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Abstract—This paper presents a novel framework for opti-
mising energy consumption in ORAN networks using machine
learning (ML) models integrated with realistic mobility and
spatial data aggregation techniques. The proposed approach
leverages real-time Key Performance Metrics (KPMs) to dy-
namically manage the power states of Radio Units (RUs), ensur-
ing energy efficiency while maintaining network performance.
A dense urban simulation environment with realistic mobility
patterns, based on a Poisson Point Process and Dijkstra’s
Algorithm, models user movement and traffic dynamics. To
address the challenges of large-scale dataset management, an
H3 spatial indexing system aggregates data into hexagonal
grids, reducing data size by 74% without sacrificing spatial
accuracy. Five ML-based classifiers, including ensemble and
regression-based methods, were trained and evaluated using
the aggregated dataset based on actual data from the city
of Leeds. The results demonstrate high accuracy for optimal
power plans, with models achieving up to 97.8% accuracy. Net-
work performance metrics, including throughput and energy
efficiency, highlight significant improvements over a Full Power
Baseline (FPB), with energy consumption reduced by up to
33.88% using the proposed models. These findings underscore
the potential of ML-driven approaches to optimise energy usage
in ORAN networks, providing a scalable and effective solution
for sustainable network operations.

Index Terms—Energy Saving, ORAN, Network Optimisation

I. INTRODUCTION

In the current 5th generation of telecommunication net-

works, the densification of infrastructure and the deployment

of additional radios in new frequency bands have increased

overall energy demands while offering enhanced coverage

and capacity features. Next-generation wireless networks

face a dual challenge: they must meet the ever-growing

data requirements while also addressing significant energy

consumption associated with their operation [1]. Specifi-

cally, RAN accounts for approximately 70% to 85% of

the total energy usage [2]. This underscores the importance

of focusing on RAN components and its flexibility when

implementing energy-saving strategies in mobile networks.

Currently, traditional RAN base stations (BSs) rely on

monolithic network architectures and proprietary hardware

[3]. As a result, it is challenging to apply reconfigurations

and energy-saving strategies due to the legacy architecture

with limited interoperability. ORAN, as defined by the O-

RAN ALLIANCE [4], replaces the traditional RAN frame-

work with a disaggregated base station architecture featuring

open, interoperable interfaces. By decoupling hardware from

software, virtualizing functions, and leveraging cloud-based

management, ORAN enhances flexibility and fosters innova-

tion [5], [6]. The RAN Intelligent Controller (RIC) utilizes

AI/ML-driven solutions on near-real-time and non-real-time

platforms to optimize energy efficiency and network perfor-

mance. Additionally, xApps, operating via the E2 interface,

enable efficient Radio Resource Management (RRM) [7],

offering promising solutions for improved energy efficiency.

Recent research efforts have focused on improving energy

efficiency (EE) in ORAN systems through intelligent control

mechanisms. One notable approach is presented in [8],

where a DRL model is proposed to optimise the activation

and deactivation of the front ends in 5G BSs. The proposed

method achieves significant energy savings while maintain-

ing network performance. In [9], a quantum-inspired load-

balancing approach leverages entanglement theory to opti-

mise the selection of distributed unit (DU) servers, reducing

energy consumption. The study demonstrates considerable

energy efficiency gains by applying advanced optimisa-

tion techniques, including sequential quadratic programming

(SQP). The works in [10] and [11] propose energy con-

sumption models utilising scheduling algorithms inspired

by biological genetics to reduce energy usage. The study

in [2] explores power consumption models and energy-

saving techniques for ORAN, identifying key challenges and

future research directions. However, these approaches rely

on simulations, often neglecting realistic user mobility and

the computational demands of large-scale data processing.

To our knowledge, no study has evaluated ORAN’s energy

efficiency using real spatial and network data. This paper ad-

dresses these gaps, bridging the divide between simulation-

based insights and real-world deployment challenges.

This paper proposes a framework to quantify and improve

ORAN’s EE in urban deployments. It introduces an EE

xApp that minimises ORAN power consumption by dynam-

ically controlling RU transmitting power. Leveraging spatial

modelling, real-time analytics, and ML, the xApp optimises

energy use while maintaining Quality of Service (QoS). A

key contribution is a realistic user mobility model for dense



urban networks, replicating pedestrian movement and traffic

dynamics to evaluate connectivity and throughput over time.

