
This is a repository copy of Leveraging Compilation Statistics for Compiler Phase
Ordering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224241/

Version: Accepted Version

Proceedings Paper:
Zhao, J., Xia, C. and Wang, Z. orcid.org/0000-0001-6157-0662 (Accepted: 2024)
Leveraging Compilation Statistics for Compiler Phase Ordering. In: Proceedings of 39th
IEEE International Parallel & Distributed Processing Symposium. 39th IEEE International
Parallel & Distributed Processing Symposium, 03-07 Jun 2025, Milan, Italy. IEEE (In
Press)

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Leveraging Compilation Statistics for Compiler Phase Ordering

Jiayu Zhao

University of Leeds

scjzh@leeds.ac.uk

Chunwei Xia

University of Leeds

c.xia@leeds.ac.uk

Zheng Wang

University of Leeds

z.wang5@leeds.ac.uk

Abstract—Choosing the optimal order and combination of
compiler optimization passes - known as phase ordering - can
enhance the performance of compiled binaries. However, existing
approaches struggle to capture the subtle interaction between
compiler passes and waste time on low-profitable pass sequences.
We introduce CITROEN, a better approach for compiler phase
ordering. CITROEN leverages pass-related compilation statistics
to reject low-profitable compiler pass sequences to reduce the
overhead of phase ordering search. It employs Bayesian opti-
mization to navigate the search space, using compilation statistics
instead of traditional tuning parameters to build an online cost
model that provides both the performance prediction and the pre-
diction uncertainty of compilation configurations. It dynamically
allocates search iterations across source files to optimize search
time in multi-file programs. We evaluate CITROEN by integrating
it with the LLVM compiler and applying it to benchmarks from
cBench and SPEC CPU 2017. CITROEN outperforms existing
autotuning methods, discovering high-performing configurations
quicker with fewer search iterations.

Index Terms—compiler optimization, phase ordering, Bayesian
optimation, compilation statistics

I. INTRODUCTION

Compilers play a key role in the performance and energy

optimization of computer systems. Modern compilers like

LLVM [1] and GCC [2] offer a rich set of optimization

passes [3], where a pass implements some specific code analy-

sis and transformation techniques like loop unrolling, instruc-

tion scheduling and register allocation. By default, compilers

provide settings such as -O3 for performance optimization and

-Oz for code size reduction, which apply a bundle of passes

like loop unrolling and vectorization in a fixed order. However,

studies have shown that the optimal choice and ordering

of passes can vary greatly across programs [4]. Carefully

selecting and ordering compiler passes - a problem known

as phase ordering - can significantly improve the application

performance [5]. Phase ordering is particularly useful for

frequently executed programs, as even a small improvement

in the running time can be beneficial in the long run.

A significant challenge in phase ordering is the vast op-

timization space. For example, LLVM 17 offers over 100

transformation passes, leading to an extremely large number

of possible ways for applying these passes - combinations that

would take many machine years to explore exhaustively. Al-

though certain sequences might significantly outperform com-

piler default settings, these pass sequences can be sparse [6],

making them hard to find in such a large space.

Search-based autotuning is widely used for phase order-

ing [3], [5], [7]–[15]. Unlike predictive modeling [16]–[26],

which can only be applied to a limited number of compiler

passes or parameters due to the difficulty in collecting suffi-

cient training samples, search-based methods can be applied

to arbitrary compiler pass sequences. However, while this

flexibility can be advantageous, finding the optimal compiler

pass sequence through search can be prohibitively expensive.

Our work aims to improve the efficiency of search-based

autotuning methods for phase ordering. A key drawback of

existing search-based approaches for compiler phase ordering

is their difficulty in capturing the complex interactions between

compiler passes and the order in which they are applied.

Identifying which passes positively impact performance during

the search allows the algorithm to focus on compiler pass

sequences that are more likely to be beneficial. Similarly,

recognizing passes that degrade performance - by, for instance,

blocking useful compiler optimization - helps prevent the

algorithm from wasting time on measuring sequences that offer

low-performance gain. Unfortunately, modeling the impact of

a compiler pass is challenging, as its effect depends on the

input program, its interactions with other passes, and their

execution order. For example, loop unrolling can affect the

efficiency of register allocation and instruction scheduling.

Furthermore, when optimizing programs with multiple

source files (referred to as modules in this work), we aim

to apply module-specific pass sequences rather than relying

on a ‘one-size-fits-all’ pass setting for all files. Achieving

this requires an adaptive, dynamic strategy for allocating the

search budget (i.e., the number of runtime measurements in

this work) across different modules, ensuring the search time

is used efficiently to maximize the overall performance gains

within the available budget.

We present CITROEN
1, a better search-based autotuning

method for compiler phase ordering. Our key insight is that

pass-related compilation statistics, collected during the exe-

cution of compiler passes, can offer valuable information to

model pass interactions and guide the search process. For

instance, LLVM’s loop-vectorize pass reports how many loops

have been vectorized. If we observe a strong positive correla-

tion between the number of vectorized loops and improved

performance, we can infer that loop vectorization is likely

to benefit the input program. In such cases, if changing the

compiler pass sequences leads to a reduction in the number

of vectorized loops, it suggests that this pass sequence may

negatively affect performance. This avoids profiling the binary

generated by this pass sequence, thus saving search time.

1Code and data of this work are available at: https://github.com/
gloaming2dawn/LLVMTuner

CITROEN is designed to leverage compilation statistics

provided by modern compiler infrastructures to acceler-

ate phase ordering autotuning by avoiding the profiling of

pass sequences that offer no performance gain. This is

achieved through a customized Bayesian optimization (BO)

method [27], which builds an online probabilistic cost model

(known as the surrogate model) to evaluate compiler pass

sequences. Our cost model takes as input a feature vector con-

sisting of compilation statistics and predicts both the runtime

performance and the prediction uncertainty. The cost model is

dynamically and constantly updated during the search process

using new profiling data so that it becomes more accurate as

the search progresses.

CITROEN uses an acquisition function to avoid profiling

sequences likely to result in poor performance while prior-

itizing uncertain regions for exploration. For multi-module

programs, it trains a global cost model by concatenating

compilation statistics from individual source files, allowing

dynamic allocation of the search budget to modules with the

highest performance potential.

A key distinction between CITROEN and previous BO

approaches in compiler optimization [28]–[31] lies in the way

the cost model is constructed. In prior works, the standard BO

process is employed, using raw tuning parameters as inputs

to fit the cost model. These parameters, such as the number

of OpenMP threads [29], enabling or disabling a compiler

flag [28], loop tile sizes [30], and loop unroll factors [31],

have a direct and often predictable impact on performance.

However, in the compiler phase-ordering problem, interac-

tions between passes introduce a significantly higher level of

complexity, making it much more challenging to anticipate

performance gains based on the sequence of passes. CITROEN

mitigates the issue using compilation statistics as a proxy to

capture the compiler pass interactions.

We evaluate CITROEN by applying it to optimize the

phase ordering of the LLVM compiler. We test the resulting

compilation system on the cBench [32] and SPEC CPU 2017

[33] benchmark suites on ARM and AMD x86 CPUs. Com-

pared to state-of-the-art evolutionary and BO-based autotuning

methods, CITROEN achieves similar results with only one-

third of the search budget. It proves especially effective with

a constrained search budget - with a budget of 100 runtime

measurements, it delivers up to a 17% improvement over

random search and up to 10% over the strongest baseline.

