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Abstract—The concept of AI-RAN as specified by the AI-RAN
alliance is geared to explore a converged 6G platform that can
support management, orchestration, and deployment of both AI
and RAN workloads. This concept is central to the development
of a 6G architecture that aims to exploit the accelerated compute
capabilities for supporting both real-time signal processing and
offloading of Generative AI (GenAI) workloads. However, both the
architectural framework required to support this vision and the
dynamic resource allocation strategy are still in their infancy. The
O-RAN architecture intrinsically allows cloud-native disaggre-
gated implementation. Consequently, we explore a framework that
can allow orchestration of AI-and-RAN workloads by expanding
the Near Real-Time RAN Intelligent Controller (NRT-RIC) within
O-RAN. The framework incorporates a monitoring xApp that
tracks RAN KPIs and exposes radio analytics to the proposed
E2E orchestrator via a recently introduced Y1 interface. The
orchestrator implements a Soft Actor-Critic (SAC) reinforcement
learning algorithm to dynamically allocate critical computing
resources, e.g., Multi-Instance GPUs (MIGs), between latency-
sensitive RAN network functions and computationally intensive AI
workloads on shared RAN infrastructure. The proposed frame-
work provides insight on how the traditional RAN architecture
can be evolved to inherently support emerging GenAI workloads.
Our framework prioritizes the real-time requirements of RAN
workloads while maintaining efficient resource sharing for AI
applications. The simulation results demonstrate the benefits of
the proposed framework, as it meets nearly 99% of the requests
for RAN workload while effectively supporting AI workloads and
achieving 100% utilization of the RAN infrastructure resources
in a dynamic environment.

Index Terms—O-RAN, 5G, AI, xApp, RIC, SAC.

I. INTRODUCTION

The rapid expansion of mobile communications and the

growing demand for network capacity is driving innovations

in NextG wireless network architecture. To improve resource

utilisation and harness maximum value from the scarce spectral

resource, increased virtualisation, disaggregation, and densifi-

cation have become core ingredients of network design. While

there are several alternative architectural frameworks, one pos-

sible architectural choice that has democratised the research

for Next-G wireless networks is Open Radio Access Network

(O-RAN) architecture. O-RAN has transformed traditional cel-

lular networks by enabling open interfaces and multi-vendor

interoperability, paving the way for efficient resource utiliza-

tion and dynamic network optimization [1]. However, these

advancements also introduce new challenges as networks evolve

to support increasingly diverse workloads. In particular, with

the growing deployment of AI & ML applications alongside

traditional RAN workloads, there is a pressing need for intel-

ligent resource management systems that can effectively share

computing infrastructure between these diverse workload types

[2], [3]. Current RAN infrastructures often maintain dedicated

resources for network functions, leading to under-utilisation

during off-peak periods while simultaneously struggling to

accommodate the growing demands of AI workloads.

AI and RAN, one of the three key domains envisioned

by the AI-RAN Alliance, aims to support the coexistence of

AI and RAN workloads on shared RAN infrastructure [3].

This involves deploying AI applications on RAN infrastructure,

leveraging shared accelerated compute (e.g. GPU) and memory

resources to run intensive AI tasks while simultaneously sup-

porting RAN operations [3]. The coexistence of RAN and AI

workloads on shared infrastructure presents unique challenges

due to their distinct characteristics, dynamic nature, and lifecy-

cle management requirements. Cellular networks are inherently

dynamic where RAN workloads continuously vary, making

real-time tracking of resource demands essential for optimal

resource allocation, in particular for the co-existence scenarios.

In contrast, AI workloads are computationally intensive and

exhibit variable resource demands depending on their specific

use cases and deployment contexts. Traditional static resource

allocation approaches and architectural frameworks are inade-

quate for addressing the nuanced requirements of AI and RAN

coexistence on shared infrastructure.