The framework incorporates H3 spatial indexing to reduce

computational costs associated with large-scale datasets and

is validated using spatial and network data from Leeds city

centre, UK.

The remainder of this paper is organised as follows. Sec-

tion II introduces the System Model, which includes three

subsections: Section II-A, detailing the simulation environ-

ment and network configuration; Section II-B, describing

the novel framework for simulating realistic user behaviour;

and Section II-D, which outlines the ML-based optimisation

approach and its implementation. Section III discusses the

results, analysing the performance of the proposed models in

terms of energy efficiency, throughput, and power savings.

Finally, Section IV concludes the paper, summarising key

findings and proposing directions for future research.

II. SYSTEM MODEL

In this section, we formulate a systematic approach to

study the EE in ORAN based on the spatial orientation

and mobility of users. The interaction between the near-

RT RIC, E2 nodes, key performance metrics (KPMs), and

user equipment (UE) mobility forms the basis for evaluating

energy efficiency and network performance.

A. Spatial Model

The model environment represents an ORAN deployment

in a dense urban scenario to evaluate energy optimisation

strategies under realistic conditions. The network consists of

a total number of UEs donated as NUE, and NBS small-cell

base stations (gNBs), each equipped with a number of RUs

where the total RUs in the network defined as α. Each RU

operates in one of the configurable power modes PModes=

{PF , PM , PS}, where (PF ) is full transmitting power mode,

(PM ) is mid transmitting power mode, and (PS) is the sleep

mode. These modes allow dynamic adaptation to varying

traffic conditions. They are controlled via real-time KPMs

received through the E2 interface to the near-RT RIC. The

network operates over a carrier frequency (fc), ensuring

compliance with 3GPP specifications.

A Poisson Point Process (PPP) is used to model the spatial

distribution of users, ensuring randomness in their placement

within a square grid area of size |A|. The number of points

M in this area is given by:

M ∼ Poisson(λ · |A|),

where λ represents the intensity parameter (average number

of points per unit area). The generated points represent the

users’ deployments within the urban topology.

The connectivity between UEs and BSs is governed by

the Signal-to-Interference-plus-Noise Ratio (SINR), defined

as [12]:

γj(t) =
plj(t)PTj(t)

N0 +
∑NBS

k ̸=j plk(t)PTk(t)
, (1)
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Fig. 1. The layout of our energy efficiency using ORAN architecture

where PTj and PTk ∈ PModes are the transmit powers of the

serving and interfering RUs, respectively, plj(t) and plk(t)
represent the channel path loss between the UE and the RUs,

and N0 denotes the noise power density.

The channel model incorporates path loss and fading

effects based on the 3GPP Urban Micro (UMi) specifications

[13]. Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)

conditions are modelled probabilistically, with the probabil-

ity of a LoS link given by:

ProbLoS =

{

1, if d2D ≤ dth
dth

d2D

+
(

1− dth

d2D

)

exp
(

−d2D

36

)

, if d2D > dth

(2)

where d2D is the horizontal distance between the UE and

the BS, dth is the threshold distance for guaranteed LoS.

The wireless channel path loss (pl) is calculated as:

• For LoS conditions:

plLoS = 32.4 + 21 log10(d3D) + 20 log10(fc), (3)

where d3D is the 3D distance between the UE and the

BS.

• For NLoS conditions:

plNLoS = max(plLoS, pl
′
NLoS), (4)

with

pl′NLoS = 35.3 log10(d3D)+22.4+21.3 log10(fc)−2.55.

The network operates with a time resolution of ∆t,

corresponding to the periodicity of KPM updates for a

full run time donate as Ttime. For each time step, data is

collected for all power modes across the UEs, resulting in a

dataset of size proportional to NUE × α × Ttime. This scale

increases significantly with larger networks, highlighting the

computational challenges associated with training energy

optimisation models.



To address the challenges of processing and managing

large-scale datasets generated by user mobility and net-

work measurement reports, spatial aggregation techniques

are employed using H3 indexing [14]. H3 is a geospatial

indexing system that partitions the geographical area into a

hierarchy of hexagonal grids, each uniquely identified by an

H3 index. This hexagonal tessellation provides consistent

spatial coverage, eliminating the distortions introduced by

traditional square grids, particularly in large-scale areas. The

indexing system enables efficient data aggregation while

maintaining spatial accuracy by grouping users based on

their locations within these hexagonal cells.

