
This is a repository copy of To reset, or not to reset—that is the question.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224282/

Version: Published Version

Article:

Gehér, G.P. orcid.org/0000-0003-1499-3229, Jastrzebski, M. orcid.org/0009-0004-6221-
9355, Campbell, E.T. et al. (1 more author) (2025) To reset, or not to reset—that is the 
question. npj Quantum Information, 11 (1). 39. ISSN 2056-6387 

https://doi.org/10.1038/s41534-025-00998-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



npj | quantum information Article

Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-025-00998-y

To reset, or not to reset—that is the
question

Check for updates

György P. Gehér 1 , Marcin Jastrzebski 1,2, Earl T. Campbell1,3 & Ophelia Crawford 1

Whether to reset qubits, or not, during quantum error correction experiments is a question of both

foundational and practical importance for quantum computing. Text-book quantum error correction

demands that qubits are reset aftermeasurement. However, fast qubit reset has proven challenging to

execute at high fidelity. Consequently, many cutting-edge quantum error correction experiments are

opting for the no-reset approach, where physical reset is not performed. It has recently been

postulated that no-reset is functionally equivalent to reset procedures, as well as being faster and

easier. For memory experiments, we confirm numerically that resetting provides no benefit. On the

other hand, we identify a remarkable difference during logical operations. We find that unconditionally

resettingqubits can reduce thedurationof fault-tolerant logical operationbyup to a factor of twoas the

number of measurement errors that can be tolerated is doubled. We support this with numerical

simulations. However, our simulations also reveal that the no-reset performance is superior if the reset

duration and infidelity exceed given thresholds. For example, with the noisemodel we considered, we

find the no-reset performance to be superiorwhen the reset duration is greater than approximately 100

ns and the physical error probability is greater than approximately 10−2.5 ≈ 0.003. Lastly, we introduce

twonovel syndromeextraction circuits that can reduce the timeoverheadof no-reset approaches.Our

findings provide guidance on how experimentalists should design future experiments.

Quantum error correction (QEC) is a vital tool for unlocking quantum
applications far beyond the capabilities of classical computers. QEC works
by periodically measuring a set of multi-qubit Pauli operators, called sta-
bilisers, providing evidence of errors that are then corrected. Measuring a
stabiliser commonly involves a so-called syndrome extraction circuit that
uses auxiliary qubits to assist with measurements on the data qubits that
store the logical information. Many syndrome extraction circuits start by
resetting the auxiliary qubits to the j0i state and end with single-qubit
readout of the auxiliary qubits in theZ basis, thereby collapsing to either the
j0i or j1i state [e.g.,1, Sec. 4.4]. As these circuits are repeatedly used, the
collapsed states on the auxiliary qubits need to be reset back to j0i. Resetting
can be achieved in various ways that seem, at first appearance, to be
equivalent. However, in this paper, we reveal fundamental differences in the
fault-tolerant properties of reset schemes previously thought to be similar.

Let us survey the three broad classes of reset strategy. The first class is
unconditional reset, where anon-unitaryoperationmaps all qubit states into
the j0i state. The simplest option to achieve this is to wait until the qubits
decay into their ground states2. However, this is too slow for mid-circuit
reset. By engineering a suitable interaction between a qubit and its envir-
onment, energy can be dissipated faster and with higher fidelity3,4.

Unconditional reset is the conventional text-book approach and in theQEC
literature is usually just called reset. The second class is conditional reset5,
where a conditional bit-flip gate is applied on the auxiliary qubit if the
previous measurement outcome was 1, otherwise no gate is applied. The
duration of conditional reset depends on both the bit-flip gate duration and
the classical electronics latency, which increase the execution time of the
circuit. However, alternatively, we may simply track the effect of the con-
ditional bit-flip in software, which is exactly what is involved in the third
class, no reset6–8. Recent years9 have seen QEC demonstrated with various
qubit types10–12. Focusing on superconducting qubits, several QEC experi-
ments used the no-reset scheme6,8, while others implemented unconditional
reset13,14, making it timely to investigate the differences between these
approaches.

It has been previously claimed [ref. 13, Sec. S2] that choosing the no-
reset scheme “has an insignificant impact on code performance”, but this has
not been fully investigated. When using no reset or conditional reset, mis-
classification of measurements has two consequences: the wrong readout
outcome is recorded, and an erroneous bit-flip (in software or on hardware)
is applied to a qubit. This shows that a single failure event effectively causes a
correlated pair of errors. The central question is whether this correlated
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error significantly decreases the number of error events needed for an
undetectable logical failure. On the one hand, we will confirm the claim
from13 that for quantum memory there is no significant impact on QEC
performance. On the other hand, we find dramatic consequences when we
perform a logical operation. As we scale quantum computers, we enter an
era where it becomes possible to demonstrate small examples of fault-
tolerant quantum computation (FTQC), for instance, by performing a joint
Pauli measurement via lattice surgery15–20. During lattice surgery, classifi-
cation errors on physical qubits alone can cause an overall misclassification
of the logical Pauli measurement. When classical feedback is performed
conditionally on this logical Pauli measurement, logical measurement
misclassification transforms into a logical qubit error. In this context, we
show that in the no-reset (and conditional-reset) schemes, these logical
failure mechanisms (not present in quantum memory) may be formed by
half asmany errors aswithunconditional reset.Consequently, to tolerate the
same number of errors, no-reset schemes require doubling the duration of
lattice surgery; such slow-down is clearly undesirable.

Tolerating half as many errors will impact QEC performance, though
the exact effect depends on specific details, including the noise model. We
complement our aforementioned analytical insights with numerical results
for a range of superconducting-inspired circuit-level Pauli noise models.
Our simulations use the stability experiment21 (see also Figs. 1 and 2) as a

proxy for lattice surgery andother experimentswhere similar logical failures
occur. Our numerical results are consistent with a 2 × advantage of
unconditional resets in the limit of fast, low-error resets. In particular, with a
physical error rate of 10−3, which can be expected in the relatively near
future, we observe substantial advantage with instantaneous reset, some
advantage with fast reset and no advantage with slow reset. However, for
nearer-term experimental demonstrations of FTQC, when the physical
error rate is higher, we observe the no-reset scheme to be, in general,
superior, especially with slow resets. We study this transition in detail,
considering performance both in terms of numbers of QEC rounds and
logical operation duration.

