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Abstract—The disaggregated, distributed and virtualised im-
plementation of radio access networks allows for dynamic re-
source allocation. These attributes can be realised by virtue of
the Open Radio Access Networks (O-RAN) architecture. In this
article, we tackle the issue of dynamic resource allocation using
a data-driven approach by employing Machine Learning (ML).
We present an xApp-based implementation for the proposed ML
algorithm. The core aim of this work is to optimise resource
allocation and fulfil Service Level Specifications (SLS). This is
accomplished by dynamically adjusting the allocation of Physical
Resource Blocks (PRBs) based on traffic demand and Quality of
Service (QoS) requirements. The proposed ML model effectively
selects the best allocation policy for each base station and
enhances the performance of scheduler functionality in O-RAN
- Distributed Unit (O-DU). We show that an xApp implementing
the Random Forest Classifier can yield high (85%) performance
accuracy for optimal policy selection. This can be attained using
the O-RAN instance state input parameters over a short training
duration.

Index Terms—5G, RAN, O-RAN, Resource Allocation, xApp,
AI/ML

I. INTRODUCTION

A. Motivation

The traditional cellular network model, relying upon a

single vendor’s proprietary hardware and software solutions,

limits flexibility, increases costs and hampers innovation [1].

Open RAN (O-RAN), also known as Open Radio Access

Network, has revolutionised the telecommunications industry

by decoupling hardware and software components, fostering

an open and interoperable ecosystem. This transformative

approach aims to mitigate traditional network limits by en-

hancing network adaptability, reducing costs, and promoting

innovation. Additionally, the integration of artificial intelli-

gence (AI) and machine learning (ML) capabilities within

O-RAN holds tremendous promise for optimising network

performance, automating operations, and enabling intelligent

decision-making [2], [3].

In that context, traditionally regarded as monolithic and

immutable “black-box” systems, cellular networks are tran-

sitioning towards more flexible, software-based open architec-

tures following the O-RAN paradigm. This paradigm promotes

openness, virtualisation, and programmability of RAN func-

tionalities and components, enabling data-driven intelligent

control loops for cellular systems [4]. O-RAN empowers net-

work operators to support bespoke services on shared physical

infrastructures and dynamically reconfigure them based on

network conditions and user demand. The O-RAN Alliance, a

notable standardisation body, develops specifications to apply

O-RAN principles to prevailing radio access technologies,

including 3rd Generation Partnership Project (3GPP) LTE and

5G networks. O-RAN encompasses RAN Intelligent Con-

trollers (RICs) that operate at different timescales, enabling

data-driven applications. These applications optimise network

performance by leveraging live data received from the RAN

through standardised and open interfaces [5].

Within the O-RAN framework, RICs and open interfaces

play a pivotal role in enabling AI and ML capabilities. The

near Real-Time RIC (near-RT RIC) connects to RAN elements

through the E2 interface, facilitating control loops operating

between 10ms and 1s. On the other hand, the non-Real-

Time (non-RT RIC) is integrated into Service Management

and Orchestration (SMO) frameworks, operating at timescales

larger than 1s and connecting to near-RT RIC through the

A1 interface. As shown in Fig. 1, these RICs adopt a cen-

tralised perspective enabled by data pipelines that continuously

flow and aggregate Key Performance Measurements (KPMs)

involving the network infrastructure’s status, such as user

count, load, throughput, and resource utilisation, along with

additional context information via RICs interfaces with RAN

entities. By processing and analysing this worthy information,

both RICs employ AI/ML algorithms to implement control

policies and actions within the RAN based on the established

policies. This paradigm presents data-driven, closed-loop con-

trol, enabling automated optimisation of network and load

balancing, scheduling policies, handovers, and other essential

functionalities [6].

The integration of AI and ML within O-RAN brings nu-

merous advantages. Firstly, these technologies enhance net-

work optimisation by analysing extensive data collected from

various network elements. AI/ML algorithms identify patterns

and anomalies, predict traffic patterns, and optimise resource

allocation for improved efficiency and user experience. Sec-

ondly, AI and ML capabilities enable intelligent automation of

network operations and routine tasks and minimise human in-
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Fig. 1. Open Radio Access Network O-RAN Architecture [7]

tervention. Furthermore, AI algorithms provide actionable in-

sights and recommendations to network operators, facilitating

data-driven decision-making, network quality enhancement,

and improved service delivery to end-users. The application of

AI and ML facilitates intelligent decision-making, providing

network operators with actionable insights and recommenda-

tions for improved performance and resource utilisation [8].

