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Abstract 183 

Tropical forests and woodlands are key components of the global carbon and water cycles. Yet, how 184 

climate change affects these biogeochemical cycles is poorly understood because of scarce long-term 185 

observations of tropical tree growth. The recent rise in tropical tree-ring studies may help to fill this 186 

gap, but a large-scale quantitative analysis of their potential in global change research is missing.  187 

We compiled a list of all tropical tree species known to form annual tree rings and built a network 188 

encompassing 492 tropical ring-width chronologies to evaluate the potential to generate insights on 189 

climate sensitivity of woody productivity and to build centuries-long reconstructions of climate 190 

variability. We assess chronology quality, length, and climatic representativeness and explore how 191 

these change along climatic gradients. Finally, we applied species-distribution modeling to identify 192 

regions with potential for tree-ring studies in ecological and climatic studies.  193 

The number of tropical chronologies has rapidly increased, with ~400 added over the past two 194 

decades. Yet, tree-ring studies are biased towards high-elevation locations, with gaps in warmer and 195 

wetter climates, on the African continent, and for angiosperm species. The longest chronologies with 196 

strongest climate signals (i.e., synchronous growth variations among trees) are from cool regions. In 197 

wet regions, climate signals and precipitation sensitivity decrease. Most tropical regions harbor 5–15 198 

(and up to 80) species with proven potential to generate chronologies. The potential for long climate 199 

reconstructions is particularly high in drier high elevation sites. Our findings support strategies to 200 

effectively expand tree-ring research in the tropics, by targeting specific species and regions. Tropical 201 

dendrochronology can importantly contribute to global change research by generating historical 202 

context of climate extremes, quantifying climate sensitivity of woody productivity and benchmarking 203 

vegetation models.  204 

 205 

Keywords: Climate sensitivity, growth synchrony, pantropical tree growth, dendrochronology 206 
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Introduction 207 

 208 

Tropical forested ecosystems are key components of the global carbon and water cycles. Forests and 209 

woodlands in the tropics and subtropics (herein defined based on latitude between 30 0S and 30 0N; 210 

Corlett, 2013) contribute substantially to carbon sequestration (Pan et al., 2024), drive the interannual 211 

variability in the land carbon sink (Fan et al., 2019; Friedlingstein et al., 2020), and generate rainfall 212 

through high transpiration rates at regional and sub-continental levels (Staal et al., 2018). These 213 

contributions depend critically on the productivity of tropical vegetation (Poulter et al., 2014), and is 214 

modulated by geographic location and climate variability (Wang et al., 2016; Humphrey et al., 2018).  215 

Insights on this climate sensitivity of tropical vegetation are limited by the paucity of 216 

ecological field data and long-term climate data in the tropics (Menne et al., 2012). Compared to 217 

temperate and boreal zones, the density of meteorological stations, flux towers, permanent sampling 218 

plots, climate manipulation experiments, and tree-ring studies is much lower in the tropics (Babst et 219 

al., 2021; Crowther et al., 2015; Villarreal and Vargas, 2021; Zhao et al., 2019). In addition, the 220 

duration of tropical studies on climate-productivity relations is often much shorter compared to that of 221 

studies in other climate zones (Pastorello et al., 2020). This data scarcity limits options to calibrate and 222 

benchmark Dynamic Global Vegetation Models (DGVMs) for tropical ecosystems (Zuidema et al., 223 

2018; Xu et al., 2024). In addition, the low density of meteorological stations and short duration of 224 

instrumental climate across much of the tropics impairs the accuracy of gridded climate data products 225 

and prevents climatologists to put current climate extremes into a long-term perspective (Menne et al., 226 

2012).  227 

Tree-ring analyses can contribute to filling these data gaps by providing long-term, annually 228 

resolved datasets on species-level woody productivity and by allowing climate reconstructions. Extra-229 

tropical tree-ring studies have been used to reveal shifts in climate-growth relationships (Babst et al., 230 

2019), to benchmark DGVMs (Barichivich et al., 2021), and to perform distribution-wide analyses of 231 

climate sensitivity (Klesse et al., 2020). At tropical and subtropical latitudes, the annual formation of 232 

tree rings has now been proven for approximately 500 tree species (Brienen et al., 2016; Locosselli et 233 

al., 2020; Schöngart et al., 2017), and almost 500 tree-ring chronologies – time series of common tree-234 
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ring width patterns within a population – have been published (Zuidema et al., 2022). These recent 235 

advances exemplify the large potential of tropical dendrochronology to reconstruct past climate 236 

variability, to improve our understanding of the effects of climate fluctuation on tropical woody 237 

productivity, and offer opportunities to benchmark and calibrate remote sensing products and DGVM 238 

output (Babst et al., 2014; Jeong et al., 2020). Yet, a pantropical assessment of the potential of tropical 239 

tree-ring data for global change studies is missing to date.  240 

Here we leverage quantitatively review the quality, length, and climatic representativeness of 241 

tropical tree-ring chronologies, and by assessing the magnitude of climate sensitivity of tropical tree 242 

growth. We also evaluate the potential of current tropical dendrochronology to contribute to our 243 

understanding of climate sensitivity of woody productivity and to reconstruct climate variability over 244 

the past centuries. We conclude by identifying opportunities and difficulties for tropical tree-ring 245 

studies in hitherto underrepresented regions. 246 

We address the following questions: (1) To what extent are tropical tree-ring chronologies 247 

geographically and climatically representative of tropical wooded ecosystems? (2) What is the strength 248 

of the climate sensitivity of tropical tree growth and does this sensitivity depend on mean climate and 249 

on the quality of meteorological data? (3) Which climatic conditions offer the best opportunities for 250 

climate reconstruction based on tropical tree-ring chronologies? (4) What is the pantropical 251 

distribution of the potential for tree-ring studies and climate reconstruction?   252 
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Methods 253 

Assembling tree-ring chronologies  254 

Our review is based on chronologies included in a recently established tropical tree-ring network 255 

(www.tropicaltreeringnetwork.org). We compiled published ring-width chronologies from naturally 256 

regenerating tree populations in tropical and subtropical latitudes (30°N to 30°S). Thus, we included 257 

chronologies based on geographical limits of the tropics in a broader sense and we did not select sites 258 

exclusively within the climatological definition of the tropics or exclusively in tropical biomes. This 259 

implies that several of the genera we include are commonly present in temperate regions (Abies, Picea, 260 