Finally, we propose and numerically compare two alternative
syndrome extraction circuits for the planar code that do not use
unconditional resets but substantially decrease the aforementioned
incurred time overhead. One of these novel syndrome extraction circuits
uses an additional two-qubit gate permeasurement round, transforming
the classification error into a mixture of two more benign errors. This
circuit gets close to recovering the performance of unconditional reset
using the no-reset scheme. The other novel syndrome extraction circuit
we propose uses two auxiliary qubits per stabiliser, effectively squeezing
twomeasurement rounds into one. As a result, this second circuit’s QEC
performance is substantially better in the examined noise regime than
previous circuits, although it requires≈ 50%more qubits. Based on these
results, we discuss when it is beneficial to use unconditional resets on
superconducting hardware and when to use one of our alternative
circuits.

The structure of our paper is as follows. The Results section is divided
into four subsections. In the first subsection, we describe how the decoding
problem changes when we switch from the unconditional-reset to the
conditional-reset or no-reset scheme. In the second subsection, we first
describe a Pauli noise model, inspired by currently available realistic
superconducting hardware, that we use throughout. Then, we present
numerical results that verify that the differences between the three reset
schemes for quantummemory with the rotated planar code are small. After
that, we describe the stability experiment and why it is a useful proxy for
estimating the time cost of FTQC. Furthermore, we demonstrate through
numerical simulations with the stability experiment that FTQC incurs a
substantial time overhead in the no-reset (and conditional-reset) scheme,
provided resetting is fast enough and is of high enough fidelity. In the last
two subsections of the Results section, we present two alternative syndrome
extraction circuits in the no-reset scheme that overcome this time overhead
problem. Even thoughwe present circuits only for the planar code, they can
also be applied straightforwardly to more general QEC codes. We conclude
the paper by discussing the obtained results and possible future research
directions.

Fig. 1 | Stabilisers for the planar surface code. aDistance-3 quantummemory and

(b) width-4 stability experiments. A range of distances, widths and numbers of

rounds are used in our simulations.

Fig. 2 | Topological space-time perspectives on logical failure mechanisms in

QEC experiments. aA quantummemory experiment and a distance d undetectable

logical error due to d physical qubit errors. b A stability experiment over ns rounds

and an undetectable logical error due to ns measurement classification errors when

using unconditional reset or ⌈ns/2⌉ measurement classification errors when using

no-reset. c A lattice surgery experiment measuring a logical X⊗ X Pauli operator

with the logical error shown similar to that observed during stability experiments. In

all diagrams, strings of physical qubit errors ormeasurement classification errors can

terminate at pink boundaries. A logical failure occurs whenever these error strings

pass through the blue surfaces an odd number of times.
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Results
The structure of detectors in the three reset schemes
A simple QEC experiment, like quantum memory or stability, with a
Calderbank-Shor-Steane (CSS) code is composed of three steps: initialising
the data qubits of a code in either the X or Z basis, measuring a set of
stabilisers some number of times, and finally measuring the data qubits in
the X or Z basis. More complicated QEC experiments, like lattice surgery,
are composed of more steps. The stabilisers may be measured using stan-
dard syndrome extraction circuits shown in Fig. 3. With standard circuits,
the stabiliser measurements directly correspond to the outcomes of the
auxiliary qubits.More complex circuits, such as circuits with flag qubits22 or
the circuit we discuss in the last subsection of the Results section, obtain
further information.

In order to detect errors, we define detectors23 that are measurement
combinations with deterministic values in the absence of errors.We explain
the detector definitions for simple CSS-code QEC experiments, as outlined
in the previous paragraph, that use standard syndrome extraction with
unconditional resets, like Fig. 3a. We may compose detectors for such
experiments in the following way. For each stabiliser g, denote by mg,j the
outcome from the jthQEC round, where j∈ {1, 2,…, n}, and let (x, y) be the
spatial coordinate of the auxiliary qubit of g. Between the first and last
rounds of a QEC experiment, we define mg,j ⊕ mg,j+1 as a detector at
coordinate (x, y, j) for all stabilisers g andnumbers of rounds j∈ {1, 2,…,n−

1}. In the first round of QEC, if g is of the same type as the data qubit
initialisation, thenwe assignmg,1 as adetectorwith coordinate (x, y, 0). In the
last round of QEC, for stabilisers of the same type as the data qubit mea-
surement, we assign a detector at coordinate (x, y, n) defined as mg,n ⊕

⨁q∈supp(g)mq, wheremq is the measurement outcome of data qubit q. The
first two coordinates of detectors are called spatial coordinates, while the last
coordinate is called a time coordinate.

Now, we analyse which detectors are triggered (change value from the
noise-free case) by different errors. A Pauli error on a data qubit occurring
during the initialisation of the auxiliary qubits triggers only detectors with
the same time coordinate. We refer to errors with this property as “space-
like”. On the other hand, a measurement error (due to either quantum bit
flip or classical misclassification) on the auxiliary qubit of g in the jth QEC
round triggers atmost twodetectors, namely at coordinates (x, y, j− 1) and/
or (x, y, j), as shown on the left of Fig. 4. Such an error is described as “time-
like”. Some Pauli errors that occurmid-syndrome-extraction-circuit trigger
a set of detectors where neither the spatial nor the time coordinates coincide
for all the detectors – these are known as hook errors24.

