lk

∂qμ
j

)
dtk

ds
ds, (2.2)

in which δqμ
j = ∂δqμ/∂t j . Suppose that the variation δqμ vanishes along the curve

�. Then

δqμ(t j (s)) = 0 and 0 = d

ds
δqμ = dtk

ds
δqμ

k (t j (s)). (2.3)
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So for each μ, the vector with components δqμ
k is orthogonal to the vector with

components dtk/ds. Then (2.2) vanishes for all δqμ satisfying (2.3) if and only if the

components of ∂Lk
∂qμ

j

dtk
ds orthogonal to dt j/ds are zero, in other words,

∂Lk

∂qμ
j

dtk

ds
= pμ

dt j

ds
(2.4)

for some pμ. This equation says that, for fixed μ, the vector dtk/ds is an eigenvector
of the matrix Mμ with entries ∂Lk/∂q

μ
j . Our variational principle demands that this

is true for all curves tk(s), and hence for all vectors dtk/ds. So every vector in R
n is

an eigenvector of Mμ with eigenvalue pμ, and this matrix must equal pμ times the
identity. Thus, the bivariational principle requires that

∂Lk

∂qμ
j

= pμδ
j
k (2.5)

for some pμ. The traceless part of (2.5) imposes constraints on qμ, qμ
j , and the trace

part then determines pμ as a function of qμ, qμ
j . We note that this equation imposes

constraints on the Lagrangian one-form: there are choices of Lkdtk for which it cannot
be solved.

Now we consider more general variations δqμ that are not necessarily 0 along �.
Assuming that the variational Eq. (2.5) is satisfied, (2.2) gives

δS =
∫ 1

0

(
δqμ ∂Lk

∂qμ
+ δqμ

k pμ

)
dtk

ds
ds =

∫ 1

0

(
δqμ ∂Lk

∂qμ

dtk

ds
+ pμ

dδqμ

ds

)
ds

=
∫ 1

0
δqμ

(
∂Lk

∂qμ

dtk

ds
− dpμ

ds

)
ds =

∫ 1

0
δqμ

(
∂Lk

∂qμ
− ∂ pμ

∂tk

)
dtk

ds
ds. (2.6)

This vanishes for all variations δqμ and all curves � if and only if

∂Lk

∂qμ
− ∂ pμ

∂tk
= 0 (2.7)

Thus, S[q, �] is stable to variations of q for all curves � if and only if Eqs. (2.5) and
(2.7) hold. In the literature on Lagrangian multiforms, these equations are known as
multi-time Euler–Lagrange equations and more commonly expressed as

∂Lk

∂qμ
j

= 0,
∂Lk

∂qμ
k

= ∂L j

∂qμ
j

,
∂Lk

∂qμ
− ∂

∂tk
∂Lk

∂qμ
k

= 0 (2.8)

for all k �= j , in which there is no summation over repeated indices.
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Having discussed variations of qμ, we consider variations of the curve � of the
form tk(s) �→ tk(s) + δtk(s). The variation of S is

δS =
∫ 1

0

(
∂Lk

∂t j
δt j

dtk

ds
+ L j

dδt j

ds

)
ds =

∫ 1

0

(
∂Lk

∂t j
dtk

ds
− dtk

ds

∂L j

∂tk

)
δt j ds.

(2.9)

This vanishes for all variations δt j and all curves t j (s) if and only if

∂Lk

∂t j
− ∂L j

∂tk
= 0. (2.10)

Equation (2.10) is known as the closure relation. Note that in this equation, Lk depends
on t j through qμ(t j ), since we work with Lagrangian coefficients not depending
explicitly on t j ; thus,

∂Lk

∂t j
= ∂Lk

∂qμ
qμ
j + ∂Lk

∂qμ
i

qμ
i j . (2.11)

Equation (2.10) cannot be satisfied for all functions qμ; we only demand that it is
satisfied for solutions qμ of (2.5), (2.7). In other words, we require that Lkdtk is
closed “on-shell”.

The closure relation (2.10) implies that the multi-time Euler–Lagrange equations
(2.7) are generated by Poisson commuting Hamiltonians Hi . These Hamiltonians are
defined as usual:

Hi := pμq
μ
i − Li . (2.12)

A priori, these Hamiltonians are functions of pν , qμ and qμ
j , and we may compute

their partial derivatives, treating these variables as independent:

∂Hi

∂ pμ

= qμ
i , (2.13)

∂Hi

∂qμ
= − ∂Li

∂qμ
, (2.14)

∂Hi

∂qμ
j

= pμδ
j
i − ∂Li

∂qμ
j

. (2.15)

Equations (2.5) and (2.15) imply that the derivative with respect to qμ
j is zero, so that

H may be regarded as a function of pμ and qμ. Equations (2.7) and (2.13) imply that
the variables pμ, qμ follow the Hamiltonian flows generated by Hi :

∂qμ

∂t i
= ∂Hi

∂ pμ

,
∂ pμ

∂t i
= −∂Hi

∂qμ
. (2.16)
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Moreover, Eq. (2.11) becomes

∂Lk

∂t j
= ∂Hk

∂qμ

∂Hj

∂ pμ

+ ∂Lk

∂qμ
i

qμ
i j + pμq

μ
k j . (2.17)

So the closure relation (2.10) is equivalent under the equations of motion (2.5), (2.7)
to

0 = −∂Hk

∂qμ

∂Hj

∂ pμ

+ ∂Hj

∂qμ

∂Hk

∂ pμ

= {Hk, Hj }, (2.18)

where we introduced the canonical Poisson bracket { , }. Hence, the existence of solu-
tions to the bivariational problem requires that the Hamiltonians Hi Poisson commute.

2.2 Phase-space Lagrangian one-forms

In this section, we introduce a different Lagrangian one-form and formulate our uni-
variational principle.We then derive the corresponding univariational Euler–Lagrange
equations. These encompass both the multi-time Euler–Lagrange equations and the
closure relation of the traditional bivariational principle reviewed in the previous sec-
tion. We show that existence of solutions to the univariational equations is equivalent
to Poisson involutivity of the Hamiltonian functions. Finally, we formulate the uni-
variational principle in the setting of symplectic geometry.

