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ABSTRACT

Species distribution models rely on species' observed geographic distributions, which reflect only subset of the true ecological 

niche. This inevitably leads to discrepancies between the predictions of habitat suitability (HS) and the actual ecological perfor-

mance in novel environments beyond the trained range. We examined this limitation by comparing modelled HS with empirical 

survival rates (SRs) of three Acer species, A. davidii, A. palmatum, and A. pictum, cultivated in the UK botanic gardens. We 

hypothesise that ex- situ species with greater niche overlap with native UK/European species will show higher HS, which also 

correspond to species' SR relative to that of local species. This HS- SR alignment will then indicate the alignment of species' geo-

graphic range and ecological range. We first quantified niche similarity between these East Asian species and UK/Europe native 

Acer species at both regional and continental scales. MaxEnt models were calibrated using native occurrences with various 

combinations of environmental variables and model configurations, then projected onto UK regions. Species' SRs were stand-

ardised against those of native species using long- term inventory data. Our results show that niche overlap with native species 

generally corresponded to predicted HS, while observed SR patterns revealed an inverse relationship. A. davidii, showing high 

niche overlap and high HS, exhibited the lowest SR. Contrarily, A. pictum, despite showing low niche overlap and predicting most 

regions unsuitable, demonstrated the highest SR, comparable to native species. This discrepancy was particularly noteworthy 

as A. pictum shared closer phylogenetic relationships with European species, while A. davidii was more closely related to North 

American species. The observed phylogenetic signal in SR patterns suggests that intrinsic traits that relate to climate tolerance 

may be conserved yet masked in the conventional modelling approach. This interdisciplinary approach bridges the gap between 

macro- scale predictions and local- scale individual performance, offering a new perspective on niche conservatism through a 

phylogenetic framework.

1   |   Introduction

Climate change has shifted the focus of ecological studies from 

‘explanatory’ to ‘anticipatory predictions’ (Mouquet et al. 2015). 

The increasing need to predict the potential impacts of climate 

change on species' distribution patterns to support informed 

conservation decisions and risk assessment has propelled 

the popularity of the correlative species distribution models 

(Pearson and Dawson  2003). Essentially, species distributions 

in the area of interest are projected as habitat suitability (HS), 

or the probability of occurrence. These projections are de-

rived by comparing environmental conditions at unsampled 

sites to those at sampled sites where species are present or ab-

sent (Elith and Leathwick  2009). Here, the presence–absence 
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data serve as a proxy indicator of species' demographic perfor-

mance at population level. The areas where species frequently 

occur are assumed to represent the environmental conditions 

that support ‘non- negative population growth’, aligning with 

the Hutchinson's concept of ecological niche (Carscadden 

et  al.  2020; Hutchinson  1957). This is intuitive because any 

observed presence is a manifestation of individuals that (1) 

achieved reproductive success and (2) survived local environ-

mental conditions. The assumption that species' geographical 

range reflects its ecological niche easily leads to the idea that 

environmental conditions are most suitable–and thus popula-

tion most abundant–near the range centre and decline towards 

the periphery, as suggested by the ‘abundant- centre hypothesis’ 

(Brown 1984; Pironon et al. 2017).

However, studies show mixed evidence in relationship between 

abundance and geographic distance to range centre (Dallas 

et al. 2017; Jiménez- Valverde 2012; Sagarin and Gaines 2002). 

This is largely due to non- climatic factors (Canham and 

Thomas  2010). Demographic performance depends on diverse 

biological traits such as vital rates, dispersal ability, or genetic 

diversity (Bahn et al. 2006; Pagel et al. 2020; Pironon et al. 2017). 

The accuracy of species distribution can be improved by integrat-

ing these parameters directly or through surrogate measures, for 

example, phenological data (Canham and Murphy 2016; Chuine 

and Beaubien 2001; Morin et al. 2007; Pagel et al. 2020). Further, 

species distribution is ultimately conditioned, directly or indi-

rectly, by the complex biotic interactions, which are challenging 

to quantify and often remain as unknown x (Novak et al. 2011).

