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Abstract—Using Unmanned Aerial Vehicles (UAVs) in Search
and rescue operations (SAR) to navigate challenging terrain
while maintaining reliable communication with the cellular
network is a promising approach. This paper suggests a novel
technique employing a reinforcement learning multi Q-learning
algorithm to optimize UAV connectivity in such scenarios. We
introduce a Strategic Planning Agent for efficient path planning
and collision awareness and a Real-time Adaptive Agent to
maintain optimal connection with the cellular base station.
The agents trained in a simulated environment using multi
Q-learning, encouraging them to learn from experience and
adjust their decision-making to diverse terrain complexities
and communication scenarios. Evaluation results reveal the
significance of the approach, highlighting successful navigation
in environments with varying obstacle densities and the ability
to perform optimal connectivity using different frequency
bands. This work paves the way for enhanced UAV autonomy
and enhanced communication reliability in search and rescue
operations.

Index Terms—Search and Rescue, Cellular connected UAVs,
SAR, path planning, UAVs, Reinforcement Learning, Q learn-
ing

I. INTRODUCTION

A. Motivation

In recent times, unmanned aerial vehicles (UAVs) have

garnered significant interest due to their versatility across

civilian and military sectors. Capitalizing on their rapid

mobility, autonomous functionality, adaptable deployment,

and cost-effectiveness, UAVs find applications in various

fields, including but not limited to final emergency

response, parcel delivery, medical aid, and maintaining

wireless network coverage. Additionally, advancements in

Edge computing have made it possible to integrate Artificial

Intelligence (AI) and Machine Learning (ML) algorithms,

such as Reinforcement Learning (RL) tasks, along with

visualization engines to facilitate Virtual Reality (VR)

support directly onboard UAVs.

In the domain of Search and Rescue (SAR) operations,

the deployment of UAVs has become increasingly vital.

These UAVs offer unparalleled advantages in navigating

challenging terrain, enabling swift response and efficient

search capabilities. However, ensuring robust connectivity

for SAR UAVs, especially in remote and rugged environ-

ments, presents significant challenges.

In response to these challenges, this paper proposes a

pioneering framework for optimizing connectivity for SAR

UAVs in challenging terrain through Multi Q-Learning algo-

rithms. By harnessing the power of reinforcement learning,

our approach aims to dynamically adjust UAV trajectories to

maintain seamless connectivity with ground stations while

navigating through rugged landscapes.

This novel methodology not only addresses the unique

challenges of SAR operations but also paves the way for

more efficient and effective search and rescue missions. By

integrating connectivity optimization with trajectory plan-

ning, we strive to enhance the capabilities of SAR UAVs,

ultimately saving lives and mitigating the impact of disasters

in even the most challenging terrains.

B. Related Works

In recent years, the utilization of UAVs for SAR op-

erations has garnered significant attention owing to their

potential to enhance efficiency and safety in emergency

situations [1]–[3]. Several methods have been proposed for

optimizing UAV path planning in SAR missions, aiming

to minimize risk exposure while maximizing coverage [1].

These methods often leverage intelligent algorithms, such

as fuzzy logic, particle swarm optimization (PSO), and

genetic algorithms, to calculate optimal UAV trajectories and

waypoints [4], [5]. Additionally, efforts have been made to

address collision avoidance challenges in UAV swarm opera-

tions, with approaches like multi-plane systems and collision

avoidance algorithms demonstrating promising results [6]–

[8].

Communication plays a crucial role in multi-UAV path

planning for SAR missions, enabling dynamic task allo-

cation and information dissemination [9]. Strategies such

as simultaneous inform and connect (SIC) path planning

have been proposed to optimize mission tasks while main-

taining connectivity and coverage goals [9]. Furthermore,

advancements in Fifth Generation (5G) mobile networks

offer opportunities to enhance SAR missions through dy-979-8-3503-7786-6/24/$31.00 ©2024 IEEE



namic and autonomous placement of Network Functions

(NFs) and Artificial Intelligence (AI) systems [10], [11].

