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ABSTRACT

Background: Immunohistochemistry (IHC) is a widely used method for localizing and semi- quantifying proteins in tissue 

samples. Traditional IHC analysis often relies on manually counting 200 cells within a designated area, a time- intensive and 

subjective process that can compromise reproducibility and accuracy. Advances in digital scanning and bioimage analysis tools, 

such as the open- source software QuPath, enable semi- automated cell counting, reducing subjectivity and increasing efficiency.

Aims: This project developed a QuPath- based script and detailed guide for semi- automatic cell counting, specifically for tissues 

with low cellularity, such as intervertebral discs and cartilage.

Methods and Results: The methodology was validated by demonstrating no significant differences between the manual count-

ing and the semi- automatic quantification (p = 0.783, p = 0.386) while showing a strong correlation between methods for both 

collagen type II staining (r = 0.9602, p < 0.0001) and N- cadherin staining (r = 0.9044, p = 0.0001). Furthermore, a strong correla-

tion (intraclass correlation coefficient (ICC) single raters = 0.853) between 3 individual raters with varying academic ranks and 

experiences in IHC analysis was shown using the semi- automatic quantification method.

Discusssion: The approach ensures high reproducibility and accuracy, with reduced variability between raters and laboratories. 

This semi- automated method is particularly suited for tissues with a high extracellular matrix to cell ratio and low cellularity. By 

minimizing subjectivity and evaluation time, it provides a robust alternative to manual counting, making it ideal for applications 

where reproducibility and standardization are critical. While the methodology was effective in low- cellularity tissues, its appli-

cation in other tissue types warrants further exploration.

Conclusions: These findings underscore the potential of QuPath to streamline IHC analysis and enhance inter- laboratory 

comparability.

1   |   Introduction

Immunohistochemistry (IHC) is a standard technique used for 

the localization and semi- quantification of protein detection 

[1]. IHC is extremely useful because it does not only preserve 

cell morphology and the tissue architecture, but is also highly 

sensitive, enabling the characterization of certain biomol-

ecules at the protein level within the tissue [1]. The process 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2025 The Author(s). JOR Spine published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.

Andrea Nüesch and Maria Paola Ferri contributed equally to this study.  



2 of 13 JOR Spine, 2025

involves applying a primary antibody that binds to a specific 

target protein. A secondary antibody, conjugated with either 

a fluorophore, enzyme, or biotin, then binds to the primary 

antibody, allowing for colorimetric analysis through substrate 

conversion. This enables the quantification of immunoposi-

tive and immunonegative cells [2].

The standard quantification of immunopositivity is to per-

form semiquantitative analysis by manually counting 200 cells 

within a region of interest [2]. However, manual scoring can be 

subjective and prevent reproducible and objective analysis es-

sential for the quantification and correlation of proteins in bio-

logical tissue. Furthermore, by only counting 200 cells, regional 

variability may not be considered. With the advent of the ability 

to acquire high- resolution digital scans of entire microscopic 

slides, combined with whole slide scanning and the use of new 

bioimage analysis tools such as QuPath, immunohistochemi-

cal analysis can be performed semi- automatically using digital 

image analysis [3–6].

QuPath is an open- source software for bioimage analysis and is 

often used for digital pathology. Featuring a user- friendly inter-

face, embedded algorithms for tissue and cell detection, interac-

tive machine learning capabilities, and the option for automated 

scripting, this offers a robust solution for analyzing whole slide 

images [5]. Even though QuPath has a built- in algorithm for the 

detection of cells and their classification into immuno- positive 

and negative cells, its accuracy is impacted by the cellularity of 

the tissue. In particular, tissues with low cellularity are impeded 

as tissue artifacts are wrongly detected as cells. Tissues consid-

ered to have a high extracellular matrix to cell ratio include ten-

dons [7], ligaments [8], cartilage [9] and the components of the 

intervertebral disc [10].

Additionally, while QuPath facilitates image analysis, it lacks 

tools for streamlined post- processing of large datasets. Users 

typically export data manually to platforms like Excel or R 

for further statistical analysis, a process that is labor- intensive 

and prone to error. Addressing these limitations is critical for 

ensuring reproducibility and standardization in IHC analysis. 

To address this, within this program of work, we developed the 

ProcessScanningData class [11], a novel tool designed to auto-

mate the post- processing of data from various whole- slide image 

formats, including MRXS, NDPI, CID, and BIZ. This class inte-

grates scanned image data with inventory metadata, calculates 

immunopositivity statistics, and produces detailed output files. 

Additionally, it generates visual outputs such as scatter plots 

and heatmaps, enabling efficient exploration of relationships 

between markers [12]. By automating these processes, the tool 

significantly reduces the need for manual intervention, improv-

ing accuracy and efficiency, especially in the analysis of tissues 

with low cellularity [13].