B. Related Work

Several studies have explored the potential of AI and ML

algorithms in optimising network operations, automating tasks,

and enabling intelligent decision-making within the O-RAN

framework from both the RAN side and the user side itself [9].

Here, we highlight some key contributions in this field. ColO-

RAN, a large-scale O-RAN testing framework with software-

defined radios-in-the-loop, has been introduced in [10]. This

framework enables ML research at scale, allowing for the

design, training, testing, and evaluation of deep reinforcement

learning (DRL)-based closed-loop control in the O-RAN.

The framework showcases the importance of experimental

frameworks for developing intelligent RAN control pipelines,

emphasising the design and testing of DRL agents [10].

Another area of exploration focuses on utilising O-RAN

Fronthaul security due to the highly sensitive data transports

between the distributed unit and radio unit. Due to its effi-

ciency, a solution was proposed by Dik and Berger in [11]

by suggesting MACsec as an effective solution for O-RAN

Fronthaul protection. MACsec is a standard security protocol

that operates at the data-link layer and provides performance

advantages over higher-layer security protocols like IPsec.

Additional analysis has been done to ensure its suitability for

securing different packet types in the fronthaul.

Another notable work in the O-RAN field is the develop-

ment of conflict mitigation algorithms between xAPPs within

the architecture. Zhang et al proposed in [12] a team learning

algorithm that is adaptable for multi-vendor RANs, presenting

a solution to improve cooperation among xApps. By allowing

xAPPs to share their intended actions, this scheme leverages

the intentions of other xApps as part of Deep Q-Network

(DQN) training and action selection. Furthermore, a conflict

mitigation framework (CMF) has been introduced in the O-

RAN architecture and integrated into the Conflict Mitigation

component of the Near-RT RIC by Adamczyk et al in [13].

Their framework detects and resolves diverse conflict types

defined in the O-RAN Alliance’s specifications, utilising well-

defined strategies for detecting each type of conflict, including

the exchange of messages between Near-RT RIC components.

Recently, Federated Learning (FL) has emerged as a promis-

ing solution for training in disaggregated systems. By facili-

tating the utilisation of different training inputs for deep rein-

forced learning (DRL) models, multiple virtual networks can

avoid the high cost of collecting the needed data from various

RANs in the cellular network [14]. To address this problem,

Singh et al have proposed in [15] an accelerated gradient

descent method and a compression operator to expedite FL

convergence and reduce communication costs. They develop

a joint optimisation model to select participating trainers in

each global round of FL and allocate resources to them while

decreasing learning time and resource costs. The proposed FL

algorithm (MCORANFed) adheres to the deadline of O-RAN

control loops and outperforms state-of-the-art FL methods in

terms of convergence and objective costs. In [16], a QoS-based

Resource Allocator xApp has been presented to control the

percentage of Physical Resource Blocks (PRBs) that should be

allocated to the multiple network slices and meet the Service

Level Agreements (SLA) requirements while adjusting them

depending on the instant traffic demand.

C. Contributions and Problem Statement

The integration of AI/ML capabilities within O-RAN

presents an opportunity to optimise resource allocation, en-

hance network performance, and meet the diverse QoS re-

quirements of network slices and SLA. However, the effi-

cient allocation of radio resources based on real-time traffic

demands poses a significant challenge, including considering

factors such as minimum required user throughput, minimum

user outage, and delay. Static resource allocation approaches

are insufficient as they do not adapt to the varying demands of

different network slices. To address this problem, this article

presents an ML-based xApp to provide dynamic resource

allocation within O-RAN networks. By leveraging the native

intelligence of O-RAN controllers: the Near-RT RIC and Non-

RT RIC, the proposed algorithm enables proactive actions and

auto resource allocation to ensure the optimal utilisation of

available radio resources, leading to enhanced network perfor-

mance and cost-effective delivery of high-quality services.
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II. DYNAMIC RESOURCE ALLOCATION IN 5G NETWORKS

AND ML

A. Resource Allocation in 5G Networks

Dynamic resource allocation is an important aspect of

cellular networks as it enables the efficient utilisation of

network resources. The concept of Network Slicing presents

an evolutionary approach that exceeds the traditional idea

of a singular “best network”. Instead, it defines the creation

of multiple logical networks, known as slices, layered upon

the physical infrastructure. These slices are designed to cater

to different requirements, effectively offering a variety of

specialised services to meet a wide range of needs.