These developments aim to leverage edge intelligence and

system intelligence concepts to optimize UAV-based SAR

operations [10], [12].
Efficient path planning algorithms are essential for

optimizing UAV trajectories in SAR missions. Techniques

such as A algorithm and task allocation algorithms have

been enhanced to achieve faster and more effective path

planning, particularly in cluttered environments [7], [13].

Moreover, collaborative efforts in the research community

have led to the development of multi-robot systems

supporting SAR operations, focusing on algorithmic

perspectives for multi-robot coordination and perception

[14]. These systems aim to address various challenges,

including shared autonomy, sim-to-real transferability, and

active perception [14].

C. Contributions and Problem Statement

In this paper, we tackle the pivotal challenge of enhanc-

ing connectivity for SAR UAVs operating in challenging

terrains. The motivation behind our work arises from the

imperative need to ensure seamless communication between

SAR UAVs and ground base stations, particularly in envi-

ronments characterized by rugged landscapes and adverse

conditions.
Our study’s primary contribution lies in proposing a

novel approach that leverages multi Q-learning algorithms to

optimize connectivity for SAR UAVs in challenging terrains

while achieving the shortest travel time. SAR missions

often unfold in remote or inaccessible areas, where direct

communication with the UAV operator may be inadequate

or non-existent. Consequently, SAR UAVs face significant

hurdles in maintaining continuous connectivity with ground

base stations, risking mission effectiveness and the safety of

both rescuers and victims.
Our approach addresses this critical issue by integrating

multi Q-learning algorithms into UAV trajectory planning.

We prioritize optimal paths that ensure uninterrupted con-

nectivity while navigating challenging terrain. By harness-

ing the power of reinforcement learning, our methodology

aims to dynamically adapt UAV trajectories in real-time,

accounting for environmental obstacles, terrain variations,

and communication dynamics.

D. Organisation

This paper is structured as follows: Section II provides

an overview of the Reinforcement Learning (RL) model,

explaining its fundamental architecture and mathematical

formulation. Subsequently, Section III outlines the proposed

model, encompassing the employed environment and imple-

mented policies. The outcomes of the trained model and

relevant testing observations are detailed in Section IV.

Lastly, Section V encapsulates our conclusions drawn from

the study.
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Fig. 1. Reinforcement Learning Model [16]

II. REINFORCEMENT LEARNING (RL) ALGORITHM

One of the current thrilling areas of study in AI/ML

is RL. In this paper, our focus lies on implementing RL,

where a dynamic “agent” navigates through various possible

circumstances and makes decisions within an operational

“environment” to ultimately determine the optimal ones.

In RL, every action taken by the agent is denoted as an

“action”, and each action leads to a subsequent state. These

transitions are evaluated to determine their effectiveness,

with successful transitions being considered for future it-

erations to reinforce positive behaviour “rewards”, while

unsuccessful transitions are neglected to avoid repeating the

poor performance “penalties”. Through this iterative process,

the agent learns to distinguish between positive and negative

actions, thus anticipating successful actions in real-world

scenarios by adjusting the rewards and penalties accordingly

[15].
Figure 1 illustrates the fundamental architecture of RL,

depicting the iterative process of action and state transitions.
Q-learning stands out as one of the most widely adopted

reinforcement learning algorithms. Within this framework,

the agent endeavours to select the optimal action by lever-

aging information from past states and associated rewards.

Each iteration of this process termed an “episode”, con-

tributes to accumulating knowledge about optimal actions

and rewards. Following each episode, the rewards or penal-

ties earned for each action and state are stored in a lookup

table known as the Q-table. This table serves as a valuable

resource for the agent, guiding its decision-making process

by informing which actions to take to maximize rewards and

avoid penalties [15].