The complex interplay of multiple ecological processes underly-

ing species distributions creates ambiguity in discerning species' 

true optimal niche and their ecological marginalities. In par-

ticular, geographic marginality within a species' range should 

not be equated with ecological marginality. It suggests that a 

species' native distribution has limited utility in assessing cli-

mate tolerance, unless it is assessed independently of these in-

teracting processes. As observed by Early and Sax (2014), invasive 

species could occur outside their native climatic range. Similar 

counter- intuitive or unexpected responses to climate change are 

not uncommon in a real- world and often exhibit highly variable 

interspecific magnitude (Parmesan and Hanley 2015). However, 

it is noted that these non- conforming variations may still be ad-

dressed within conventional niche framework if properly tested 

(Clark et al. 2011; Wiens et al. 2010). For example, geographically 

separated species of shared ancestry can exhibit a certain degree 

of niche conservatism, even when the disjunct climatic condi-

tions they experience differ in patterns (Qian and Ricklefs 2004). 

By incorporating phylogenetic relationships, seemingly inde-

pendent event, such as species' survival beyond their climatic 

range, can be better understood. Yet, it remains uncertain how 

this subtle difference can be reflected in the modelled estimates, 

such as HS, and how they should be interpreted given increased 

complexity.

Thus, this research aims to analyse species' climate tolerance, 

by examining relationship between survival rate (SR) and HS, 

while incorporating phylogenetic relationships to provide more 

holistic understanding of species' response patterns. For this anal-

ysis, we focused on species located at their marginal niche, where 

SR > 0, outside their native geographic range. Although this ap-

proach may be best achieved in full scale, transplanting species 

across their entire environmental gradient, we limited our test to 

local botanic gardens for feasibility reasons. We considered that 

ex- situ species in botanic gardens can serve as a valuable resource 

to test this concept. Botanic gardens provide a semi- controlled en-

vironment that minimises certain biotic interactions (e.g., compe-

tition) found in natural settings, while still maintaining exposure 

to regional environmental conditions. Such settings may also limit 

SR assessment to a specific study period while omitting the long- 

term biotic processes discussed earlier. However, the advantage is 

to assess species- specific responses at the individual level, which 

will allow uncovering patterns in their relations to the recent cli-

mate change that might otherwise be obscured. Studying plants 

at the individual level, rather than using aggregated species data, 

proves particularly valuable when investigating species' responses 

FIGURE 1    |    An overview of the analytical steps taken to capture processes acting at different spatial scales.
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to specific environmental changes, as it preserves critical informa-

tion that would typically be lost when data are averaged across 

populations (Clark et  al.  2011). Additionally, botanic gardens 

maintain long- term inventory records that are well- suited for com-

parative analysis with niche models at a matching temporal scale.

We quantified the degree of niche marginality for these ex- 

situ species in relation to local native species of the same genus, 

rather than measuring their absolute distances from their native 

ranges. This approach uses locally abundant congeneric spe-

cies—which are presumed to occupy within the optimal range 

of their ecological niche—as reference points, allowing us to test 

niche conservatism and to compare niche overlaps under phy-

logenetic relationships. We hypothesise that ex- situ species with 

greater niche overlap with native UK/European species will show 

higher HS, with potential indication of niche conservatism. 

Furthermore, we expect these predicted HS will then correlate 

with species' SR relative to that of local species or standardised 

survival rate (SSR). Such HS- SSR agreement would confirm that 

the model effectively predicts thresholds for species' climate tol-

erance. Lastly, we aim to validate whether the alignment of niche 

similarity, HS, and SSR by species indicates any trace of phylo-

genetic signal—that is, the tendency for closely related species 

to share similar characteristics (Pearman et al. 2008), using the 

reference phylogeny map from Li et al. (2019).

2   |   Methods

2.1   |   Outline of Research Processes

The study is structured into three main steps at different spatial 

scales, as illustrated in Figure 1. The first step involves evaluating 

the environmental similarities between species' native distribu-

tions and novel environments at a continental scale, using various 

selections of environmental variables. The second step involves 

projecting HS values for the three selected regions in the UK, from 

the trained model from their native range based on various com-

binations of configurations, specifically on pseudo- absence sam-

pling and cross- validation methods. Lastly, the SR values from the 

previous research (Kim et al. 2023) are calculated and standardised 

to compare with modelled HS values at an individual scale.

