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Synopsis: The structure and dynamics of the Ionosphere-Thermosphere-Mesosphere (ITM) system 
are significantly influenced by waves from the lower atmosphere. Understanding of the physical 
mechanisms at play and trends is impaired by data sparsity. This white paper reviews current 
knowledge in this area and highlights the importance and critical need for new, global, height-
resolved observations of the ITM. 
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1. INTRODUCTION 

Over the past two decades, improved physical understanding of the Ionosphere-Thermosphere-
Mesosphere (ITM) system, partly enabled by the development of new observational techniques, 
advances in the sophistication and computing power of models, and a new generation of tools 
allowing the relevant processes to be visualized and analyzed, demonstrated unambiguously that 
much of the terrestrial influences on the ITM is due to internal atmospheric waves. Mostly excited 
in the troposphere-stratosphere region (ca., 0-50 km), internal atmospheric waves play a key role 
in the transfer of energy and momentum, mixing of constituents, development of large-scale flows, 
and generation of ITM variability [e.g., Liu, 2016; Forbes, 2021]. The components of the 
atmospheric wave spectrum coupling terrestrial variability with ITM changes are gravity waves 
(GWs), atmospheric tides, Kelvin waves (KWs), and Rossby planetary waves (PWs), covering a 
spatial range from a few tens of kilometers to several thousand kilometers [e.g., Oberheide et al., 
2015]. Understanding the impacts of vertically propagating waves on ITM variability is 
fundamental to understanding its thermal, dynamical, and compositional structure and long-term 
trends [e.g., Qian et al., 2017; Rezac et al., 2018; Solomon et al., 2018, 2019]. Recent research 
[see, e.g., reviews by Sassi et al., 2019; Ward et al., 2021] highlighted the importance of the 
manner in which waves produced in the troposphere-stratosphere region propagate vertically to 
influence the dynamics and transport of constituents in the ITM system, the character of the long-
term trends in the ITM, and the changes taking place in the thermosphere that may affect the ITM 
structure, composition, and variability in future climates.  

The satellite environment in near-Earth space depends on the complex ITM region as the 
maintenance of satellite orbits and space debris trajectories require the accurate prediction of 
neutral atmospheric densities over time and space [e.g., Emmert, 2015]. The accurate modeling of 
neutral atmospheric density requires an understanding of atmospheric waves and dynamics that 
modulate the neutral density spatially and temporally [e.g., Leonard et al., 2012]. Ionospheric 
plasma is also significantly influenced by atmospheric dynamics driven by waves [e.g., Forbes 
and Zhang, 1997; Hocke and Schlegel, 1996, Las̆tovic̆ka et al., 2006; England et al., 2010; Forbes 
et al., 2018; Koucká Knížová et al., 2021], with direct implications for satellite communication 
links and GPS-based navigation. 

2. INTRA-SEASONAL AND INTER-ANNUAL VARIABILITY IN THE ITM 

ITM neutral and electron density variability spanning timescales from months to years have been 
observed since the 1930s-1960s [e.g., Appleton and Naismith, 1935; Berkner and Wells, 1938; 
Yonezawa, 1959; Paetzold and Zschorner, 1961], yet significant uncertainty still exists on the 
physical mechanisms responsible for these variations. Attaining a better understanding and 
characterization of the various modes of variability in the ITM system from intra-seasonal (~30-
90 days) to inter-annual timescales and their connections to terrestrial drivers is critical for 
achieving whole atmosphere predictability [Sassi et al., 2019] and for improving our ability to 
model changes associated with future climates [Ward et al., 2021]. Modes of intra-seasonal 
variability include the tropospheric Madden-Julian Oscillation (MJO; Madden and Julian, 1971); 
the stratospheric/mesospheric wind vacillations and global normal modes [Smith, 1985]; while 
modes of inter-seasonal and inter-annual variability include the tropospheric El Nino-Southern 
Oscillation (ENSO; Trenberth, 1997); the stratospheric quasi-biennial oscillation (QBO; Baldwin 
et al., 2001); the stratospheric/mesospheric annual (AO) and semiannual (SAO) oscillations 
[Paetzold et al., 1961; Garcia et al., 1997], and the solar cycle (SC) variation [Oberheide et al., 
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2009]. Figure 1 (from Sassi et al., 2019) illustrates the complexity of the coupling processes 
affecting the ITM based on their characteristic time scale and vertical domain.  