This paper makes the following two contributions:

• It introduces the first autotuning approach that leverages

pass-related compilation statistics for compiler phase

ordering (Sec. III);

• It proposes an adaptive BO scheme to dynamically allo-

cate the search budget across multiple source files within

a program (Sec. III-B).

II. BACKGROUND AND MOTIVATION

A. Program Scope

As depicted in Figure 1, CITROEN finds a compiler pass

sequence for a given optimization goal. In this work, we focus

c
o

n
s
tp

ro
p

Pass sequence

IR

b.ll

a.ll

Optimized

IR
Optimizer

Front-

end

b.c

a.c

Source

Back-
end

Binary

c
o

n
s
tp

ro
p

in
lin

e

..
.

s
ro

a

g
lo

b
a

lo
p

t

lic
m

..
.

b_opt.ll

a_opt.ll

Figure 1: The CITROEN compiler flow for applying cus-

tomized pass sequences.

result += w[0]*d[0];

result += w[1]*d[1];

result += w[2]*d[2];

...

result += w[7]*d[7];

(a) Original code

v1 = w[0:3]*d[0:3]+w[4:7]*d[4:7];

v2 = v1[0:1] + v1[2:3];

result += v2[0] + v2[1];

(b) Pseudocode of successful vectoriza-
tion after applying the ‘mem2reg,slp-
vectorizer’ sequence to the original code.

w0=w[0];d0=d[0];

- sext i16 w0 d0 to i32; //sign extension from i16 to i32

+ sext i16 w0 d0 to i64; //sign extension from i16 to i64

tmp = w0 * d0;

- sext i32 tmp to i64; //sign extension from i32 to i64

result += tmp;

...

(c) The difference by applying instcombine after mem2reg.

Figure 2: An example from telecom_gsm in cBench show-

ing how the phase order matters. Applying the ‘mem2reg,slp-

vectorizer’ pass sequence leads to successful vectorization,

whereas ‘mem2reg,instcombine,slp-vectorizer’ fails.

on minimizing execution time; however, CITROEN can also

be applied to optimize other objectives, such as energy con-

sumption. CITROEN supports programs with multiple source

files (e.g., C programs with ‘.c’ files), treating each file as an

independent optimization unit, referred to as a module. Unlike

previous approaches [3], [5], [7]–[13], [15], CITROEN allows

different pass sequences for different modules, thereby ex-

panding the search space and improving overall performance.

The CITROEN pipeline works as follows: it first uses the

compiler front-end (e.g., LLVM clang) to compile each mod-

ule into unoptimized intermediate representations (IRs). Next,

different compiler pass sequences are applied to these IRs

to generate optimized versions. The optimized IRs are then

compiled to assembly code using the LLVM static compiler

before being linked to the executable binary. In this work,

a pass can be applied multiple times within a single pass

sequence to optimize an individual source file, and our current

implementation uses the default compiler parameters for each

pass. In this work, we consider 76 LLVM transformation

passes and a maximum compiler sequence of 120 passes; by

comparison, the transformation sequence length of ‘-O3’ is 99.

B. Motivation

As a motivating example, consider phase ordering in

LLVM (v17.0) to optimize telecom_gsm from the cBench

suite [32] on an ARM Cortex-A57 CPU (Jetson TX2). In

this benchmark, the long_term module (long_term.c)

accounts for over 50% of execution time and is the target for

optimization.

Table I: Applying different pass sequences to the long_term module in the telecom_gsm benchmark. By examining the

relationship between pass-related compilation statistics and speedup (over -O3) from the first three samples, we can predict

the fifth sample is more likely to be more profitable than the fourth sample.

No. Pass Sequence
Pass-related Compilation Statistics

Speedup
SLP.NumVectorInstructions mem2reg.NumPHIInsert mem2reg.NumPromoted mem2reg.NumSingleStore instcombine.NumCombined

1 mem2reg slp-vectorizer 14 21 43 29 0 1.13×

2 slp-vectorizer mem2reg 0 21 43 29 0 0.85×
3 inst-combine mem2reg slp-vectorizer 0 18 41 29 271 0.85×
4 mem2reg inst-combine slp-vectorizer 0 21 43 29 244 0.86×
5 mem2reg slp-vectorizer instcombine 14 21 43 29 164 1.14×

Figure 2a shows a hot code snippet computing a dot product,

which benefits from superword-level parallelism (SLP) vec-

torization. Applying mem2reg followed by slp-vectorizer en-

ables successful vectorization (Figure 2b). However, inserting

instcombine between them (i.e., ‘mem2reg, instcombine, slp-

vectorizer’) prevents vectorization due to profitability analysis.

This is because instcombine optimizes greedily without con-

sidering the later vectorization opportunity. Specifically, as can

be seen from Figure 2c, instcombine reduces sign extension

operations by converting an i16 to the i64 sign extension, but

the resulting i64 instructions and data types are considered to

be not profitable for applying vectorized horizontal reduction.

Consequently, the LLVM vectorizer skips vectorization on this

code, leading to a performance slowdown compared to “-O3”.

If we can capture the interactions and the impact between

compiler passes, we can then speed up phase ordering by

avoiding profiling compiler sequences that are likely to offer

no performance gain. We observe that pass-related compilation

statistics can help us to capture the relationship between pass

sequences and the performance.

Table I lists the LLVM compilation statistics for five dif-

ferent pass sequences, along with their runtime performance,

using the -O3 compiliation level as a baseline. These statistics

can be gathered using the ‘-stats -stats-json’ flags

of LLVM ‘opt’ tool. Assume that the execution times for the

first three pass sequences have already been obtained through

profiling. The search algorithm must now assess whether the

4th and 5th pass sequences will likely be profitable and

warrant further profiling. By effectively modelling compilation

statistics, we may be able to identify performance improve-

ments. In this example, the SLP.NumVectorInstructions metric

is positively correlated with performance gains. Since the

compilation statistics for the 5th pass sequence show a similar

SLP.NumVectorInstructions value to that of the first sequence,

which achieved a 1.13× speedup; this suggests that the 5th

sequence is also likely to improve performance.

This example shows that pass-related compilation statistics

can provide valuable insights, avoiding unnecessary profiling

measurements to save search time. This motivates the design

of a new search algorithm to leverage compilation statistics

for phase ordering. By parallelizing the compilation process to

collect statistics, we can identify the most promising binaries

for isolated runtime measurements, thereby reducing profiling

overhead - a major bottleneck in compiler autotuning.

How to correlate compilation statistics with performance

to model the interactions of compiler passes? To this end, we

Bayesian	
Optimization

Task	Definition

Optimized

Config.

Task	Function

Measurement

Compilation

Hot Modules

Input

Build Command

Program

Run Command

Figure 3: Overview of the CITROEN framework.

find ways to map compilation statistics to performance and use

the mapping model as a utility function to guide the search.

Since this correlation depends on the input program, we

iteratively refine the model during autotuning as more profiling

data becomes available. For multi-module programs, effective

budget allocation across modules is crucial for maximizing

performance. CITROEN addresses these challenges using BO

as a search technique, detailed in the next subsection.

C. Bayesian Optimization

Our work leverages BO as it provides a principled ap-

proach to balancing exploration and exploitation [27]. In our

context, exploitation profiles pass sequences expected to im-

prove performance, while exploration prioritizes less-explored

sequences based on compilation statistics. This balance is

essential, as the online cost model is not always accurate.

BO balances exploration and exploitation by measuring the

uncertainty of the model predictions. We follow the common

practice of BO using a Gaussian process (GP) [34] to build

our cost model to predict the potential speedup of a pass

sequence. The GP model not only estimates the performance

gain but also quantifies the uncertainty of its estimation.