Let p1, q1, . . . , pm, qm be coordinates on a 2m-dimensional manifold M , let
H1, . . . Hn be n real functions on M , let t1, . . . , tn be standard coordinates on R

n ,
and consider the one-form

L = pμdq
μ − Hidt

i (2.19)

on M × R
n . For any parametrised curve γ : [0, 1] → M × R

n , we define an action

S[γ ] =
∫ 1

0
γ ∗L. (2.20)

More concretely, if we write γ (s) = (pμ(s), qμ(s), t i (s)), then

S[γ ] =
∫ 1

0

(
pμ

dqμ

ds
− Hi (pμ, qμ)

dti

ds

)
ds. (2.21)

The action S is stable with respect to variations of γ if and only if

γ ′�dL = 0. (2.22)
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Explicitly, with γ ′ = dqμ

ds
∂

∂qμ + dpμ

ds
∂

∂ pμ
+ dtk

ds
∂

∂tk
, we obtain

dqμ

ds
= dti

ds

∂Hi

∂ pμ

, (2.23)

dpμ

ds
= −dti

ds

∂Hi

∂qμ
, (2.24)

0 = dqμ

ds

∂Hi

∂qμ
+ dpμ

ds

∂Hi

∂ pμ

. (2.25)

Note that if t i (s) = svi for some vector vi , then the first two equations describe the
Hamiltonian flow for vi Hi .

Now let � ⊂ M × R
n be an n-dimensional hypersurface. We introduce a univari-

ational principle, which demands that every curve γ ⊂ � is a critical point of S[γ ].
In other words, every γ : [0, 1] → � solves (2.22). The term univariational is chosen
because the principle involves one rather than two steps. To see what the principle
means, we assume that � is the graph of a function R

n → M ; in other words, �

is parametrised as t i �→ (pμ(t i ), qμ(t i ), t i ). (We will show later that this is not an
assumption but is a consequence of the univariational principle.) Then � solves the
univariational principle if and only if

∂qμ

∂t i
= ∂Hi

∂ pμ

(2.26)

∂ pμ

∂t i
= −∂Hi

∂qμ
(2.27)

0 = ∂qμ

∂t j
∂Hi

∂qμ
+ ∂ pμ

∂t j
∂Hi

∂ pμ

. (2.28)

We refer to these equations as the univariational equations. They are equiva-
lent to the requirement that (2.23), (2.24), (2.25) hold for all curves s �→
(pμ(t i (s), qμ(t i (s)), t i (s)).

The existence of solutions to the variational Eqs. (2.26), (2.27), (2.28) implies that
the functions Hi Poisson commute. To see this, we substitute (2.26) and (2.27) into
(2.28):

0 =
(

∂Hj

∂ pμ

∂Hi

∂qμ
− ∂Hj

∂qμ

∂Hi

∂ pμ

)
= {Hj , Hi }. (2.29)

Conversely, if the functions Hi Poisson commute, then solutions � to the variational
problem exist, at least locally.We prove this using the Frobenius integrability theorem.
The 2-form dL defines a distribution D ⊂ T (M ×R

n) such that Dx = {X ∈ Tx (M ×
R
n) : X�dL = 0}. The univariational principle is equivalent to the statement that

� is tangent to this distribution. We will show that if Hi Poisson commute, then
the distribution is integrable and of rank n. The Frobenius integrability theorem then
ensures existence of solutions � given by integral manifolds of the distribution.
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The distribution is integrable because dL is closed. To see this, let X ,Y be two
vector fields that take values in D. This means that X�dL = Y�dL = 0. Then

[X ,Y ]�dL = LX (Y�dL) − Y�(LXdL) = 0 − Y�(d(X�dL) + X�d2L) = 0.
(2.30)

So [X ,Y ] takes values in D and the distribution is integrable. To see why the rank of
D is n, consider the one-forms

θμ = − ∂

∂qμ
�dL = dpμ + ∂Hi

∂qμ
dti , φμ = ∂

∂ pμ

�dL = dqμ − ∂Hi

∂ pμ

dti . (2.31)

These forms are linearly independent and generate a Pfaffian system. Any tangent
vector in D is in the kernel of θμ, φμ so the associated distribution contains D. On the
other hand,

θμ ∧ φμ = dpμ ∧ dqμ − dHi ∧ dti + ∂Hi

∂qμ

∂Hj

∂ pμ

dti ∧ dt j

= dL − 1

2
{Hi , Hj }dti ∧ dt j . (2.32)

Since {Hi , Hj } = 0, this equation implies that any tangent vector in the kernel of
θμ, φμ belongs to D. So the distribution D is equivalent to thePfaffian system {θμ, φμ}.
Therefore, the rank of D is 2m + n − 2m = n. Since the distribution is integrable,
it admits an n-dimensional integrable submanifold � which solves the univariational
problem.

The univariational Eqs. (2.26), (2.27), (2.28) were derived under the assumption
that � is the graph of a function R

n → M . Now we explain why this is not an
assumption but a consequence of the univariational principle. Any submanifold �

may be described parametrically by a map si �→ (pμ(si ), qμ(si ), t j (si )) whose n ×
(2m+n) Jacobian matrix (∂ pμ/∂s j , ∂qμ/∂s j , ∂t i/∂s j ) has full rank. If� solves the
univariational principle, then this map satisfies analogues of (2.26), (2.27), (2.28):

∂qμ

∂s j
= ∂t i

∂s j
∂Hi

∂ pμ

, (2.33)

∂ pμ

∂s j
= − ∂t i

∂s j
∂Hi

∂qμ
, (2.34)

0 = ∂qμ

∂s j
∂Hi

∂qμ
+ ∂ pμ

∂s j
∂Hi

∂ pμ

. (2.35)

These conditions imply that the n × n matrix ∂t i/∂s j is invertible. To see why, sup-
pose to the contrary: then there exists a nonzero vector v j such that v j∂t i/∂s j = 0.
Then Eqs. (2.33) and (2.34) imply that v j∂ pμ/∂s j = 0 and v j∂qμ/∂s j = 0. This
contradicts the assertion that the matrix (∂ pμ/∂s j , ∂qμ/∂s j , ∂t i/∂s j ) has full rank,
so ∂t i/∂s j must be invertible. The inverse function theorem says that, since this matrix
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is invertible, we can find a local inverse t i �→ s j (t i ) of the function s j �→ t i (s j ). This
leads to a new parametrisation t i �→ (pμ(s j (t i )), qμ(s j (t i )), t i ). So � can always be
parametrised as the graph of a function.

The action (2.20) is written in local coordinates, so does not appear to be globally
well-defined on M . We end this section by explaining how to formulate the uni-
variational principle globally on a symplectic manifold (M, ω). For this, we need to
choose two m-dimensional Lagrangian submanifolds N0, N1 ⊂ M and two vectors
t0, t1 ∈ R

n which will determine boundary conditions. We also choose a reference
curve γ0 : [0, 1] → M × R

n such that γ0(0) ∈ N0 × {t0} and γ0(1) ∈ N1 × {t1}.
Finally, we define

S[γ ] =
∫

�

(ω − dHi ∧ dti ). (2.36)

Here� ⊂ M×R
n is a surface whose boundary consists of four pieces: γ0, γ , and two

pieces contained in N0 × {t0} and N1 × {t1}. More precisely, � is the image of a map
δ : [0, 1]×[0, 1] → R

n such that δ(0, s) = γ0(s), δ(1, s) = γ1(s), δ(r , 0) ∈ N0×{t0}
and δ(r , 1) ∈ N1 × {t1}. This map δ is a homotopy connecting γ0 to γ that is based at
Nα × {tα}.