In the context of 5G networks, as shown in Figure 2, a

specific feature is the ability to categorise user demands based

on QoS flows. Each 5G cell operates with specified radio

resources, making it essential to allocate them efficiently to

network slices to fulfil Service Level Agreements (SLAs) as

well as meet individual QoS flow criteria. A dynamic strategy

to tackle this challenge involves splitting the resources in

response to real-time traffic demands. This adaptive allocation

approach ensures optimal resource utilisation and enhances

general network performance.

Splitting the PRBs between the associated users as per their

required QoS is done inside the RAN controllers as per O-

RAN Alliance specifications, where xApps and rApps are

needed to perform multiple policies as per the mobile network

operators (MNOs). rApps and xApps are software-specialised

applications installed on the non-RT and the near-RT RIC,

respectively. These applications serve as software components

that boost the functionality of the RICs. A remarkable aspect

of these apps is their potential to be developed by third-

party vendors, independent of the RIC vendor, as O-RAN

encourages a more open and cooperative ecosystem.

B. Near Real Time RIC Implementation

The Near-RT RIC, where the xApp is installed, controls the

allocation of Physical Resource Blocks (PRBs) that should be

allocated to the different network slices to meet their SLA

requirements. To optimise the network functionality inside the

Non – RT RIC

A1 Termination

Allocation xApp

Policy Driven ML Driven

E2 Termination

gNB

Near – RT RIC

O - DU

A1 Policies & ML Models

E2 Monitoring MessagesE2 Control Messages

Fig. 3. RIC and xApp Deployment

Near-RT RIC, monitoring the SLA-defined requirements of

the networks is mandatory within the accepted time (10ms

to 1s). Multiple required parameters need to be observed

continuously, such as DL/UL UE throughput, Radio Resource

Utilization, DL/UL total available PRB, Number of Active

UEs, and other parameters via the E2 interface from the O-

RAN central unit (O-CU) and the O-RAN Distributed unit

(O-DU).

On the other hand, to enable the Near-RT RIC to obtain full

closed-loop control of the O-CU/O-DU via the E2 interface,

multiple actions could be taken by changing different network

parameters inside CU/DU such as the Min&Max PRB Policy

Ratio and the dedicated PRB Policy Ratio as well as the

radio resources splitting policy between users. As shown in

Figure 3, the Near-RT RIC sends the E2 commands to the

O-DU, where the Medium Access Control (MAC) scheduler

operates, to specify the policy for slice management. The

policies by which the xApp is controlled are provided through

the A1 interface. The A1-P messages are implemented based

on O-RAN alliance specifications to comply with the standard.

Each policy performs a different way of base station resource

allocation when PRBs are allocated so as to provide all the

needed slices with the optimal number of PRBs.

The xApp is triggered either by event occasions when

the network status changes due to a handover action or

configuration change or by a constantly triggered timer which

the network administrator could select to monitor the network

periodically and solve any emerging issues.

III. RESOURCE ALLOCATION ML-BASED XAPP

A. System Model

Including ML capabilities within the dynamic resource

allocation in O-RAN networks brings significant advantages.

ML can play a crucial role in optimising resource allocation

by analysing vast amounts of data and identifying complex

patterns and correlations.



Based on the provided details, the focus of this article lies

in the development and deployment of an ML-based xApp

to optimise the allocation of PRBs within each base station

and select the most suitable resource allocation policy for the

network slices. An ML model must be trained in the SMO

framework or directly in the non-RT RIC. The well-trained

model can be deployed in the near-RT RIC, while updates

and enrichment information of the ML model are transmitted

from the non-RT RIC to the near-RT RIC through the A1

interface.

To build the xApp and ML model, we have built a Het-

Net 5G scenario through extreme programming with Python

programming comprising a high-power macro base station

covering an area of 20 km × 20 km and a small cell in an

area of 10 km × 10 km. Two separated frequency bands, 800

MHz and 2 GHz, with channel bandwidths of 5 MHz and 10

MHz, respectively, are chosen. Voice and Mobile Broadband

(MBB) users are randomly deployed within the simulated

area, with varying numbers and locations. Multiple resource

allocation policies are explored in the near-RT RIC and xApp

to determine how available resources should be managed and

allocated to the associated users to meet the required data rates

of the users.