In order to evaluate the errors that have occurred during the experi-
ment, the decoder takes in the triggered detectors along with a model of
which errors trigger which detectors. For the planar code, in the case of a
circuit-level Pauli noisemodel such as that described in the next subsection,
to a good approximation, this model can be captured in a graph and

Fig. 3 | Standard syndrome extraction circuits for an XXXX stabiliser in the three

reset schemes.The circuits use
ffiffiffiffi
X

p
,

ffiffiffiffi
X

p y
one-qubit gates, CX two-qubit gate, andZ-

basis reset and measurement. a Standard text-book circuit using the unconditional-

reset scheme. bThe conditional-reset version of (a), where the classically-controlled

bit-flip gate (pink) is applied immediately aftermeasurement. cThe no-reset version

of (a) where the conditional bit-flip’s effect from (b) is tracked in software; cf. Eq. (1).

Wenote that, for our simulations, we compiled all circuits in terms of the native gates

specified in Table 1.

Fig. 4 | Decoding graphs for measurements from a single auxiliary qubit in the unconditional-reset (left) and no-reset (right) cases.
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therefore graph-based decoders such asminimum-weight perfectmatching
(MWPM)24,25 can be used. We declare success in a run of the experiment if
the decoder correctly predicts whether some logical observable has changed
due to errors. In the case ofW-quantummemory, forW∈ {X,Z}, this logical
observable is given by

L
q2suppðbWÞ

mq, where bW is the logicalW operator of
the code.

We now consider the case where we apply a bit-flip gate to each
auxiliary qubit after measurement conditioned on the outcome (Fig. 3b, c)
instead of applying unconditional resets. We may apply these X gates in
hardware, to give the conditional-reset scheme (Fig. 3b), or track their effect
in software, to give the no-reset scheme (Fig. 3c). As we will see, in both
schemes, one measurement classification error leads to a pair of correlated
errors, unlike with unconditional reset—a previously overlooked phe-
nomenon. In the conditional-reset case, we define the detectors as above; in
the no-reset case, we determine the detectors as follows.

For the no-reset scheme, we calculate the effect of removing all con-
ditional X gates by pushing them through the subsequent unitary Clifford
gates and find that a conditional X can be accounted for by flipping the
subsequent measurement26. Therefore, we can determine the stabiliser
observable outcomes, mg,j, from the no-reset measurement outcomes
labelled ng,j as

mg;j ¼ ng;j�1 � ng;j for j ¼ 1; 2; . . . ; n; ð1Þ

where we define ng,0 = 0; see Fig. 3c. Between the first and last rounds of
QEC, the detectors at coordinate (x, y, j) are then

mg;j �mg;jþ1 ¼ ng;j�1 � ng;jþ1 for j ¼ 1; 2; . . . ; n� 1; ð2Þ

where we have used ng,j ⊕ ng,j = 0 to simplify the expression. Therefore,
instead of comparing outcomes from consecutive rounds, we compare
outcomes that are two rounds apart.

Next, we consider the special case of the first and last QEC rounds. In
the first QEC round, for each stabiliser g of the same type as the data qubit
initialisation, we assign ng,1 as a detector with coordinate (x, y, 0). In the last
round of QEC, for stabilisers of the same type as the data qubit measure-
ment, we assign a detector at coordinate (x, y, n) for
ng,n−1 ⊕ ng,n ⊕⨁q∈supp(g)nq.

This structural difference of detectors does not change the triggered
detectors corresponding to any mid-circuit quantum Pauli error. However,
misclassification of a measurement outcome results in a different combi-
nation of triggered detectors to the unconditional-reset case. To see this, let
us assume we have a classification error on measurement result ng,j, i.e., we
read out ng,j ⊕ 1, even though the qubit collapsed into the ng,j-eigenstate.
This triggers two detectors at coordinates (x, y, j− 1) and (x, y, j+ 1) (cf. Eq.
(2)), so in the decoding graph it corresponds to a time-like edge with length
2. In contrast, even in the no-reset case, a quantum measurement error
corresponds to a time-like edge with length 1. A bit-flip on the auxiliary
qubit associated with stabiliser g just before measurement in the kth QEC
round flips all measurements ng,j with j≥k. This therefore triggers the
detectors at coordinates (x, y, k − 1) and (x, y, k). Both types of error are
shown on the right of Fig. 4.

In Fig. 2, we present a topological perspective on how vertical strings of
classification errors can lead to an undetectable logical failure in lattice
surgery and stability experiments. In a lattice surgery operation, wemeasure
a joint logical Pauli between 2 or more logical qubits, and the result is
determined froma (corrected) product of stabilisermeasurement outcomes.
Anuncorrectedvertical stringof classification errorswillflip the valueof one
of these stabiliser measurements, and therefore flip the outcome of this
logical Paulimeasurement.Theneed to suppress such failuremodes iswhyd
QEC rounds is the standard recommendation.When lattice surgery is used
to performa non-Clifford gate (e.g. aT gate), we apply a logical Clifford gate
conditional on the outcome of the lattice surgery measurement result. In
such a situation, a logicalmeasurement error during lattice surgerywould be
converted into a logical qubit error.

Such lattice surgery circuits are large and complex. Fortunately, we can
instead use the smaller and simpler stability experiment, in simulation or on
real qubits, to quantify the probability of logical failures due to a vertical
string of errors. Stability experiments are therefore an excellent proxy for
lattice surgeryoperations.Considering these vertical failuremechanisms,we
see that the no-reset approach will tolerate only half as many classification
errors as the unconditional-reset approach, since each error has twice the
vertical length in the former scheme. This insight applies equally to lattice
surgery and stability experiments. As we will see in the next subsection, this
difference significantly impacts the performance of the stability experiment,
and hence lattice-surgery-based FTQC. For other types of logical operation
such as transversal gates, logical failure modes are less well understood—
there is no known proxy in the same spirit as stability—and the required
number of QEC rounds is an ongoing topic of debate27–29 that we regard as
unsettled. For quantummemory, the no-reset approach does not reduce the
weight of minimal-weight logical errors, and so in this context we should
expect only a minor variation in logical error rates.