The project aimed to create a QuPath- compatible script and an 

accompanying step- by- step guide tailored for semi- automatic 

cell counting and classification of hematoxylin- DAB (H- DAB)- 

stained slides, to specifically enable accurate determination of 

cellular immunopositivity. The methodology was designed to 

ensure reproducible immunopositivity rates with high accuracy, 

minimize inter- rater and inter- laboratory variability, and sig-

nificantly reduce the time required for sample evaluation. The 

approach is particularly suited for the analysis of low- cellularity 

tissues, such as intervertebral discs, cartilage, and bone, where 

traditional methods fall short.

2   |   Methods

2.1   |   Study Design

In the initial phase of this study, a semi- automatic pipeline for 

quantifying low- cellularity H- DAB stained tissue slides was 

developed. Presented as a two- step tutorial, the H- DAB semi- 

automatic method was designed to extract immunopositivity 

rates based on cellular classification in different tissues and 

compute statistical correlation analysis. The study design con-

sisted of four key components: (1) Development of the QuPath 

pipeline: (a) Samples were stained and digitized, followed by 

the creation of QuPath projects (Figure 1). (b) Within QuPath, 

parameters such as deconvolution stain and cell detection 

were optimized before training a specific object classifier 

to distinguish between immunopositive and negative cells, 

as well as tissue artifacts (Figure  2). (c) Batch analysis was 

performed in regions of interest to detect and classify cells, 

generating immunopositivity rates. (d) Following QuPath pro-

cessing, a Python template workflow was developed to enable 

automatic annotation of QuPath results, integrating data from 

QuPath, computed immunopositivity statistics, and produc-

ing visual outputs such as scatter plots and heatmaps for fur-

ther analysis. (2) Development of a user guide on GitBook: To 

ensure the process was accessible and user- friendly, a detailed 

step- by- step guide was hosted on GitBook [14], outlining how 

to perform the quantification and calculate the positivity 

rate for each antibody on the slides. The guide also included 

troubleshooting tips and best practices for batch analysis. (3) 

Feedback sessions and survey: The GitBook tutorial was dis-

tributed to six testers from four universities with diverse edu-

cational backgrounds. Feedback was collected through Zoom 

calls, where participants shared verbal comments on unclear 

sections, and through a written survey at the end of the pro-

cess to gather overall impressions of the pipeline's clarity and 

usability. (4) Validation: Two evaluations were conducted to 

validate the pipeline. (a) First, accuracy was validated by com-

paring semi- automatic quantification results with manual 

counting for collagen type II staining and N- Cadherin stain-

ing. (b) Secondly, inter- rater correlation was assessed by hav-

ing three raters independently analyze the same set of slides.

2.2   |   Sample Preparation and Digitalization

Frozen or formalin- fixed paraffin- embedded sections are suit-

able for immunohistochemical staining. We conducted DAB 

(3,3- Diaminobenzidine) staining according to the immuno-

histochemical analysis protocol outlined by Binch et  al. [2]. 

Human Intervertebral disc tissue (IVD, Sheffield Research 

Ethics Committee, IRAS: 10266) and human cartilage (South 

Yorkshire and North Derbyshire Musculoskeletal BioBank 

(SYNDMB) REC: 20/SC/0144, 12 182) were collected from 

Sheffield hospitals). The tissue was fixed in 10% (w/v) forma-

lin (Leica, Milton Keynes, UK), embedded in paraffin wax, 

sectioned into 4 μm slices using a microtome, and mounted on 
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positively charged slides. The sections were then de- waxed, 

rehydrated, and endogenous peroxidases were blocked be-

fore antigen retrieval. The cartilage samples were stained 

for the target antigen interleukin (IL)- 1β (ab9722, 0.5 mg/

mL, heat 1:100, Abcam, Cambridge, UK) whereas disc sam-

ples were stained for collagen type II (ab3092, enzyme 1:200, 

Abcam) and N- Cadherin (ab76011, 0.097 mg/mL, heat 1:100, 

Abcam). Heat antigen retrieval was performed using 0.05 M 

Tris (pH 9.5), preheated to 60°C, and incubated for 5 min in 

a rice steamer. Enzyme antigen retrieval was performed with 

0.1% (w/v) α- chymotrypsin (Sigma Aldrich, Poole, UK) in tris- 

buffer saline (TBS, 20 mmol/L Tris, 150 mmol/L NaCl, pH 7.5) 