An acquisition function is then used to evaluate the trade-

off between exploration and exploitation. Commonly used

acquisition functions include Expected Improvement (EI) [35]

and Upper Confidence Bound (UCB) [36]. However, these

acquisition functions are designed for standard BO, which

directly models the relationship between input parameters

(e.g., pass sequences) and output. CITROEN instead converts

the compilation statistics into a numerical feature vector to be

used by the cost model (Sec. III-C), requiring a customized

acquisition function (Sec. III-D).

III. OUR APPROACH

A. Overview

Figure 3 depicts the workflow of CITROEN. At the core of

CITROEN is a BO search component based on compilation

statistics (Sec. III-B), which will interact with a user-defined

Training

set

Surrogate
model

Bayesian Optimization

Update

R
e
co
m
m
e
n
d

Train Acquisition
function

Candidate
Generator

A set of
Candidate

Configurations

The query

configuration

Task	
Function

Figure 4: CITROEN’s Bayesian optimization workflow.

task function (Sec. III-F) that defines how to compile and

measure the generated binary. CITROEN focuses on tuning

“hot” modules whose accumulated execution time contributes

to at least 90% of the overall program execution time. As a

one-off profiling stage, CITROEN identifies hot modules by

using the Linux perf tool to profile the program compiled

with the standard “-O3” compilation flag. During profiling,

we measure the runtime of individual functions, excluding

external calls, and then aggregate the execution times of

functions within each source file to determine the hot modules.

These identified hot modules are iteratively compiled with

different pass sequences, while the remaining modules are

compiled using -O3.

B. Bayesian Optimization for Compiler Tuning

Figure 4 outlines the workflow of CITROEN’s BO compo-

nent. We enhance standard BO with an online-trained cost

model based on pass-related compilation statistics (Sec. III-C),

an acquisition function for navigating the non-uniform, sparse

feature space (Sec. III-D), and a GA-based pass sequence gen-

erator (Sec. III-E). Instead of running separate BO processes

for each source file, CITROEN fits a global cost model to

estimate the impact of individual module changes on overall

program performance, dynamically determining which module

to optimize while keeping others fixed.

In each iteration, CITROEN first learns a cost (or surro-

gate) model that maps the compilation statistics of all hot

modules to performance metrics (e.g., speedup over -O3). It

then constructs an acquisition function to balance exploitation

(prediction) and exploration (uncertainty). It also integrates a

candidate generator to produce pass sequences, which are then

compiled in parallel to collect their statistics.

As shown in Figure 5, for m modules, CITROEN generates

q candidate pass sequences per module (while fixing the pass

sequence for other modules), resulting in m ∗ q candidate

configurations. Our customized acquisition function selects the

highest-value configuration to profile to obtain the execution

time, which is then used to update both the cost model and the

candidate generator. For a single hot module, the acquisition

function evaluates pass sequences within that module. It de-

cides which module to optimize next for multiple hot modules,

allowing dynamic switching to maximize performance gains.

Search	
module	A

Best‐found	config

module A: seq a

module B: seq b

Search	
module	B

Candidate	Configs

A: seq a1	

B: seq b

A: seq a2	

B: seq b

A: seq a

B: seq b1	

A: seq a

B: seq b2	

Figure 5: CITROEN’s candidate configuration generator.

C. Surrogate Model for Performance Estimation

The cost (or surrogate) model of CITROEN is a utility func-

tion to approximate the optimization objective (i.e., speedup

over -O3 in this work). Prior work in BO-based compiler

tuning [28], [31] uses the raw tuning parameters (e.g., compiler

passes) as the cost model’s input to predict the speedup or

execution time. We take a different approach by using pass-

related compilation statistics as the cost model’s input.

Train and use the cost model following the standard 3-step

of supervised learning: (1) feature extraction, (2) training and

(3) inference, described as follows.

1) Feature extraction: Our cost model represents compila-

tion statistics as a numerical feature vector. These statistics

are collected by enabling the -stats -stats-json flags

in LLVM’s opt tool when customizing pass sequences for

a given module. After filtering out non-optimization-related

statistics (e.g., analysis pass statistics), up to 255 statistics

remain, though typically fewer than 30, depending on the pass

sequence and input program. We normalize the integer value of

each statistic category to a range between 0 and 1 by dividing

by its maximum observed value, forming a 255-dimensional

feature vector, where most values are zero due to inactive

passes. For programs with multiple hot modules, feature

vectors are concatenated to represent the entire program.

2) Model architecture and training: CITROEN use the

Gaussian process with the Matérn-5/2 kernel to build the

cost model because it is proven to be effective in prior BO

applications [31], [34]. The kernel function (describes the

similarity between two inputs) of this model is defined by:

k(x, x′) =
(

1 +
√
5d+ 5d2

)

e−
√
5d (1)

d =

√

√

√

√

D
∑

i=1

(xi − x′
i)

2

l2i
(2)

where d denotes the weighted Euclidean distance between

two input feature vectors x and x′. Here lengthscales li are

hyperparameters that reflect the impact of each feature dimen-

sion on performance, which will be learned by minimizing the

negative log marginal likelihood loss function [37]. Initially,

Table II: Applying 2,000 random pass sequences to different

programs in cBench to observe whether randomly selected

initial training sets can cover the feature space.

Initial training set size 20 50 100

Unexplored feature count (range) 2 ∼ 35 1 ∼ 22 1 ∼ 19

CITROEN randomly generates n pass sequences, collecting

their compilation statistics and evaluating the corresponding

speedup over -O3 to construct the initial training set. In each

subsequent iteration, CITROEN will add the new evaluated

sample to the training set to update the model.

3) Inference: Given a pass configuration c, we obtain its

feature vector x = ϕ(c) by applying the pass sequence to the

input program and collecting normalized compilation statistics.

Note that we do not execute the generated binary at this step;

instead, we pass the feature vector to the GP to estimate the

speedup (over −O3) with mean µ(x) and variance σ2(x):

µ(x) = K(X, x)TK(X,X)−1y (3)

σ2(x) = k(x, x)−K(X, x)TK(X,X)−1K(X, x) (4)

where X and y are training inputs and speedup labels, respec-

tively. The kernel matrix K(X,X) has entries K(X,X)i,j =
k(xi, xj), and K(X, x) contains kernel values between training

points and the test point, K(X, x)i = k(xi, x). The mean and

variance are given to an acquisition function to select the next

compilation configuration for profiling based on the predicted

gain (i.e., speedup) and uncertainty (variance).

D. Acquisition Function Design

One of the challenges that CITROEN faces is to fit the cost

model in a sparse, non-uniform feature space, where many

statistic categories contain zeros for a given pass sequence,

leading to coverage issues in the initial training set. Unlike

standard BO, which benefits from uniform input space cov-

erage, CITROEN cannot directly sample in the feature space.

As a result, generated candidates may include unseen non-

zero statistic categories. To illustrate this point, we applied

2,000 random pass sequences to cBench programs, selecting

20, 50, and 100 sequences per module for the initial training

set for training the cost model. As shown in Table II, the

training set fails to cover all statistic categories, limiting the

cost model’s ability to predict configurations with unexplored

features. To address this, the acquisition function should

prioritize configurations with such features when determining

exploration and exploitation.

Our acquisition function selects the next compilation con-

figuration, aiming to balance the trade-off between exploiting

high predicted values µ(x) and exploring regions with high

uncertainty σ(x). Standard BO often employs expected im-

provement (EI) [35] as the acquisition function:

EI(x) = E
[

max(f∗ − y, 0) | y ∼ N (µ(x), σ2(x))
]

(5)

where f∗ is the best function value observed so far.