In the conditional-reset scheme, a classification error on mg,j further
results in erroneously applying anX gate aftermeasurement. As a result, the
next measurement outcome mg,j+1 is also flipped. Thus, two detectors are
triggered at (x, y, j− 1) and (x, y, j+ 1), introducing a time-like edge with
length 2, as in the no-reset case.

QEC experiments with standard syndrome extraction circuits
Noise model. This work is motivated by the absence of unconditional
resets in recent QEC experiments on superconducting devices6,8.
Therefore, the numerical results presented in this paper are from simu-
lating a quantum computer with superconducting-like properties. These
properties are the qubit connectivity, the native gates and the
noise model.

We assume that the device has fixed and uniform qubit connectivity,
with a planar nearest-neighbour architecture connecting each (bulk) qubit
to four others. This so-called square-grid connectivity enables imple-
mentation of the planar code and is found in several modern super-
conducting quantum computers [e.g.,14,30]. In the last subsection of the
Results section,wewill present a circuit that requires slightly different planar
connectivity – some qubits need only be connected to three others instead
of four.

We construct our simulated circuits31 in terms of the controlled-Z two-
qubit gate (CZ) and single-qubitX- andZ-basis rotations, a commonnative
gate set for superconducting qubits [e.g.,30]. In particular, we use the π/2
rotations

ffiffiffiffi
X

p
and S, given by

ffiffiffiffi
X

p
¼ 1ffiffiffi

2
p ðI � iXÞ; S ¼ 1ffiffiffi

2
p ðI � iZÞ: ð3Þ

We also use Z-basis measurement (MZ) and reset (RZ). Each of these
operations has an associated duration, given in Table 1. In particular,
measurement and reset take an order of magnitude longer than one- and
two-qubit gates (see also6,7). The CZ gate takes only twice as long as a one-
qubit gate.

We parameterise our noise model with a single parameter, p. The p-
dependent probabilities of different error mechanisms are given in Table 1.
These probabilities are based on an existing superconducting-inspired noise
model32, with a few small differences. Firstly, we split themeasurementnoise
into two – a quantumpart, which is bit-flip noise applied to the qubit before
the measurement, and a classical part, which is the misclassification of the
outcome value, e.g., reading out 0 even though the qubit collapsed into the
j1i state. This distinction is not commonly made, as they have the same
effect under the unconditional-reset scheme. However, with no reset this
distinction becomes important as the two types ofmeasurement noises have
different effects. We assign 80% and 20% of the noise respectively to these
twomechanisms, inspired by existing hardware properties6. Secondly,when
a qubit is idling, we apply noise depending on the length of time for which it
is idle, t. The noise is obtained by Pauli twirling the amplitude damping and
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dephasing channel to give a Pauli channel with associated probabilities

pXðtÞ ¼ pY ðtÞ ¼
1

4
1� e�t=T1

� �
; ð4Þ

pZðtÞ ¼
1

2
1� e�t=T2

� �
� 1

4
1� e�t=T1

� �
; ð5Þ

where pW is the probability of a Pauli-W error occurring33. To parameterise
the idle noise by p, we scale the T1 and T2 times so that

T1 ¼
pref

p
T ref
1 ; T2 ¼

pref

p
Tref
2 ð6Þ

where Tref
1 and Tref

2 are given in Table 1 and pref = 0.01.
We note that our chosen noisemodel is notmeant to capture the exact

behaviour of any specific device. The analysis could be repeated with dif-
ferent device assumptions which may change the quantitative details of the
results. However, it captures the key features of superconducting hardware
and will be qualitatively representative of other qubit types.

The impact of no-reset on memory. Using the noise model described
above, we performed quantum memory simulations for distance-d
rotated planar code for d number of QEC rounds. Figure 5 compares the
unconditional-reset and no-reset schemes.We constructed circuits using
the python library stim34 and took samples which were then decoded
using the MWPM python library pymatching25. The circuits are
available here:31. The number of samples for each data point was the
minimum required to observe 104 logical failures or reach 108 samples,
whichever happened first. This ensures error bars that are too small to be
visible in our plots. We calculated the sample logical failure probabilities
pX and pZ, for X and Z-memory, respectively, and combined them into
one quantity as pL = pX + pZ − pXpZ. Our results (Fig. 5) confirm the
statement of 13, mentioned earlier, that there is only a small difference
between the two reset schemes in the context of quantummemory. More
precisely, the no-reset scheme’s performance is slightly better, as the
threshold is somewhat higher and the logical failure probabilities are
slightly lower. One reason for this difference is that the idle noise on the
data qubits is lower in the no-reset case.

Note, however, that, as we will see below, the time-like effective dis-
tance (i.e., the number ofmid-circuit errors that cause anundetectable time-
like logical failure) is halved in the no-reset scheme for the stability
experiment. Therefore, in the no-reset scheme, itmay bemore reasonable to
perform2d− 1 number ofQEC rounds instead of d. Increasing the number
of rounds forquantummemorydegrades its performance, eroding the slight
advantage of the no-reset scheme.

The impact of no-reset on FTQC. During FTQC, there are purely time-
like undetectable logical failures that would be affected by the choice of
reset scheme. For instance, if we measure a joint logical Pauli product via
lattice surgery between some logical qubits that are each encoded into a
planar code, then this outcome is given as a joint parity of a set of
stabilisers15,17,18; see also Fig. 2(c). Tomake this fault-tolerant, wemeasure
these stabilisers for n QEC rounds, with n sufficiently large. With the
unconditional-reset scheme, the minimum number of errors that causes
an undetectable logical failure is n, e.g., when one stabiliser is mis-
classified in all QEC rounds. However, with the no-reset scheme, this
number becomes ⌈n/2⌉, as now it is enough to misclassify this mea-
surement in the first, third, fifth, etc. QEC rounds.