Larix, etc.).  261 

We used raw ring-width data from two sources: (1) 242 chronologies from the International Tree-Ring 262 

Data Bank (ITRDB, https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring) 263 

and (2) 250 chronologies from individual contributors. We thus included a total of 492 chronologies in 264 

the quantitative analyses, based on measurements of 10,936 individual trees and 20,915 radial series 265 

from 139 species (Appendix 1). Short or statistically “unsafe” chronologies are usually removed from 266 

studies that combine datasets. Yet, as our intent was to provide the widest possible perspective on 267 

tropical tree-ring studies, we included short chronologies (here, the minimum was 16 years) and those 268 

based on only a few individuals (minimum here = 4 trees). In our final dataset, 82.7% of the 269 

chronologies covered at least 35 years and included a minimum of 10 individuals.  270 

Additionally, to explore the broader potential of using tree rings in the tropics, we also compiled a 271 

species list from studies that use tropical tree rings for other purposes than building chronologies. 272 

Several studies exist that have applied tree-ring data without building chronologies to answer 273 

questions related to forest ecology (Van der Sleen et al., 2015a), dynamics (Godoy-Veiga et al., 2018), 274 

isotope-based rainfall reconstructions (Woodborne et al., 2015), tree physiology (Garcia et al., 2022; 275 

Loader et al., 2011), anthropogenic disturbances (Caetano-Andrade et al., 2020), or forest management 276 

(Groenendijk et al., 2017). Many of these studies did not focus on climate-growth related questions 277 

per se, and hence did not seek to build chronologies. A large part of these studies therefore do provide 278 

proof of annuality of ring formation using radiocarbon dating, phenology observations, dendrometers, 279 
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cambium wounds or ring counts in plantations of known age (Brienen et al., 2016). Although not 280 

producing chronologies, these studies reflect the potential of a broader set of species for tree-ring 281 

studies. This species list was created by complementing species lists from review papers (e.g., Brienen 282 

et al., 2016; Locosselli et al., 2020; Quesada-Román et al., 2022; Portal-Cahuana et al., 2023) with a 283 

literature search using the search terms “tropical tree rings” and “tropical dendrochronology”. This 284 

was not intended to be an exhaustive search and we acknowledge that we have missed non-English 285 

publications (e.g., in Spanish; see Portal-Cahuana et al., 2023), but we believe it does provide a good 286 

representation of tropical tree species with potential to be used in global change studies.  287 

 288 

Chronology construction 289 

To allow for the comparison of results across sites, we redeveloped chronologies from the raw ring-290 

width data. We applied a flexible 30-year cubic-spline detrending method (with a 50% frequency cut-291 

off) to all individual raw ring-width series to remove low-frequency signals (i.e., trends in the growth 292 

series at frequencies of decades or centuries) and emphasizes the interannual variation in ring widths 293 

that was our main interest (Hughes et al., 2010). We developed mean site chronologies of a 294 

dimensionless ring-width index (RWI) from the detrended series using a bi-weight robust mean. We 295 

then used the most recent 50 years of each chronology (or less in case of short chronologies) for 296 

further analyses (e.g., of inter-series correlations (Rbar) or monthly climate correlations, etc.). We 297 

followed the Schulman convention in the development of all tree-ring series from the Southern 298 

Hemisphere (Schulman, 1956), except for chronologies in the Brazilian Caatinga biome, where the 299 

rainy season coincides with the Northern Hemisphere’s growing season (Zuidema et al., 2022). We 300 

conducted detrending and chronology building using the dplR package (Bunn, 2008; Bunn et al., 301 

2023) in R (R Core Team, 2023). We note that chronologies and further analyses presented here may 302 

slightly differ from those of the published chronologies, because of differences in detrending 303 

procedure and period covered in the study.  304 

 305 
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Climate data and distance to climate stations 306 

We used two types of gridded climate data: (1) Worldclim version 2 (worldclim.org) to obtain mean 307 

annual precipitation (MAP) and temperature (MAT) between 1970-2000 at 1-km spatial resolution, 308 

and (2) CRU TS4.02 to obtain monthly maximum temperature (Tmax) and monthly precipitation data 309 

for the most recent 50 years of each chronology, at a coarser spatial resolution of 0.5°. The quality of 310 

gridded climate data is a function of the local density of meteorological stations. A low density likely 311 

weakens the accuracy of the interpolation and, with that, also weakens the correlation between climate 312 

variability and ring width. To evaluate the impact of meteorological station density on the magnitude 313 

of climate-growth relationships we calculated the mean distance between each chronology location 314 

and its five nearest meteorological stations. We do not account for elevation differences between the 315 

climate stations and the study location as we assume that these changes will affect the absolute values 316 

of temperature and precipitation, but not so much the interannual variation in the data. We obtained 317 

locations of all stations within the (sub-)tropics from the Global Historical Climatology Network 318 

(Menne et al., 2012) and selected stations with at least 25 years of data. We then calculated the 319 

distance of each study location to the nearest stations per corresponding continent using 'Vincenty' 320 

(ellipsoid) great-circle distance estimations with  the distm function of the geosphere R package 321 

(Hijmans, 2021). We then identified the five stations closest to each of the tree-ring sites and 322 

calculated their mean distance to the site. Finally, we checked for a statistical relationship between this 323 

mean distance and the strength of the climate-growth correlations obtained from the tree-ring data. 324 

 325 

Climatic representativeness  326 

We evaluated the climatic representativeness of our network (research question 1) by comparing the 327 

MAP and MAT distribution of the chronologies from our tree-ring study sites against MAP and MAT 328 

distributions from the entire tropical land areas supporting woody vegetation (i.e., with >10% tree 329 

cover). We used tree-cover data from the MODIS-derived MOD44B product (version 6; 330 

https://lpdaac.usgs.gov/products/mod44bv006/) to mask out areas with <10% tree cover from the 331 

Worldclim 2 data. We then calculated continent-level relative MAP and MAT distributions (i.e., the 332 

kernel density estimates) of the tropical land area with woody vegetation. To obtain corresponding 333 
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density estimations for precipitation and temperature of the tree-ring network, we calculated these 334 

density estimates for the sites in the network using the same maximum, minimum and bin-size values 335 

as for the entire forested area. By dividing the scaled distribution values of the network by those of the 336 

forested land area per continent, we obtained a measure of biases in how the network represents the 337 

climatic envelope: values above 1 indicate “overrepresentation”, those below 1 “underrepresentation”. 338 