 

Figure 1 Illustration of the various processes affecting the ITM as a function of their characteristic 
time scale and vertical domain. Illustrations (not to scale) of typical temperature (thick black solid) 
and ionospheric electron density (purple dash) profiles are shown to the right. The solid arrows 
indicate interaction pathways, while the dashed arrows indicate the propagation directions in the 
vertical. [Figure from Sassi et al., 2019]. 

3. INTRA-SEASONAL ITM VARIATIONS: CONNECTIONS TO THE MJO 

The MJO is the dominant mode of intra-seasonal variability in tropical convection and circulation 
[Zhang, 2005] and is known to generate a whole spectrum of global-scale waves mainly through 
convective forcing [Wheeler and Kiladis, 1999]. The MJO was shown to modulate stratospheric 
GW, GW drag, and mean winds [Alexander et al., 2018] and lower and middle thermospheric tides 
and UFKWs [Kumari et al., 2020, 2021; Gasperini et al., 2020]. Li and Lu [2020] provided 
observational evidence that an ~15% peak-to-peak MJO-modulation of the GWs extends up to 
~100 km altitude and into the extra-tropics, while Li and Lu [2021] found large MJO signals in 
MERRA-2 resolved GWs and parameterized GW drag at high northern latitudes during winter. 
Kumari et al. [2020] demonstrated that the MJO modulates the certain tidal amplitudes in the lower 
atmosphere by up to 25%, while Kumari et al. [2021] revealed that the modulation of tidal heating 
is comparatively more important than the modulation of background winds to impose the MJO 
signal on the low latitude E-region tides. The MJO-modulation of tides and UFKW has been shown 
to extend well into the thermosphere [Gasperini et al., 2017, 2020] with potential effects on the 
ionosphere either through E-region dynamo or direct upward propagation and/or composition 
changes. These recent studies suggest that the MJO may be responsible for an important fraction 
of the intra-seasonal variability observed in the ITM system, although work on this topic is at the 
very early stages. 
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4. INTER-SEASONAL ITM VARIABILITY: CONNECTIONS TO QBO, SAO, ENSO, 
SOLAR CYCLE  

The QBO is the largest source of inter-annual variability in the tropical stratosphere [Baldwin et 
al., 2001], and its influence extends to higher latitudes throughout the lower atmosphere [e.g., 
Anstey and Shepherd, 2014]. Ground- and space-based observations documented the presence of 
QBO‐like oscillations in mesospheric winds over 25 years ago [e.g., Burrage et al., 1996; 
Gurubaran and Rajaram, 1999; Vincent et al., 1998]. There is now substantial observational and 
modeling evidence indicating that the QBO impacts inter-annual variability in lower thermosphere 
dynamics by affecting both tidal and GW breaking [Vincent et al., 1998; Hagan et al., 1999; Wu 
et al., 2008a,b; Hibbins et al., 2007; Pancheva et al., 2009; Oberheide et al., 2009; Xu et al., 2009; 
Davis et al., 2013; Gan et al., 2014; Laskar et al., 2016; Dhadly et al., 2018]. Recent results by 
Yamazaki et al. [2017] suggest that the variation of atmospheric tides due to the stratospheric QBO 
could be an important source for inter-annual variability of the ionospheric wind dynamo. Yet, the 
question remains whether the QBO may have any measurable impact on the ionosphere.  

The SAO in the tropical zonal wind is a mode affecting both the stratosphere and the mesosphere 
[Ern et al., 2021; Smith et al., 2017], with SAO amplitudes and phases varying between these two 
atmospheric regions.  It has been shown that there is a relationship between the QBO and SAO 
and that at times their phases can align. There is also evidence of the role of the QBO influencing 
the mesospheric SAO; this is thought to be due to QBO filtering of large equatorial waves and 
GWs. These changes in the mesosphere map onto changes observed in the D-region ionosphere, 
where SAO signatures have been observed in Total Electron Content (TEC) and ion temperature 
observations [Silber et al., 2016]. 