containing 0.1% (w/v) CaCl₂ for 30 min at 37°C. Following an-

tigen retrieval washing in TBS, non- specific antibody bind-

ing was blocked for 1 h at room temperature. For IL- 1β and 

N- Cadherin, 1% (w/v) bovine serum albumin (BSA) with 25% 

(v/v) rabbit serum (Sigma) in TBS was used. For collagen type 

II, 1% (w/v) BSA with 25% (v/v) goat serum in TBS was uti-

lized. Primary antibodies were applied to the slides overnight 

at 4°C. IL- 1β was used diluted in TBS with 1% (w/v) BSA. IgG 

controls were used at equal protein concentrations to test for 

non- specific binding of the isotype. After overnight incuba-

tion, the sections were washed three times in TBS. Secondary 

antibodies goat anti- rabbit (ab6720, 1:400, Abcam) or rabbit 

anti- mouse IgG (1:400, ab6727, Abcam) were then applied for 

30 min at room temperature. Following three washes in TBS, 

Elite ABC reagent (Vector Laboratories, Peterborough, UK) 

was added to the slides for 30 min at room temperature. After 

another three TBS washes, 0.65 mg/mL 3,3′- diaminobenzidine 

tetrahydrochloride (Sigma- Aldrich) containing 0.08% (v/v) 

H₂O₂ in TBS was added for 20 min. The sections were then 

washed in running tap water for 5 min. Nuclei were counter-

stained with hematoxylin for 20 s and blued under running 

tap water for 3 min. The slides were then dehydrated in graded 

ethanol, cleared in xylene, and mounted using Pertex (Leica). 

Slides were scanned at 20× magnification using a slide scan-

ner (PANNORAMIC 250 Flash II DX, 3DHistech, Budapest, 

Hungary). Slide images scanned in MRXS (Mirax Scan) for-

mat (3D HISTECH), NDPI (NanoZoomer Digital Pathology 

Image) format (Hamamatsu, Shizuoka, Japan), CZI (Carl 

Zeiss Image) format (Zeiss, Oberkochen, Germany), and BIF 

(Bio- Format Image File) format (Ventana, Arizona US) are 

compatible with this analysis method. Each sample slide was 

automatically assigned a name during the scanning process, 

referred to as ID_Slidescanning. This ID_Slidescanning re-

mained unchanged throughout the analysis process to ensure 

unbiased analysis and was later linked to the sample ID in a 

subsequent step.

FIGURE 1    |    Analysis workflow. After immunohistochemical staining, the slides are scanned and analyzed using QuPath before proceeding with 

statistical analysis and graph creation. Prior to running the QuPath batch analysis, the system undergoes training, during which the Cell Detection 

parameters are defined, an object classifier is trained, and regions of interest are selected (Figure 2). Batch analysis is then performed within a 

QuPath project based on the pre- defined parameters established during the initial training process. During this analysis, cells within the regions of 

interest are detected according to the pre- set parameters and classified as either “positive cell,” “negative cell,” or “no cell.” The batch process an-

alyzes all slides within the project and generates a folder containing text files with the results. In the subsequent step, a Python script consolidates 

these text files into a single Excel spreadsheet, which provides the positivity rate for each selected region of every slide. This consolidated data is then 

used for statistical analysis and visual representation.
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2.3   |   Image Processing in QuPath

For detailed instructions and guide, please visit the QuPath 

Gitbook guide developed during this project [12, 14–21]. Key 

stages and considerations are summarized here (Figure 2).

2.3.1   |   Project Creation and Estimating 

of Staining Vectors

A project was created for each stain analyzed to allow for quan-

tification of the whole project automatically, rather than for each 

scanned sample itself (Figure 2) [14]. The nonspecific binding 

controls of the isotype were included in the analysis, serving as 

an accuracy measurement for the analysis. Staining analysis for 

each antibody was conducted in batches, accommodating be-

tween 1 and 100 samples per batch. The quantity of slides that 

can be processed in each batch relies on the computer's central 

processing unit (CPU) and random- access memory (RAM), 

rather than being determined by the capabilities of QuPath. A 

separate project is required in QuPath for each antibody and its 

corresponding regions, containing the relevant images. An al-

gorithm, typically in the form of a simple Plug- in, is executed 

within QuPath to deconvolute the color information captured by 

red- green- blue (RGB) cameras. This process estimates the stain-

ing vectors, digitally separating the stains and distinguishing 

between the blue hematoxylin and the brown DAB stain [15]. If 

multiple regions are analyzed within the same project, the stain-

ing vectors should be set for each region separately and saved 

accordingly.

2.3.2   |   Cell Detection and Object Classification

QuPath offers an automatic cell detection tool with adjust-

able parameters to fine- tune cell detection for each batch [22]. 