Qt+1(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, At)

−Q(St, At)]
(1)

The equation 1 provides the formal definition of the Q-

learning algorithm, where the variables represent the fol-

lowing: St: The state of the environment at time t, At: The

action taken by the system at time t to change the state

to St+1, Rt+1: The reward received after taking action At

at time t, α: The learning rate, determining the extent to

which new information overrides old information and γ:

The discount factor, representing the importance of future

rewards relative to immediate rewards.



III. SYSTEM MODEL

This study focuses on optimizing the connectivity and

path planning for search and rescue UAVs. The applica-

tion scenario involves deploying UAVs to conduct search

and rescue missions in remote and difficult-to-access areas.

Depending on flight conditions, the UAV may necessitate

traversing vast distances and dealing with tough terrains,

sometimes visiting areas inaccessible to human intervention.

Consequently, such missions demand careful path planning

to mitigate the risk of crashes and ensure seamless con-

nectivity with the remote controller or pilot. Our proposed

approach involves integrating an autonomous model onto

the UAV, facilitating its adept navigation between the orig-

inating and target locations, thereby optimizing operational

efficiency.

A. Model Environement

A 3D environment has been built on a grid-like depiction

of the region to employ this model, as shown in Figure 2,

to develop and test reinforcement learning on an agent with

the parameters listed in Table I. This environment represents

the rugged terrain and potential obstacles that UAVs may

encounter during operations. Our approach is intended to

autonomously operate the UAV, which connects to and is

controlled by a ground base station inside a specific region

through cellular service. The RL agent target must adhere

to the coverage channel constraints to keep connected to the

base station and the operator, avoid any on-way obstacles,

and take the shortest route between the initial and destination

endpoints.

To facilitate the development and evaluation of our model,

a three-dimensional (3D) environment, as illustrated in Fig-

ure 2, has been constructed utilizing a grid-based represen-

tation of the designated region. The implementation and val-

idation of reinforcement learning algorithms are conducted

within this environment, utilizing an agent configured with

parameters delineated in Table I. Our methodology aims to

train a UAV which maintains connectivity with a ground

cellular base station within a specified geographical area.

The reinforcement learning (RL) agent’s objective is to

adhere to coverage channel constraints to ensure continuous

connectivity with both the base station and the operator,

navigate around potential obstructions along its flight path,

and determine the most efficient path.

To simulate the connectivity between the UAV and the

ground base station, we have adopted the COST Hata prop-

agation model. The COST 231 Hata model, also recognized

as the Hata-Extended model, is specifically tailored for wire-

less propagation estimations in rural locations, offering an

enhancement over the Okumura-Hata model by integrating

terrain roughness and vegetation characteristics, thereby pro-

viding more accurate estimations for UAV communication in

non-urban regions [17]. This model characterizes path loss

according to the following formulation:

Fig. 2. Supposed Model 3D Environement

TABLE I
PARAMETERS OF REINFORCEMENT LEARNING ENVIRONMENT

Parameter Value

Region Area 1 square km
UAV Max Altitude 100 m

No. of UAVs 1
UAV Max Velocity 15 m/s

Base Station Location (xb, yb)
Base Station Antennas Height 60 m
Cellular Propagation Model COST Hata

Frequency Bands 900, 1800, 2600 MHz
Learning Rate δ 0.8
Discount Rate γ 0.5

Lb = 46.3 + 33.9 log10
f

MHz
− 13.82 log10

hB

m
− α

+

(

44.9− 6.55 log10
hB

m

)

log10
d

km
+ Cm

(2)

Here, f denotes the frequency in MHz, hB signifies

the height of the ground base station antenna in metres,

d represents the distance between the UAV and the base

station antennas in kilometres, and Cm stands for the terrain

roughness correction factor. The term α is further delineated

as follows:

α =
(

1.1 log10
f

MHz
− 0.7

)hR

m
−
(

1.56 log10
f

MHz
− 0.8

)

(3)
where hR corresponds to the height of the UAV in meters.
Various frequency ranges have been explored to ensure the

robustness of the trained model across diverse scenarios.