Some recent advances and AI-based solutions have shown

promise in dynamic resource management scenarios. However,

existing solutions focus either on RAN optimization or AI

workload scheduling independently and are insufficient for AI

and RAN coexistence scenarios. The authors in [4] presented a

comprehensive power consumption model for O-RAN config-

urations to understand the energy consumption patterns in O-

RAN architecture. In [5], authors presented Radio Intelligent

Controller (RIC) modules integrating meta-learning for real-

time network data collection and dynamic management of

RAN resources. An O-RAN-compatible adversarial learning-

based resource allocation scheme is proposed in [6] to enhance

the energy efficiency of virtualised base stations and O-RAN

components. Some other relevant works introduce advanced O-

RAN testbeds and frameworks, e.g., Open AI Cellular (OAIC)

framework for designing and testing AI-based RAN Manage-

ment Algorithms [7], and X5G, a private 5G O-RAN Testbed

with NVIDIA ARC and OpenAirInterface [8], [9].
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Figure 1. Converged AI-and-ORAN architecture

However, none of the above state-of-the-art works and

frameworks address the architectural framework or optimiza-

tion requirements necessary to support the coexistence of AI

and RAN on shared infrastructure. Furthermore, the dynamic

nature of cellular networks, the real-time demands of RAN

network functions, and the varying computational needs of AI

workloads necessitate a more sophisticated approach capable of

dynamically adjusting and adapting resource allocation policies

based on the changing requirements.

This paper presents a novel architectural framework based

on O-RAN specifications to address the requirements for dy-

namic resource allocation and the coexistence of RAN and

AI workloads on shared RAN infrastructure. The key working

principles of the proposed framework and its contributions are

summarized as follows:

• Converged AI-and-ORAN Architectural Framework:

To explore the convergence of both compute-and-

communication, we propose a Converged AI-and-ORAN

Architectural (CAORA) framework based on O-RAN

specifications, incorporating custom-built xApps within

the Near-Real-Time RAN Intelligent Controller (NRT-

RIC). This framework advances the evolving AI and

RAN domain by enabling the coexistence of AI and

RAN workloads on shared RAN infrastructure. The xApp

continuously tracks RAN KPIs and exposes the radio

analytics information with the proposed End-to-End (E2E)

orchestrator through the recently introduced Y1 interface,

enabling dynamic data collection and network monitoring

for intelligent resource management decisions.

• Intelligent E2E Orchestrator and Cross-Layer Re-

source Management Framework: We introduced a sys-

tem that establishes communication between xApps inte-

grated within the NRT-RIC and the external E2E orchestra-

tor via the Y1 interface. This framework enables real-time

adaptation of resource allocation policies based on evolv-

ing network dynamics. The proposed E2E orchestrator

employs a Soft Actor-Critic (SAC) reinforcement learning

algorithm, acting as a Y1 consumer to communicate with

the NRT-RIC. It processes real-time metrics from the mon-

itoring xAPP, maintains historical network patterns, and

implements dynamic resource allocation policies, thereby

enabling the coexistence of RAN and AI workloads on

shared RAN infrastructure.

• Implementation and Performance Analysis: We demon-

strated the effectiveness of our proposed framework

through simulation results, which highlight the maximised

utility of the shared RAN infrastructure. The results vali-

date the system’s capability to maintain RAN performance



requirements in dynamic scenarios while concurrently

supporting the coexistence of AI workloads on shared

infrastructure resources.

The remainder of this paper is organized as follows: Section

II presents the proposed converged architecture. Section III

details the system model and problem formulation. Section IV

discusses the simulation environment and performance evalua-

tion. Finally, Section V concludes the paper.

II. CONVERGED AI-AND-ORAN ARCHITECTURAL

FRAMEWORK

We present the CAORA framework to enable the coexistence

of RAN and AI workloads on shared RAN infrastructures,

as shown in Fig. 1. CAORA implements a hierarchical con-

trol structure comprising four key layers: The external cloud,

programmable RAN components, the controller, and resource

management layers. The external cloud layer (layer 1) hosts

AI/ML workloads, e.g., edge AI inferencing, generative AI, and

robotics applications, that interface with the RAN infrastruc-

ture, i.e., compute clusters, through the AI Deployment API.