However, in the case of IVD tissue and cartilage, which exhibit a 

high extracellular matrix to cell ratio, the automatic distinction 

FIGURE 2    |    QuPath training. To perform batch analysis with QuPath, the system must first be trained. This involves creating a training project 

within QuPath that includes all scanned slide files. Staining vectors are then estimated to define the DAB and hematoxylin components, enabling 

color deconvolution. A representative training image containing various regions reflective of the entire project is selected for training cell detection 

and object classification. The QuPath Cell Detection plugin is run, and the parameters are adjusted accordingly. Detected cells are manually classi-

fied as “positive,” “negative,” or “no” cell. In a new project, regions of interest are selected, either manually by drawing or automatically using a pixel 

thresholding tool. Once the training process is complete, batch analysis is performed by applying the pre- determined parameters and values from the 

training phase to the batch script. This allows consistent analysis across all slides in the project.
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between positive and negative cells may not be applicable due to 

the detection of tissue artifacts. To address this issue, an alter-

native method was developed. As a first step, regions within the 

tissue are selected to create a training image (Figure 2) [16]. The 

higher the number of regions included in the training image cre-

ation, the more accurate the training. If different components 

of a tissue are analyzed within one sample, such as the nucleus 

pulposus and annulus fibrosus within the IVD, training images 

are created for each component. This is due to anatomical dif-

ferences, which may result in differences in the optimal param-

eters for cell detection. As a next step, the cell detection plugin 

was run on the training image (Figure 3). Parameters such as de-

tection images, requested pixel size, background radius, median 

filter radius, sigma, minimum area of a nuclei, maximum area 

of a nuclei, threshold, and maximal background intensity should 

be adjusted and optimized for each cell detection. Complete de-

tails of the influence of these parameters and proposed starting 

settings for different tissue types are provided in the Gitbook 

[17], (Table  1). As previously mentioned, some tissue artifacts 

will be recognized within the software as cells. Thus, training 

an object classifier was required, which enables classifications of 

artifacts as “NoCell” and excludes them from the analysis. The 

Object classifier was manually trained to differentiate between 

immuno- positive cells (“PositiveCell”), immuno- negative cells 

(“NegativeCell”), and regions devoid of cells (“NoCell”) [18]. 

Once the precision of the Object classifier was high enough to 

result in correct measurement of immuno- positive and - negative 

cells, this was tested on sections and directly corrected, building 

the accuracy of the Object classifier (Figure 2).

2.3.3   |   Tissue Detection/Selection

Even though the training of the object classifier and the tissue 

detection could be run within the same project, we recommend 

creating a second project, as it is then easier to make corrections 

at the end if needed. Under annotations, classifications for the 

tissue detection were created; these may include, for example, 

nucleus pulposus, annulus fibrosus, and cartilaginous endplate 

within IVD tissues, or cartilage and bone within osteochondral 

tissues [19]. If your sections contain multiple components, the 

tissue detection needs to be performed manually. To do so, the 

appropriate classification was selected, and regions of interest 

were drawn round to be selected for inclusion in counting. If 

the whole sample consists of only one tissue type, automatic tis-

sue detection can be used (Figure 2). Therefore, a thresholder 

was created, ignoring all pixels above a certain threshold. If the 

staining within the project varies, it is important to ensure all the 

slides are checked and adjusted either manually or by altering 

the thresholder. The thresholder was saved as “TissueDetection” 

If there were visible tissue folds, they were removed from the 

detection so that they did not result in false data [19].

2.3.4   |   Batch Analysis

To perform the batch image analysis, a script was written 

which is freely available and downloadable [20, 21]. The pa-

rameters for the estimation of the staining vectors and the 

parameters for the cell detection were manually replaced for 

FIGURE 3    |    Object classifier. Three stages are completed during the object classifier: Region selection, cell detection, and the object classification. 

Once a region of interest is selected, the Cell Detection Plugin from QuPath can be run. Shown in red are the detections classified as cells. As the 

cellularity of the tissue is low and it is quite fibrous, some tissue artifacts are recognized and classified as cells. Once the object classifier, specifically 

trained for this project, is run, the detected cells are classified as “PositiveCell” (green), “NegativeCell” (pink) and “NoCell” (yellow) enabling the 

calculation of a positivity rate as the ratio between positively stained cells and the total of negatively and positively stained cells.
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TABLE 1    |    Adjustable parameters for the cell detection.

Parameters Description

Detection images Hematoxylin optical density Detects nuclei based on the hematoxylin 

optical density, should only be chosen 

if DAB staining is not nuclear.

Optical density sum Detects nuclei based on the optical 

density sum, enables detection of nuclei 

that are masked with DAB, resulting 

not only in blue but also brown nuclei.

Requested pixel size Under the Image tab, the pixel size of the slides can be checked, the pixel size should be chosen at the highest 

value still resulting in accurate results. The bigger the chosen value in pixel size the faster the analysis.

Background radius The background radius in QuPath represents the area surrounding each pixel that the software evaluates to 

estimate the local background intensity. This parameter is essential for accurately differentiating between 

the cells and tissue and the background. It correlates with the Threshold and should be set greater than 

the largest nuclei or set to 0 to turn it off. If it is turned off, the threshold needs to be increased

Median filter radius The median filter radius is a parameter that serves as noise reduction and smoothening 

tool. If the nuclei are segmented in the detection, it should be increased.

Sigma Sigma refers to the standard deviation parameter used in various filters (commonly Gaussian 

filter) playing a critical role in determining the smoothening extend of an image.