Thus, if a certain MAT bin contains 5% of the values of the tree-ring network but represents only 2% 339 

of the values of all tropical land area, this ratio would be 2.5 and an indication that the network is 340 

biased towards overrepresenting this MAT range. Note that this measure of representativeness tells 341 

how well a part of the climatic envelope is covered in relative terms but does not provide information 342 

on the absolute density of tree-rings sites (per unit area).  343 

 344 

Climate correlations and growth synchronicity 345 

To estimate the strength of climate signals embedded in tropical tree-ring chronologies (research 346 

question 2), we calculated simple Pearson’s correlation coefficients between Ring Width Index (RWI) 347 

and monthly Tmax and precipitation data for a 24-month period that includes the year of growth (e.g., 348 

the peak of the growing season) and the previous year. For Northern Hemisphere and Caatinga sites, 349 

this period includes the full calendar year prior to the year of ring formation, plus the full calendar year 350 

during which the ring was formed. For Southern Hemisphere sites, it contains the 12-months July-June 351 

period preceding the onset of ring formation, and the following 12 months during which the ring was 352 

formed. For each climatic variable we then selected the highest monthly correlation coefficient of the 353 

24 correlations. We do not present a more exhaustive analysis of climate responses, because our aim is 354 

to provide an indication of the maximum climate sensitivity of growth, which is relevant for climate 355 

reconstructions and studies quantifying climate effects on tree growth.  356 

The quality of tree-ring chronologies is commonly indicated by a measure of growth 357 

synchronicity. As a measure of this synchronicity, we used the dendrochronological statistic 'Rbar': the 358 

mean correlation between all the ring-width series within a population (Hughes et al., 2010). Low 359 

Rbar-values may indicate poor dating quality, weak effects of common environmental drivers on 360 
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growth, or both. We did not set a minimum Rbar criterion for this review, because we were interested 361 

in presenting the full scope of characteristics of tropical tree-ring chronologies.  362 

 363 

Statistical analyses: climate correlations, Rbar, chronology length 364 

To evaluate factors driving the degree of climate sensitivity (question 2), we performed a multiple 365 

regression of the strongest monthly climate correlation, which we expected to increase with site aridity 366 

(i.e., higher MAT and lower MAP) and to be reduced when meteorological stations are scarce (i.e., 367 

higher distance to the five nearest stations). A second regression assessed factors influencing the 368 

growth synchronicity (Rbar) of the chronologies, which needs to be high for climate reconstructions 369 

(question 3). Rbar is expected to be higher at low MAT (i.e., in colder, mountainous climates), at low 370 

MAP (i.e., where precipitation exerts a strong common limitation to the growth of co-occurring trees) 371 

and to increase with the strongest monthly correlation (i.e., a strong synchronicity is likely driven by a 372 

common climatic limitation). The third multiple regression analysis evaluated how the potential for 373 

climate reconstruction (question 3) in terms of chronology length (tree longevity) is associated with 374 

mean site climate. We expected longer chronologies at lower MAT and lower MAP, thus at sites at 375 

cold and/or dry limits of the species where its growth is restricted by climate.  376 

For all multiple regressions, we used the “leaps” algorithm for model selection, an all-subset 377 

model comparison that is more robust than stepwise methods (Furnival and Wilson, 1974). We 378 

checked the Variance Inflation Factors (VIFs) of all models and found these to be lower than 2. 379 

Analyses were conducted in R using packages leaps (Lumley, 2020) and bestglm (McLeod et al., 380 

2020). 381 

 382 

Species distribution models 383 

To identify geographic regions that harbor tree-ring forming species, and areas that are particularly 384 

suitable for building tropical tree-ring chronologies, we ran species distribution models (Maxent) 385 

based on occurrence data from Global Biodiversity Information Facility – GBIF – extracted using the 386 

rgbif R package (Chamberlain et al., 2023) – and Worldclim2 climate data. We ran these distribution 387 

models for the larger set of ring-forming species (i.e., the 513 species extracted from the literature) and 388 
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the set of species for which chronologies have been built (i.e., the 139 species of which chronologies 389 

are included in the network). For each species, we ran distribution models only for the continent where 390 

the species occurs naturally. To reduce the effect of a high local density of occurrence data on model 391 

fits, we thinned observation data to a maximum of one observation per 0.5° grid cell. Additionally, we 392 

only conducted distribution models for species that had a minimum of 10 grid cells with observations, 393 

that is, for 450 (out of 513) species for the large set of ring-forming species, and for 122 (out of 139) 394 

species for the chronology-bearing species list. We summed the probability of occurrence of all 395 

species per cell to produce a map with estimates of the total number of ring-forming species and that 396 

of species with dendrochronological potential per grid cell.  397 

We used a similar approach to quantify the potential length of the chronologies that can be 398 

built in each cell, using the species list for which chronologies exist. For grid cells with a probable 399 

species occurrence (P>0.5), we calculated the maximum length (90% of the maximum chronology 400 

length) of the chronologies for that species and averaged this across all species occurring in that cell. 401 

This yielded a map with estimates of the maximum chronology-length per grid cell, a proxy for the 402 

potential for climate reconstruction.  403 

We note that values in the resulting maps should be interpreted cautiously because (1) the 0.5 404 

probability cut-off for the species distribution model is rather arbitrary and probably does not represent 405 

well marginal sites where the most growth-limiting conditions for a species occur and thus where the 406 

longest and most climate-sensitive chronologies for that species can be built, (2) species occurrence in 407 

a certain grid cell does not necessarily imply its suitability for chronology construction at that local 408 

climate (Baker et al., 2017), (3) the quality and density of species-occurrence data may vary between 409 

continents (Meyer et al., 2016), which affects distribution modelling (Beck et al., 2014), (4) the 410 

maximum lifespan of a species changes along environmental gradients (Locosselli et al., 2020), which 411 

was not accounted for, and (5) distribution modelling based on climate data does not account for 412 

changes in species occurrence due to soil conditions (Zuquim et al., 2020) and effects of forest 413 

degradation on tree age (Feeley et al., 2012). Thus, the resulting maps provide a first representation of 414 

the geographic distribution of the potential for chronology building and climate constructions.  415 
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Results and Discussion 416 