However, standard BO acquisition functions do not ade-

quately address the coverage issue in CITROEN. While EI

encourages exploration in uncertain regions, it does not ac-

count for the presence of unexplored features, leading to unre-

liable uncertainty estimates. As shown in Sec. V-B, applying

standard EI in CITROEN results in suboptimal performance.

To mitigate this, we design a customized acquisition function

α(x) for compiler phase ordering, based on EI:

α(x) =

{

EI(x) + 108, if OOD

EI(x), otherwise
(6)

where out-of-distribution (OOD) refers to candidate points x

containing a non-zero feature (compilation statistic) unseen

from the training set. To promote the exploration of configura-

tions with unseen features, we add a large constant (108) to the

EI function for OOD candidates, prioritizing their selection.

E. Pass Sequence Generator

Due to the large number of possible pass sequences, it is

impossible to evaluate the acquisition function values of all

sequences. Like previous high-dimensional BO [38] CITROEN

employs a GA sampling strategy to generate candidate samples

in a large search space. Specifically, CITROEN maintains 20

top-performing pass sequences for each module as the GA

population and applies mutation and crossover operations to

this population to generate candidate offspring sequences.

More sophisticated pass sequence generators are orthogonal

to our work and can be easily integrated with our framework.

Mutation. Our mutation strategy randomly replaces a certain

percentage of passes in a parent pass sequence in the pop-

ulation. Specifically, it applies random replacements to 10%,

20%, 50%, and 100% of the passes in the sequence, with each

proportion having an equal probability.

Crossover. We implement a one-point crossover by selecting

a single crossover point in each parent pass sequence and

swapping the segments beyond that point to generate new

sequences.

F. Autotuning Task Definition

For phase order autotuning, users are traditionally required

to define a task function that compiles a program with a given

configuration and measures the performance of the resulting

binary. Since compilers like LLVM do not support direct phase

order specification per module, prior autotuning frameworks

[3], [14], [31] require users to manually re-implement the

compilation process for different pass sequences. This process

incurs significant engineering effort, particularly for programs

with multiple source files.

CITROEN automates this process, eliminating the need for

manual re-implementation. As shown in Figure 6, CITROEN

leverages the program’s existing build script (e.g., a make-

file) and provides a compiler driver (clangopt at line 10) to

orchestrate compilation. In the example given in Figure 6,

clangopt becomes the C compiler (i.e., CC=clangopt). It

reads the compilation configuration from a JSON file before

invoking the target compiler (e.g., clang) to compile the

target file. Running the build script with clangopt automates

1 import citroen

2 from citroen.function_wrap import Function_wrap

3 from citroen.utils import gen_hotfiles

4 from citroen.BO.BO import BO

5 from fabric import Connection

6

7 # Define the task function

8 fun = Function_wrap(

9 # Explicitly declare the compiler as clangopt

10 build_cmd='make CC=clangopt',

11 build_dir='Example',

12 # User-defined run and evaluation command

13 run_and_eval_cmd='./run_eval.sh',

14 binary_name='a.out',

15 remote_run_dir='home/usr/RemoteExample',

16 ssh_connection=Connection(host="xxx.xxx.xxx")

17)

18

19 # Automatically recognize hotfiles

20 hotfiles = gen_hotfiles(fun)

21 fun.hotfiles = hotfiles

22

23 # Autotuning the phase order of the program

24 optimizer = BO(fun=fun, budget=1000)

25 best_cfg, best_cost = optimizer.minimize()

Figure 6: An example of using CITROEN for phase ordering.

Table III: LLVM optimization passes considered in evaluation

adce, aggressive-instcombine, alignment-from-assumptions, annota-
tion2metadata, argpromotion, bdce, called-value-propagation, callsite-
splitting, cg-profile, chr, constmerge, constraint-elimination, coro-cleanup,
coro-early, coro-elide, coro-split, correlated-propagation, deadargelim,
div-rem-pairs, dse, early-cse, elim-avail-extern, float2int, forceattrs,
function-attrs, globaldce, globalopt, gvn, indvars, inferattrs, inject-tli-
mappings, inline, instcombine, instsimplify, ipsccp, jump-threading,
libcalls-shrinkwrap, licm, loop-deletion, loop-distribute, loop-idiom,
loop-instsimplify, loop-load-elim, loop-rotate, loop-simplifycfg, loop-sink,
loop-unroll, loop-unroll-full, loop-vectorize, lower-constant-intrinsics, lower-
expect, mem2reg, memcpyopt, mldst-motion, move-auto-init, openmp-opt,
openmp-opt-cgscc, reassociate, rel-lookup-table-converter, rpo-function-
attrs, sccp, loop-unswitch, simplifycfg, slp-vectorizer, speculative-execution,
sroa, tailcallelim, vector-combine, break-crit-edges, loop-data-prefetch,
loop-fusion, loop-interchange, loop-unroll-and-jam, lowerinvoke, sink,
ee-instrument

multiple compilation commands, each using the specified

configurations. Additionally, CITROEN supports automatic hot

module detection (line 19) and remote execution (line 16),

further reducing the effort required for phase ordering.

IV. EXPERIMENTAL SETUP

A. Implementation

We implemented CITROEN in around 5K lines of Python

code. We use the GPyTorch [37] GP library to implement the

GP regression process as the cost model of BO.

B. Evaluation Platforms

Hardware platforms. We execute the search algorithm of

CITROEN on a multi-core server powered by two 20-core

Intel Xeon Gold 5218R CPUs. CITROEN then cross-compiles

binaries on the host machine and sends the compiled binaries

for execution and performance measurement on two platforms:

an ARM-based NVIDIA Jetson TX2 board with a 64-bit quad-

core ARM Cortex A57 running at 2.0 GHz and a multi-

core server with a 64-core AMD Ryzen Threadripper PRO

5995WX CPU clocked at 2.25 GHz. The benchmarks are run

as single-threaded programs on the CPU. The SPEC CPU 2017

Table IV: Benchmarks used in evaluation.

Suite ID Benchmark #hot modules

cBench [32]

(budget: 100/300/1000,

platform: ARM and x86)

C1 automotive bitcount 4
C2 automotive qsort1 2
C3 automotive susan c 1
C4 automotive susan e 1
C5 automotive susan s 1
C6 bzip2d 2
C7 bzip2e 3
C8 consumer jpeg c 6
C9 consumer jpeg d 4
C10 consumer lame 8
C11 consumer tiff2bw 3
C12 consumer tiff2rgba 3
C13 consumer tiffdither 3
C14 consumer tiffmedian 1
C15 network dijkstra 1
C16 network patricia 1
C17 office stringsearch1 1
C18 security blowfish d 2
C19 security blowfish e 2
C20 security rijndael d 1
C21 security rijndael e 1
C22 security sha 1
C23 telecom CRC32 1
C24 telecom adpcm c 1
C25 telecom adpcm d 1
C26 telecom gsm 5

SPEC CPU 2017 [33]

(budget: 100/300,

platform: x86)

S1 500.perlbench r 6
S2 502.gcc r 7
S3 505.mcf r 3
S4 508.namd r 2
S5 510.parest r 6
S6 511.povray r 9
S7 519.lbm r 1
S8 520.omnetpp r 9
S9 523.xalancbmk r 9
S10 525.x264 r 6
S11 526.blender r 3
S12 531.deepsjeng r 9
S13 538.imagick r 1
S14 541.leela r 4
S15 544.nab r 2
S16 557.xz r 5

benchmarks are evaluated solely on the x86 platform due to

their long execution time on the Jetson TX2 board.