The programmable RAN layer (layer 2) includes disaggregated

RAN components based on the O-RAN architecture, e.g.,

Distributed Units (O-DU), O-RAN Radio Units (O-RU), and

O-RAN Central Units (O-CU). The controller layer (layer 3)

consists of the NRT-RIC, which integrates with the proposed

xApps for traffic prediction, resource allocation, and network

monitoring, facilitating rapid resource allocation decisions via

the E2 interface. The proposed xApps, e.g., monitoring xApp,

are also responsible for consistently tracking and monitoring

the network load information to determine the RAN workload

requirements and communicating it with the proposed E2E

orchestrator.

The E2E Orchestrator implements a SAC reinforcement

learning algorithm interfacing with the monitoring xApp, de-

ployed within the NRT-RIC through the Y1 interface, as shown

in Fig. 1. The Y1 interface connects the NRT-RIC with an

authorized Y1 consumer for exposure to radio analytics in-

formation. The monitoring xApp continuously collects critical

network metrics, e.g., bandwidth utilization, system latency,

and network load, and feeds this data into the SAC agent,

i.e., the Y1 consumer. The SAC agent uses this information to

implement the priority-based and dynamic allocation of shared

computing resources, where RAN workloads receive prece-

dence during peak periods while AI workloads utilise available

resources during off-peak times, supporting the coexistence of

the RAN and AI workloads on shared RAN infrastructure, as

illustrated in Fig. 1. The proposed SAC agent supports the

coexistence of RAN and AI workloads on shared infrastructure

through three key mechanisms: predictive analysis utilizing

historical patterns for resource planning, real-time adaptation

adjusting allocations based on current conditions as informed

by the monitoring xApp, and priority management ensuring

RAN performance while maximizing AI workload support.

The resource management layer (layer 4) implements the

proposed E2E orchestrator that manages the RAN infrastruc-

ture resources, i.e., compute clusters containing GPUs, Multi-

Instance GPUs (MIGs) based on NVIDIA’s MIG technology

[10], and Network Interface Cards (NICs). The proposed ar-

chitectural framework transforms traditional RAN infrastruc-

ture into a multi-purpose system that efficiently supports both

network operations and AI workloads.

III. SYSTEM MODEL

A. AI and RAN Workloads: Representation and Task Categories

Let K denote the set of all tasks in the system, including

RAN and AI workloads. Each task k ∈ K is represented as:

k = {τ, r, p}, (1)

where τ is the type of task, e.g., RAN or AI workload task, r =
[ri, ∀i = 1, 2, ..., N ] represents the resource requirements with

ri being requirement for resource type i, and p is the priority

level, i.e., p ∈ [0, 1]. The priority levels are defined to allow the

system to account for different types of tasks, e.g., within RAN

workloads, some tasks may require higher priorities, with real-

time tasks like signal processing taking precedence over non-

real-time tasks like traffic analysis or reporting. Notice that the

resource demand dynamically varies with time t, i.e., r(t) with

t ∈ R. Without loss of generality, we denote the r(t) ∈ k as

r(k, t) and p ∈ k as p(k).
The resource demand for an AI/RAN task k at time t is

defined as the sum of its individual resource requirements

across all resource types:

∆(k, t) = ∥r(k, t)∥1 =

n
∑

i=1

ri(k, t), (2)

where ri(k, t) represents the resource requirement of task k

for resource type i at time t. Consequently, the total resource

demand across all tasks in the system at time t, denoted as

∆total(t), is given by:

∆total(t) =
∑

k∈K

∆(k, t). (3)

B. System Dynamics

The system dynamics define the total workload evolution

by balancing task generation, task completion, and resource

contention over time. The total workload W (t) is expressed

as:

W (t) =

∫

t

0

(

∑

k∈K

P (k, t)∆(k, t)−
∑

k∈K

Pc(k, t)∆(k, t)C(k, t)

)

dt

(4)

where P (k, t) represents the probability of task generation

for task k at time t, Pc(k, t) denotes the probability of task

completion for task k at time t, defined as Pc(k, t) = α · p(k),
with α being the system efficiency coefficient and p(k) the

task priority level, and C(k, t) represents resource contention

for task k, defined as C(k, t) = ∆total(t)
Rmax

. Here, Rmax represents

the maximum available resources.