Now consider a variation of γ . This is described by a section V of T (M × R
n)

defined over�. This must vanish along γ0 ⊂ ∂� because γ0 is fixed. Along the pieces
of ∂� contained in Nα ×{tα}, V must be tangent to Nα ×{tα} in order to preserve the
boundary conditions of �. Since ω − dHi ∧ dti is closed, the variation of S is given
by

δS =
∫

�

LV (ω − dHi ∧ dti ) =
∫

�

dιV (ω − dHi ∧ dti ) =
∫

∂�

ιV (ω − dHi ∧ dti ).

(2.37)

This reduces the variation to a boundary integral. We claim that the integral over three
of the four boundary components is zero. It is clearly zero on γ0 because V vanishes
there. Since ω − dHi ∧ dti vanishes on Nα × {tα}, the integral is zero on these two
parts of the boundary. So the variation is given by an integral over the remaining piece
γ of the boundary:

δS =
∫

γ ∗V �(ω − dHi ∧ dti ) = −
∫ 1

0
V �γ ′�(ω − dHi ∧ dti )ds. (2.38)

The variational equation is therefore

γ ′�(ω − dHi ∧ dti ). (2.39)

This agrees with (2.22) in local coordinates whereω = dpμ ∧dqμ. The univariational
principle then seeks an n-dimensional submanifold � ⊂ M × R

n such that (2.39) is
satisfied by all curves γ : [0, 1] → �.
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3 Proof of equivalence

3.1 Legendre transform

Having presented the two variational problems, we now show that they are equivalent
via a Legendre transform. The idea is of course as old as the Lagrangian/Hamiltonian
formalism itself but we stress that the essential novelty (and complication) here is
that we deal with Lagrangian one-forms, not the usual Lagrangian volume forms. The
strategy of the proof is illustrated in the following diagram:

S [q, v, λ, �]

S[γ ] S[q, �]
(2) (1)

(3)

Step (1) consists establishing the equivalence between the position-space action
S[q, �] in (2.1) and an extended action S [q, v, λ, �] introduced in (3.1). In Step
(2), we explain how to get our phase-space action of interest, S[γ ] in (2.20), from
S [q, v, λ, �]. Finally, step (3) shows how to obtain S[q, �] from the phase-space
action S[γ ].

Let us start with the traditional formulation of Sect. 2.1. We wish to convert the
position-space action (2.1) into the phase-space action (2.20) using the Legendre
transform. To do so, it is convenient to introduce new variables v

μ
j , which are not

necessarily equal to the derivatives ∂qμ/∂t j , and λ
j
kμ, which we will use as Lagrange

multipliers in step (1). We thus consider the following extended action:

S [q, v, λ, �] =
∫ 1

0

(
Lk[qμ, v

μ
j ] + λ

j
kμ

(
∂qμ

∂t j
− v

μ
j

))
dtk

ds
ds, (3.1)

where q, v, λ are functions of tk and� is a path inRn parametrised as tk(s), s ∈ [0, 1].
Step (1): We ask that for all curves �, S is critical with respect to variations

in q, λ, �. Varying λ
j
kμ results in the constraint v

μ
j = ∂qμ/∂t j along the curve �.

If this holds for all curves �, then v
μ
j = ∂qμ/∂t j holds on all of Rn . Substituting

back in S gives S[q, �] and the rest of the bivariational principle is applied as in
Sect. 2.1. Conversely, given the position-space action S[q, �], it can always be trivially
rewritten as the extended actionS [q, v, λ, �] by treating λ

j
kμ as Lagrangemultipliers.

Therefore, the variational problem for (3.1) is equivalent to that for (2.1).
Step (2): We ask that for all curves �, S is critical with respect to variations in

q, v, �. Similarly to the discussion in Sect. 2.1, considering variations qμ �→ qμ+δqμ

in (3.1), we assume first that δqμ = 0 along the curve �. The resulting variational
equation is

λ
j
kμ = pμδ

j
k (3.2)
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for some function pμ of t j , similar to (2.5). Next, varying v results in the equation

∂Lk

∂v
μ
j

= λ
j
kμ. (3.3)

The two equations together give

pμδ
j
k = ∂Lk

∂v
μ
j

. (3.4)

We assume that this equation can be solved to write v
μ
j as a function of pμ and qμ.

In general, (3.4) is an overdetermined equation for v, so asking that it can be solved
imposes constraints on the Lagrangian coefficients Lk . Inserting this solution back
into (3.1) results in

S [q, v, λ, �]
∣∣∣
λ
j
kμ=pμδ

j
k ,v

μ
j =v

μ
j (pν ,qν )

=
∫ 1

0

(
pμ

∂qμ

∂t j
− Hj (pν, q

ν)

)
dt j

ds
ds, (3.5)

in which

Hj (pν, q
ν) = pμv

μ
j (pν, q

ν) − L j (q
ν, vν

j (pλ, q
λ)). (3.6)

This is an action of the form (2.20), in which the surface � ⊂ M × R
n is written as

the graph of a function (pμ(t j ), qμ(t j )).
Step (3): Now we consider the reverse process, starting with the phase-space for-

mulation of Sect. 2.2 and aiming to recover the traditional formulation. The degrees of
freedom are an n-dimensional hypersurface � ⊂ M ×R

n . We will assume that this is
parametrised as a graph of a function (t1, . . . , tn) �→ (pμ(t i ), qμ(t i )). No generality
is lost, because (as explained above) any solution of the variational problem can be
parametrised in this way. Then the variational equations take the form (2.26), (2.27),
(2.28).

In classical mechanics, the inverse Legendre transform is performed by solving
q̇μ = ∂H/∂ pμ to obtain pμ as a function of qν and q̇ν . These are m equations for m
unknowns, so it is reasonable to expect to find a solution. The analogous Eq. (2.26) is
mn equations, so is overdetermined if regarded as an equation for pμ. To circumvent
this difficulty, we select one particular time direction. Thus, we fix a nonzero vector
α ∈ R

n and seek to solve

αi qμ
i = αi ∂Hi

∂ pμ

, (3.7)

in which qμ
i = ∂qμ/∂t i . We suppose that α can be chosen so that αi Hi is a convex

function of pμ. Then the equation admits a unique solution pμ = pμ(qν, qν
i ).

To obtain the Lagrangian coefficients Li (qμ, qμ
i ), we pull the one-form L back to

R
n using the map t i �→ (pμ(t i ), qμ(t i ), t i ) and then substitute the solution pμ =
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pμ(qν, qν
i ) of (3.7). The pull-back of L is

pμq
μ
i dt i − Hi (pν, q

ν) dti . (3.8)

So we obtain

Li = pμ(qν, qν
j )q

μ
i − Hi (pν(q

σ , qσ
j ), q

ν). (3.9)

Thus, by solving one of the univariational equations (namely (3.7)), we have reduced
the phase-space action (2.20) to the traditional action (2.1).