B. Model Impelementation

To translate our assumptions into a practical framework,

we implemented two agents tailored to the specific require-

ments of our SAR UAV connectivity optimization model.

The implementation involved several policies, each aimed

at ensuring the realism and effectiveness of our proposed

approach.
To train the two agents effectively, we employ a com-

bination of exploration and exploitation strategies within

the environment, adhering to the constraints provided. The

exploration-exploitation trade-off is managed using the ϵ-

Greedy policy, which guides the agents in selecting their

actions during training.



In the ϵ-Greedy policy, the agents initially explore the en-

vironment by choosing random actions to transition between

states, especially in the early stages of training when the

Q-values are not well-established. This random exploration

allows the agents to gather valuable experience and infor-

mation about the environment, including potential rewards

and penalties associated with different actions.

As training progresses and the Q-values begin to converge,

the agents gradually shift towards exploitation, where they

prioritize actions with higher estimated Q-values based on

their learned experiences. The parameter ϵ, known as the

greedy rate, governs this transition from exploration to

exploitation. ϵ is initially set high to encourage exploration

but decreases gradually over time as the agents accumulate

more knowledge and update their Q-values.

By dynamically adjusting ϵ based on the progress of

training and the reliability of the Q-values, the agents strike

a balance between exploring new possibilities and exploiting

known strategies. This adaptive approach allows the agents

to efficiently learn from their experiences and optimize their

actions within the environment, ultimately enhancing their

performance and achieving the desired objectives.

1) Strategic Planning Agent: This agent is responsible for

non-time-sensitive parameters like determining the shortest

path and identifying obstacle locations. We assume that

these factors aren’t changing much, and there is no need to

retrain the agent when other fluctuating factors, like channel

connectivity, change. This agent should navigate the environ-

ment to find the shortest path between a fixed initial location

and random destination points. During the training stage, the

agent explores the environment in different positions, taking

right and wrong actions to train itself in the right direction.

A reward will be received if its step correctly decreases

the distance to the destination; otherwise, it will receive a

penalty for following the longest path. During its navigation,

it checks the location of the obstacles, and once it passes

through an obstacle, this means a crash is happened, and a

high penalty will be received by the agent.

The agent responsible for non-time-sensitive parameters,

such as determining the shortest path and identifying ob-

stacle locations, operates under the assumption that these

factors remain relatively static and do not require frequent

retraining. This agent’s primary task is to navigate the

environment efficiently, finding the shortest path between

an initial location and randomly selected destination points

as shown in Algorithm 1.

During the training stage, the agent systematically ex-

plores the environment, making decisions to advance to-

wards the destination. It learns from both successful and

unsuccessful actions, receiving rewards when its actions ef-

fectively reduce the distance to the destination and penalties

when it deviates from the optimal path.

As the agent navigates the environment, it continuously

evaluates the presence and location of obstacles. Upon

encountering an obstacle, signifying a potential collision,

the agent incurs a substantial penalty. This penalty serves

as a reinforcement mechanism, discouraging the agent from

choosing actions that lead to collisions and encouraging it

to prioritize obstacle-free paths.

The agent gradually refines its navigation strategy by

iteratively exploring the environment, learning from experi-

ences, and adapting its behaviour based on received rewards

and penalties. This process develops a robust understanding

of the environment’s layout, identifying optimal paths while

avoiding obstacles to effectively fulfil its designated tasks.

Algorithm 1 Strategic Planning Agent Training Algorithm

Initialize: Hyper-parameters: learning rate

α ∈ {0, 1}, discount rate γ ∈ {0, 1}, greedy

rate ϵ ∈ {0, 1}
Initialize: (i) Environment Dimensions, (ii) Initial coordi-

nate, (iii) No. of Episodes (M ), (iv) Density of Obstacles

Initialize: action-value function Q,

while Episode < No. of Episodes do

Initialize: Destination coordinate (Dest.)