Algorithm 1 SAC-Based Dynamic Resource Allocation for

RAN and AI Workloads

1: Input: dRAN (t), dAI(t), Rmax

2: Output: Optimal rRAN (t), rAI(t)
3: Initialize: NRT-RIC, xApp, E2E Orchestrator, SAC agent

(π, Q1, Q2), Replay Buffer D

4: for each time step t do

5: 1. Collect KPIs: KPIs← xApp (latency, throughput,

network load)

6: 2. Update State: st = {dRAN , dAI , rRAN , rAI}
7: 3. SAC Policy Decision: at = π(st)
8: 4. Resource Allocation:

9: rRAN (t)← rRAN (t− 1) + ∆rRAN (t)
10: rAI(t)← rAI(t− 1) + ∆rAI(t)
11: s.t. constraint rRAN (t) + rAI(t) ≤ Rmax

12: 5. Calculate Reward: R′
t

13: 6. Update Replay Buffer: D ← (st, at, R
′
t, st+1)

14: 7. SAC Training:

15: Sample (s, a,R, s′) from D

16: Update Qi: Qi(s, a) = R+ γE[Qi(s
′, a′)]

17: Update π: ∇θJ(π) ≈ E[∇θπ(s)Q(s, a)]
18: end for

19: Return: Optimal rRAN (t), rAI(t)

C. Problem Formulation

We model the resource allocation problem as a dynamic

system in which the maximum available resources Rmax are

dynamically distributed between RAN and AI workloads. Let

rRAN(t) and rAI(t) denote the resource allocations at time t for

RAN and AI workloads, respectively, such that:

rRAN(t) + rAI(t) ≤ Rmax, (5)

where Rmax = 1 represents the normalized maximum resources

available and is defined as Rmax = Rbase · f(u). The scaling

function f(u) is applied to adjust the available resource pool

based on the number of active users u in the network. This

parameter is consistently updated and tracked by the proposed

monitoring xApp and fed into the SAC agent to make dynamic

resource allocation decisions based on the varying resource

demands.

The demand for RAN and AI workloads at time t, denoted

as dRAN(t) and dAI(t), respectively, is given by dRAN(t) =
∆RAN

total (t) and dAI(t) = ∆AI
total(t), and represents the total

resource requirement for RAN and AI tasks at time t. The

completion rates for RAN and AI workloads at time t, denoted

as CRAN(t) and CAI(t), represent the proportion of the total

resource demand for RAN and AI tasks that has been fulfilled.

These completion rates are defined as:

Cx(t) = min (px(k) · rx(t), dx(t)) , x ∈ {RAN,AI}. (6)

where px(k) denotes the priority levels of RAN or AI tasks.

D. Dynamic Resource Adaptation

The proposed system implements the SAC algorithm, based

on reinforcement learning, to address dynamic fluctuations in

resource demands by optimally and dynamically adjusting the

resource allocations rRAN(t) and rAI(t). The model-specific

components are highlighted as follows:
1) States: The state st at time t encapsulates the system’s

demand and resource utilization. The state is defined as follows:

st = {dRAN(t), dAI(t), rRAN(t− 1), rAI(t− 1)} (7)

where dRAN(t) and dAI(t) represent the current demands for

RAN and AI workloads, respectively, while rRAN(t − 1) and

rAI(t − 1) denote the resource allocations from the previous

time step. The inclusion of past allocations in the system model

captures the system’s temporal dynamics, thereby facilitating

more informed decision-making.
2) Actions: The action at represents the adjustment in

resource allocation for RAN and AI workloads, and is defined

as follows:

at = {∆rRAN(t),∆rAI(t)} (8)

where ∆rRAN(t) and ∆rAI(t) represent the increments or

decrements in resource allocation for RAN and AI workloads,

respectively, as determined by the SAC policy.
3) Reward Function: We formulated the reward function to

achieve optimal resource allocation and maximize the utility

of shared RAN infrastructure resources. The reward function

includes time-varying weights wRAN(t) and wAI(t) to balance

the completion of RAN and AI workloads and prioritize one

over another in case of certain events, e.g., peak demand for

RAN. These weights are dynamically tuned by the proposed

SAC agent, enabling real-time adjustments for optimal resource

allocation policies. The base reward function Rt is defined as:

Rt = wRAN(t)
CRAN(t)

dRAN(t)
+ wAI(t)

CAI(t)

dAI(t)
. (9)

where the weights are normalized such that wRAN(t)+wAI(t) =
1. For efficient utilization of system resources, we extended

the base reward function by introducing a penalty term that ac-

counts for underutilised resources. The updated reward function

is defined as:

R′
t = Rt − λ ·

(

1−
Rallocated(t)

Rmax

)

(10)

Where λ represents the penalty coefficient, and Rallocated(t) =
rRAN(t) + rAI(t) denotes the total resources allocated at time

t for both AI and RAN workloads. The SAC algorithm aims

to optimize cumulative utility over a time horizon T , which is

expressed as:

U = E

[

T
∑

t=0

γtR′
t

]

(11)

where γ represents the discount factor.

The pseudocode for the proposed CAORA framework is

shown in Algorithm 1.



Table I: Simulation Parameters

Parameter Value

Training Episodes 1000

Time Steps per Episode 100

Off-peak RAN/AI Demand Range [2, 5] MIGs

Peak RAN Demand (Congested) Range [6, 7] MIGs

Compute Cluster Resources (Rmax) 7 MIGs

Actor/Critic Learning Rate 3e-4

Discount Factor (γ) 0.99

Temperature Parameter (α) 0.2

Replay Buffer Capacity 100,000

Neural Network Hidden Layer Size 128

Training Batch Size 64

Actor/Critic Architecture 3-layer MLP

IV. PERFORMANCE EVALUATION

A. Experimental Setup and Implementation

The experimental evaluation of the proposed CAORA frame-

work was performed using Python with the O-RAN 7.2x split

[1]. We simulated realistic O-RAN infrastructure dynamics with

shared computing resources between the RAN workloads and

the AI workloads. The proposed monitoring xApp is integrated

with the NRT-RIC as a Python module that consistently tracks

the network updates, e.g., resource demands dRAN(t), from

the micro-cell served by gNBs (i.e., 5G NR), and feeds this

information to the proposed E2E orchestrator. The orchestrator

dynamically allocates resources to RAN workloads based on

real-time network load updates while efficiently distributing any

remaining resources to AI workloads within the shared O-RAN

infrastructure. The proposed E2E orchestrator is based on the

SAC agent’s neural architecture and consists of actor-network

and dual critic networks to enhance policy learning stability

and state-value estimation accuracy.

In this paper, resources are modelled as MIGs based on

Nvidia MIG technology [10], where each GPU instance pos-

sesses dedicated resources that can be allocated to specific

workloads, such as AI or RAN tasks. NVIDIA’s MIG technol-

ogy enables partitioning a single GPU into isolated instances

with dedicated memory, cache, and compute cores, ensuring

efficient resource utilization [10]. The resource configuration

for the simulation environment is modelled using the MIG

1g.5gb profile of the NVIDIA A100-SXM4-40GB GPU, which

supports up to 7 MIG instances, each with 1/8 of the total

GPU memory allocated [10]. For this evaluation, we assumed

that each task, i.e., AI or RAN, requires an equal allocation

of resources for completion, specifically 1 MIG per task at a

time. In future work, we aim to enhance the proposed model

by incorporating variable resource allocations.