The stability experiment21 captures this type of situation in a simplified
proxy and thus can be used to assess the necessary number of QEC rounds
during lattice surgery and other operations where time-like logical failures
are relevant. We use a planar code patch that does not encode any logical
qubits, but, instead, has one type of stabiliser that is over-determined. Figure
1b shows an example 4 × 4 stability patch where the X-type stabilisers
multiply into the identity operator and so areover-determined.This stability
experiment is performed as follows: we initialise all data qubits in the j0i
state, then measure the stabilisers for n rounds, and finally we measure all
data qubits in the Z basis. We assign detectors as described in the previous
subsection, and define the logical observable as the product of all X-type
stabilisers in the firstQEC round.Mirroring lattice surgery, aminimumof n
measurement errors amount to an undetectable logical failure in the
unconditional-reset scheme, while ⌈n/2⌉ classification errors are sufficient
in the no-reset scheme, cf. Eqs. (1), (2).

Based on this, we would expect the stability performance to be
improved by using unconditional resets – assuming fast enough and high-
enough fidelity reset gates. We performed simulations to assess this. We
considered planar code stability patches of sizesw ×wwithw∈ {4, 6, 8, 10,
12, 14, 16} and physical error rates p ∈ {10−2, 10−2.5, 10−3}. For each, we
preparedstim circuits31, sampled, and decoded until we reached either 109

Table 1 | Properties of our noise model inspired by current
superconducting devices

Operation Duration in ns
ffiffiffiffi
X

p
, S gate 20

CZ gate 40

measurement 600

(unconditional) reset 500

reference T1 30,000

reference T2 30,000

Error mechanism Probability

1Q depolarisation after
ffiffiffiffi
X

p
or S p/10

2Q depolarisation after CZ p

1Q bit-flip after reset 2p

1Q bit-flip before measurement 4p

classical measurement flip p

(Top) Native qubit operations with their duration in nanoseconds, and reference T1 and T2 times

corresponding to physical error rate p = 0.01. As p changes, the T1 and T2 times are scaled

accordingly (see main text). For the stability experiment, we also consider faster resets; the 500 ns

value here corresponds to slow reset. (Bottom) The noise channels associatedwith each operation.

Notably, themeasurementerror hasquantumandclassical components that have thesameeffect in

the unconditional-reset scheme; however, their effect is different in the no-reset (or conditional-

reset) scheme.

Fig. 5 | Comparison of quantum memory performances in the unconditional-

reset (dots and solid lines) and no-reset (triangles and dashed lines) schemes

using standard syndrome extraction circuits. For each distance d = 5, 7, 9 (cor-

responding to red, blue, black colours), we performed d QEC rounds. The numbers

of samples taken to calculate the data points are sufficiently large for the error bars

not to be visible. As can be seen, there is only a small difference between the two

schemes, confirming the statement made in [ref. 13, Sec. S2]. Note that the condi-

tional reset scheme is not shown as the simulation is identical to the no-reset

simulations except with higher noise levels due to the increased physical qubit idling.

As a consequence, the conditional-reset scheme will always perform worse and is

therefore not shown here.
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total shots or 106 logical failures, whichever happened first. The obtained
logical failure probabilities plottedagainst thenumber ofQECrounds,n=5,
7, 9, 11, 13, are shown in Fig. 6a for the w = 4 case. They clearly show that
implementing unconditional reset improves the performance for p = 10−2.5,
10−3. Furthermore, this improvement increases as p decreases.

We now quantify this improvement. In the stability experiment, we
expect the logical failure probability pL to satisfy

logðpLÞ ¼ logðaÞ � γn; ð7Þ

where a and γ both depend on the width of the patch w [ref. 21, Section
“Discussion”]. The γ parameter quantifies the strength of the exponential
error suppression with the number of rounds in the stability experiment.
Note that oneQECround takes tnr=840nswith the no-reset scheme and, if
the reset duration is tres ns, one QEC round takes tur ¼ ð840þ tresÞ ns with
the unconditional-reset scheme. These two times are equal only with
instantaneous reset, i.e., tres ¼ 0 ns. Therefore, as a fairer comparison,
Equation (7) may be expressed in terms of the time t the experiment
requires, instead of the number of QEC rounds, so that

logðpnr;LÞ ¼ logðanrÞ � γnrt ð8Þ

logðpur;LÞ ¼ logðaurÞ � γurt; ð9Þ

where subscripts nr and ur indicate the no- and unconditional-reset
schemes, respectively. We define the time overhead of implementing
unconditional resets asRur=γnr/γur [ref. 35, Sec. 5.2]. This canbe interpreted
as follows: if we perform a stability experiment for tnr ns without
unconditional resets then, in order to match this performance using
unconditional resets, we need to spend approximately tur=Rurtnrns. IfRur<
1, then implementing unconditional resets decreases the time cost of FTQC,
and hence is worth implementing; otherwise not. The time overhead is
plotted in Fig. 6b, assuming instantaneous reset tres ¼ 0 ns, fast reset tres ¼
100 ns, and slow reset tres ¼ 500 ns. The plotted error bars correspond to
90% confidence intervals. More precisely, for each data point, we sampled
1000 times from a normal distribution with mean given by the sampled
logical error probability, and standard deviation given by the standard error

of the mean. Then, we took the best log-line fits for each of the 1000 cases,
calculated the corresponding time overheads, and removed the 50 smallest
and the 50 largest values hence obtained. The minimum and maximum of
the remaining values are the bottomand top error bars, respectively.We call
pbr the break-even point, where Rur = 1. Clearly, as tres increases, pbr
decreases. Furthermore, it can be seen in Fig. 6(b) that, as p decreases, the
time overhead decreases too, indicating that when p is small enough,
implementing unconditional reset improves FTQC performance. In all
cases of instantaneous and fast reset, the break-even point satisfies 10−2.5 <
pbr<10

−2.With slow reset, thebreak-evenpoint is not visible inourplot, and
we expect it to be at very low p. This indicates that, unless the reset gate error
rate and duration are below certain values, implementing unconditional
reset may not be beneficial for FTQC. However, if the break-even point is
reached, either with decreased reset duration or higher-fidelity reset gates,
the unconditional-reset scheme substantially improves FTQCperformance.