Reset Current State St to initial location

Reset Rewards to 0

Calculate Distancet between St and Dest.

while Destination not arrived do

Choose action At according to:

At =

{

random action with probability ϵ

argmaxa Q(St, a) with probability 1− ϵ

Select Next State St+1 based on At

Calculate Distancet+1 between St+1 and Dest.

if Distancet+1 < Distancet then

The agent gets a reward

else

The agent gets a penalty

end if

if St+1 == Obstacle location then

The agent gets a high penalty

end if

if St+1 == Destination then

The agent gets a high reward

end if

Update Q-value for the current state-action pair

end while

end while

2) Real-time Adaptive Agent: The Real-time Adaptive

Agent is tasked with identifying optimal coverage locations

within the environment to ensure continuous connectivity be-

tween the UAV and the base station during flight operations.

Unlike non-time-sensitive parameters, such as path planning

and obstacle avoidance, connectivity conditions can vary

dynamically over time. Therefore, this agent operates inde-

pendently to adapt to changing connectivity requirements,

distinct from the Strategic Planning Agent.



The primary objective of the Real-time Adaptive Agent

is to identify and navigate through regions with optimal

coverage to maintain seamless communication with the base

station. This entails strategically selecting flight paths that

maximize signal strength and minimize the risk of signal

loss or degradation.

During the training phase, the agent explores the envi-

ronment systematically, evaluating coverage requirements

at different locations and frequency bands. As shown in

Algorithm 2, this agent receives rewards for crossing spots

with accepted coverage, ensuring reliable communication

with the base station. In contrast, penalties are incurred for

steering through areas with insufficient coverage, leading to

possible communication troubles.

Multiple frequency bands, including 900, 1800, and 2100

MHz, have been considered with the Real-time Adaptive

Agent to sustain the variability in connectivity conditions.

Training this agent across different frequency bands makes it

capable of adapting to various operating scenarios, ensuring

compatibility with various communication circumstances.

The Real-time Adaptive Agent’s capability to assess and

adapt to changing connectivity requirements improves the

overall robustness and reliability of the cellular connected

UAV. By prioritizing optimal coverage locations with dif-

ferent frequency bands, the agent plays an essential role

in maintaining continuous connectivity, thereby enabling

efficient and effective UAV operations in challenging atmo-

spheres.

3) Dual Model Decision-Making Approach: A dual-agent

decision-making approach is implemented to leverage the

capabilities of both the Strategic Planning Agent and the

Real-time Adaptive Agent effectively. This approach aims

to select the most beneficial action for the UAV while

considering inputs from both agents and their respective Q-

value tables.

Both agents experience comprehensive offline training to

learn optimal strategies for their assigned missions. During

this stage, the Strategic Planning Agent focuses on path

planning and obstacle avoidance. Simultaneously, the Real-

time Adaptive Agent concentrates on identifying optimal

coverage locations to maintain connectivity with the ground

base station. Additionally, the Real-time Adaptive Agent

might undergo online training to mitigate fluctuations in

channel conditions to ensure continuous connectivity during

the UAV operations.

Algorithm 3 outlines the decision-making process for

the dual-agent approach. At each time step t, both agents

independently select their best actions A1 and A2 based

on their respective Q-values for the current state St. The

UAV then determines the best course of action based on the

outcomes of both agents’ selections.

In scenarios where the Strategic Planning Agent and the

Real-time Adaptive Agent choose different actions, a hierar-

chical approach is employed to prioritize decision-making.

The importance of avoiding obstacles takes precedence over

Algorithm 2 Real-time Adaptive Agent Training Algorithm

Initialize: Hyper-parameters: learning rate

α ∈ {0, 1}, discount rate γ ∈ {0, 1}, greedy

rate ϵ ∈ {0, 1}
Initialize: (i) Environment Dimensions, (ii) base station

coordinate, (iii) No. of Episodes (M ), (iv) frequency

range, (v) SNR threshold

Initialize: action-value function Q,

while Episode < No. of Episodes do

Initialize: Destination coordinate (Dest.)