B. Users Mobility Model

This subsection introduces the user mobility model de-

signed to mimic the movement patterns of UEs within

an urban environment. The model considers various fac-

tors, including spatial user distribution, stochastic mobility

behaviour, and urban features like intersections and road

networks. These elements are critical for generating realistic

trajectories and supporting accurate network performance

evaluation.

We consider UEs passing by nodes within the network by

taking the shortest path using Dijkstra’s Algorithm [15] at

a constant speed vu. For each user ui, the mobility model

randomly assigns a starting node ns and a destination node

nd from a graph G = (N,E). The graph G is defined as a

network layout where N represents nodes, and E represents

edges (roads) in the network. To ensure realistic travel

behaviour, the distance between the start and destination

nodes must exceed a predefined threshold dmin, enforcing

a minimum route length:

d(ns, nd) > dmin,

where d(ns, nd) represents the Euclidean path distance.

Moreover, a bias is introduced in the edge cost function

C(e) as follows:

C(e) = length(e)− β · junction count(n), (5)

where length(e) is the physical edge length,

junction count(n) represents the number of roads

converging at a node, and β is a tunable parameter

that adjusts the influence of junction density. This approach

biases user routes toward high-density intersections,

reflecting realistic traffic flows. The details of this approach

are outlined in Algorithm 1, which describes the procedure

for user route assignment.

C. KPM Measurements

KPM reports are generated at DU for each user at ∆t

intervals based on their trajectories, including metrics such

as SINR, received power, and throughput. These reports

are critical for evaluating energy optimisation strategies

but result in large datasets, particularly in scenarios with

numerous UEs and BSs.

Algorithm 1 User Route Assignment Algorithm

1: Input: Target area A, intensity λ

2: Output: Shortest path routes for all users

3: Generate user points P ∼ PPP(λ · |A|)
4: for each point pi ∈ P do

5: Assign coordinates (xi, yi) uniformly in A

6: Map pi to nearest intersection nj using n(pi) =
argminnj∈N d(pi, nj)

7: end for

8: for each user ui do

9: Select start node ns and destination node nd such that

d(ns, nd) > dmin

10: Compute shortest path using C(e) = length(e) − β ·
junction count(n)

11: end for

Instead of tracking individual users and generating sepa-

rate measurement reports for each, the framework aggregates

data within each hexagonal cell. H3 indexing is employed

to reduce data complexity while preserving essential metrics

for model training. The spatial distribution of users across

the H3 indices is modelled using a Poisson distribution, en-

suring realistic traffic patterns that align with urban popula-

tion densities. For each cell, metrics such as SINR, received

power, and throughput is averaged, significantly reducing the

volume of data without sacrificing the granularity required

for accurate analysis. This adaptability ensures the scala-

bility of the proposed framework, accommodating scenarios

with varying numbers of UEs and BSs. Figure 2 illustrates

the mapping of user routes onto the H3 indexing grid,

highlighting how the system captures the spatial dynamics

of the simulation environment.

By integrating H3 indexing into the mobility model, the

framework enhances computational efficiency and ensures

that spatial relationships among users and network elements

are preserved. This integration supports evaluating energy-

efficient strategies at scale, bridging the gap between realistic

mobility modelling and practical data management in 5G

ORAN networks.

Consequently, KPMs are collected for all configurations in

PModes to train and optimise the energy-saving ML models

introduced in the next section.

D. Model Implementation

The proposed system leverages ML to optimise power

consumption in a 5G ORAN network by dynamically select-

ing the most suitable power plan for the network’s BSs. The

system is designed to integrate a trained machine learning

classifier as an xApp within the near-RT RIC, enabling near

real-time decisions based on current network conditions.

To determine the best power configuration within the set

PModes for network RUs, a Power Plan ID (PowID) has

been introduced. Each PowID represents a specific power

configuration for the network RUs. For example, the first
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PowID corresponds to all BSs’ RUs operating at full power

(PF ), while the last PowID represents all BSs’ RUs in sleep

mode (PS). The training dataset was generated by simulating

all possible PowID configurations.

The input features used for training include the number of

users and their corresponding H3 index, the received power

(Prx), the SINR for each user, the network throughput, the

serving BS ID for each user, the total power consumption of

the network, and the selected PowID. The total power con-

sumption of the network (Ptotal) is included as an auxiliary

metric and is computed as:

Ptotal =
α
∑

j=1

PT,j (6)

The target variable for the machine learning models is the

optimal PowID that minimises power consumption while

maintaining acceptable network performance.