Geographic and taxonomic distribution of tropical tree-ring chronologies 417 

The geographic distribution of tropical tree-ring chronologies is uneven (Fig 1A). Among the 492 418 

chronologies included in this review, less than 10% are located on the African continent, whereas 419 

more than half are from the Americas. Dendrochronology studies are also biased towards the Northern 420 

hemisphere: most studies were performed in the Northern Hemisphere (~1.5 times more), while a 421 

larger proportion of land between 30⁰S and 30⁰N is in the Southern hemisphere (134% more land than 422 

the Northern Hemisphere). These geographic biases coincide with those of the global tree-ring 423 

databank (ITRDB), in which extra-tropical and Northern Hemisphere chronologies dominate (Zhao et 424 

al., 2019). These biases possibly arise from the nature of research funding (concentrated in the Global 425 

North) or the role of site selection close to home institutions. The number of tropical chronologies has 426 

increased rapidly over the past decades. Since the year 2000, close to 400 chronologies have been 427 

added at a rather steady rate of around 20 per year (Fig 1B); equivalent to an annual addition 8.3% for 428 

tropical chronologies to the ITRDB. About two thirds of the new additions (217 out of 378) are from 429 

lowland regions (<1500m a.s.l.) and the growth in the number of chronologies has been particularly 430 

steep in the Americas.  431 

In total, our literature search identified 513 species belonging to 287 genera and 72 plant 432 

families. Our network encompasses chronologies for 139 tree species (Fig 1B-D), belonging to 88 433 

genera and 35 plant families (Appendix 2). Our network thus includes about one quarter of the 434 

(sub)tropical tree species with known annual ring formation (139 out of a total of 513). The lower 435 

number of species covered in our network partly reflects chronologies that have not (yet) been 436 

included, but a much larger share represents species for which tree-ring studies did not include the 437 

construction of chronologies. The difference in species number also demonstrate the high potential to 438 

increase the number of species and chronologies for tropical trees. On the other hand, the rather high 439 

proportion of tree-ring studies without chronology building also likely reflects difficulties of 440 

constructing ring-width chronologies in the tropics. Ring boundaries are diverse and can be difficult to 441 

identify in tropical species (Fichtler and Worbes, 2010; Brienen et al., 2016). 442 
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 443 

Figure 1. Pantropical distribution and recent increase in the number of tropical tree-ring 444 
chronologies. (A) Geographical distribution of 492 tropical tree-ring chronologies from angiosperms 445 
(black squares) and gymnosperms (triangles) included in this review. The map background is MODIS-446 
based tree cover percentage. (B-C) Temporal change in the number of chronologies per continent (B) 447 
and the number of species for which chronologies have been constructed (C), grouped by 448 
gymnosperms and angiosperms and separated in columns per continent: Americas, Africa, Asia.  449 
 450 

Tropical trees can also show irregular growth (e.g., fluted stems, buttress roots), form false 451 

rings, and partial cambial dormancy (Boninsegna et al., 2009). These difficulties increase the chances 452 

of accumulated measurement errors hampering crossdating further into the past (Black et al., 2016) 453 

and it is recommended to work with a large number of individuals, with cross-sectional discs or 454 

multiple radii collected per tree (Brienen & Zuidema, 2005; Groenendijk et al., 2014) and sampling 455 

above parts of the stem with irregular growth (Granato-Souza et al., 2019). Another difficulty in 456 

constructing chronologies may be the lack of a strong limiting climatic factor on growth (e.g., a 457 
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pronounced dry season) (Groenendijk et al., 2014). Yet, this does not apply everywhere, because 458 

chronologies have been successfully built in a-seasonal, hyper-wet tropical forests (Giraldo et al., 459 

2023). Additional barriers for chronology building include the difficulty to assess remote field areas 460 

for collection of additional samples, the low number of tree-ring researchers and laboratories, and 461 

difficulties to publish in English (Portal-Cahuana et al., 2023). National and international training 462 

programs can strongly boost tree-rings studies in a country (Portal-Cahuana et al., 2023) and are 463 

needed, especially in Africa where tree-ring analyses has a large but unfulfilled potential (Gebrekirstos 464 

et al., 2014). International projects should also foresee building laboratory and analytical infrastructure 465 

(increment borers, microtomes, polishing machines, measuring tables, scanners, software, etc.) and 466 

establish long-term collaborations and training to overcome these barriers in tropical 467 

dendrochronology and ensure a lasting legacy.  468 

The taxonomic distribution of tree species with existing chronologies is strongly skewed, with 469 

44% of chronologies stemming from pines (Pinaceae) and with gymnosperm taxa representing 55% of 470 

all chronologies. Yet, the dominance of gymnosperms in tropical chronologies is less pronounced than 471 

in the global ITRDB, where they represent >80% chronologies (Zhao et al., 2019). Among 472 

chronologies from angiosperm species, taxonomic diversity is particularly high, with 96 species 473 

represented belonging to 76 genera. The top-10 angiosperm families include Fabaceae (55 474 

chronologies) and the typical tropical (lowland) families Meliaceae (53) and Bignoniaceae (9). During 475 

the past two decades, the number of species for which chronologies have been constructed increased 476 

by about 100 (Fig 1C). This growth has been particularly rapid in the Americas since 2010, where the 477 

number of species represented by chronologies has reached 100. The recent increase in the number of 478 

studied tree species producing rings and the number of chronologies built demonstrates the large and 479 

underexploited potential of dendrochronology in the tropics. This potential may even be larger, as 480 

many studies in the tropics are not published in peer-reviewed journals (remaining in grey literature, 481 

such as theses and reports; Portal-Cahuana et al., 2023), many studies are published in languages other 482 

than English (e.g., initial exploratory works in the 1930s and 1970s; Worbes, 2002), and many tropical 483 

chronologies are not added to global tree-ring networks. The rapid research advances in the tropical 484 
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Americas show no signs of leveling off. A likely factor responsible for this faster development of 485 

American dendrochronology is a higher number of tree-ring labs and trained professionals compared 486 

to Asia and Africa (Gebrekirstos et al., 2014; Pumijumnong, 2013). Yet, such potential is also likely to 487 

exist in Asia and Africa, given the abundance of ring-forming tree taxa and the availability of long-488 

lived tree species (Gebrekirstos et al., 2014; Groenendijk et al., 2014; Pumijumnong, 2013), but the 489 

high diversity and abundance of dipterocarps that do not form rings may limit opportunities in the wet 490 