Reset Current State St to initial location

Reset Rewards to 0

while Destination not arrived do

Choose action At according to:

At =

{

random action with probability ϵ

argmaxa Q(St, a) with probability 1− ϵ

Select Next State St+1 based on At

Calculate Lb and SNR of St+1

if SNR < SNR threshold then

The agent gets a penalty

else

The agent gets a reward

end if

Update Q-value for the current state-action pair

end while

end while

navigating through areas with weak coverage. Therefore, the

UAV prioritizes the action recommended by the Strategic

Planning Agent when conflicts arise. In certain situations,

the optimal path recommended by the Strategic Planning

Agent may lead through areas with weak coverage. In such

cases, the UAV may opt to take an additional step, resulting

in a longer path to the destination, to ensure continuous

connectivity with the ground base station.

This approach ensures that the UAV optimally balances

path optimization and connectivity considerations, resulting

in enhanced performance and reliability in challenging en-

vironments.

IV. RESULTS AND DISCUSSION

In this section, we assess the performance of our proposed

models through extensive training and evaluation processes.

The evaluation focuses on analyzing the training progress

and the effectiveness of the trained agents in navigating the

environment and optimizing UAV operations.

During each agent’s initial training episodes, the Q-model

lacks familiarity with the environment states, leading to

significant penalties due to incomplete information. Conse-

quently, more training episodes may be required to explore

the vast state space effectively and optimize decision-making

processes.
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Fig. 3. Environement Obstacles Distribution Scenarios

Algorithm 3 Decision-Making Algorithm

Specify: Current State St

Choose action A1 according to Strategic Planning Agent

Choose action A2 according to Real-time Adaptive Agent

if A1 = A2 then

Select Next State St+1 based on A1

else

Check The Q value from the Strategic Planning Agent

Q1 for A2

Check The Q value from the Real-time Adaptive

Agent Q2 for A1

if Q1 > Q2 then State Select Next State St+1 based

on A2

else

Select Next State St+1 based on A1

end if

end if

The training of the Strategic Planning Agent involves nav-

igating the environment while considering several densities

of obstacles, as shown in Figure 3, and determining the

shortest path to a random destination. At each step, the

agent calculates the distance to the destination, evaluates

the possibility of a crash, and receives rewards or penalties

accordingly. These experiences are used to update the Q-

values, guiding the agent towards optimal decision-making.

Similarly, the Real-time Adaptive Agent undergoes train-

ing to assess the connection performance between the UAV

and the ground base station using three different frequency

bands. Rewards and penalties are assigned based on the

agent’s decisions, considering factors such as the received

signal strength and signal-to-noise ratio. The Q-values are

updated iteratively, enabling the agent to learn from past

actions and improve its decision-making capabilities.

After multiple training trials, both agents learn from their

experiences and begin to select better actions to maximize

rewards and minimize penalties. The average rewards and

penalties accumulated during the training phase are used as

Strategic Planning Agent Training Average Rewards
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Fig. 4. Strategic Planning Agent Training Rewards

performance metrics to gauge the agents’ effectiveness.

Figure 4 illustrates the average rewards and penalties

obtained by the Strategic Planning Agent over multiple

training trials. It is evident that the agent learns its optimal

actions more quickly in environments with fewer obstacles,

as indicated by the rapid transition to positive rewards. How-

ever, in environments with a higher density of obstacles, the

agent faces greater challenges in identifying optimal actions

and avoiding collisions. This observation underscores the

importance of the environment complexity in shaping the

learning dynamics of the agent.