Compiler. We apply CITROEN to LLVM version 17.0.6. Our

evaluation considers 76 LLVM passes listed in Table III and

a maximum compiler sequence of 120 passes.

C. Benchmarks

Table IV lists the benchmarks used in the experiments, in-

cluding 26 programs from cBench [32] and 16 programs from

SPEC CPU 2017 [33]. We only consider C/C++ programs that

can be successfully compiled by LLVM v17.

D. Competing Baselines

We compare CITROEN against five autotuning methods and

alternative feature extraction methods:

Random. While simple, random search is reported to be

effective in previous work [9], [39], [40].

OpenTuner. This compiler auto-tuning framework [14] im-

plements an ensemble of multiple evolutionary algorithms and

can dynamically adjust its use of different algorithms.

Nevergrad. This search library [41] supports multiple evolu-

tionary algorithms. It could adaptively select the most suit-

able algorithm according to the search problem setting. This

method has been reported to achieve the best performance in

the CompilerGym [3] phase-ordering environment.

BOCA. This closely related work uses BO for compiler flag

selection [28]. It uses the random forest as its cost (surrogate)

model. When applying it to phase ordering, we adapt it to use

one-hot encoding as the input to the random forest model.

BaCO. This is a BO framework for compilation optimization

[31]. It can handle different parameter types and thus can be

directly used for the compiler phase-ordering problem.

Feature extraction methods. CITROEN uses compilation

statistics as features to be given to the BO cost model to

predict potential speedup and uncertainty. In Sec. V-C, we

compare CITROEN against three feature extraction methods:

IR2vec [42], Autophase [43], and Programl [44].

E. Evaluation Methodology

Hyper-parameters of CITROEN. In our experiments, we set

the initial training samples for the cost model (n init) to

20 and the candidate pass sequences per iteration (q) to 500.

All candidate sequences are initially generated using the GA

sampling strategy described in Sec. III-E. After 1/4 of the

total search iterations, CITROEN generates 50 new sequences

per module, with the remaining q−50 selected randomly from

previously generated but unevaluated sequences, keeping com-

pilation overhead negligible compared to execution overhead.

Compiling multiple modules. To apply the competing base-

lines (Sec. IV-D) to optimize module-specific phase ordering

of programs with multiple source files, we use a one-by-one

strategy to sequentially auto-tune each module in descending

order of their execution times. We tune each module until

there is no noticeable performance improvement (more than

1% speedup) for τ consecutive search iterations before moving

to the next one. Here, τ is set to N budget/N modules/3.

We will repeat the process until the search budget is used up.

When re-tuning a module, we initialize the search algorithm

using the best-found sample from the search history. In this

way, these baselines will not waste too much time on source

files and will have little room for performance improvement.

Performance report. Following [45], [46], we set search

budgets of 100, 300, and 1000 iterations for cBench and 100

and 300 iterations for SPEC CPU 2017, with the latter capped

at 300 due to long execution times. In each iteration, we

execute the compiled binary multiple times until the relative

standard error of the mean execution time falls below 1%

(typically requiring 3–20 runs for cBench and 3 for SPEC).

The mean execution time is then used as feedback for the

search algorithm. When reporting the final performance, we re-

execute the best-found binary until the relative standard error

falls below 0.3% for greater accuracy. For each method, we

report the average performance by repeating the tuning process

five times per benchmark.

V. EXPERIMENTAL RESULTS

Our evaluation tries to answer the following questions:

RQ1: How does CITROEN compare with prior autotuning

approaches (Sec. V-A)?

RQ2: How do individual components of CITROEN contribute

to its overall performance (Sec. V-B)?

RQ3: How do CITROEN’s pass-related compilation statistics

compare with existing feature extraction methods (Sec. V-C)?

Random
BOCA

BaCO
OpenTuner

Nevergrad
Citroen (ours)

100 300 1000
Autotuning Budget (Number of measurements)

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

Sp
ee

d
up

 o
ve

r -
O3

cBench on ARM

100 300 1000
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

Sp
ee

d
up

 o
ve

r -
O3 cBench on x86

100 300
Autotuning Budget (Number of measurements)

1.00
1.02
1.04
1.06
1.08

Sp
ee

d
up

 o
ve

r -
O3 SPEC on x86

Figure 7: Geometric mean performance on cBench and SPEC

CPU 2017 with different search iteration budgets.

A. Comparison with Baselines

Figure 7 shows the average performance of CITROEN and

the baselines with three different budgets on cBench and SPEC

CPU 2017. CITROEN clearly outperforms the baselines by

both achieving the same performance faster and achieving

better performance on a small budget (e.g., 100 iterations).

For cBench, with a small budget of 100 iterations, CITROEN

achieves 1.096× speedup over -O3 compared to other meth-

ods’ 1.067 × −1.083× speedup. With a moderate budget of

300 iterations, CITROEN attains a 1.11× speedup, which other

methods require 1000 iterations to match.

To evaluate how CITROEN generalizes across different

benchmarks, Figure 8 compares its performance against base-

lines on individual benchmarks. CITROEN achieves significant

improvements on several benchmarks, such as C1, C22, and

C26. These benchmarks benefit from specific transformations,

but the required compilation sequences are sparse in the search

space. For instance, in C1 (automotive_bitcount),

achieving more than 1.1× speedup requires optimizing the

hot module bitcnts using three loop transformations: loop-

unswitch, loop-unroll, and licm. However, all baselines strug-

gle to identify a pass sequence activating all three within

a budget of 100 profiling measurements. Furthermore, for

C22, we discovered the combination of early-cse, instcombine,

loop-rotate, and loop-fusion passes to successfully unlock

loop-level optimization. For S10, the key is to apply loop-

unroll before and after the instcombine pass to enhance the

instruction level parallelism. For S11, we improve vectoriza-

tion by identifying a sub-sequence that applies slp-vectorizer

Random BOCA BaCO OpenTuner Nevergrad Citroen (ours)

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 100 iterations

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 300 iterations

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 1000 iterations

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
1.0

1.1

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on SPEC on x86 after 100 iterations

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
1.0

1.1

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on SPEC on x86 after 300 iterations

Figure 8: Evaluation on cBench and SPEC with different search iteration budgets.

after sroa and simplifycfg.

Another key observation is that for many benchmarks,

all methods achieve similar performance. These benchmarks

exhibit performance convergence under a small search budget

(100) and a larger budget (1000) due to dominance by easily

activated optimizations, such as mem2reg. This observation is

consistent with previous studies [9], [39], [40], which report

that random search is often sufficient in such cases.

B. Ablation Study

To assess how each component of CITROEN impacts per-

formance, we evaluate its variants on the ARM platform on

several cBench benchmarks. The “CITROEN (ours)” variant

uses all proposed techniques. “W/o compilation statistics” uses

original pass sequences instead of compilation statistics for the

cost model. “W/o AF customization” employs standard EI as

the acquisition function, ignoring coverage. “W/o task sched-

uler” sequentially auto-tunes each module instead of using

a global task scheduler. “W/o module-specific optimization”

applies a single pass sequence for all modules.