Steps (1), (2), (3) put together give us the desired equivalence. There are two
points to comment upon. First, we have described a Legendre transform that converts
the traditional variational problem (2.1) to the symplectic problem (2.20), and an
inverse transform that goes the other way.Wemust explain in what sense the “inverse”
transform is the inverse of the Legendre transform. Second, the inverse transform
involves a choice of vector α. We must show that this does not play any role in the set
of variational equations or, equivalently, in the solution space.

Since the inverse transform involves a choice of α, there are many position-space
actions associated with a given phase-space action. So it is possible that applying the
Legendre transform followed by the inverse transform to a given position-space action
produces a different (but equivalent) position-space action. Therefore, the inverse
transform is not a left inverse, but it is a right inverse, as we now explain.

Let us start with the phase-space action (2.20) and apply the inverse Legendre
transform followed by the Legendre transform. We aim to show that we end up with
the same action that we started with. Applying the inverse Legendre transform results
in a Lagrangian one-form (3.9), in which pμ(qν, qν

j ) is obtained by solving (3.7).

To apply the Legendre transform to this, we introduce variables v
μ
i and consider the

action (3.1) with

Lk = pμ(qν, vν
i )v

μ
k − Hk(pμ(qν, vν

i ), q
μ). (3.10)

As before, we vary q and v to obtain an equation similar to (3.4):

λ
j
kμ = p̃μδ

j
k = ∂Lk

∂v
μ
j

, (3.11)

in which the tilde distinguishes the new variable p̃μ from the function pμ(qν, vν
j ). We

solve this to obtain v
μ
j as a function of p̃μ and qμ. To explicitly evaluate the right-hand

side, we need to calculate ∂ pν/∂v
μ
j . From Eq. (3.7), we obtain

αiv
μ
i = αi ∂Hi

∂ pμ


⇒ α jδμ
ν = αi ∂2Hi

∂ pμ∂ pλ

∂ pλ

∂v
μ
j

. (3.12)

To solve this, let gμν = αi∂2Hi/∂ pμ∂ pν . Assuming that αi Hi is a convex function of
p, we can invert g to obtain gμν satisfying gμλgλν = δν

μ. Then the equation is solved
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by

∂ pν

∂v
μ
j

= α j gμν. (3.13)

We now evaluate the right-hand side of (3.11) using (3.10) and (3.13):

p̃μδ
j
k = ∂Lk

∂v
μ
j

= pμδ
j
k +

(
vν
k − ∂Hk

∂ pν

)
∂ pν

∂v
μ
j

= pμδ
j
k +

(
vν
k − ∂Hk

∂ pν

)
α j gμν.

(3.14)

Taking the trace of this equation and using (3.12) shows that

n p̃μ = npμ +
(

vν
k − ∂Hk

∂ pν

)
αkgμν = npμ. (3.15)

Substituting back into the original equation then shows that vν
k is given in terms of

p̃μ, qμ by

vν
k = ∂Hk

∂ pν

(
p̃μ, qμ

)
. (3.16)

Substituting (3.10), (3.11) and (3.15) into (3.1) gives

S =
∫ 1

0

(
pμv

μ
k − Hk( p̃μ, qμ) + p̃μ

(
∂qμ

∂tk
− v

μ
k

))
dtk

ds
ds

=
∫ 1

0

(
p̃μ

∂qμ

∂tk
− Hk( p̃μ, qμ)

)
dtk

ds
ds. (3.17)

We thus recover the original action (2.20) from the Legendre transform.
We now turn to the (absence of a) role of the choice of α. As mentioned above, the

solution pμ depends on the choice of α, and we make this explicit by writing pμ =
pμ(qν, qν

i , αi ). On this solution, (3.7) becomes an identity, and we can differentiate
it with respect to αk to obtain

qμ
k − ∂Hk

∂ pμ

= αi ∂2Hi

∂ pν∂ pμ

∂ pν

∂αk
. (3.18)

The left-hand side is one of the equations of motion so it is zero “on shell”. The right-
hand side can be rewritten using the matrix gμν = αi∂2Hi/∂ pμ∂ pν , as in (3.12).
Assuming once again that this is invertible, the equation implies that ∂ pν

∂αk = 0. Thus,
pμ is independent of α on solutions of the equations of motion. So the solutions of
the equations of motion do not depend on α. This will become clear in the examples
below.
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3.2 Example: the harmonic oscillator

Let us illustrate all of this with a simple example. Consider the two Hamiltonians

H1 = 1

2

[
δμν pμ pν + δμνq

μqν
]

(3.19)

H2 = εμ
ν pμq

ν, (3.20)

inwhichμ, ν run from1 to 2, δμν is theKronecker delta and ε
μ
ν is totally antisymmetric

with ε12 = 1. The first is the Hamiltonian of the two-dimensional harmonic oscillator,
and the second is the angular momentum associatedwith its rotational symmetry. They
generate the flows:

pμ1 = −δμνq
ν pμ2 = −εν

μ pν (3.21)

qμ
1 = δμν pν qμ

2 = εμ
ν q

ν . (3.22)

These are univariational equations for the phase-space action (2.20):

S =
∫ 1

0

(
pμ

∂qμ

∂t i
− Hi

)
dti

ds
ds. (3.23)

We wish to convert this to an action (2.1) involving only position coordinates and no
momentum coordinates.We do so using the inverse Legendre transform. Let us choose
a nonzero vector (α1, α2) ∈ R

2. Then equation (3.7) takes the form

α1qμ
1 + α2qμ

2 = α1δμν pν + α2εμ
ν q

ν . (3.24)

Assuming that α1 �= 0 and setting β = α2/α1, this is solved by

pμ = δμνq
ν
1 + βδμν

(
qν
2 − εν

ρq
ρ
)
. (3.25)

Note that although pμ depends on β, it is independent of β on solutions of the univari-
ational equations, as explained above. Substituting into (3.23) gives the position-space
Lagrangian one-form

L1 = 1

2

[
δμνq

μ
1 q

ν
1 − β2δμν(q

μ
2 − εμ

ρ q
ρ
2 )(qν

2 − εν
σq

σ
2 ) − δμνq

μqν
]

(3.26)

L2 = δμν

[
qμ
1 + β(qμ

2 − εμ
ρ q

ρ)
] [
qν
2 − εν

σq
σ
]
. (3.27)

Although this depends on β = α2/α1, the solutions of the multi-time Euler–Lagrange
equations are independent of β.
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3.3 Example: periodic toda chain