Model Parameters:

• Network: 5G Heterogeneous Network (HetNet)

• Base Stations: One Macro Base Station (MBS) and

One Small Base Station (SBS)

• Coverage Area: 20 km × 20 km for MBS and 10

km × 10 km for SBS

• Frequency Bands: 800 MHz and 2 GHz

• Channel Bandwidth: 5 MHz and 10 MHz

• Type of UEs: Voice and Mobile Broadband (MBB)

• Minimum QoS Requirement: 250 Kbps for Voice

UEs and 3 Gbps for MBB UEs

To address the importance of the dynamic resource allo-

cation adjustment, four different resource allocation policies

are proposed. These policies are observed through extensive

simulations to comprehensively assess their impact on network

performance. When distributing the total allocated resources

for a base station, which is denoted as PRBs, among the as-

sociated voice users, represented by Nvoice, and the associated

MBB users, denoted as Nmbb, users will collectively utilize

these resources, represented by PRBuser according to one of

the following policies:

• Equal Allocation Policy: Under this policy, an equal split

of PRBs between voice and MBB users will occur, dis-

regarding their respective QoS requirements as described

in (1). This policy is suitable when the number of users

is relatively low.

PRBuser =
PRBs

Nvoice +Nmbb

(1)

• Voice Priority Allocation Policy: This policy allocates

more resources (M times) to voice users within each cell

type to ensure a higher priority for network access. It

is an ideal selection for scenarios where voice services

are important. The allocated PRBs for each voice user

donated by PRBvoice, and for each MBB user, PRBmbb,

is represented in (2)

PRBmbb =
PRBs

(M ∗Nvoice) +Nmbb

PRBvoice = M ∗ PRBmbb

(2)

• MBB Priority Allocation Policy: Alternatively, this policy

allocates more resources to MBB users (K times) within

each cell type compared to voice users as defined in

(3). This approach prioritises broadband services and is

valuable when dealing with high data traffic requirements.

PRBvoice =
PRBs

Nvoice + (K ∗Nmbb)

PRBmbb = K ∗ PRBvoice

(3)

• Dedicated Resources Reservation Policy: This policy

reserves a specific portion of the resources for voice

users and another portion for MBB users within cells.

This ensures dedicated resources for essential services,

even during peak network usage and saves the remaining

resources for other services. For voice users connected

to macro base stations, the resource allocation policy

involves dividing a reserved portion, denoted as α, from

the total available PRBs equally as represented in (4).

On the other hand, voice users connected to small base

stations will also receive an equivalent allocation from

the voice users connected to macro base stations. The

allocation of resources for MBB users, which is defined

in (5), follows a different approach. These resources are

distributed based on a selected portion, denoted as β,

from the total PRBs regardless of whether they are

connected to macro or small base stations.

In macro base stations

PRBvoice =
PRBs

α ∗Nvoice

(4)

And in any kind of base stations

PRBmbb =
PRBs

β ∗Nmbb

(5)

B. Results and Discussion

The performance and effectiveness of the mentioned re-

source allocation policies, in conjunction with the ML model,

have been thoroughly investigated and evaluated. We investi-

gate the impact of each resource allocation policy on network

performance, taking into account a diverse deployment of

associated users with different types. To evaluate the effect of

different policies on network performance, the network outage,

a critical performance metric, has been considerably analysed.

The measurement of network outage was achieved by deter-

mining the percentage of users who failed to get the minimum

QoS requirements out of the total number of the associated

users within the cell, disregarding the user types. Multiple
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simulations have been conducted, encompassing various user

deployment scenarios within the network, to accurately capture

the system outage for each configuration and policy setting.

The simulations produced valuable insights into the be-

haviour of our 5G simulated network. To emphasise the

variance in network performance under different resource

allocation policies, we considered high QoS requirements for

each user in our simulation. We observed that, even under

similar conditions concerning user types and numbers, the

implementation of each of the four available policies led to

varying outage events. Figure 4 presents the outage occur-

rences when different policies are applied to particular network

configurations in a small cell. In particular, the Dedicated

Resources Reservation policy yielded the least user outages

when there were 24 voice users and 19 MBB users. However,

when an additional voice user is associated with the same

cell, implementing the same policy does not yield optimal

performance, whilst the Equal Allocation policy is shown to

be more effective. Similar observations in performance were

noticed when cells had more users of different types. These

impacts emphasise the need for dynamic selection of policy

based on the network conditions and the number and types of

users associated with each cell.