The ENSO ocean-atmosphere coupling phenomenon is recognized as an important source of inter-
annual variability in the lower thermosphere [Gurubaran et al., 2005; Lieberman et al., 2007; 
Pedatella and Liu, 2012, 2013; Warner and Oberheide, 2014; Liu, 2016; Liu et al., 2017; Sun et 
al., 2018]. The ENSO-related variation in diurnal tides in the lower thermosphere can modulate 
the ionospheric wind dynamo, coupling ENSO variability to the ITM system. Studies on the ENSO 
signature in the ionosphere are rare and challenging [Pedatella and Forbes, 2009; Pedatella and 
Liu, 2013; Chang et al., 2018]. Pedatella and Liu [2013] simulated the influence of the ENSO-
driven tidal variability on the low-latitude ionosphere and showed that the interannual tidal 
variability in the lower thermosphere can introduce 10-15% variability in the E × B vertical drift 
velocity and ionosphere peak density. The ENSO can also modulate the stratospheric QBO [e.g., 
Taguchi, 2010] as well as the QBO components in the temperature DW1 and DE3 in the lower 
thermosphere [e.g., Sun et al., 2018]. Despite this recent progress, connections between ENSO and 
the ITM system are not as well established. 

Solar cycle effects on tidal dissipation have been demonstrated in various studies [e.g., Oberheide 
et al., 2009, Jones et al., 2016]. Oberheide et al. [2009] (and references therein) showed that tidal 
dissipation becomes more important as solar activity increases. Jones et al. [2016] showed that the 
solar cycle variability in tidal-induced zonal-mean temperature changes results from tidally driven 
increases in nitric oxide (NO) infrared radiative (IR) cooling and that tidal modifications to the 
ionosphere are quite substantial through tidal-induced temperature and constituent changes. 
Mlynczak et al. [2010, 2014] reported strong solar cycle dependence in NO and carbon dioxide 
(CO2) IR cooling in the thermosphere implying that the tidal effects on NO and CO2 IR cooling 
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could modulate its inherent solar cycle behavior with implications for the whole ITM system. More 
modeling- and observational-based studies are needed to address the physical mechanisms at play. 
 

5. OPEN QUESTIONS 

It is now well established that internal waves play a leading role in impressing their long-term 
variability from the lower and middle atmosphere into the lower thermosphere and ionosphere. A 
growing body of recent evidence suggests that upward propagating waves may be the leading 
driver of long-term variability in the whole ITM system. Variability in the wave spectrum can be 
ascribed to changes in sources associated with tropospheric weather, variable propagation 
conditions, and nonlinear interactions between different parts of the wave spectrum [Yigit and 
Medvedev, 2015; Liu, 2016; Sassi et al., 2019]. As their generation and propagation conditions 
may be undergoing modifications in a changing climate [Ward et al., 2021], it is critical that we 
attain a better understanding of the physical mechanisms at play for improving our modeling and 
predictive capabilities.  

Despite recent improved observational capabilities afforded by NASA’s Ionospheric Connection 
Explorer (ICON, Immel et al., 2018) and Global-scale Observations of the Limb and Disk (GOLD, 
Eastes et al., 2017) missions, our ability to attain a comprehensive physical understanding of the 
processes at play is significantly impaired by the data sparsity in the ITM. Without global 
measurements with sufficient temporal and spatial resolution, physics-based models cannot be 
validated, and data assimilation for these heights remains a tentative venture. The establishment 
and maintenance of suitable observing capabilities are thus critical to allow for the dynamical 
conditions to be monitored.  

The upcoming Geospace Dynamics Constellation (GDC) mission shall provide critical 
observations to better understanding long-term ITM coupling processes. Observations from the 
Dynamical Neutral Atmosphere-Ionosphere Coupling (DYNAMIC) mission will be particularly 
helpful by providing critical information on the height evolution of the wave spectrum in the 
thermosphere. GDC and DYNAMIC are expected to provide much-needed day/night wind, 
temperature, and composition observations throughout the thermosphere and ionosphere that will 
enable the investigation of wave-mean flow interactions, ion-neutral interactions, and dynamo 
processes critical for the study of long-term ITM variability in current and future climates.  

A few, but not all, of the important open questions that need to be addressed in this area of research 
include: 

1. What are the physical mechanisms that transmit intra-seasonal, inter-seasonal, and inter-
annual variability from the lower and middle atmosphere into the ITM system, and what is 
their relative importance?  

2. What are the influences of lower atmospheric waves on the long-term trends of the ITM 
system? In particular, what are their impacts on eddy diffusion and CO2 cooling rates that 
drive variations in O/N2 and thus thermospheric density? 

3. How are the influences of lower atmospheric waves on the long-term trends of the ITM 
system changing with respect to a changing solar energy budget on longer time scales? 

Simultaneous measurements from both GDC and DYNAMIC are critical to answering these 
outstanding questions along with many others. 
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