Consider the two Hamiltonians

H1 =
∑
μ

1

2
(pμ)2 + exp(qμ − qμ−1) (3.28)

H2 =
∑
μ

1

3
(pμ)3 + (pμ + pμ−1) exp(q

μ − qμ−1). (3.29)

These depend on 2m variables q1, . . . , qm, p1, . . . , pm , with indices understoodmod-
ulo m. It is straightforward to check that

∂H1

∂ pμ

∂H2

∂qμ
=

∑
μ

(pμ)2
[
exp(qμ − qμ−1) − exp(qμ+1 − qμ)

] = ∂H2

∂ pμ

∂H1

∂qμ

(3.30)

and so the two Hamiltonians Poisson commute. The Hamiltonian H1 describes the
Toda lattice and H2 represents a conserved quantity. The phase-space action (2.20)
for this system is

S =
∫ 1

0

(
pμ

∂qμ

∂t i
− Hi

)
dti

ds
ds. (3.31)

We wish to convert this to an action (2.1) involving only position coordinates and no
momentum coordinates.We do so using the inverse Legendre transform. Let us choose
a nonzero vector (α1, α2) ∈ R

2, and assuming that α1 �= 0, set β = α2/α1. Then Eq.
(3.7) takes the form

qμ
1 + βqμ

2 = pμ + β(pμ)2 + β exp(qμ+1 − qμ) + β exp(qμ − qμ−1). (3.32)

This is a set of m quadratic equations for pμ. They are solved by

pμ = 2qμ
1 + 2β(qμ

2 − exp(qμ+1 − qμ) − exp(qμ − qμ−1))

1 ±
√
1 + 4βqμ

1 + 4β2(qμ
2 − exp(qμ+1 − qμ) − exp(qμ − qμ−1))

(3.33)

We obtain a Lagrangian multiform by substituting these expressions into:

L1 =
∑
μ

pμq
1
μ − 1

2
(pμ)2 − exp(qμ − qμ−1) (3.34)

L2 =
∑
μ

pμq
μ
2 − 1

3
(pμ)3 − (pμ + pμ−1) exp(q

μ − qμ−1) (3.35)
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Thus, we have a family of Lagrangian multiforms for this system, parametrised by
β ∈ R together withm sign choices in (3.33). If we choose all plus signs in (3.33) and
set β = 0 the Lagrangian multiform is

L1 =
∑
μ

1

2
(qμ

1 )2 − exp(qμ − qμ−1) (3.36)

L2 =
∑
μ

qμ
1 q

μ
2 − 1

3
(qμ

1 )3 − (qμ
1 + qμ−1

1 ) exp(qμ − qμ−1). (3.37)

This recovers the Lagrangian coefficients presented in [4] from our more general
perspective.

3.4 Linear dependence on velocities

The Legendre transform introduced in Sect. 3.1 relates an action for a traditional
Lagrangian multiform to a phase-space action by solving Eq. (3.4) for the velocities
v

μ
j . But if the Lagrangian coefficients Lk depend linearly on velocities the right-hand

side of (3.4) is independent of velocity, so this equation cannot be solved. The ques-
tion arises as to whether the equivalence still holds in the case where the Lagrangian
coefficients are linear in velocities. In this section, we address this question.

If a Lagrangian multiform is linear in velocities, then the variational Eq. (2.4)
implies that it takes the form

Lk = pμ(qν)qμ
k − Vk(q

ν) (3.38)

for some functions pμ and Vk of qν . Then the action (2.1) takes the form S = ∫
γ ∗L ,

in which

L = pμ(qν)dqμ − Vk(q
ν)dtk (3.39)

and γ is a function of the form s �→ (qμ(t i (s)), tk(s)). This is similar in form to
the action (2.20), but an important difference is that here pμ are functions of the
coordinates qν , whereas in (2.20), pμ and qμ are independent coordinates. To directly
compare this with the action (2.20), we consider the 2-form

� = dpμ ∧ dqμ = ∂ pμ

∂qν
dqν ∧ dqμ. (3.40)

The rank of this 2-form at a point q is the rank of the linear map X = Xμ∂μ �→
X�� = Xμ(∂μ pν − ∂ν pμ)dqμ. The form � is called non-degenerate if this map has
full rank at every point q.

Suppose that� is non-degenerate. Then it is by definition a symplectic form and the
dimension m are even. By the Darboux theorem, we can choose coordinates Pμ, Qμ

in which � = ∑m/2
μ=1 dPμ ∧ dQμ. In these coordinates, the action is precisely in the

form of a phase-space action (2.20).
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This exact situation arose in [5, 6], which produced classes of Lagrangian one-
forms which are linear in the velocities. In all of those cases, the 2-form � (3.40) is
non-degenerate since it corresponds to the (pull-back of the) Kostant-Kirillov sym-
plectic form on an appropriate coadjoint orbit. It was shown in [5, 6] how suitably
parametrising the coadjoint orbit yields Darboux canonical coordinates.

The case where � is degenerate is more involved. The case of a single time coordi-
nate was discussed in [24], which showed that the variational problem can be reduced
to one for which� is non-degenerate. The corresponding analysis of degeneracy in the
present context of multiple time coordinates is much more complicated and beyond
the scope of this article.

4 Phase-space Lagrangian one-forms on a Lie group

In this section, we present a generalisation of the univariational principle, in which
multi-timeRn is replaced by a Lie group. This idea was first appeared in [22] with the
view to incorporate superintegrable systems into the theory of Lagrangian multiforms.
Doing so, we establish for the first time that the equations describing (infinitesimal)
Hamiltonian group actions of a (connected) Lie group on a symplectic manifold are
actually variational. They appear as the Euler–Lagrange equations of our univaria-
tional principle applied to a natural generalisation of the Lagrangian one-form (2.19).
We also show that the same results, reexpressed in local group coordinates, can be
interpreted as describing a collection of compatible non-autonomous Hamiltonian
equations. In particular, this accommodates integrable systems with explicitly time-
dependent constants of motion.

4.1 A simplemotivating example

To understand and motivate our construction, let us consider the 2D harmonic
oscillator. Here, the symplectic manifold is simply R

4 with canonical coordinates
(q1, q2, p1, p2) and symplectic form ω = dp1 ∧ dq1 + dp2 ∧ dq2. The 2D (isotropic)
harmonic oscillator Hamiltonian is given by

H = H1 + H2, Hj = 1

2
(p2j + q2j ), j = 1, 2.

Consider the following three functions on the phase space

J1 = H1 − H2, J2 = p1q2 − p2q1, J3 = p1 p2 + q1q2. (4.1)

The following facts are well-known. The system is integrable since, for instance,
{H , J2} = 0: there are two functionally independent first integrals. It is superintegrable
since, additionally, we also have {H , J1} = 0 or {H , J3} = 0. The functions J1, J2, J3
provide a realisation of the su(2) Lie algebra

{Ji , J j } = 2εi jk Jk, (4.2)
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which is therefore a symmetry of the 2D harmonic oscillator. Note the relation J 21 +
J 22 + J 23 = H2.