Several models are introduced in this work, each employ-

ing a distinct technique to balance energy efficiency and

throughput.

• Energy-Driven Ensemble (EDE) model is based on

Random Forest, utilising an ensemble of decision trees

to achieve robust predictions by combining multiple

weak learners. This approach is particularly effective

in handling the complexity of multi-class classification

in the presence of varied network conditions.

• Gradient Optimiser (GO) model, built on Gradient

Boosting, incrementally refines its predictions by min-

imising errors at each stage. This technique effectively

captures nuanced relationships between input features

and the target PowID, making it well-suited for energy

optimisation tasks.

• Linear Efficiency Model (LEM) leverages Logistic

Regression to provide a simple yet computationally

efficient solution for predicting PowID. By modelling

the probability of each power plan as a function of the

input features, LEM offers a probabilistic interpretation

of network configurations.

• Support-Optimised Classifier (SOC) applies a Sup-

port Vector Machine (SVM) to classify optimal power

plans. SOC utilises hyperplane separation in a high-

dimensional space to find the best trade-off between

energy efficiency and network performance.

• Proximity-Based Allocator (PBA) employs a K-Nearest

Neighbors (KNN) approach, classifying power plans

based on the proximity of similar historical network

conditions. This technique relies on the assumption

that similar states yield similar outcomes, making it

effective for localised optimisations.

The output of each model is the predicted PowID for

a given network configuration, corresponding to the power

plan that minimises energy consumption while maintaining

acceptable connectivity levels. The reward function guiding

the selection prioritises minimising the network outage, de-

fined as the proportion of users experiencing SINR below a

threshold (SINRth). For a given PowID, the outage OPowID

is calculated as:

OPowID
=

∑NUE

i=1
I(SINRi < SINRth)

NUE

, (7)

where I is the indicator function. Among the power plans

with the lowest outage, the one with the highest PowID,

indicating the most energy-efficient configuration, is selected

as optimal.

III. SIMULATION AND EVALUATION RESULTS

In this section, we assess the simulation configuration and

the performance of our proposed models through extensive

training and evaluation processes. The evaluation focuses

on analysing the accuracy of the trained models in pre-

dicting the optimal power plan (PowID) and the impact of

these predictions on network performance metrics such as

throughput, power consumption, and energy savings.

A. Simulation Settings

The simulation environment replicates a dense urban

5G ORAN network, uniquely grounded in real-world data

collected from Leeds city centre, providing an accurate

representation of user behaviour and ensuring the robustness

of our model. The target area covers a rectangular area of

500m × 1000m to evaluate energy efficiency and network

performance. The network consists of five small-cell gNBs

deployed at fixed locations, sourced from OpenCellID [16].

Each gNB is equipped with one omnidirectional RU that can

operate in one of PModes where PF operates with a transmit

power of 24 dBm, PM with 22 dBm, and PS with 18 dBm.

The network operates within the sub-6 GHz frequency band,

specifically at 2GHz, and utilises the 3GPP UMi channel

model [13], incorporating both LoS and NLoS conditions.

Path loss between UEs and BSs is calculated according to

the channel model specifications, as detailed in Sec. II-A.
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The mobility model simulates the movement of 50 UEs

distributed within the simulation area. The spatial distribu-

tion of UEs follows a PPP with an intensity parameter of

λ = 0.1 users/m2. For each UE, ns and nd are selected from

the road network, with dmin of 50m to ensure realistic travel

behaviour. As obtained in Algorithm. 1, routes between

nodes are generated. UEs traverse these routes at a constant

speed of 1.5m/s, typical of pedestrian movement in urban

environments.

We considered ∆t to be 100ms and vu of 1.5m/s with

total duration is 320 sec, resulting in 3200 time steps. To

address the computational challenges posed by the large

datasets, spatial aggregation is applied using H3 indexing

at resolution 9. The simulation area is partitioned into 13

hexagonal cells, with measurement reports such as SINR,

received power, and throughput aggregated at the cell level.