As shown in Figure 9, without utilizing compilation statis-

tics, “W/o compilation statistics”, performs much worse than

CITROEN in terms of both the final achieved performance

and search efficiency, indicating that pass-related compilation

w/o compilation statistics
w/o AF customization

w/o task scheduler
w/o module specific optimization

Citroen (ours)

100 300 500 700 900
Number of iterations

1.0
1.1
1.2

automotive_bitcount (C1)

100 300 500 700 900
Number of iterations

1.0

1.1

security_sha (C22)

100 300 500 700 900
Number of iterations

1.1
1.2
1.3

telecom_gsm (C26)

Figure 9: Ablation study on different benchmarks. The y-axis is the speedup relative to -O3. security_sha only owns one

hot module, thus “task scheduler” and “module specific optimization” are not applicable to such single-module cases.

IR2vec feature Autophase feature Programl feature Compilation statistics (ours)

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Average performance on cBench

100 300 1000
Number of iterations

1.4

1.6

automotive_bitcount (C1)

100 300 1000
Number of iterations

1.0

1.1

1.2 security_sha (C22)

100 300 1000
Number of iterations

1.5

2.0

telecom_gsm (C26)

Figure 10: Impact of replacing compilation statistics with alternative feature extraction methods in CITROEN (using LLVM 10

as the compiler). The y-axis shows the speedup relative to -O3.

Autophase Citroen (ours)

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Average performance on cBench

100 300 1000
Number of iterations

1.4

1.6

automotive_bitcount (C1)

100 300 1000
Number of iterations

1.0

1.1

1.2 security_sha (C22)

100 300 1000
Number of iterations

1.5

2.0

telecom_gsm (C26)

Figure 11: Comparison of CITROEN and Autophase using LLVM 10 as the compiler. The y-axis is the speedup relative to -O3.

statistics are a key component of CITROEN. “W/o AF cus-

tomization” uses 1,000 search iterations to achieve only 1.04×
speedup in security_sha (C22) while CITROEN uses 100

iterations to achieve 1.16× speedup, showing that the coverage

issue could significantly harm performance performance in

some cases. For programs with multiple hot modules, “W/o

module specific optimization” performs the worst in terms of

the final achieved performance, revealing the effectiveness of

module-specific optimization. As depicted in “W/o task sched-

uler”, one-by-one autotuning could achieve module-specific

optimization to improve the final performance, but it requires

more search iterations. This demonstrates how a global model

could effectively act as a task scheduler to adaptively allocate

search budgets when autotuning programs with multiple hot

modules.

C. Alternative Feature Extraction Methods

Prior works in machine learning-based compiler optimiza-

tion developed a range of methods to extract features from

intermediate representations (IRs) to train offline supervised

or reinforcement learning models for predicting optimal com-

pilation configurations.

IR2vec [42], Autophase [43], and Programl [44] provides

three representative feature extraction techniques. IR2vec com-

bines representation learning with control flow information

to embed IRs in a continuous space. Autophase extracts

static features via analysis passes on IRs. Programl represents

programs as graphs to capture their semantics and employs

inst2vec [47] for continuous embeddings. Although these

methods are not tailored for search-based autotuning, their

feature extraction techniques could be integrated into our

approach to construct an online cost model and thus warrant

comparison.

Figure 10 evaluates our compilation statistic-based feature

extraction approach against alternative IR2vec, Autophase, and

Programl, on the Jetson TX2 ARM platform. Since Autophase

and Programl support only LLVM 10, we use LLVM 10 in

this experiment for a fair comparison. CITROEN, leveraging

pass-related compilation statistics, clearly outperforms these

methods. This is because alternative feature extractors struggle

to distinguish transformations introduced by different passes.

For example, the function-attrs pass can significantly impact

performance for programs like automotive_bitcount,

but IR2vec, Autophase, and Programl fail to capture its effects,

as function-attrs only change function attributes, which these

methods do not consider.

Furthermore, while IR2vec and Programl do not generate or

suggest compiler pass sequences and must be integrated with

a separate phase ordering method, Autophase provides both a

feature extraction mechanism and an end-to-end reinforcement

learning (RL)-based phase ordering solution. Thus, we also

compare CITROEN directly with Autophase as a complete

solution. We explored both offline and online approaches in

Autophase. First, we trained a proximal policy optimization

(PPO) model on 100 randomly generated programs from

Csmith [48], following the approach in Autophase. Then, we

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Impact of n_init (cBench)
n_init = 10 n_init = 20 n_init = 50

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Impact of q on (cBench)
q= 100 q= 500 q= 1000

Figure 12: Hyperparameter Sensitivity Analysis of CITROEN. The y-axis is the speedup relative to -O3.

Table V: Top 5 impactful compilation statistics recognized by the CITROEN cost model on selected CBench benchmarks.

Performance degradation is measured after removing the relevant passes from the final pass sequence and comparing the

resulting performance against -O3 on the ARM platform.

bitcnts in automotive_bitcount sha in security_sha long_term in telecom_gsm

compilation statistics
performance degradation

without related passes
compilation statistics

performance degradation

without related passes
compilation statistics

performance degradation

without related passes

loop-unroll.NumUnrolled -49% instcombine.NumCombined -27% mem2reg.NumPHIInsert -31%

inline.NumInlined -43% mem2reg.NumPHIInsert -21% SLP.NumVectorInstructions -19%

licm.NumHoisted -54% loop-rotate.NumRotated -26% instcombine.NumCombined -5%

mem2reg.NumPHIInsert -52% early-cse.NumCSE -16% loop-vectorize.LoopsVectorized -7%

loop-unswitch.NumBranches -22% loop-unroll.NumUnrolled -5% simplifycfg.NumSimpl -5%

used this model as the initial policy for further RL-based

search. Figure 11 reports the results, where CITROEN still

consistently outperforms Autophase.

D. Hyperparameter Sensitivity Analysis

CITROEN has two key hyperparameters: the initial training

samples for the cost model (n init) and the candidate pass se-

quences per iteration (q). Figure refhyper reports how different

hyperparameter values affect CITROEN’s average performance

across cBench benchmarks on the ARM platform. CITROEN

demonstrates overall robustness to different hyperparameter

values, except too small q may lead to marginally degraded

performance. Furthermore, increasing q beyond 500 does

not result in any substantial improvement in performance.

Additionally, when the proportion of n init relative to the

total number of search iterations is large, it can cause a slight

degradation in performance. This is because a higher propor-

tion of the search budget is allocated to random sampling,

which may be less efficient.

E. Compilation Statistics Analysis

Table V attempts to quantify the relationship between com-

pilation statistics and performance speedup. For each program,

we analyze the module (source file) with the longest runtime,

running CITROEN for 1000 iterations to determine both the

optimal pass sequence and the final cost model. Using the cost

model’s lengthscales li (as defined in equation 1), we identify

influential compilation statistics, where a smaller lengthscale

signifies a greater impact on performance. To assess each

feature’s importance, we measure the performance change

after removing passes associated with that feature from the

final pass sequence. For instance, if loop-unroll.NumUnrolled

is identified as impactful, we remove loop-unroll from the

sequence and observe the performance effect. The results

show that impactful statistics vary across programs, indicating

different optimization sensitivities. However, certain statistics

Algorithmic time Measurement time

0 50 100
Percentage (%)

Random
BOCA
BaCO

Opentuner
Nevergrad

Ours
cBench

0 50 100
Percentage (%)

Random
BOCA
BaCO

Opentuner
Nevergrad

Ours
SPEC

Figure 13: Average proportion of algorithmic runtime.

Table VI: Average search time (per benchmark) after 1000

search iterations in cBench and 300 iterations in SPEC.

cBench (min) SPEC (hours)

Ours 95 31.2
Nevergrad 88 30.6
Opentuner 82 30.0
BaCO 92 30.8
BOCA 90 30.8
Random 85 33.2

consistently emerge as influential, highlighting their impor-

tance and relevance in compiler optimization.