Recovering time-like distance by spreading classification errors
We have seen that the absence of unconditional resets halves the time-like
effective distance of FTQC protocols when using standard syndrome
extraction circuits. In this section, we present an alternative syndrome
extraction circuit that recovers the full time-like effective distance without
the need for unconditional resets, and which also keeps the space-like
effective distance as d. This circuit uses one additional two-qubit gate per
QEC round and an additional O(d) qubits.

The idea is to spread the auxiliary qubit measurement classification
errors to the data qubits, thereby triggering additional detectors and thus
requiring more errors for an undetectable time-like logical failure. We
achieve this by applying two conditional Pauli gates immediately after
measuring the auxiliary qubit – one conditioned on the measurement
outcome and the other conditionedon the auxiliary qubit state itself; see Fig.
7 for an X-stabiliser circuit. Note that the controlled gates are of Z-(X-)type
for X-(Z-)type stabilisers, and that the classically-controlled gates do not
have to be applied on the device—instead, their effect can be tracked in
software. In the absence of a measurement classification error, the two
conditional gates cancel so there is no overall effect on the data qubits.
However, if there is a classification error, exactly one of the gateswill have an
effect, resulting in a Pauli gate being applied to the data qubit which then

Fig. 6 | Comparison of the stability experiment performances in the two reset

schemes using standard syndrome extraction circuits. Colours indicate different

physical error probabilities: p = 10−2 (blue), p = 10−2.5 (orange), p = 10−3 (purple).

a Logical failure probabilities of the stability experiment for the 4 × 4 patch shown in

Fig. 1b plotted against the number of QEC rounds. Error bars corresponding to 3 ×

the standard error of the mean are also shown as shaded areas. Note that for the

p = 10−2 case the plots overlap. The unconditional reset is plotted with dots, the no-

reset with triangles. Best log-line fits are also shown with solid and dashed lines,

respectively. b The time overhead Rur that the unconditional-reset scheme requires

when compared to the no-reset scheme given tres ¼ 0 (instantaneous), 100 (fast) and

500 ns (slow) resets, respectively. In particular, the first column of dots in the first

plot corresponds to (a), since instantaneous reset implies equal execution time in the

two reset schemes. The shaded areas correspond to 90% confidence intervals. The

pink dashed line shows the break-even point, i.e. when Rur = 1, below which the

unconditional reset has better FTQC performance. Note that the conditional reset

scheme is not shown as the simulation is identical to the no-reset simulation except

with higher noise levels due to the increased physical qubit idling. As a consequence,

the conditional reset scheme will always perform worse and is therefore not

shown here.
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behaves like a Pauli error on the qubit. Therefore, misclassification of
measurement ng,j will now trigger four detectors—the two which directly
result from the measurement classification error, at coordinates (x, y, j− 1)
and (x, y, j+ 1), and the twowhich arise from the resulting data qubit error,
at coordinates (x, y, j) and ðx0; y0; jÞ. This pattern is shown in Fig. 8, together
with its decomposition into two graph-like errors. Reference31 contains an
example decoding graph for a 4 × 4 stability experiment using the error-
spreading circuit that we generated with stim. In Fig. 9, we show a 4 × 4
planar code stability patch and the qubit pairs which take part in error-
spreading events. In the bulk of the code, we require no additional qubits.
However, on the boundary, we require O(w) additional qubits for a w × w
patch to ensure each auxiliary qubit has a qubit to which to spread its
classification error; cf. Fig. 1b.

It is easy to see that an undetectable logical error will no longer occur if
there are classificationerrors inonlyeveryother roundbecauseof the additional
detectors now triggered by a classification error. Furthermore, by searching
exhaustively with stim, we find that, at least for small examples, n errors are
required for an undetectable logical failure in an n-round stability experiment.
For quantummemory, it is straightforward to see that we need at least d errors
for an undetectable logical failure, as each classification error only triggers
detectors whose spatial coordinates are adjacent, as in the standard circuit case.

We simulated the error-spreading circuits in order to compare the
performance to standard syndrome extraction circuits with no reset. We
applied the same principles for the number of shots as in the previous
subsection.We present the quantummemory results in Fig. 10 and see that
the performance is somewhat (although not significantly) diminished from
the standard no-reset case. We attribute this to the error-spreading feature
and the slightly higher depth of the error-spreading circuits. However, as we

see from the stability time overhead plots Fig. 11b, we need fewer QEC
rounds for the error-spreading circuit to avoidundetectable time-like logical
failures and so we need fewer QEC rounds for quantum memory as well,
making the gap in Fig. 10 smaller. For instance, in case of the 4 × 4 patch for
p = 0.001, we have Rspr ≈ 0.85, meaning we have to spend only 85% of the
time on stabiliser measurements as with the standard no-reset circuits.
Taking into account the differing execution times, we see that we need only
≈ 80%of the number ofQEC roundswith the error-spreading circuit. Based
on this, we can conclude that the error-spreading circuit improves the QEC
performance over the standard no-reset circuits.

From comparing Figs. 11b and 6b, we can further conclude that the
error-spreading circuit is a goodalternative tounconditional reset if the reset
duration exceeds 100ns for the error regimeswe considered.However, if the
reset duration is decreased further, then unconditional reset outperforms
the error-spreading circuit.

Recovering time-like distance by squeezing two QEC rounds
into one
In this section, we show that QEC performance can be improved without
using unconditional resets by effectively squeezing two QEC rounds into
one. This method, however, requires ≈ 50% additional qubits. We appoint

Fig. 7 | Syndrome extraction circuit for an XXXX stabiliser that spreads the

classification error to a data qubit. Immediately after measurement, we apply a

classically-controlled phase-flip and a CZ quantum gate. There is no overall effect,

unless there was a classification error on nX,j−1, in which case a Z error is transferred

to a data qubit.

Fig. 8 | A cross-section of the decoding graph for the error-spreading circuit. In

the bulk, it is the same as for standard unconditional-reset circuits. A classification

error triggers four detectors (green nodes). This error can be decomposed into a

quantum measurement error and a hook error (green edges).