In contrast, Figure 5 presents the corresponding metrics

for the Real-time Adaptive Agent. These figures offer valu-

able insights into the training dynamics and the agents’

learning progress over time. Notably, the impact of changing

frequency bands on the agent’s performance is apparent

in the first training stages, when the agent faced a lot of

weak coverage locations. As expected, higher frequency

bands, such as 2100 MHz, result in increased path loss

due to factors like scattering and absorption by vegetation

and atmospheric gases. Consequently, the agent encounters

difficulty in identifying optimal connectivity points in envi-

ronments characterized by higher frequency bands, leading

to prolonged learning periods and higher penalties. Con-

versely, lower frequency bands, such as 900 MHz, facilitate



TABLE II
TRAINED AGENTS EVALUATION RESULTS

Environment Testing Conditions
Frequency Band = 900 MHz,

Obstacles Density = 5%

Frequency Band= 1800 MHz,

Obstacles Density = 15%

Frequency Band = 2100 MHz,

Obstacles Density = 30%

Arrival Success 100% 100% 90%
Obstacles Crash Events 0% 0% 10%

Outage Events 1% 10% 25%

Real-time Adaptive Agent Training Average Rewards
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Fig. 5. Real-time Adaptive Agent Training Rewards

faster learning by providing more favourable connectivity

conditions and enabling the agent to identify optimal actions

more efficiently.

These observations highlight the significance of envi-

ronmental factors and frequency band selection in shaping

the learning dynamics and performance of the Real-time

Adaptive Agent. By understanding these dynamics, we can

optimize training strategies and enhance the agent’s ability

to navigate diverse environments effectively.

To assess the performance of our trained agents, we con-

ducted tests in environments mirroring the dimensions, UAV

taking-off location, base station location, and connectivity

settings used during training. Table II presents an overview

of our trained system’s accuracy across different scenarios.

Notably, the first two scenarios achieved a 100% success

rate in terms of reaching the destination and successfully

avoiding on-path obstacles during flight. However, during

the evaluation stage, where the focus shifted to successful

delivery more than navigating through weak coverage points,

UAV agents experienced outage events in approximately 1%

of flights in the low-frequency band and 10% in the middle-

frequency band. These events highlight the inherent trade-

off between prioritizing arrival success and maintaining

continuous connectivity with the base station.

Conversely, when the obstacle density was increased to

30%, there was a higher likelihood of crashes despite suf-

ficient training. Consequently, during testing, we observed

a 10% failure rate in reaching the destination. Additionally,

approximately 25% of the environment locations exhibited

unsatisfactory connectivity efficiency, characterized by high

path loss values and weak coverage, particularly in the

environment’s borders, especially noticeable in the high-

frequency bands.

This revision provides a concise summary of the evalua-

tion outcomes and highlights the trade-off between delivery

success and maintaining connectivity with the base station

during flight operations.

V. CONCLUSIONS

This paper presented a novel approach to optimizing

search and rescue UAV connectivity in challenging terrain

using multi Q-learning. We trained two agents: a Strategic

Planning Agent for efficient path planning and collision

awareness and a Real-time Adaptive Agent to maintain

optimal connectivity with a ground base station.

The evaluation results demonstrated the effectiveness of

our approach. The Strategic Planning Agent achieved a

high success rate in navigating environments with varying

obstacle densities. The Real-time Adaptive Agent learned to

adapt to different frequency bands, exhibiting faster learning

with lower frequency bands due to stronger signals around

the environment. We observed a trade-off between arrival

success and maintaining continuous connectivity during

evaluation and testing. While lower frequencies ensured

higher arrival rates, higher frequencies offered more path

loss characteristics in far areas.

These findings hold significant promise for real-world

search and rescue operations. They highlight the potential of

multi Q-learning to enhance UAV autonomy and decision-

making in complex environments. Future work could explore

incorporating real-time weather data and dynamic obstacle

detection for further optimization. Additionally, investigating

multi agent coordination for collaborative search patterns

could be a valuable advancement.
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