Asian tropics (especially in the ‘Indo-Malayan Realm’).  491 

 492 

Climatic representativeness of tropical tree-ring chronologies: new frontiers 493 

Tropical tree-ring chronologies have been constructed across a wide MAP range, from <200 to 494 

>5000mm and these chronologies thus represent precipitation regimes of the tropical woody land area 495 

well. Arid climates (with MAP <500 mm), that cover >15% of the tropical woody land area, are also 496 

somewhat underrepresented with ~5% of the chronologies. Sites with more semi-arid and seasonal 497 

climates (500-1500 mm MAP) are better represented than wetter regions (>2000 mm MAP), with the 498 

latter covering only 8% of all chronologies (n=39 sites). The chronologies at wetter sites and recent 499 

studies in extremely wet regions (Giraldo et al., 2023) illustrate the prospects to conduct tree-ring 500 

studies at the wettest extremes of the tropical rainfall distribution.  501 

In contrast to the fairly good representation of precipitation regimes in tree-ring chronologies, 502 

their distribution rather poorly follows that in temperature. Half of the tropical tree-ring studies have 503 

been conducted in montane ecosystems (>1500 m a.s.l.), particularly studies with a focus on (long-504 

lived) gymnosperm species in Asia and the Americas. These areas with low-temperature climates 505 

(<15°C MAT), which cover just 2% of the tropical land area with woody vegetation, are strongly 506 

overrepresented (Fig 2A-C) in our network. Conversely, warm tropical lowland ecosystems with a 507 

MAT >25°C, which cover 88% of wooded land in the tropics, are represented by only 15% of 508 

chronologies.  509 
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 510 

Figure 2. Climatic distribution and skewness of tropical tree-ring chronologies. (A-C) 511 
Continental-level relative kernel-density estimates of the mean annual precipitation (MAP) and 512 
temperature (MAT) envelope covered by the tree-ring chronologies (‘Chronologies’) and the tropical 513 
land area with woody vegetation (pixels with >10% tree cover; ‘Continent all’). Spatial distribution of 514 
over- and underrepresentation of MAP (B) and MAT (C) of tropical tree-ring chronologies. 515 
Underrepresentation (values < 1) implies that – for a given climatic condition – the proportion of sites 516 
in the tree-ring network is smaller than that of the forested area. Values >3 were set to 3 to improve 517 
clarity.  518 
 519 

We projected the climatic “representativeness” covered by tropical dendrochronological 520 

studies spatially, to identify regions that require more research attention or that are well represented 521 

climatologically (Fig 2D-E). In terms of precipitation, regions with seasonally dry climates (Central 522 

America, Northeastern Brazil, the Sahel, large areas in India) are more prominently represented in our 523 

network while the wet tropics (Amazon, Central Africa, Southeast Asia) are underrepresented. In 524 
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terms of temperature, patterns are similar but show the prevalence of colder climates in the network. 525 

Regions that are overrepresented in terms of temperature include high-elevation areas in parts of 526 

Mexico and Asia, and – to a lesser extent – low-elevation subtropical regions in Southeast Brazil and 527 

subtropical China. We note that, independent of the climate-envelope coverage, the overall low 528 

number of tropical dendrochronology studies implies that the representation of tropical climates in 529 

tree-ring records is considerably lower (by a factor 5) than that of temperate and Mediterranean 530 

climates (Babst et al., 2019; Zhao et al., 2019). The interpretation of these maps should thus be 531 

cautious, especially for Africa, where the number of chronologies is low, and representation is poor 532 

across the full climatic gradients.  533 

What does this climatic skewness in tropical chronologies imply for their use in global change 534 

studies? First, climatic over- and underrepresentation needs to be accounted for in regional or 535 

pantropical analyses by checking its influence on results or explicitly accounting for its influence 536 

using weighted statistical analyses (e.g., Zuidema et al., 2022). Second, published tropical tree-ring 537 

chronologies should be readily uploaded in databases such as the ITRDB, because this increases their 538 

representation in pantropical or global analyses. This also applies to chronologies with weak climate 539 

responses as this helps drawing a more complete picture of tropical and global tree responses to 540 

climatic variation. Additionally, ring-width data need to be archived correctly (e.g., TRiDaS format; 541 

Jansma et al., 2010), and supported by appropriate metadata (Zhao et al., 2019) and preferably also 542 

with ancillary tree-level data that currently not supported by the ITRDB (Rayback et al., 2020).  543 

Third, our analyses of climatic representativeness provide guidance to identify priority regions 544 

for tree-ring sampling. Evidently, the highest priority is in collecting samples and building 545 

chronologies for African tree species, which are poorly represented. In addition, increased sampling 546 

efforts are needed in the wet and warm tropics, which cover a vast area but are poorly represented. 547 

Chronology building in the wet and warm tropics can be challenging, because interannual climatic 548 

variation is limited and common climate responses across trees can be concealed by the impacts of 549 

canopy dynamics (Giraldo et al., 2023; Groenendijk et al., 2014). Nevertheless, quantifying such 550 

subtle and variable responses of tree growth to climate variability in the wet and warm tropics is 551 
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crucial to understanding and predicting climate-change effects on forest productivity. Broadly, the 552 

priority regions indicated here are consistent with those based on a global analysis of the ITRDB 553 

(Zhao et al., 2019), but the considerably larger number of tropical chronologies included here allowed 554 

us to provide more specific recommendations for tropical climates and biomes.  555 

 556 

Potential of tropical tree-ring chronologies to reveal climate sensitivity of tree growth. 557 

The potential of tree-ring chronologies to provide insight into the sensitivity of tropical tree growth to 558 

climate fluctuations depends on the strength of climate-growth correlations and the degree to which 559 

temporal variations in tree-ring width are similar across trees in a population (the interseries 560 

correlations, i.e., Rbar). We analyzed both factors for all chronologies. Tree-ring width may strongly 561 

respond to climatic conditions during one or more months in a year. Strong correlations between ring 562 

width and climate variables such as precipitation or maximum temperatures (Tmax) during a particular 563 

month provide a first indication of the climate sensitivity of tree growth. We found these maximum 564 

correlations with monthly precipitation to be mostly positive (in 73.6% of chronologies) with a mean 565 