Fig. 9 | A 4 × 4 stability patch with additional qubits (purple) that are needed for

the error-spreading circuit.Pairs of qubits that take part in each error-spreading event

are circled. Type A (black) and B (green) are auxiliary and data qubit pairs forX- andZ-

type stabilisers, respectively, that do not require additional qubits. Type C (purple) are

auxiliary and additional qubit pairs for the top and left boundaryX-type stabilisers. For

these,wemeasureaweight-three stabiliser and, at theendof theQECround,wemeasure

out the additional qubits simultaneously with the auxiliary qubits.

Fig. 10 | Quantum memory performance of rotated planar codes in the no-reset

scheme using standard (triangles and dashed lines) and error-spreading (squares

and dash-dotted lines) circuits. For each distance d = 5, 7, 9 (corresponding to red,

blue, black colours), we performed d QEC rounds.
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two auxiliary qubits for each stabiliser, as shown in Fig. 12a. Note that the
auxiliary qubits of the X-/Z-type stabilisers are arranged horizontally/ver-
tically so that we avoid so-called “bad hook” errors. Therefore, the hardware
needs the Cairo pentagonal connectivity36. The main idea is that while we
measure the auxiliary qubits of one stabiliser type, we can execute unitary
gates on the qubits of the other type and also have plenty of time to obtain
two independent measurement outcomes for each stabiliser. Figure 12b, c
illustrates this. For instance, the unitary parts of this circuit for a Z-type
stabiliser are as follows. We use Roman numerals for qubit labels and
numerical labels for protocol steps. First, apply two layers of CZ gates: step
(1) CZi,iii and CZii,iv; then step (2) CZi,v and CZii,vi. Then, swap the auxiliary
qubits, so step (3) SWAPi,ii. Finally, repeat the two layers ofCZgates: step (5)
CZi,iii and CZii,iv; then step (6) CZi,v and CZii,vi. In this way, we entangle the
two auxiliary qubits with the data qubits independently and so measuring
each provides independent stabiliser measurements. Since executing these
unitary gates takes only 400 ns in total (when compiled to the gates of Table
1), oneQEC roundwith this circuit takes 1000 ns. This is only 160 ns longer
than for the standard no-reset syndrome extraction; however, we obtain
each stabiliser outcome twice.

We now show how this new circuit recovers the effective time-like
distance. First, we define the detectors. For each stabiliser g, let (x1, y1) and
(x2, y2) be the spatial coordinates of its two auxiliary qubits. For the sake of
simplicity, we will consider outcomes in the conditional-reset scheme,

which is equivalent to the no-reset scheme. Denote bymk
g;j the outcome in

the jthQECroundobtainedon the auxiliary qubit at (xk, yk) (k=1, 2).We set

m1
g;j �m2

g;j as a detector for all j and assign the coordinates (x1, y1, j) to it.

Furthermore, in the bulk of the experiment, we define m1
g;j �m1

g;jþ1 as a

detector if j is even, and m2
g;j �m2

g;jþ1 when j is odd, and assign the coor-

dinates ðx2; y2; jþ 1
2
Þ to it. The full decoding graph of a stability experiment

on a 4 × 4 patch with 5 rounds is available in31. Figure 13 depicts the part of
the decoding graph where only nodes (detectors) corresponding to one X-
type stabiliser are shown. This restricted graph has edges of two types:

diagonal and vertical edges. Ifmk
g;j (k ∈ {1, 2}) is flipped due to a quantum

bit-flipmeasurement error, then atmost twodetectors are triggered, namely

at coordinates (x1, y1, j) and ðx2; y2; j± 1
2Þ, corresponding to a diagonal edge.

If mk
g;j (k ∈ {1, 2}) is flipped due to misclassificiation, the most dangerous

error for FTQC, then that will also flip m3�k
g;jþ1, hence triggers at most four

detectors.However this canbedecomposed into twoparallel diagonal edges.
To account for the vertical edges, consider an XX-error occurring after the
SWAPgate in Fig. 12b. This errorflips bothoutcomes of the jthQEC round,

hence triggers at most two detectors at coordinates ðx2; y2; j� 1
2
Þ and

ðx2; y2; jþ 1
2
Þ – a vertical edge. We verified using stim’s functionality that

the effective distance of stability experiments is recovered to be n. Fur-
thermore, the effective distance for quantummemory remains the same as
with standard syndrome extraction circuits: d.

We simulated these circuits inorder to compare theperformance to the
previously discussed syndrome extraction circuits. We applied the same
principles for the number of shots as in the previous two subsections. We
present the quantum memory results in Fig. 14 and see that again the

Fig. 11 | Comparison of stability experiment performances in the no-reset

scheme using standard (triangles and dashed lines) and error-spreading (squares

and dash-dotted lines) circuits. Colours indicate different physical error prob-

abilities: p = 10−2 (blue), p = 10−2.5 (orange), p = 10−3 (purple). a Comparison of

logical failure probabilities for the 4 × 4 stability patch. Error bars as in Fig. 6(a) are

also shown as shaded areas. Note that for the p = 10−2 case, the two lines overlap.

bThe time overheadRspr that the error-spreading circuit requires when compared to

the no-reset standard circuit. The shaded areas correspond to 90% confidence

intervals. The conditional reset scheme is not shown as the simulation is identical to

the no-reset except with higher noise levels due to the increased physical qubit idling.

As a consequence, the conditional reset scheme will always perform worse and is

therefore not shown here.