Area The minimum and maximum area of a nuclei is depended on the cell type.

Threshold Segments the image by separating objects of interest from the background in a binary way. It can help to remove the 

detection of false nuclei within the tissue. If a high number of cells is not detected, lowering the threshold is suggested.

Max background intensity Refers to the highest intensity value considered to be background. Can remove tissue fold and artifacts, as the background 

is darker than usual. The lower the value the more folds will be ignored. The Default value doesn't show an effect.

 25721143, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jsp2.70054 by Test, Wiley Online Library on [10/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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each project, creating a project- specific script for each region 

and antibody of interest. Scripts were then run in a text file 

and automatically saved in a new results folder within the 

QuPath project folder. The text file contains information for 

each of the parent regions, e.g., cartilage, the detected objects 

and their type, e.g., cells, and the classification of the cells 

(Positive/Negative).

2.4   |   Process Scanning Data—Python Package

QuPath [5] is the gold standard software used in biological 

image analysis, even though it falls short in automating data 

processing. To export the results and represent statistical mea-

surements for each sample, in this step- by- step tutorial we de-

veloped a novel tool designed to automate the post- processing 

of data from various whole- slide image formats, known as 

ProcessScanningData Python class [12]. This was run as a 

second step following the generation of files from the scanned 

images processed through the aforementioned method in 

QuPath.

The Python class, built up with specific libraries, such as 

NumPy [23] and MatLab [24], is customizable for MRXS, 

NDPI, CZI, and BIF files. Merging these image- derived data 

with inventory files organizes it into output files in either 

XLSX or CSV, depending on the user's preference. This results 

in automatic and precise calculation of positivity rates and 

produces visualizations for every individual marker [13]. To 

unveil their potential biological correlation and significance, 

scatterplots and heatmaps were produced with Python librar-

ies [25] based on standard statistical coefficients between pos-

itivity rates for different markers (e.g., Pearson, Spearman, 

and Kendall correlation coefficients) [26–28]. In the tutorial, 

rather than using the Python class directly, the focus is on 

a customizable workflow template tailored to user prefer-

ences; for example, it is employed for MRXS files in this study. 

Notably, the dedicated Gitbook section  [12] provides a guide 

for users through the entire process, from software installa-

tion to the final generation of results.

2.4.1   |   Usage of Process Scanning Data in IHC 

Data Analysis

The project has used the ready- to- use workflow and person-

alized it for analyzing immunopositivity within histological 

images, as defined by the previous method in QuPath. A step- 

by- step description from inputs to outputs is provided in the sec-

tion ‘Processing’ in the tutorial [12].

Each input file is processed to extract detailed cellular and 

tissue- level metrics, such as object IDs, classifications (e.g., 

Positive/Negative Cell), region coordinates, and detailed nu-

cleus and cell measurements (e.g., area, perimeter, circularity, 

and optical density of hematoxylin and DAB stains), generated 

from the QuPath analysis. The processed data is then further 

analyzed to calculate each marker's positivity rates. The results 

are compiled into structured output files (e.g., CSV or XLSX), 

which include essential details such as Sample ID, Antibody, 

Image, Positive/Negative Class, and Positivity Rate. The final 

output consists of processed data files or structured files (e.g., 

CSV or XLSX) containing detailed information on cell metrics, 

positivity rates, and respective metadata, and correlation anal-

ysis files or visual representations (heatmaps and scatterplots) 

that illustrate the relationships between different biomarkers, 

providing a comprehensive and organized dataset that research-

ers can use for further analysis or publication. An additional 

merging step can be added to the pipeline, which aims to create 

a final spreadsheet, linking the donor/sample information with 

the positivity rates of the antibodies within specific regions, to 

end up with a single comprehensive file for further observation 

and analysis.

3   |   Method Evaluation

3.1   |   Manual Versus Semiautomatic Counting

A single evaluator assessed 28 IVD samples, 14 stained for 

Collagen type II and 14 stained for N- Cadherin, both man-

ually and following the semi- automatic guidelines provided 

by QuPath. The similarity between the results obtained from 

the two methods was analyzed using a paired t- test (p ≤ 0.05), 

and correlation was assessed using a Pearson Correlation in 

GraphPad Prism (Version 10.3.1509, Windows, GraphPad 

Software, Boston, Massachusetts USA).

3.2   |   Interrater Variability

Three evaluators from the University of Sheffield conducted 

an analysis to determine the positivity rate for 17 IL- 1β immu-

nohistochemically stained slides, following the same pipeline. 

The results were analyzed using the intraclass correlation co-

efficient (ICC) for single measures, based on a two- way mixed 

model with absolute agreement, in SPSS Statistics (IBM Corp. 