Accordingly, out of that, we proceeded to develop an

ML model trained using the comprehensive and detailed

information collected from the network to select the optimal

performance policy for each network condition reasonably. We

aim to enhance the overall act of resource allocation in 5G

networks and lead to improving network performance, user

satisfaction, and overall Quality of Experience (QoE).

To train the ML model, comprehensive simulations were

conducted to generate datasets consisting of a large number

of input pairs. These input pairs included the count of the

users from both voice and MBB user types, along with

corresponding outage information and network configuration.

The objective of the classification problem is to determine

the best allocation policy for each network configuration, as

certain policies may result in suboptimal network performance.

After careful evaluation of various classification algorithms,

Fig. 5. ML Training Time

multiple algorithms show an excellent performance in terms of

classification accuracy during the model validation, i.e. more

than 85%. However, some of the algorithms, as demonstrated

in Figure 5, indicate a different training period which might

be considered as an essential factor, especially in the case

of repeating the training periodically or performing the online

training event-based. That is why the Random Forest classifier

was chosen as the ML algorithm for this study.

The utilisation of the Random Forest classifier as the ML

algorithm, along with the dataset collection and simulations,

contributes to the effectiveness and reliability of the proposed

resource allocation framework.

Appling our trained model presents a dynamic allocation

mechanism that can intelligently select the most suitable policy

based on the specific configuration and user demands. Fig.6

illustrates the selected policy for each network configuration

and user count. A slight variation in the number of associated

users from different user types can significantly impact the

occurrence of network outages. Choosing the best performance

policy will ensure the minimum outage at each cell state.

Furthermore, it is worth mentioning that within the macro

cell observations, the MBB Priority Allocation policy rarely

emerged as the best allocation choice, while a similar remark

was observed with the Voice Priority Allocation policy in

the small cells. In the case of the MBB Priority Allocation

policy, it ensures that all cells, regardless of their kind, allocate

resources primarily to MBB users, no matter the number of

connected users. While this approach guarantees a prioritised

service for MBB users, it may lead to a higher outage for

voice users and system outages at the end. The same action

happens with the Voice Priority Allocation policy within the

small cell results, where using it leads to higher outages than

using the other available policies.

The integration of ML within the xApp enables a responsive

and efficient resource allocation process. By accurately esti-

mating the current traffic demands and dynamically adapting
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the allocation of PRBs, ML algorithms facilitate the efficient

utilisation of network resources and enhance the overall net-

work performance. This approach ensures that the network

slices receive the appropriate allocation of resources, leading

to improved user experience, optimised network efficiency, and

enhanced fulfilment of SLAs and QoS requirements. By lever-

aging historical data and real-time monitoring, ML algorithms

optimise the allocation of PRBs to meet the dynamic traffic

demands and ensure the best possible network performance.

The utilisation of ML algorithms within the xApp empowers

O-RAN networks to achieve efficient and intelligent resource

management, contributing to enhanced user experience and

network efficiency.

IV. CONCLUSION

In conclusion, the integration of AI/ML capabilities within

the O-RAN brings considerable advantages to the telecommu-

nications industry. This paper presents an xApp-based imple-

mentation for dynamic resource allocation using ML within

O-RAN architecture. A Het-Net 5G network has been built to

explore the consequences and observations of resource alloca-

tion policies. Macro and small 5G cells deployed with different

frequency bands and bandwidths. Four different policies have

been implemented at multiple network configurations, and the

user outage was chosen as a performance metric. Our simula-

tion experiments show that under similar network conditions,

the implementation of each of the four policies led to different

outage events. Therefore, an ML-based xApp has been devel-

oped to enable a dynamic selection for resource allocation

policies. The proposed ML model effectively picks the best

allocation policy for each base station, optimising resource

allocation and achieving Service Level Specifications (SLS).

With a high accuracy rate of 85% for policy classification,

the Random Forest Classifier displays its potential to enhance

scheduler functionality within the O-DU. Leveraging input

parameters from the O-RAN instance conditions, the xApp

performs rapid convergence to changing network conditions.

This study highlights the transformative capability of ML in

advancing network efficiency and performance, paving the way

for more resilient and adaptable telecommunication networks.
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