Using the results of the previous section, we can easily produce a Lagrangian
multiform for the integrable system H , J2 say. It suffices to define

L = pμdq
μ − Hdt1 − J2dt

2. (4.3)

Then the system of Euler–Lagrange equations is as in (2.26)–(2.27), with t1 associated
with H and t2 with J2. The compatibility of the system, encoded in (2.28), holds since
{H , J2} = 0.

Wewould like to go further and produce a Lagrangian multiform and univariational
principle not only for the integrable system H , J2, but also for H togetherwith its entire
symmetry algebra J1, J2, J3. Note in particular that, if feasible, this would produce a
Lagrangian multiform for the superintegrable system H , J2, J3 say.

The main difficulty to overcome is the non-abelian algebra generated by J1, J2, J3.
It can no longer be expected that we can consider compatible systems associated
with J1 and J2 for instance. Similarly, the closure relation, if still valid in some
appropriate form, can no longer be expected to be the variational analogue of the
Poisson involutivity of the functions J1, J2, J3 since the latter are not in involution.
Instead, it should produce the appropriate relations (4.2).

4.2 A general construction

The basic ideas to produce Lagrangian one-forms for non-commuting conserved quan-
tities were laid out in [22]. Here, we formulate them systematically in the geometric
framework of Sect. 2.2. In doing so, we elucidate the underlying geometric feature
that ensures that the closure relation in the non-abelian setting yields the correct equa-
tions: it has to do with the Maurer–Cartan equation for (left) invariant one-forms on
an appropriate Lie group G.

Let M be a 2m-dimensional symplectic manifold and G a connected Lie group of
dimensionnwithLie algebrag.Weassume for convenience that the symplectic formon
M is exact and that it can be writtenω = dα, with α = pμdqμ in suitable coordinates.
We showed in Sect. 2.2 how to proceed if this is not the case. Let H : M → g∗ be a
smooth map and consider the Lagrangian one-form

L = α − (H , g−1dg), (4.4)

where ( , ) is the pairing between g∗ and g. The left-invariantMaurer–Cartan one-form
g−1dg can be written as g−1dg = Ei ⊗ θ i where Ei is a basis for g and θ i the dual
basis of left-invariant one-forms on G.1 Thus, we can also write

L = pμdq
μ − Hiθ

i , Hi = (H , Ei ). (4.5)

1 These are dual in the sense that θ i (e) ∈ T ∗
e G ∼= g∗ satisfy (θ i (e), E j ) = δij .
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For any parametrised curve γ : [0, 1] → M × G, we define the associated action as

S[γ ] =
∫ 1

0
γ ∗L. (4.6)

By analogy with Sect. 2.2, we introduce a univariational principle, which demands
existence of a submanifold � ⊂ M × G such that every curve γ ⊂ � is a critical
point of S[γ ] and dim� = dimG.

The Euler–Lagrange equations for S again take the form γ ′�dL = 0; let us write
these out more explicitly. By direct calculation,

dL = dpμ ∧ dqμ − ∂Hj

∂qμ
dqμ ∧ θ j − ∂Hj

∂ pμ

dpμ ∧ θ j − Hj dθ j . (4.7)

The key point now is that the last term can be evaluated using the Maurer–Cartan
equation

dθ i = −1

2
cijk θ j ∧ θk, (4.8)

in which the structure constants cijk are defined by [E j , Ek] = cijk Ei . With γ ′�dpμ =
dpμ

ds , γ ′�dqμ = dqμ

ds and γ ′�θ i = Y i , we obtain

γ ′�dL =
(

−dqμ

ds
+ ∂Hj

∂ pμ

Y j
)
dpμ +

(
dpμ

ds
+ ∂Hj

∂qμ
Y j

)
dqμ

−
(
dqμ

ds

∂Hi

∂qμ
+ dpμ

ds

∂Hi

∂ pμ

− c�
j i H�Y

j
)

θ i (4.9)

This gives the following generalisation of (2.23)-(2.25)

dqμ

ds
= ∂Hj

∂ pμ

Y j , (4.10)

dpμ

ds
= −∂Hj

∂qμ
Y j , (4.11)

0 = dqμ

ds

∂Hi

∂qμ
+ dpμ

ds

∂Hi

∂ pμ

− c�
j i H�Y

j . (4.12)

By substituting (4.10) and (4.11) into (4.12), we deduce from these Euler–Lagrange
equations that

(
∂Hj

∂ pμ

∂Hi

∂qμ
− ∂Hj

∂qμ

∂Hi

∂ pμ

− c�
j i H�

)
Y j = 0. (4.13)

The univariational principle demands that Eq. (4.10)–(4.13) hold for all curves γ in
�. By similar arguments to those presented in Sect. 2.2, this means that (4.13) holds
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for all Y j . Thus,

{Hi , Hj } = cki j Hk, (4.14)

where we used the Poisson bracket

{F,G} = ∂F

∂ pμ

∂G

∂qμ
− ∂G

∂ pμ

∂F

∂qμ
.

Equation (4.14) can be used to encode the Poisson brackets of the superintegrable
systemof Sect. 4.1 thatwe presented asmotivation for the present general construction.
Indeed, if we choose G = R × SU (2), then (4.14) describes the Poisson brackets of
the conserved quantities H , J1, J2, J3 for the 2D harmonic oscillator.

Equations (4.14), which follow from the univariational principle, imply that H :
M → g∗ is a moment map for a Hamiltonian action ofG on M . Moment maps arise in
the theory of symplectic quotients, and it is interesting to compare our Lagrangian one-
form with the symplectic quotient construction. Suppose that there is a Hamiltonian
action of G on M with moment map φ : M → g∗. Now consider the symplectic
manifold T ∗G. This can be identified with g∗ × G in such a way that the tautological
one-form is written ( f , g−1dg) for f ∈ g∗ and g ∈ G. Let

β = pμdq
μ + ( f , g−1dg). (4.15)

Then dβ is a symplectic form onM×T ∗G. There is a natural action ofG onM×T ∗G
induced by the action on M and the left action on G. The moment map for this action
is

�(pμ, qμ, f , g) = φ(pμ, qμ) + f . (4.16)

The symplectic quotient is the quotient of �−1(0) by G. Now, �−1(0) ⊂ M × T ∗G
is identified with M × G by the natural projection M × T ∗G → M × G. Under this
identification, the one-form β becomes

β = pμdq
μ − (φ, g−1dg). (4.17)

If we identify φ with H , this takes the form of the Lagrangian 1-form L on M × G.
Moreover, the surfaces � in the univariational principle are precisely the orbits of
the action of G on �−1(0). So the theory of symplectic quotients offers a natural
interpretation of the structure of our Lagrangian one-form. However, we stress that
the starting points of the two constructions are different. Following the philosophy
of variational principles, we choose the one-form L and postulate the univariational
principle as the starting point. At that stage, our map H is not yet a moment map
and the group G does not act on M by Hamiltonian action. The application of the
univariational principle thenproduces “equations ofmotion”which tell us that there is a
Hamiltonian action of G on M and that H is the associated moment map. In contrast,
the theory of symplectic quotients takes the existence of a Hamiltonian action and
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associatedmomentmap as the starting point. In otherwords,wehave demonstrated that
a Hamiltonian group action on a symplectic manifold derives from our univariational
principle.