Released 2023. IBM SPSS Statistics for Windows, Version 

29.0.2.0 Armonk, NY: IBM Corp). While two of the evalua-

tors had prior experience with the pipeline (raters 2&3), the 

third was performing the analysis and using QuPath for the 

first time (rater 1). The evaluators varied in academic rank, 

comprising a PhD student, a postdoctoral researcher, and a 

professor.

3.3   |   Survey

A survey was conducted to assess the clarity of the GitBook 

documentation and the level of satisfaction with the results ob-

tained using the semi- automatic QuPath method. Participants 

were contacted via email, either directly or through their prin-

cipal investigator, and were provided with an information letter 

outlining the study and inviting them to participate in the eval-

uation of the semi- automatic quantification guide. After using 

the GitBook, participants assessed various aspects of the guide's 

usability using a Likert scale ranging from 1 (strong dissatisfac-

tion) to 10 (strong satisfaction) (Supplementary Table S1). A total 

of six participants from the University of Bern (Switzerland), 

Icahn School of Medicine at Mount Sinai (USA), the University 
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of Arizona College of Medicine (USA), and the University of 

Sheffield (UK) participated in the survey. The group included 

two medical students, one PhD student, two postdoctoral re-

searchers, and one professor.

4   |   Results

4.1   |   Manual Versus Semi- Automatic Counting

A two- tailed t- test revealed no significant differences between 

the semi- automatic QuPath method and manual counting for 

either collagen type II staining (p = 0.783) or N- cadherin stain-

ing (p = 0.386) (Figure  4A). For collagen type II staining, the 

mean difference between the methods was −0.6042, with a 

standard deviation (SD) of 8.039 and a 95% confidence interval 

of −5.245–4.038. Similarly, for N- cadherin staining, the mean 

difference was −2.651, with an SD of 11.02 and a 95% confi-

dence interval of −9.016–3.71 (Figure 4A). The data pairing was 

highly effective, as indicated by strong correlation coefficients 

for both collagen type II (r = 0.9602, p < 0.0001) and N- cadherin 

(r = 0.9044, p < 0.0001), suggesting that the two methods are 

closely aligned. For both antibodies, the effect size was small 

(R2 = 0.006 for collagen type II and R2 = 0.0586 for N- cadherin), 

indicating minimal variability between the semi- automatic 

QuPath method and manual counting. The average cell count 

for the manual counting was 200, while the average cell count 

for the QuPath analysis on these samples was 600.

4.2   |   ICC Between 3 Raters

The ICC for single measures was 0.853, with 95% confidence 

intervals ranging from 0.706 to 0.939. For average measures, 

the ICC was 0.946, with a 95% confidence interval between 

0.878 and 0.979. The inter- item correlation matrix showed that 

rater 1 and rater 2 showed a correlation coefficient of 0.781, 

rater1 and rater3 0.892; rater 2 and rater 3 0.923, demonstrat-

ing the closest correlation between the two raters with prior 

experience of IHC analysis (Figure  4B). Differences in the 

positivity rates were traced back to differences in the QuPath 

training, the manual selection of the tissue, but also the qual-

ity of the staining (Figure 5). The slides showing greater inter- 

rater variability showed a high background/noise staining 

with DAB, complicating the identification of cells and their 

classification (Figure 5).

FIGURE 4    |    Method evaluation. (A) Graph showing a paired t- test of the immunopositivity rates for immunohistochemically stained slides for 

Collagen type II (n = 14) and N- Cadherin (n = 14) analyzed by a single rater manually and with QuPath. For the positivity rate of collagen type II 

staining, the mean of differences between the manual and QuPath quantification was −0.604, with a standard deviation of 8.04. The correlation 

coefficient between the two methods was 0.960. For the positivity rate of N- Cadherin staining, the mean of differences was −2.65, with a standard 

deviation of 11.02. The correlation coefficient between the manual and semi- automatic QuPath- based quantification was 0.904. (B) Graph displaying 

the positivity rates obtained in 17 slides by 3 different Raters indicated by different colors. The positivity rates differed between the raters, with a 

maximal standard deviation of 14.5 and a minimal standard deviation of 1. The Intraclass correlation for single measures was 0.853, and for average 

measures, it was 0.946. Cronbach's alpha was 0.943.
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4.3   |   Survey Evaluation

Survey evaluation showed that five out of six participants had no 

prior experience with QuPath, while one had used it occasionally 

(Figure 6). Their familiarity with immunohistochemical analysis 

ranged from slightly familiar (n = 2) to extremely familiar (n = 2). 

The clarity of the installation process received an average score of 

8.83/10, and the QuPath tutorial was rated at 8.67/10 (Figure 6). 

Some participants sought additional help from the official QuPath 

webpage, which was linked in the GitBook. The tasks of down-

loading, opening the script, accessing the script editor, and modi-

fying the script lines were rated highly, with scores of 9/10, 9.5/10, 

and 9.17/10, respectively. Only two participants had prior experi-

ence with Python and GitBash, but the installation process was 

straightforward for Windows users. However, Mac users gave the 

process a lower rating of 3/10 (Figure 6).