Pearson correlation coefficient of 0.39 (Fig 3A). By contrast, monthly correlations for Tmax were 566 

mostly negative (66.5 %), and slightly stronger in magnitude (r=-0.40, Fig 3B). This distribution of 567 

prevailing positive precipitation and negative Tmax sensitivities is consistent with those obtained in 568 

global and pantropical analyses (Babst et al., 2019; Zuidema et al., 2022). Across continents, stronger 569 

correlations were found for chronologies from the Americas, for both Tmax (negative) and precipitation 570 

(positive) (Fig 1A).  571 
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 572 

Figure 3. Climate sensitivity of tropical tree growth and its relation to mean climate and the 573 
quality of climate data. Maximum climate sensitivity is shown as the highest correlation coefficient 574 
between the tree-ring chronologies and monthly climate (precipitation or Tmax) for 24 months 575 
including the year of ring formation and the preceding year. Multiple regression models were 576 
constructed, with explanatory variables MAP, MAT and distance to the nearest meteorological station 577 
(as a proxy for climate data quality). Lines represent predicted relations of the regression model (Table 578 
1): black lines represent the results including all correlations, grey lines the results of modeling with 579 
only the prevailing correlations (positive correlations for Precipitation and negative for Tmax), full lines 580 
represent significant and dashed lines non-significant correlations (p< 0.05). 581 
 582 

For a subset of the prevailing correlations (positive for precipitation, negative for Tmax) we 583 

tested associations of correlation coefficients with mean climate and with distance to the nearest 584 

meteorological station (viewed as a proxy for the representativeness and quality of climate data). Only 585 

a small portion of the variation in precipitation and temperature sensitivity across chronologies was 586 

explained by these variables (Table 1). Climate sensitivity of precipitation was stronger at drier sites, 587 

for both precipitation and temperature, suggesting a stronger water limitation during hot or dry years 588 

in more arid conditions. Negative effects of Tmax increased with decreasing MAP, but, contrary to our 589 

expectations reduced at warmer sites (i.e., less negative with increasing temperatures). 590 

 591 

 592 



22 
 

Table 1. Associations of climate sensitivity with mean climate and the quality of climate data. 593 
The proxy for climate sensitivity used is the maximum correlation between ring-width index (RWI) 594 

and monthly precipitation or Tmax. Only prevailing correlations are used, so: positive correlations for 595 

precipitation and negative for Tmax. Shown are estimates (Est, unscaled) of coefficients, significance 596 

levels and relative importance values (RI) per explanatory variable. N=number of chronologies. 597 

*=p<0.05, **=p<0.01, ***=p<0.001.  598 

  Precipitation sensitivity Tmax sensitivity  
Explanatory variables Est RI Est  RI 
Intercept  0.43***  -0.52***  

MAP (mm) -0.000017* 0.23  0.000030** 0.24 
MAT (°C) NS -  0.0034*** 0.3 
Distance to nearest 
meteorological station (km) -0.00029*** 0.77  0.00049*** 0.46 

R2 0.07  0.19  
Degrees of freedom  361   326   

 599 

Climate sensitivity was weaker for chronologies situated at longer distances from 600 

meteorological stations. An increase in the distance to the nearest station of 100 km reduced the 601 

absolute correlation coefficient by 0.03 for precipitation and by 0.05 for Tmax. Distances to the nearest 602 

station were smaller in South America, reflecting the higher density of stations. As a large share of 603 

tropical chronologies is obtained from sites at >100 km from the nearest station (~24%), this finding 604 

suggests that dendrochronological analyses underestimate the climate sensitivity of tropical tree 605 

growth. In addition, in mountainous areas elevational differences between tree-ring sites and climate 606 

stations may add additional uncertainties in the position of chronologies in our climate space based on 607 

interpolated data. Yet, a more detailed analysis of the effect of distance to climate station conducted 608 

for a smaller set of tropical chronologies (n=347) revealed limited sensitivity of climate correlations to 609 

proximity of climate stations (Zuidema et al., 2022).  610 

The extent to which tree growth is synchronized depends on the degree to which climate 611 

exerts a dominant limitation on tree growth, compared to other factors such as canopy dynamics, 612 

disturbances, pests, and diseases. The Rbar of all series within a chronology varied strongly between 613 

chronologies, from -0.04 to 0.85, thus from no common growth signal to very strong synchronization 614 

among trees. The strength of growth synchronicity differed between continents and was considerably 615 
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lower for African chronologies (mean=0.30) compared to American and Asian chronologies (0.50-616 

0.52; Fig 4). We further assessed to what extent the variability in growth synchronicity can be 617 

explained by mean climate (MAT and MAP) and by information on the maximum climate sensitivity 618 

(i.e., the maximum climate correlation). As expected, we found a higher Rbar (i.e., stronger 619 

synchronicity) at more arid (low MAP) and cooler (low MAT) sites. At those sites, years with low 620 

water availability or low temperatures may impose strong limitations to tree growth. We also found 621 

growth synchronicity to be stronger for chronologies that exhibited stronger correlations with monthly 622 

climate (Fig. 4).  623 

 624 

Figure 4. Growth synchronicity of tropical tree species as a function of mean climate and 625 
maximum climate sensitivity. Growth synchronicity is calculated as the mean of all correlation 626 
coefficients between individual tree-ring series within a chronology (Rbar). Lines represent predicted 627 
effects of Mean Annual Precipitation (MAP), Mean Annual Temperature (MAT) and maximum 628 
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climate sensitivity (i.e., highest maximum monthly correlation) based on a multiple regression model 629 
(Table 1).  630 
 631 

Our review of climate sensitivity shows that tropical tree-ring chronologies can be an 632 

important tool to assess climatic impacts on radial stem growth. This sensitivity can be evaluated at 633 

annual resolution for many species and sites. Another important virtue of tropical tree-ring 634 

chronologies is the ability to obtain tree growth data retrospectively and thus fill gaps in growth 635 

measurements in both space and time. We also found that the quality of some tropical tree-ring 636 

chronologies is rather poor, as they are based on few radial series or from few individuals only, 637 

resulting in low growth synchronicity and weak climate correlations. Part of the variability in growth 638 

synchrony and climate-signal strength in the chronologies from these limitations and from decision of 639 

individual researchers building chronologies (e.g., synchronization effort, number of trees in the 640 

dataset to select only the most sensitive, etc.). Such data limitations can be overcome by teaching, 641 

applying, and publishing best practices of (tropical) chronology construction (Black et al., 2016), but 642 

also by reporting on the failure to build chronologies (Aragão et al., 2022; Groenendijk et al., 2014). 643 