Furthermore, to understand the correlation between statistics

and pass sequences, we try to reduce the pass sequence

to find the most important pass combination that will af-

fect statistics. We found some passes are naturally corre-

lated and often appear together in sequences to make the

occurrence of certain statistics possible. For example, loop-

vectorize.LoopsVectorized usually at least requires the sequen-

tial application of both the loop-rotate and loop-vectorize

passes. Similarly, applying sroa before slp-vectorizer often

leads to larger SLP.NumVectorInstructions. Additionally, we

found that in most cases, replacing mem2reg with sroa typ-

ically yields comparable mem2reg.NumPHIInsert values and

similar runtime performance.

F. Algorithmic Runtime

Figure 13 presents the average proportion of algorithmic

runtime (excluding objective function evaluation) across dif-

Table VII: Impact of program size on compilation and profiling overhead.

Benchmark Hot File Line Count Total Line Count Hot File Compilation Time (s) Profiling Time (s)

C2 (automotive qsort1) 189 416 0.2 1
C1 (automotive bitcount) 282 2288 0.2 1
C26 (telecom gsm) 1575 23185 0.6 1
S7 (519.lbm r) 723 930 1.0 120
S5 (510.parest r) 5436 427000 2.0 190
S6 (511.povray) 13938 170000 5.0 240

ferent methods over 1000 search iterations in cBench and 300

iterations in SPEC CPU 2017. Since CITROEN requires addi-

tional parallel compilation (only for hot modules) and model

training/inference, its algorithmic runtime is higher than that

of other methods. However, this overhead remains negligible

compared to the total performance measurement time, which

includes program compilation and execution, particularly for

larger programs like those in SPEC CPU 2017. Specially, the

overhead of collecting statistics is small, accounting for less

than 0.05% of the compilation overhead.

Table VI reports the raw wall-clock times of each search

algorithm, where the overhead of CITROEN under the same

number of search iterations is on par with the baselines.

Notably, the additional search time of CITROEN is easily

amortized, as it finds a binary with performance comparable

to the best-performing baseline while requiring significantly

fewer profiling runs - often just one-third of the total profiling

times needed by other methods.

We also provide results showing how the change in program

size affects the compilation and profiling overhead when using

-O3 as the optimization level, as shown in Table VII. As the

program size increases, the compilation time tends to increase

due to the larger number of instructions and more complex

dependencies that need to be resolved. However, the program

size does not show a clear correlation with profiling time, as

the profiling time is influenced by various other factors, such

as algorithm complexity and input data size.

VI. RELATED WORK

A. Compiler Phase Ordering

An extensive body of work shows compiler phase ordering

can improve application performance [4], [49]. Prior works

of compiler phase ordering often take an evolutionary search

approach like genetic algorithms or simulated annealing [5],

[7]–[13]. OpenTuner [14] and Nevergrad [41] are two rep-

resentative search-based frameworks that have been used for

compiler phase ordering [3]. Furthermore, random search

is reported to be effective, as well as more sophisticated

algorithms for exploring the optimisation space in many works

[9], [39], [40]. While promising, prior works usually apply

a single pass sequence to multiple source files. Our work

takes a different approach by allowing different compiler pass

sequences for individual files, leading to larger search spaces.

By utilizing pass-related compilation statistics, our approach

allows more efficient autotuning in the larger search spaces.

There are attempts to build a predictive model to predict

the compiler phase order using supervised or reinforcement

learning [18], [19], [22], [24], [43]. As collecting sufficient

training samples to cover the high-dimensional phase ordering

optimization space is difficult, prior approaches reduce the

search space by grouping compiler phases into sub-sequences.

Our approach can be used to explore the search space to

generate training samples for building a predictive model.

B. Bayesian Optimization for Program Autotuning

Some works have employed BO for program tuning. These

include BOCA [28], Bliss [29], Ytopt [30], and BaCO [31].

BOCA uses the random forest as its surrogate model for

turning on or off compiler flags - a problem that usually has a

smaller search space than the phase ordering problem targeted

in this work. Bliss utilizes an ensemble of diverse Gaussian

process models and acquisition functions to tune parallel

applications. Ytopt uses Skopt [50], a standard Python BO

library, to optimize LLVM Clang/Polly pragma configurations.

BaCO customizes its BO implementation to support different

parameter types and constraints for kernel optimization. While

these frameworks show effectiveness in their tasks, they are

not optimized for compiler phase ordering. This is because

they use the original tuning parameters as the input to fit

their surrogate models. Unlike these prior works, CITROEN

leverages the pass-related compilation statistics to design the

surrogate model and the acquisition function. This improves

performance when optimizing a complex search space of

compiler phase ordering.

VII. CONCLUSION

We have presented CITROEN, a BO-based search frame-

work for compiler phase ordering. By leveraging pass-related

compilation statistics to build an online probabilistic cost

model, CITROEN avoids profiling pass sequences that offer

no performance gain and implements a dynamical budget

allocation across source files to support module-specific phase

ordering. Our evaluation shows that CITROEN outperforms

existing approaches by achieving comparable tuning results

using one-third of their search budget. Future work could

incorporate prior knowledge of pass correlations into our

framework to further accelerate the search process, making

it even more efficient.

ACKNOWLEDGMENTS

This work was supported in part by the UK Engineer-

ing and Physical Sciences Research Council (EPSRC) under

grant agreements EP/X018202/1 and EP/X037304/1. For any

correspondence regarding this work, please contact Chunwei

Xia (Email: c.xia@leeds.ac.uk) and Zheng Wang (Email:

z.wang5@leeds.ac.uk).

REFERENCES

[1] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International symposium on code

generation and optimization, 2004. CGO 2004. IEEE, 2004, pp. 75–86.

[2] R. M. Stallman et al., “Using the gnu compiler collection,” Free Software

Foundation, vol. 4, no. 02, 2003.

[3] C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez, S. Jain,
J. Liu, O. Teytaud, B. Steiner et al., “Compilergym: Robust, performant
compiler optimization environments for ai research,” in 2022 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).
IEEE, 2022, pp. 92–105.

[4] S. Cereda, G. Palermo, P. Cremonesi, and S. Doni, “A collaborative
filtering approach for the automatic tuning of compiler optimisations,”
in The 21st ACM SIGPLAN/SIGBED Conference on Languages, Com-

pilers, and Tools for Embedded Systems, 2020, pp. 15–25.

[5] S. Purini and L. Jain, “Finding good optimization sequences covering
program space,” ACM Transactions on Architecture and Code Optimiza-

tion (TACO), vol. 9, no. 4, pp. 1–23, 2013.

[6] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901, 2018.

[7] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson,
M. Bailey, Y. Paek, and K. Gallivan, “Finding effective optimization
phase sequences,” ACM SIGPLAN Notices, vol. 38, no. 7, pp. 12–23,
2003.

[8] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones,
“Fast searches for effective optimization phase sequences,” ACM SIG-

PLAN Notices, vol. 39, no. 6, pp. 171–182, 2004.

[9] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle,
J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning
to focus iterative optimization,” in International Symposium on Code

Generation and Optimization (CGO’06). IEEE, 2006, pp. 11–pp.

[10] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Prac-
tical exhaustive optimization phase order exploration and evaluation,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 6, no. 1, pp. 1–36, 2009.

[11] R. Nobre, L. G. Martins, and J. M. Cardoso, “Use of previously
acquired positioning of optimizations for phase ordering exploration,”
in Proceedings of the 18th international workshop on software and

compilers for embedded systems, 2015, pp. 58–67.