4.3 Explicitly time-dependent commuting flows

It is instructive to rewrite the variational Eqs. (4.10), (4.11), (4.12) in local coordinates
on G, say τ k , k = 1, . . . , n. Each left-invariant one-form can be written in the basis
of coordinate one-form as

θ j = θ
j
k dτ k, (4.18)

where the coefficients θ
j
k are (smooth) functions of τ �. Note that the matrix of coef-

ficients θ
j
k is invertible, since this is a change of basis. Details on how to compute

θ
j
k in terms of the structure constants of the Lie algebra and relative to a choice of

coordinates are given for instance in [25]. With (4.18), we have Y j = θ
j
k
dτ k

ds , and
(4.10)–(4.12) read

dqμ

ds
= ∂Hj

∂ pμ

θ
j
k
dτ k

ds
, (4.19)

dpμ

ds
= −∂Hj

∂qμ
θ
j
k
dτ k

ds
, (4.20)

0 = dqμ

ds

∂Hi

∂qμ
+ dpμ

ds

∂Hi

∂ pμ

− c�
j i H�θ

j
k
dτ k

ds
. (4.21)

It is convenient to multiply the last equation by θ im , to introduce the functions

Kk = Hjθ
j
k , k = 1, . . . , n, (4.22)

and to use the following consequenceof theMaurer–Cartan equationon the coefficients
θ
j
k

∂θ�
r

∂τm
− ∂θ�

m

∂τ r
= c�

j iθ
j
k θ im, (4.23)

in order to rewrite (4.19)-(4.21) equivalently as

dqμ

ds
= ∂Kk

∂ pμ

dτ k

ds
, (4.24)

dpμ

ds
= −∂Kk

∂qμ

dτ k

ds
, (4.25)

123



   38 Page 22 of 28 V. Caudrelier, D. Harland

0 =
(

∂Kk

∂ pμ

∂Km

∂qμ
− ∂Kk

∂qμ

∂Km

∂ pμ

−
(

∂Kk

∂τm
− ∂Km

∂τ k

))
dτ k

ds
. (4.26)

Summarising, this system of equations arises as the Euler–Lagrange equations of our
Lagrangian one-form which now reads

L = pμdq
μ − K jdτ j . (4.27)

The univariational principle demands that (4.24), (4.25), (4.26) hold for all curves
τ j (s). This leads to the following system of equations for functions pμ(τ k), qμ(τ k):

∂qμ

∂τ k
= θ

j
k (τ i )

{
Hj (pν, q

ν), qμ
}
, (4.28)

∂ pμ

∂τ k
= θ

j
k (τ i )

{
Hj (pν, q

ν), pμ

}
, (4.29)

0 = θ ikθ
j
m{Hi , Hj } −

(
∂θ ik

∂τm
− ∂θ im

∂τ k

)
Hi , (4.30)

where we have recalled explicitly the coordinate dependence in the first two equations.
The latter equations describe a collection of flows in time directions τ k . Interestingly,
these flows are non-autonomous, because the time variables τ k appear explicitly on the
right-hand side. The third equation is of course equivalent to (4.14) (recalling (4.23))
but is more convenient in this form to check directly the consistency for these flows.
To see this, let f be a function of pμ, qμ and suppose that pμ(τ i ), qμ(τ i ) solve (4.28),
(4.29). Then

∂

∂τ j

∂

∂τ k
f = ∂θ�

k

∂τ j
{H�, f } + θ�

k
∂

∂τ j
{H�, f }

= ∂θ�
k

∂τ j

{
H�, f

}
+ θ�

k θ
m
j {Hm, {H�, f }}

Consistency requires that

0 = ∂

∂τ j

∂

∂τ k
f − ∂

∂τ k

∂

∂τ j
f =

(
∂θ�

k

∂τ j
− ∂θ�

j

∂τ k

) {
H�, f

}

+θ�
k θ

m
j

({Hm, {H�, f }} − {H�, {Hm, f }}). (4.31)

By the Jacobi identity for the Lie bracket, this is equivalent to (4.30).
The non-autonomous Eqs. (4.28), (4.29) provide a framewoork that can accommo-

date systems with constants of motion with explicit time-dependence. We illustrate
this with an example. Let M = R

2 with the canonical form ω = dp ∧ dq, and the
Hamiltonian (for some fixed a > 0),

H0 = p2

2m
+ a

q2
.
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Being a one degree of freedom system, it is trivially integrable. With J = pq
2 , direct

calculation gives
{H0, J } = H0

so that C = J − t H0 is conserved under the flow of H0:

dC

dt
= {H0,C} + ∂C

∂t
= H0 − H0 = 0. (4.32)

To cast this in our framework, consider G the Lie group of 2 × 2 upper triangular
matrices with unit determinant. A basis of the Lie algebra is given by

ξ1 =
(
0 1
0 0

)
, ξ2 = 1

2

(−1 0
0 1

)

with [ξ1, ξ2] = ξ1.We parametrise an element g ofG using coordinates τ1 = t , τ2 = τ

as follows:

g = eτξ2etξ1 =
(
e−τ/2 te−τ/2

0 eτ/2

)
. (4.33)

Thus, we have

g(t, τ )−1dg(t, τ ) = ξ1 ⊗ dt + (ξ2 − tξ1) ⊗ dτ = ξ1 ⊗ θ1 + ξ2 ⊗ θ2,

giving in particular the left-invariant one-forms as θ1 = dt − tdτ , θ2 = dτ . Let
{μ1, μ2} be the basis in g∗ dual to {ξ1, ξ2}. Using the non-degenerate bilinear form
〈ξ, η〉 = Tr(ξη) on g, we have

μ1 =
(
0 0
1 0

)
, μ2 =

(−1 0
0 1

)
.