Assessing the quality of tree-ring chronologies is not straightforward, because low growth 644 

synchronicity can result from small sample sizes, poor quality of ring measurements and cross-dating, 645 

or from the lack of a common signal and complacent growth. No analyses tools are currently available 646 

to disentangle these causes in tree-ring datasets. Long-term annual monitoring of large permanent 647 

plots (Feeley et al., 2007) and studies using (automatic) high-resolution dendrometer measurements on 648 

species with varying strategies (Wagner et al., 2016) may help elucidating these causes.  649 

An important limitation of the current set of tropical tree-ring chronologies is poor species 650 

replication. Among the 164 species included in the Network, 134 are represented by just 1-3 651 

chronologies, and only 8 species are represented by 10 or more chronologies, mostly in montane 652 

climates. Proper replication is needed to assess and predict how climate sensitivity shifts across 653 

climate gradients within the distributional ranges of species (Babst et al., 2018; Klesse et al., 2020), 654 

and thus to assess its vulnerability to shifting climates (Heilman et al., 2022; Perret et al., 2024). At 655 

present, this is possible for only very few tropical tree species and genera (Aragão et al., 2022; Baker 656 

et al., 2015; Zuidema et al., 2020), with limited spatial replication and across limited climate ranges.  657 
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 658 

Potential of tropical tree-ring chronologies for climate reconstruction 659 

An obvious prerequisite for tree-ring based climate reconstruction is the length of the chronology. 660 

Chronology length varied from 16 to 1237 years (Fig 5). Median chronology length was 203 years, but 661 

it was substantially higher for gymnosperms (median length of 288 years) than angiosperms (131 662 

years). About half (n=249) of the chronologies had a length of >200 years. Given that instrumental 663 

climate data in tropical climate zones are sparse and short, these longer chronologies provide 664 

opportunities for climate reconstruction, provided that their climate signal is strong. Successful climate 665 

reconstructions based on tropical tree-ring data have been conducted on all tropical continents 666 

(Buckley et al., 2010; Granato-Souza et al., 2019; Heinrich et al., 2008; Stahle et al., 2011; Therrell et 667 

al., 2006) and have been used to establish continental-scale drought atlases, as well as analyses of 668 

major drought events (Cook et al., 2010; Morales et al., 2020; Stahle et al., 2016).  669 

 670 

 671 
Figure 5. Potential for tree-ring based climate reconstruction and its relation to mean climate. 672 
Shown is the longevity of all reviewed chronologies – an important prerequisite for climate 673 
reconstruction – for gymnosperms and angiosperms separately. Lines represent predicted effects of 674 
MAP and MAT on chronology length based on a multiple regression model (Table 2).  675 
 676 

The exploration of additional proxies of climate information (e.g., stable isotopes, wood 677 

anatomy) have also shown promising results (Van der Sleen et al., 2015b; Wils et al., 2010). We tested 678 

the extent to which mean climate is associated with chronology length and whether this relationship 679 

differs between gymnosperms and angiosperms. We found chronologies to be longer in cooler 680 
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climates and for gymnosperms compared to angiosperms (Table 2). The temperature effects were quite 681 

strong: chronology length extended by almost 8 years for every degree decrease in MAT. While high-682 

elevation sites and gymnosperm species dominated the subset of long tropical chronologies, about 683 

29.5% of angiosperm chronologies from warm (>20 °C) and moist (>1200 mm yr-1) tropical climate 684 

sites extended to >200 years (n=26 of 88). Some of these angiosperm chronologies have been used for 685 

climate reconstruction in lowland tropical forests, adding essential, century-scale climate records to 686 

the instrumental record (D’Arrigo et al., 2011; Granato-Souza et al., 2019; Lopez et al., 2017).  687 

 688 

Table 2. Results of multiple regression models relating chronology characteristics with mean 689 
climate and climate sensitivity. Shown are estimates (Est, unscaled) of coefficients, significance 690 

levels and relative importance values (RI) per explanatory variable. Dashes (-) indicate variables not 691 

initially included in the model. N=number of chronologies. *=p<0.05, **=p<0.01 ,***=p<0.001. 692 

 Growth synchronicity 
(Rbar) 

Chronology length (y) 

Explanatory variables Est RI Est RI 

Intercept 0.616***  295***  

MAT(°C) -0.00427*** 0.26 -7.78*** 0.43 

MAP (mm) -0.0000621*** 0.36 0.0191* 0.02 

Highest Tmax correlation -0.0730* 0.22 - - 

Highest P correlation 0.0649*** 0.16 - - 

Gymnosperms - - 134*** - 

R2 0.19  0.25 

Degrees of freedom 479  493 

 693 

The rapid rise of tree-ring studies and chronology construction in the Americas reveals the 694 

large potential for developing the field. But this rapid development likely also reflects recent increase 695 

in opportunities, funding, and interest in this field within the Americas, which may be slower in other 696 

continents. Main barriers to rapid development of tropical dendrochronology include limited 697 

laboratory infrastructure, experience, and funding for tree-ring analysis. In addition, factors such as 698 

low tree abundance in the forest, high wood density, poor taxonomic knowledge, and difficulties to 699 
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anatomically identify ring boundaries may limit practical application of tree-ring studies on many 700 

tropical (angiosperm) tree species (e.g., Groenendijk et al., 2014). High-resolution X-ray CT scanning 701 

(De Mil et al., 2016) and pith-to-bark histological sections (Quintilhan et al., 2021) can aid in ring-702 

boundary identification. Opportunities to overcome these barriers include capacity-building programs, 703 

North-to-Tropical skill transfer and support with laboratory equipment, intensified cross-continental 704 

tropical collaborations (e.g., in networks) and open science (access to data, data standards, scripts for 705 

analyses and publications).   706 

 707 

Pantropical and continental-level gaps and opportunities for tree-ring analysis 708 

To identify opportunities for tropical dendrochronology, we produced global maps of estimated 709 

number of species with proven annual tree-ring formation, of the number of species with published 710 

chronologies and of age estimates based on species distribution models (Fig 6). The maps show that 711 

across large parts of the woody tropical land area >20 tree species are expected to occur with known 712 

annual ring formation (Fig 6A), and >5 species with potential for chronology building (Fig 6B). Yet, 713 

large continental differences on these projections exist, with overall a greater apparent potential in 714 

regions in the Americas and Asia compared to Africa. In some areas – South-Eastern Brazil, 715 