FIGURE 5    |    Examples of microscopic images to explain reasons for interrater differences in cell detection and object classification. Differences 

between the different raters in parameters set for the cell detection as well as for the object classification. The top box shows the cell detection; de-

tected objects are marked in red. The bottom box shows the object classification, displaying immunopositively classified cells in green, immune- 

negatively classified cells in pink, and objects to ignore in yellow. While images in row A and B show high similarities in the detection and classi-

fication, images C and D differ highly. Rater 1 (row C) has not trained the classifier to exclude and ignore DAB debris within the stain, while rater 

2 partly ignores it, and rater 3 fully. To acquire exact measurements, rater 1 would therefore need to exclude mal- stained regions from the analysis. 

Row D shows an image that is blurred. Rater 1 classifies blurred cells as positive and negative, while rater 3 classifies them as no cells and excludes 

them from the analysis.
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The information provided in the GitBook was rated as sufficient 

for running the Python script (8.67/10), and participants were 

able to resolve issues independently while executing the code 

(Figure 6). One participant analyzed 10–20 slides, four analyzed 

20–30 slides, and one participant analyzed over 50 slides using 

the provided script. The tissues analyzed included IVD tissue 

from humans and rats, as well as osteochondral tissue and 

cartilage. While one participant was somewhat satisfied with 

the detection and classification of cells in QuPath, five partic-

ipants reported being extremely satisfied (Figure 6). Regarding 

future use, two participants indicated they would probably use 

the package, and four participants stated they would definitely 

use it. All participants reported that they would recommend it to 

a friend or colleague (Figure 6).

FIGURE 6    |    Survey evaluation results: Participants assessed various aspects of the guide's usability using a Likert scale ranging from 1 (strong 

dissatisfaction) to 10 (strong satisfaction). The different floating bars range from the minimal rated value to the maximum rated value, showing the 

mean as a line. The different colors represent the different raters, demonstrating general satisfaction in the Qu Path processing guide and ease of use 

of processing code, and agreement that all participants would recommend its use to a colleague.
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5   |   Discussion

IHC is a well- established and widely accepted method in both 

clinical and experimental medical sciences for assessing the 

localization and semi- quantification of proteins. However, the 

commonly used manual approach of counting 200 cells is lim-

ited by human fatigue, subjective interpretation of color inten-

sity, and regional bias, all of which reduce the accuracy and 

reproducibility of this method [29, 30]. In response, several re-

search fields [31], particularly in cancer research [3, 4, 6], have 

developed semi- automatic or fully automated methods, empha-

sizing the need for standardized, accurate, scalable, and repro-

ducible evaluation techniques. However, these methods are not 

suitable for tissues like the IVD or cartilage due to morphologi-

cal differences and the low cellularity of these tissues.

This study aimed to develop a guide for semi- automatic quan-

titative analysis of IHC- stained slides from low- cellularity 

tissues using QuPath. A fully automated pipeline was not im-

plemented due to the region- dependent nature of cell detec-

tion parameters [32], which requires the system to be trained 

to differentiate between immunopositive and immunonega-

tive cells, as well as tissue artifacts. The semi- automatic ap-

proach also allows for flexibility, enabling the use of various 

immunohistochemical staining protocols. The focus of this 

study was specifically on cellular immunopositivity, and the 

quantification of extracellular matrix (ECM) staining was be-

yond the scope of our analysis. While techniques such as area 

positivity measurements could be employed to assess ECM 

staining, quantifying staining intensity for ABC/DAB stain-

ing is not appropriate due to amplification of the staining and, 

therefore, potential inaccuracies in intensity or area- based 

quantification [2].

The method's evaluation involved comparing manual and 

semi- automatic results, along with calculating inter- rater cor-

relation coefficients from the same sample set, following the 

established guidelines. The high correlation between manual 

and semi- automatic counting confirmed the accuracy and 

highlighted the robustness of the semi- automatic QuPath 

method. Slight differences in positivity rates were attributed 

to the higher cell count and reduced regional bias in QuPath's 

quantification. The ICC analysis demonstrated strong reliabil-

ity for both single raters and averaged measures, underscor-

ing the robustness of the method. The single- measure ICC 

indicates good agreement among individual raters, while the 

higher ICC for average measures reflects excellent reliability 

when scores from multiple raters are averaged. This high-

lights the value of incorporating multiple raters to enhance 

the precision of measurements [33]. The inter- item correlation 

matrix further supports these findings, showing high consis-

tency between raters, particularly between raters 2 and 3 who 

had experience with IHC analysis previously, while rater 1 ex-

hibited slightly lower agreement with the others, suggesting a 

potential learning curve. These differences in inter- rater reli-

ability were attributed to variations in QuPath training, man-

ual tissue selection, and staining quality. Slides with greater 

inter- rater variability were characterized by high background 

staining with DAB, which made cell identification and clas-

sification more challenging. These findings highlight the 

importance of standardized training and stringent quality 

control during staining and image preparation to minimize 

variability. Overall, the results confirm that while individual 

raters achieve good reliability, averaging ratings from multi-

ple raters substantially enhances the consistency and robust-

ness of the method, particularly when addressing challenges 

posed by staining artifacts or subjective variability in tissue 

selection. The survey results indicated that the instructions 

provided in the GitBook were clear and sufficient for users to 

successfully follow and perform the analysis, yielding highly 

satisfactory outcomes in cell detection and classification. 