2.2   |   Species Occurrence Data

Three Acer species were selected, A. davidii, A. palmatum, and A. 

pictum, as each species characterises a distinct geographical range 

(Figure 2). Occurrences of A. davidii are primarily concentrated in 

Sichuan, extending to Southern China, which ranges from subtrop-

ical zones to cooler montane areas (Su et al. 2021). In contrast, A. 

palmatum is more prominently distributed throughout the south-

west of Korea and from Honshu to Kyushu in Japan (Chang 1990). 

A. pictum exhibits a broader distribution, predominantly in high- 

latitude cool temperate forests across all three countries.

All occurrence data were retrieved from the Global Biodiversity 

Information Facility (http:// www. gbif. org; GBIF, 2024; see 

Supplemntary File S3 for citations for individual data download) 

and filtered for invalid occurrences (e.g., non- terrestrial) using 

the CoordinateCleaner R package v2.0–20 (Zizka et  al.  2019). 

From the downloaded data, only those sources of natural distri-

butions such as herbariums or national surveys were selected, 

and any occurrences outside known native ranges, referenced 

from the Plants of the World Online (POWO: https:// powo. scien 

ce. kew. org), were excluded. Among the selected species, A. pic-

tum and A. davidii posed a unique challenge regarding poten-

tial sampling bias as presence- only data (Elith et al. 2011; Sillero 

et  al.  2021). While these species are widely distributed across 

the studied region, imbalanced sample sizes between countries 

could result in over- clustering in certain countries while under-

representing their distribution in China, despite China's domi-

nant geographical extent in East Asia. To minimise disparity 

among countries, we selected only national- scale survey datasets 

from relatively data- abundant countries, filtered by institution 

code. For example, institution code ‘BDCJ’ is the 2nd and the 

3rd national survey datasets for A. pictum in Japan. The complete 

list of specific datasets selected for each country is available in 

Supplemental File III. Additionally, all data were rarefied to the 

resolution of environmental variables so that a minimum 1 km 

distance between occurrences were maintained using the spThin 

R package v0.2.0 (Aiello- Lammens et al. 2015).

2.3   |   Environmental Variables

The choice of environmental variables that adequately capture 

species distribution constraints is critical for developing reliable 

Glossary

Climate tolerance: the ability of species to maintain vi-
able populations through survival, growth, and reproduc-
tion under varying climatic conditions.
Ecological marginality: the degree to which a popula-
tion exists near the limits of its species' physiological tol-
erance, determined by both abiotic and biotic conditions.
Geographic marginality: the degree of spatial isolation 
and fragmentation of populations relative to the core of 
the species' range, often associated with reduced connec-
tivity and gene flow between populations.
Habitat suitability (HS): the capacity of an environment 
to provide the essential resources and conditions required 
for a species' survival, growth, and reproduction, which 
often translates to the probability of species’ occurrence.
Niche conservatism: the tendency for species of shared an-
cestry to retain similar fundamental and/or realised niches.
Niche marginality: a measure of the ecological distance 
between the species’ ecological niche and the available 
environmental conditions in the study areas.
Niche similarity: a degree of overlap or shared environ-
mental conditions between the ecological niches of differ-
ent species.
Phylogenetic signal: the tendency for closely related 
species to resemble each other more than they resemble 
distant relatives in their traits or ecological characteristics.
Survival rate (SR): The proportion of intraspecific indi-
viduals that survived relative to the initial population size 
within specified study areas.
Standardised survival rate (SSR): A measure of relative 
survival that represents how far an ex- situ species' survival 
rate deviates from the mean survival rate of UK native 
species.
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models. Moreover, selecting environmental variables that di-