Hyperparameters of the models introduced in this work

are tuned for each model to optimise performance. For

example, the EDE was configured with ntrees = 100, a

maximum tree depth of 10, and a minimum sample split

of 10, while the GO employed a learning rate of 0.1 and

100 boosting stages. The LEM was trained with a maxi-

mum iteration count of 1000, ensuring convergence and the

SOC was configured with probability estimation enabled for

multi-class performance. The PBA used a dynamic selection

of neighbours for optimal classification. The performance of

each model was assessed based on classification accuracy

and its impact on network metrics, such as energy savings

and throughput.

B. Results and Discussion

The accuracy of each model in selecting the optimal

PowID is presented in Figure 3. Among the models, EDE

and GO achieve the highest accuracy at 97.8% and 95.6%,

respectively. PBA exhibits slightly lower accuracy at 93.2%,
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while LEM and SOC achieve 79.7% and 78.9%, respec-

tively. These results highlight the effectiveness of ensemble-

based models, such as EDE and GO, in handling complex

multi-class classification tasks.

To evaluate the impact of these predictions on the network

performance, we analyse key metrics, including throughput

and EE. Figure 4 illustrates the Cumulative Distribution

Function (CDF) of network throughput (Mbps) for the five

proposed models along with the Full Power Baseline (FPB).

PBA and SOC exhibit throughput distributions comparable

to FPB, with average throughput values of 27.62 Mbps

and 27.08 Mbps, respectively, demonstrating the highest

throughput. GO and LEM achieve slightly lower averages at

26.95 Mbps and 26.79 Mbps, while EDE shows the lowest

throughput at 23.9 Mbps, reflecting a trade-off between

energy consumption and network performance.

Figure 5 presents the CDF of energy consumption per

throughput (in mW/bps) for all models. This metric demon-

strates the EE achieved by each model. EDE significantly

reduce energy consumption compared to FPB, averaging

0.39 mW/bps and then LEM and GO consume 0.46 mW/bps

and 0.49 mW/bps, respectively. SOC and PBA consume

slightly more energy at 0.51 mW/bps and 0.52 mW/bps,

while FPB shows the highest energy consumption among

the trained models at 0.68 mW/bps. These results underscore
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the potential of ensemble-based methods to optimise energy

usage without sacrificing network performance.

Figure 6 highlights the power savings achieved by each

model relative to FPB. EDE and LEM deliver the highest en-

ergy savings, reducing total power consumption by 33.88%

and 26.18%, respectively. GO and SOC achieve moderate

savings at 23.3% and 21.78%, while PBA exhibits the lowest

savings at 20.27%. These findings illustrate the effectiveness

of the proposed models in balancing energy efficiency and

network performance, with EDE and GO emerging as the

most robust approaches.

One notable contribution of this work is introducing a

data aggregation technique based on H3 spatial indexing to

address the scalability challenges posed by large datasets in

5G network simulations. The traditional approaches, each

UE generates a row of data per time step, leading to an enor-

mous dataset size (Draw) proportional to the number of UEs

and time steps. For NUE = 50 UEs and Ntime = 3200 time

steps, the dataset size is: Draw = 50×3200 = 160, 000 rows.

By aggregating data using our H3 spatial indexing ap-

proach, the simulation area is divided into a number of

hexagons denoted as NH3, where NH3 = 13 in our target

area, and data is averaged across these hexagons. This

reduces the dataset size (DH3) required to train the ML

models to: DH3 = 13× 3200 = 41, 600 rows.

This approach achieves a data reduction ratio of 74%,

significantly decreasing the computational burden while pre-

serving spatial accuracy for training and evaluation purposes.

All the classifiers trained in this work leverage the reduced

dataset (DH3), ensuring scalability without compromising

performance.

IV. CONCLUSIONS

In conclusion, the results demonstrate that the proposed

models can effectively predict the optimal PowID, achieving

significant energy savings while maintaining high through-

put. Ensemble-based models (EDE and GO) outperform

other methods in both energy efficiency and accuracy,

making them ideal candidates for real-time deployment

in the near-RT RIC. Other models, such as LEM, SOC,

and PBA, offer simpler alternatives with moderate energy

savings, showcasing the trade-offs between computational

complexity and optimisation performance. The reduction

in data volume by using H3 spatial indexing technique

enables faster processing and more efficient training of

the implemented ML models, which is critical for large-

scale simulations. These findings highlight the potential of

integrating machine learning-based energy optimisation into

the near-RT RIC for real-time decision-making, enabling

sustainable and efficient 5G ORAN deployments.
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