We conducted a preliminary evaluation of the proposed

model to assess its performance in effectively utilizing shared

RAN infrastructure resources and supporting the coexistence of

RAN and AI workloads on shared infrastructures. We simulated

varying resource demands for AI and RAN workloads, dAI(t)

Figure 2. Dynamic resource allocation between AI and RAN
workloads in off-peak scenarios

Figure 3. Dynamic resource adaptation during peak RAN demand
(congested) scenarios

and dRAN(t), respectively. This included MIG demands per

time slot for off-peak and peak (congested) scenarios, which

correspond to the fluctuating number of users in the network at

any given time. In this research, we assumed that the fluctuating

number of users is represented by MIG demands, as tracked by

the xApp. In future work, we aim to test the proposed model on

real datasets and heterogeneous measurements collected from

different cellular base stations in the city, such as the dataset

from Barcelona City presented in [11]. Table I details the

simulation parameters used throughout our evaluation.

B. Simulation Results

1) Workload Balance Dynamics and Resource Utilization

Analysis: Fig. 2 illustrates the temporal evolution of resource

distribution between RAN and AI workloads tested on the

offline-trained model. As varying workload demands for both

RAN and AI were simulated during off-peak times, the pro-



Figure 4. Average task completion ratio (%) per episode

posed SAC agent dynamically allocated resources to each

workload according to their respective demands. Since this sim-

ulation represents an off-peak scenario, the monitoring xApp

integrated within the NRT-RIC updates the SAC-based E2E

orchestrator to effectively balance resource allocation between

RAN and AI workloads, ensuring efficient utilization of shared

RAN infrastructure resources, as shown in Fig. 2.

Furthermore, with the proposed CAORA framework, the

system achieves 100% utilization of computing resources,

compared to the scenario where only RAN workloads are

supported on the RAN infrastructure, as shown in Fig. 2. This

demonstrates the framework’s ability to maintain high resource

utilization while ensuring RAN service quality, making it par-

ticularly well-suited for practical O-RAN deployments where

infrastructure efficiency is critical.

2) Adaptive Resource Allocation and Task Completion:

Fig. 3 illustrates the system’s response to dynamic workload

variations, particularly during critical load transition periods.

The vertical demarcation at timestep 50 indicates the artificial

injection of increased RAN demand, simulating a peak (con-

gested) RAN demand scenario to evaluate the system’s adaptive

capabilities. The proposed monitoring xApp integrated within

the NRT-RIC promptly predicts the increased resource demand

for RAN network functions and updates the E2E orchestrator

via the Y1 interface. The SAC agent, recognizing the increased

RAN workload demands, dynamically adjusts the resource

allocation and reallocates resources to RAN workloads while

reducing or eliminating those allocated to AI workloads, as

shown in Fig. 3. This shows the effectiveness of our priority-

weighted reward function, as defined in the proposed SAC

system model, in preserving critical RAN performance during

high-demand periods.

Fig. 4 highlights the performance of the proposed system

in terms of successfully completing the requested RAN and

AI workloads/tasks during an off-peak scenario. The slightly

lower task completion ratio for AI workloads reflects the

dynamic resource allocation policy of the proposed system

that emphasizes prioritizing RAN performance requirements,

ensuring around 99% completion ratio for RAN workloads

while supporting the coexistence of both workloads.

V. CONCLUSION

In this paper, we proposed a novel CAORA framework built

on the O-RAN architecture to support the coexistence of RAN

and AI workloads on shared infrastructure. We integrated a

custom-built monitoring xApp within the NRT-RIC to monitor

real-time KPIs and network updates and communicate with the

proposed E2E orchestrator. The orchestrator implements the

SAC reinforcement learning algorithm to dynamically allocate

computing resources based on fluctuating workload demands

for RAN and AI workloads. The proposed framework provides

insights into transforming traditional RAN infrastructure by

enabling multi-purpose utilization of shared resources, sup-

porting the seamless coexistence of RAN and AI workloads,

and optimizing resource efficiency without compromising RAN

performance. The monitoring xApp provides continuous net-

work insights, ensuring dynamic RAN requirements are met

while surplus resources are allocated to AI workloads for better

infrastructure capacity utilisation.
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