rectly influence on physiological responses would be ideal but 

challenging when relating modelled projections to local SRs 

(Gardner et al. 2019; Guisan and Zimmermann 2000). Therefore, 

we ran models with different combinations of climatic, soil, 

and land cover variables derived from multiple global databases 

(Table  S1) to evaluate their relative performance. As climate 

variables are most critical and diverse, they are categorised into 

three groups by their distinct influence on plant physiology, ‘bio 

A', ‘bio B' and ‘bio C'. The first group, ‘bio A‘, was chosen from a 

pool of 19 common bioclimatic variables that characterise broad 

and general climate. The second group, ‘bio B', was chosen from 

a pool of all 19 and additional CHELSA- BIOCLIM+ variables 

(Brun et al. 2022), which were processed to characterise grow-

ing season conditions, specifically including water balance, solar 

energy and evapotranspiration demand. The last group, ‘bio C', 

consists of variables that reflect specific seasonal effects and 

thresholds linked to biophysical tolerance such as minimum tem-

perature of the coldest month. The selections of ‘bio A' and ‘bio 

B' were determined based on a paired correlation test, retaining 

only variables with its correlation coefficients < 0.70 (Dormann 

et al. 2013), while ‘bio C' was manually selected. The specific list 

of variables for each group is detailed in supplemental Table S1. 

All bioclimatic data were obtained from CHELSA v2.1 climatol-

ogies at a spatial resolution of 30 arc sec (∼1 km at the equator) 

(Brun et al. 2022; Karger et al. 2021). All correlation tests were 

performed using the ‘caret’ package (Kuhn et al. 2023).

For soil variables, selections were made based on their eco-

logical relevance to nutrient availability and water- holding 

capacity (Dodd and Lauenroth  1997; Eyre  2013). Global soil 

profile data, including soil acidity (pH), clay, silt, and bulk 

density of the upper soil layer (0–5 cm), were downloaded 

from SoilGrids 2.0 (Poggio et al. 2021) at a resolution of ~250 m 

and subsequently resampled to ~1 km. Among them, sand 

content was excluded due to its strong correlation with clay 

and silt content. Lastly, remote- sensed land surface charac-

teristics, such as enhanced vegetation index (EVI) and EVI 

dissimilarity index derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS), were download from 

the EarthEnv (Tuanmu and Jetz 2015) at a spatial resolution of 

30 arc sec (~1 km at the equator). These vegetation indices are 

indirectly influencing ecosystem attributes such as soil mois-

ture, land surface temperature, and intercepted light amount 

(Regos et  al.  2022). Given that the selected Acer species are 

generally known to be shade- tolerant subcanopy species, we 

included these vegetation indices to test if these variables 

would improve our models. However, both EVI and EVI dis-

similarity indices are heavily dependent on temporal factors, 

making it crucial to establish the appropriate temporal con-

dition. In this study, annual EVI dissimilarity, EVIdis, and 

the maximum monthly EVI, EVImax, for each year were av-

eraged across the preset period from 2001 to 2005. All down-

loaded environmental variables were adjusted to a resolution 

of 30 arc sec and stacked to align on the same grid.

FIGURE 2    |    Occurrence density of (a) A. davidii (n = 222), (b) A. palmatum (n = 925), and (c) A. pictum (n = 2671) in their native range. Two- 

dimensional kernel density plots of occurrences are overlaid on the map of each study region.
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2.4   |   Niche Similarity and Phylogeny

Niche similarity test was performed to evaluate environmen-

tal similarities between the native distributions of the ex- situ 

species selected in 2.2 and the UK/European distributions of 

native species (Broennimann et  al.  2012; Warren et  al.  2008). 

We selected two widely distributed Acer species in the UK, A. 

campestre and A. platanoides (Figure S1) for the comparison. It 

is noted that A. platanoides is not strictly native to the UK but 

is extensively naturalised across the UK, comparable to ‘near- 

native’. The niche similarity test evaluates the niche overlap be-

tween the two species based on their observed distributions in 

comparison to their background overlap based on the random 

points drawn from the broader range each species occurs. The 

null hypothesis—that the observed niche overlap does not dif-

fer from their random background overlap by chance—can be 

rejected if the p- value is below 0.05 after 100 simulation runs. 