Mesoamerica, and Southern China – more than 15 species with potential for chronology construction 716 

are expected to occur. The geographic distribution of species in these maps is a direct function of the 717 

total number of studied species per continent, because species distribution models are produced at 718 

continental level. As a result, the values for the African continent are low and should be interpreted 719 

with caution. Yet, this map does provide a first guidance to select target areas for future 720 

dendrochronological studies.  721 
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 722 
Figure 6. Pantropical distribution of tree species with potential for tree-ring studies, chronology 723 
building and climate reconstruction. Distribution of the estimated number of species for which (A) 724 
annual tree-ring formation has been proven and (B) ring-width chronologies have been constructed. 725 
Values were obtained by adding the probability of occurrence of all species distribution models per 0.5 726 
× 0.5◦ pixel. Areas with <10% tree cover are masked (white). (B) Distribution of maximum 727 
chronology length for species with known potential for chronology building. Values are obtained 728 
using the maximum chronology length for species with likely occurrence per 0.5x0.5° pixel and 729 
averaging this across all species in a pixel. 730 
 731 

We also evaluated the opportunity for centuries-long climate reconstruction using tropical 732 

tree-ring chronologies. We used the results of species distribution modeling to identify areas with the 733 

longest chronologies, based on species-specific maximum chronology lengths (Fig 6C). The resulting 734 

map provides a first indication of regions that are likely more suitable for constructing long 735 

chronologies. For a large part of the woody tropics, maximum chronology length is expected to be 736 

>200 years, whereas in some areas – northern Mexico, Central India, and southern China – chronology 737 

length can be 500 years or more. The importance of climate reconstructions is particularly large in 738 

regions where meteorological data are scarce or cover short periods. This is particularly the case for 739 

Africa, where a large proportion of the continent lacks long-term instrumental climate data. 740 

 741 
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Conclusions 742 

How can tree-ring chronologies contribute to global change research in tropical ecosystems? We 743 

identify three primary opportunities. First, tropical tree-ring chronologies can generate much-needed 744 

historical climate data to understand past climate dynamics and provide necessary context for climate 745 

extremes. Tree-ring based climate reconstructions have been crucial in identifying historical 746 

megadroughts (Cook et al., 2022; Morales et al., 2020; Stahle et al., 2011), and putting recent drought 747 

events into a long historical perspective (Belmecheri et al., 2016; Morales et al., 2020; Williams et al., 748 

2022). In addition, they can be used to evaluate the possible attribution of meteorological extremes to 749 

ongoing climate change (Williams et al., 2022). To realize this potential, the replication and length of 750 

tropical tree-ring chronologies need to be substantially increased.  751 

Second, tropical tree-ring chronologies can help assess the sensitivity of woody net primary 752 

productivity (NPP) to climate fluctuations, adding a century-long perspective and complementing 753 

other approaches such as eddy covariance flux towers, permanent sampling plots, and remote sensing 754 

data. Understanding this sensitivity helps to quantify the woody component of NPP and to improve 755 

our understanding of the mechanisms driving climate-C-sink dynamics of tropical vegetation 756 

(Zuidema et al., 2018). This approach could be of particular interest to assess El Niño Southern 757 

Oscillation (ENSO) effects and drought/heat effects on the tropical carbon balance (Rifai et al., 2018). 758 

Tree-ring derived climate sensitivity may also help estimate the potential and risks of failure of forest-759 

based natural climate solutions (Anderegg et al., 2020). This is particularly true as long-term carbon 760 

sequestration critically depends on wood formation, which can be affected by climate extremes 761 

(Anderegg et al., 2020). 762 

Third, tree-ring chronologies can help improve the simulation of woody productivity in 763 

Dynamic Global Vegetation Models (DGVMs). DGVMs increasingly represent wood formation 764 

processes (Friend et al., 2022) and tree-ring derived data can be used to simulate individuals or cohorts 765 

(Fisher et al., 2018), for model benchmarking (Jeong et al., 2020; Xu et al., 2024) and for improving 766 

models by data assimilation in DGVMs (Barichivich et al., 2021). So far, tropical tree-ring data have 767 

hardly been used for these purposes. Yet, the potential contribution of tropical tree-ring data is large, 768 
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because of the relatively low density and duration of tropical sampling plots, flux towers and global 769 

change experiments.  770 
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Table 1. Associations of climate sensitivity with mean climate and the quality of climate data. 843 
The proxy for climate sensitivity used is the maximum correlation between ring-width index (RWI) 844 

and monthly precipitation or Tmax. Only prevailing correlations are used, so: positive correlations for 845 

precipitation and negative for Tmax. Shown are estimates (Est, unscaled) of coefficients, significance 846 

levels and relative importance values (RI) per explanatory variable. N=number of chronologies. 847 

*=p<0.05, **=p<0.01, ***=p<0.001.  848 

  Precipitation sensitivity Tmax sensitivity  
Explanatory variables Est RI Est  RI 
Intercept  0.43***  -0.52***  

MAP (mm) -0.000017* 0.23  0.000030** 0.24 
MAT (°C) NS -  0.0034*** 0.3 
Distance to nearest 
meteorological station (km) -0.00029*** 0.77  0.00049*** 0.46 

R2 0.07  0.19  
Degrees of freedom  361   326   

 849 

Table 2. Results of multiple regression models relating chronology characteristics with mean 850 
climate and climate sensitivity. Shown are estimates (Est, unscaled) of coefficients, significance 851 

levels and relative importance values (RI) per explanatory variable. Dashes (-) indicate variables not 852 

initially included in the model. N=number of chronologies. *=p<0.05, **=p<0.01 ,***=p<0.001. 853 

 Growth synchronicity 
(Rbar) 

Chronology length (y) 

Explanatory variables Est RI Est RI 

Intercept 0.616***  295***  

MAT(°C) -0.00427*** 0.26 -7.78*** 0.43 

MAP (mm) -0.0000621*** 0.36 0.0191* 0.02 

Highest Tmax correlation -0.0730* 0.22 - - 

Highest P correlation 0.0649*** 0.16 - - 

Gymnosperms - - 134*** - 

R2 0.19  0.25 

Degrees of freedom 479  493 

854 
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