Importantly, all participants stated they would recommend it 

to a colleague, and most participants expressed an intention to 

use the method for future analyses.

Considering QuPath as the benchmark for biological image 

analysis, it lacks automation for tasks includingcalculating pos-

itivity rates and correlation coefficients, as well as generating 

customized visualizations [5]. As a result, users have been forced 

to export the results and manually process the MRXS results, 

occasionally using other tools like Excel or R, which for non- 

experts can be time- consuming and error- prone. Additionally, 

manual data processing limits scalability when dealing with 

large datasets.

The ProcessScanningData class, designed with a versatile hi-

erarchical structure, offers a robust solution. It can serve as 

the foundation for a customized workflow, tailored to the type 

of scanned files and the user's expertise level in bioinformat-

ics. Accompanied by a template and extended documentation, 

the instantiation of a customizable workflow is simplified for 

both experts and non- experts, ultimately producing the out-

put files necessary for the assessment of immunopositivity 

and the generation of scatter plots and heatmaps  [11, 12] A 

standardized method like ProcessScanningData is crucial be-

cause it ensures reproducibility and portability across studies, 

avoiding the inconsistencies and arbitrary interpretations that 

can arise with manual curation. By eliminating subjective 

calculations, it provides a reliable framework for exploring 

relationships between different biomarkers, making it an in-

valuable resource for researchers working with immunohisto-

logical data.

The proposed pipeline for semi- automatic counting demon-

strates consistent and reliable performance, as evidenced by 

the high ICC values observed in this study. A comparison be-

tween manual and semi- automatic counting demonstrated that 

both methods yielded similar results, with the semi- automatic 

approach offering a more streamlined process by utilizing pre- 

defined parameters. However, the dataset for this comparison 

was relatively small, and ICC analysis was not performed for 

manual counting by multiple raters, which limits the ability 

to fully evaluate variability in the manual method. While the 

semi- automatic pipeline reduces the need for repetitive, labor- 

intensive tasks, human input during the training phase and 

manual tissue selection can still introduce variability. Variability 

observed in slides with high background staining or poorly de-

fined tissue regions highlighted the importance of standardized 

training and quality control to ensure reliable results across 

both methods.
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6   |   Limitations

The methods used in this analysis have several limitations. First, 

the requirement of a slide scanner limits accessibility, as not all 

laboratories may have the necessary equipment. Additionally, 

the poor staining quality of the slides can negatively impact 

the accuracy of both manual and semi- automatic counting, as 

unclear or inconsistent staining makes cell identification more 

difficult. Furthermore, there is an element of subjectivity in 

the classification process, especially when training the semi- 

automatic system, which can introduce variability in results 

despite the use of standardized parameters. These factors must 

be considered when interpreting the data. Finally, during the 

evaluation process, multiple users reported issues while using 

a Mac. CaseViewer, used for the visualization of 3D HISTECH 

scanned slides, is not available on Macs; however, 3DHistech 

Panoramic viewer can be downloaded for free in the App Store 

for iPads.

7   |   Conclusion

In conclusion, this study presents a semi- automatic pipeline 

for quantitative analysis of immunohistochemically stained 

slides, particularly for low- cellularity tissues such as IVDs and 

cartilage. The semi- automatic method developed using QuPath 

has been proposed to address key limitations of manual cell 

counting, such as human fatigue, subjective interpretation, 

and regional bias, with the aim of improving accuracy and re-

producibility across groups following uptake. High inter- rater 

agreement and strong correlation with manual counting un-

derscore the method's robustness and reliability. Furthermore, 

the ProcessScanningData class enhances the workflow by pro-

viding a scalable, customizable solution for processing large 

datasets, reducing manual intervention, and facilitating repro-

ducible results. Despite minor reliance on manual training for 

cell detection, this approach represents a significant step for-

ward in standardizing IHC analysis, making it a valuable tool 

for researchers dealing with immunohistochemical data where 

the outcome measure of interest is cellular immunopositivity. 

The positive feedback from users, who reported high satisfac-

tion and intent to continue using the method, with all survey 

participants reporting that they would recommend its use to 

colleagues, highlights its practical applicability and potential for 

widespread adoption in future studies.
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