Fig. 12 | Round-squeezing circuit. a A 4 × 4 stability patch (cf. Fig. 1b) for the

round-squeezing circuit implementation laid out on the Cairo pentagonal con-

nectivity that avoids “bad hooks”. Each stabiliser has two auxiliary qubits as shown.

b Graphical representation of the round-squeezing circuit for two adjacent stabi-

lisers. In steps 1–5, we apply CZ and SWAP two-qubit gates for the Z-type stabiliser

as shown, during which we measure the auxiliary qubits of the X-stabiliser. Then, in

steps 6–10, we apply CX and SWAP two-qubit gates for the X-type stabiliser and, at

the same time, measure the auxiliary qubits of the Z-type stabiliser. In the bulk of the

experiment, we repeat this. In this way, the execution time of the round-squeezing

circuit for the same number of QEC rounds is only slightly increased compared to

the standard circuit’s execution time with no reset, and is shorter than the execution

time of standard circuits with unconditional reset, provided the reset duration is

>160 ns. c Circuit diagram of steps 1–5.
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performance is slightly diminished from the standard no-reset case, though
not as much as with the error-spreading circuits. We attribute this to the
increased number of two-qubit gates used in these syndrome extraction
circuits. However, as we see from the stability time overhead plots in Fig.
15b, we need fewer QEC rounds for the round-squeezing circuit to avoid
undetectable time-like logical failures and sowe need fewerQEC rounds for
quantum memory as well, making the gap in Fig. 14 smaller. For instance,
with p = 0.001 we have Rsqz ≈ 0.65. Since execution times per QEC round
differ, we need only ≈ 55% of the number of QEC rounds with the round-
squeezing circuit—slightly more than half as many as for the standard no-
reset case. Based on this, we can conclude that this circuit improves on the
QEC performance of both the standard and error-spreading no-reset cir-
cuits, though with the use of additional physical qubits.

From comparing Figs. 15b and 6b, we can further conclude that this
circuit is a good alternative to implementing unconditional resets, evenwith
instantaneous reset, at least for the range of physical error parameters we
consider. We expect that, with much lower physical error probability, this
would no longer be the case.

Whilst no device with the connectivity shown in Fig. 12a currently
exists, it has lower connectivity than many current devices suggesting it
should be easier to build. However, we point out that using an additional
SWAP layer on one stabiliser type, it is possible to align the auxiliary qubits
in a parallel direction without introducing “bad hooks”37. In this case, the
required connectivity is a sub-graphof thepopular square-grid connectivity.

Discussion
We investigated the QEC consequences of performing mid-circuit reset,
or not, during QEC experiments using standard syndrome extraction
circuits. Our main conclusion is that unconditionally resetting qubits,
for instance by driving interactions with a dissipative environment,
fundamentally improves the fault-tolerance properties of logical
operations offering up-to 2 × speedup of fault-tolerant quantum com-
puters. Access to fast, high-fidelity unconditional resets wouldmake this
approach a clear winner.

Nevertheless, with current best-in-class devices operating close to the
QEC threshold and focusedmore onmemory experiments, our simulations
indicated that not resetting qubits can result in better performance. This
justifies the approach taken in recent proof-of-principle experiments6,8 and
offers encouragement for near-term experiments to continue this practice.
For those keen to avoid developing unconditional-reset technology, we
presented two alternative syndrome extraction circuits that provide addi-
tional protection against measurement errors. These alternative circuits are
interesting near-term experiments and potential long-term solutions.
Whether our alternative circuits are genuine contenders for the best
approach to FTQCwill depend on additional effects, such as leakage errors,
not considered in this paper. Such investigation would be interesting
future work.

Furthermore, we emphasise again that our results are based on a
particular noise model which assumes, for example, the measurement
classification and qubit bit-flip error rates are 20% and 80% of the total
measurement error rate, respectively.Adirection for futurework couldbe to
repeat the analysis with different noise models or obtain results from real
quantum computers. In particular, varying the measurement time on a
particular device could affect results, not just by changing the amount of
idling error on other qubits, but also by altering the totalmeasurement error
and the above split into classification and qubit bit-flip error.

Fig. 13 | Part of the decoding graph for a stability experiment with the round-

squeezing circuit that only contains nodes associated with one X-type stabiliser.

A quantum bit-flip error before measurement corresponds to a diagonal edge, while

an XX-error on the auxiliary qubits after the SWAP gate corresponds to a vertical

edge. Themeasurement classification error triggers four detectors (green nodes) and

can be decomposed into two diagonal edges (green edges).

Fig. 14 | Comparison of quantummemory performances in the no-reset scheme

using standard (triangles and dashed lines) and round-squeezing (diamonds and

dotted lines) circuits. For each distance d = 5, 7, 9 (corresponding to red, blue, black

colours), we performed d QEC rounds.

Fig. 15 | Comparison of stability experiment performances in the no-reset

scheme using standard (triangles and dashed lines) and round-squeezing (dia-

monds and dotted lines) circuits. Colours indicate different physical error prob-

abilities: p = 10−2 (blue), p = 10−2.5 (orange), p = 10−3 (purple). a Comparison of

logical failure probabilities for a 4 × 4 stability patch. Error bars as in Fig. 6a are also

shown as shaded areas. Note that the standard p = 10−3 and round-squeezing

p = 10−2.5 plots overlap. b The time overhead Rsqz that the round-squeezing circuit

requires when compared to the no-reset standard circuit. The shaded areas corre-

spond to 90% confidence intervals.
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As for the third class of reset strategy, conditional reset, our analysis
shows that it will never compete with other strategies, and so should not be
used in any of the QEC experiments considered here. This observation
debunks folklore claims that control systems for QEC require fast
conditional reset.

A summaryof our results canbe found inTable 2,wherewepresent the
best-performing scheme indifferent regimes basedonour circuit-levelnoise
simulations. This table can be used to help decide which scheme to use
for FTQC.

Data availability
Data generated in the course of this work can be made available upon
reasonable request.

Code availability
Circuits that were used for simulations are available in31.
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This can be used to help decide which scheme to use for FTQC. For the ‘Physical error probability’ column, ‘high’ corresponds to p ≈ 10−2, ‘medium’ to p ≈ 10−2.5 and ‘low’ to p⪅10−3. In the ‘Reset speed’

column, ‘fast’ corresponds to ≈ 100 ns and ‘slow’ to ≈ 500 ns.
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