With the map H : M → g∗ written as

H = H1μ
1 + H2μ

2,

the Lagrangian one-form (4.4), equivalently (4.27), reads

L = pdq −
(
H , g−1dg

)
= pdq − H1dt − (H2 − t H1)dτ

= pdq − K1dt − K2dτ. (4.34)

The connection with the above simple physical example is now immediate if we
identify H1 = H0(= K1), H2 = J so that (H2 − t H1) = C(= K2). The system of
(non-autonomous) compatible equations obtained from (4.28)-(4.29) with τ1 = t and
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τ2 = τ reads

{
∂q
∂t = p

m ,
∂ p
∂t = 2a

q3
,

,

{
∂q
∂τ

= q
2 − t p

m ,
∂ p
∂τ

= − p
2 − t 2a

q3
.

(4.35)

We recover by direct calculation that ∂K2
∂t = 0 and now also that ∂K1

∂τ
= −K1. Thus, for

this simple example, the solutions q(t, τ ), p(t, τ ) can be described by the equations

p2

2m
+ a

q2
= c1e

−τ , pq = 2(c2 + c1t), c1, c2 ∈ R.

4.4 Lagrangian one-form frommatrix representations of Lie algebras

We can form a Lagrangian one-form associated with any matrix representation on
V of any finite-dimensional Lie algebra g as follows. Suppose we have a matrix
representation

[Mi , Mj ] = cki j Mk, Mi ∈ End(V) ⊆ Matm(C), i = 1, . . . , n,

and thatM is a symplecticmanifoldwith canonical coordinates pμ, qμ,μ = 1, . . . ,m,

{qμ, qν} = 0 = {pμ, pν}, {pμ, qν} = δν
μ.

The following simple well-known observation

{pμA
μ
ν q

ν, pσ B
σ
ξ q

ξ } = −pμ[A, B]μν qν

for any matrices A, B allows us to define

Hi = −pμ(Mi )
μ
ν q

ν (4.36)

to obtain the following canonical realisation of the Lie algebra g

{Hi , Hj } = cki j Hk .

It remains to set L as in (4.5) to obtain a desired Lagrangian one-form with the desired
properties. Additionally, note that

{pμA
μ
ν q

ν, pσ } = −pμA
μ
σ .

Thismakes it possible to realise canonically certain Lie algebras of semi-direct groups,
such as the Poincaré group. Its 10-dimensional Lie algebra can be conveniently written
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in terms of the six generators of the Lorentz transformations Lαβ = −Lβα ,2 α, β =
0, 1, 2, 3 and the four generators of translations Pμ, μ = 0, 1, 2, 3:

[Lαβ, Lγ ξ ] = ηβγ Lαξ − ηαγ Lβξ + ηαξ Lβγ − ηβξ Lαγ , (4.37)

[Lαβ, Pμ] = ηβμPα − ηαμPβ , (4.38)

[Pμ, Pν] = 0 , (4.39)

where η = diag(−1,+1,+1,+1). For conciseness, let us restrict our attention to the
Lorentz subalgebra and consider the following 4-dimensional representation Mαβ for
the Lorentz generators Lαβ , with matrix elements

(Mαβ)μν = δμ
α ηβν − δ

μ
β ηαν. (4.40)

The realisation (4.36) thus gives the following components of the map H

Hαβ = −pμ(Mαβ)μν q
ν = pβηανq

ν − pαηβνq
ν (4.41)

satisfying

{Hαβ, Hγ ξ } = ηβγ Hαξ − ηαγ Hβξ + ηαξ Hβγ − ηβξ Hαγ . (4.42)

The Lagrangian one-form corresponding to the (connected component of) the Lorentz
group thus reads

L = pμdq
μ − 1

2
Hαβθαβ.

From our general results, we know that the solutions of the Euler–Lagrange equations
associated with L must give us a Hamiltonian action of the Lorentz group on M . From
the present setup, we clearly expect this action to be nothing but the usual action of
the (connected component of the) Lorentz group on the (spacetime) coordinates qν

and their momenta pμ:

qν �→ q ′ν = �ν
μq

μ, pμ �→ p′
μ = �ν

μ pν . (4.43)

Let us check that (4.28)–(4.29) indeed produce the desired Hamiltonian action. By
design, (4.30) (equivalently (4.14)) is satisfied, see (4.42). Next, recalling that we
chose to parametrise the generators with two indices, (4.28)–(4.29) give the following
system of compatible equations

∂qμ

∂tσξ
= θ

αβ
σξ

∂Hαβ

∂ pμ

= −(Mαβ)μν θ
αβ
σξ q

ν , (4.44)

∂ pμ

∂tσξ
= −θ

αβ
σξ

∂Hαβ

∂qμ
= pμ(Mαβ)μν θ

αβ
σξ . (4.45)

2 It is more convenient for this example to work with generators Lαβ with two indices, modulo the anti-
symmetry relation, rather than with Li as suggested by our general discussion. We will change the notation
accordingly for the matrix representation Mαβ used for illustration.
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In the representation (4.40), a group element is given by � = e−tαβMαβ . Then (4.44)
is equivalent to

d((�−1)μν q
ν) = 0,

so qν = (�)νμq
μ
0 for some “initial condition” qμ

0 at tαβ = 0. Thus, the solution flow
indeed yields the action (4.43) of the Lorentz group on qμ. The reasoning for pμ and
(4.45) is similar.

5 Conclusion and outlooks

We introduced an equivalent reformulation of the variational principle at the basis of
Lagrangian multiform theory as a variational framework for integrability. Importantly,
this replaces the previous two-step formulation with a single univariational principle,
with the effect of setting dependent and independent variables on the same footing.
Doing so, we revealed the geometry of Lagrangian one-forms and used it to extend
them beyond integrable hierarchies to the realm of non-abelian Lie groups. As a
consequence, we obtained for the first time the description of Hamiltonian Lie group
action as Euler–Lagrange equations derived from a variational principle.

Our results immediately raise the question of how to reformulate Lagrangian mul-
tiforms for field theories along the same lines as done here for finite-dimensional
systems. Indeed, the structure of our phase-space one-forms is largely motivated by
the Lagrangian one-forms constructed in [5, 6] which are naturally formulated on
coadjoint orbits of certain Lie groups characterised by the so-called classical r -matrix
[26]. It turns out that the class of Lagrangian multiforms for integrable field theories
in 1 + 1 dimensions constructed in [14, 16] possess the same fundamental structure.
Therefore, it seems natural to try to extend the present work to the context of these
field theories.

We also believe that our results bring us one step closer to the path integral quan-
tisation of integrable hierarchies based on Lagrangian multiforms. Beyond the need
to restore the balance between Hamiltonian and Lagrangian formalisms in integrable
systems, this is one of the strongest motivations for Lagrangian multiforms. In the
first work [27] on this topic (see also [28]), the open question of how to formulate
a quantum propagator over paths not only in the degrees of freedom but also in the
multi-time is raised as the fundamental problem to overcome. With our approach,
this can be done in principle, with the same level of “rigour” as the usual Feynman
integrals, using our phase-space Lagrangian one-forms and paths γ into M ×G in the
path integral “measure”.
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