[12] L. G. Martins, R. Nobre, J. M. Cardoso, A. C. Delbem, and E. Marques,
“Clustering-based selection for the exploration of compiler optimization
sequences,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 13, no. 1, pp. 1–28, 2016.

[13] R. Nobre, L. G. Martins, and J. M. Cardoso, “A graph-based iterative
compiler pass selection and phase ordering approach,” ACM SIGPLAN

Notices, vol. 51, no. 5, pp. 21–30, 2016.

[14] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international

conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[15] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM

Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[16] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: a
machine learning based approach,” in Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel program-

ming, 2009, pp. 75–84.

[17] D. Grewe, Z. Wang, and M. F. O’Boyle, “Portable mapping of data
parallel programs to opencl for heterogeneous systems,” in Proceedings

of the 2013 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). IEEE, 2013, pp. 1–10.

[18] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and
J. Cavazos, “Micomp: Mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning,” ACM Trans-

actions on Architecture and Code Optimization (TACO), vol. 14, no. 3,
pp. 1–28, 2017.

[19] H. Liu, J. Luo, Y. Li, and Z. Wu, “Iterative compilation optimization
based on metric learning and collaborative filtering,” ACM Transactions

on Architecture and Code Optimization (TACO), vol. 19, no. 1, pp. 1–25,
2021.

[20] Z. Wang, G. Tournavitis, B. Franke, and M. F. O’boyle, “Integrat-
ing profile-driven parallelism detection and machine-learning-based
mapping,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 11, no. 1, pp. 1–26, 2014.

[21] Z. Wang and M. F. O’Boyle, “Partitioning streaming parallelism for
multi-cores: a machine learning based approach,” in Proceedings of the

19th international conference on Parallel architectures and compilation

techniques, 2010, pp. 307–318.

[22] R. Mammadli, A. Jannesari, and F. Wolf, “Static neural compiler
optimization via deep reinforcement learning,” in 2020 IEEE/ACM 6th

Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)

and Workshop on Hierarchical Parallelism for Exascale Computing

(HiPar). IEEE, 2020, pp. 1–11.

[23] Z. Wang and M. F. O’boyle, “Using machine learning to partition
streaming programs,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 10, no. 3, pp. 1–25, 2013.

[24] S. Jain, Y. Andaluri, S. VenkataKeerthy, and R. Upadrasta, “Poset-rl:
Phase ordering for optimizing size and execution time using reinforce-
ment learning,” in 2022 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 2022, pp. 121–131.

[25] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “Synthesizing
benchmarks for predictive modeling,” in 2017 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO). IEEE, 2017,
pp. 86–99.

[26] P. Zhang, J. Fang, T. Tang, C. Yang, and Z. Wang, “Auto-tuning streamed
applications on intel xeon phi,” in 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE, 2018, pp. 515–525.

[27] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint

arXiv:1807.02811, 2018.

[28] J. Chen, N. Xu, P. Chen, and H. Zhang, “Efficient compiler autotuning
via bayesian optimization,” in 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1198–
1209.

[29] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Bliss: auto-tuning
complex applications using a pool of diverse lightweight learning
models,” in Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation,
2021, pp. 1280–1295.

[30] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor,
and M. Hall, “Autotuning polybench benchmarks with llvm clang/polly
loop optimization pragmas using bayesian optimization,” Concurrency

and Computation: Practice and Experience, vol. 34, no. 20, p. e6683,
2022.

[31] E. O. Hellsten, A. Souza, J. Lenfers, R. Lacouture, O. Hsu, A. Ejjeh,
F. Kjolstad, M. Steuwer, K. Olukotun, and L. Nardi, “Baco: A fast and
portable bayesian compiler optimization framework,” in Proceedings of

the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 4, 2023, pp.
19–42.

[32] G. Fursin and O. Temam, “Collective optimization: A practical col-
laborative approach,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 7, no. 4, pp. 1–29, 2010.

[33] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC

International Conference on Performance Engineering, 2018, pp. 41–42.

[34] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine

learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[35] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information

processing systems, vol. 25, 2012.

[36] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

[37] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson,
“Gpytorch: Blackbox matrix-matrix gaussian process inference with
gpu acceleration,” Advances in neural information processing systems,
vol. 31, 2018.

[38] J. Zhao, R. Yang, S. QIU, and Z. Wang, “Unleashing the potential
of acquisition functions in high-dimensional bayesian optimization,”
Transactions on Machine Learning Research.

[39] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, and
O. Temam, “Rapidly selecting good compiler optimizations using per-
formance counters,” in International Symposium on Code Generation

and Optimization (CGO’07). IEEE, 2007, pp. 185–197.

[40] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam, and
C. Wu, “Deconstructing iterative optimization,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 9, no. 3, pp. 1–30,
2012.

[41] P. Bennet, C. Doerr, A. Moreau, J. Rapin, F. Teytaud, and O. Teytaud,
“Nevergrad: black-box optimization platform,” ACM SIGEVOlution,
vol. 14, no. 1, pp. 8–15, 2021.

[42] S. VenkataKeerthy, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta,
and Y. Srikant, “Ir2vec: Llvm ir based scalable program embeddings,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 17, no. 4, pp. 1–27, 2020.

[43] A. Haj-Ali, Q. J. Huang, J. Xiang, W. Moses, K. Asanovic,
J. Wawrzynek, and I. Stoica, “Autophase: Juggling hls phase orderings
in random forests with deep reinforcement learning,” Proceedings of

Machine Learning and Systems, vol. 2, pp. 70–81, 2020.
[44] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. O’Boyle, and

H. Leather, “Programl: A graph-based program representation for data
flow analysis and compiler optimizations,” in International Conference

on Machine Learning. PMLR, 2021, pp. 2244–2253.
[45] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,

M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois et al.,

“Milepost gcc: Machine learning enabled self-tuning compiler,” Inter-

national journal of parallel programming, vol. 39, pp. 296–327, 2011.
[46] S. Park, S. Latifi, Y. Park, A. Behroozi, B. Jeon, and S. Mahlke,

“Srtuner: Effective compiler optimization customization by exposing
synergistic relations,” in 2022 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO). IEEE, 2022, pp. 118–130.
[47] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code comprehen-

sion: A learnable representation of code semantics,” Advances in neural

information processing systems, vol. 31, 2018.
[48] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation, 2011,
pp. 283–294.

[49] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves,
D. Subramanian, L. Torczon, and T. Waterman, “Finding effective
compilation sequences,” ACM SIGPLAN Notices, vol. 39, no. 7, pp.
231–239, 2004.

[50] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi,
“scikit-optimize/scikit-optimize,” Oct. 2021, https://doi.org/10.5281/
zenodo.5565057.

	INTRODUCTION
	Background and Motivation
	Program Scope
	Motivation
	Bayesian Optimization

	Our Approach
	Overview
	Bayesian Optimization for Compiler Tuning
	Surrogate Model for Performance Estimation
	Feature extraction
	Model architecture and training
	Inference

	Acquisition Function Design
	Pass Sequence Generator
	Autotuning Task Definition

	Experimental Setup
	Implementation
	Evaluation Platforms
	Benchmarks
	Competing Baselines
	Evaluation Methodology

	Experimental Results
	Comparison with Baselines
	Ablation Study
	Alternative Feature Extraction Methods
	Hyperparameter Sensitivity Analysis
	Compilation Statistics Analysis
	Algorithmic Runtime

	Related Work
	Compiler Phase Ordering
	Bayesian Optimization for Program Autotuning

	Conclusion
	References