For each species pair, the test was conducted at two geograph-

ical scales: the UK range and the entire range in Europe. This 

dual approach allows us to determine whether the similarity 

test result is specific to the UK range or consistent with the full 

ecological range. This comparison is particularly important for 

interpreting niche marginalities, as these species' geographic 

range extend beyond the UK, covering broader European re-

gions. This test is primarily based on the metrics, Schoener's D 

(Schoener 1970) and Warren's I (Warren et al. 2008). A score of 

one indicates complete overlap, while a score of zero indicates 

no overlap. All tests were conducted using ‘ENMTools’ v1.1.1 

(Warren et al. 2021).

In addition to the niche similarity test, phylogenetic relation-

ships were examined using reference genome analysis by Li 

et al. (2019). This is to evaluate the link between niche similarity 

and species' phylogenetic relatedness.

2.5   |   Species Distribution Modelling

Among the various modelling methods available, MaxEnt 

v3.4.4 (Phillips and Dudık  2008) was chosen for its demon-

strated transferability with presence- only data (Elith et al. 2006; 

Heikkinen et  al.  2012). MaxEnt also shows relatively higher 

sensitivity compared to other modelling methods, which has the 

advantage of identifying potential niches beyond the calibrated 

range (Barbet- Massin et al. 2012; Qiao et al. 2019). In this study, 

species' realised niches were defined by their native distribu-

tions (training region), while UK regions were evaluated as their 

potential niche by projected HS. The underlying assumption 

is that anthropogenic introduction of these species to UK has 

conceptually removed dispersal barriers, with projected HS rep-

resenting the hypothetical approximation for species' realised 

niches to expand towards their fundamental niches (Soberon 

and Peterson 2005).

2.5.1   |   Preprocessing Training Region

Prior to modelling, we delineated the training regions for each 

selected species by generating polygons around each occur-

rence with a buffer radius of 200 km. The distance was deter-

mined based on the reference study demonstrating optimal 

performance of areas under the receiver operating characteristic 

curve (AUC) (Wal et al. 2009).

2.5.2   |   Pseudo- Absence Sampling Strategy

In addition to occurrence data, pseudo- absence sampling 

strategy also equally influences the model's predictive ac-

curacy. To minimise the negative effects of false pseudo- 

absences, we employed (1) the ‘geographic- exclusion (G.E.)’ 

approach (Barbet- Massin et al. 2012) and (2) the ‘environmen-

tal similarity (E.S.)’- based approach (Chefaoui and Lobo 2008; 

Wang et al. 2023). The ‘G.E.’ approach is based on the simple 

assumption that any region within a certain minimum dis-

tance from an observed occurrence shares similar environ-

mental conditions and is considered suitable. We thus created 

a smaller buffer of either 10 km (for A. palmatum) or 30 km (A. 

davidii and A. pictum) around occurrences to avoid generation 

of pseudo- absences in close proximity to known occurrences. 

The distance was determined based on the spatial extent, 

the number of occurrences, and buffering distances used in 

comparable studies (Barbet- Massin et al. 2012; Chefaoui and 

Lobo 2008; Wang et al. 2023). For the ‘E.S.’ approach, unsuit-

able areas for pseudo- absence generation were preliminarily 

defined based on environmental similarity using One- Class 

Support Vector Machine (OCSVM), a popular machine learn-

ing algorithm for anomaly- detection (Senay et al. 2013). A set 

of pseudo- absences was generated from the resulting unsuit-

able areas for each set of environmental variables selected in 

2.2. The number of pseudo- absences generated were 10,000 

for A. palmatum and A. pictum, and 5000 for A. davidii to bal-

ance with a lower count of observed occurrences. This ran-

dom sampling was repeated 5 times.

2.5.3   |   Cross- Validation Strategy

For this study, it is important to first validate species distribu-

tion models within the species' native region. By establishing 

the model's reliability in their known region, we can then as-

sess how consistently the well- trained model's HS predictions 

align with the actual SSR in the novel environment. Ideally, 

model validation requires the independence of the test data, 

that is, test data must not relate to training data. For example, 

it is recommended to use occurrence data from the geograph-

ically distinct subsets of the native regions to avoid spatial 

autocorrelation. When test data is randomly extracted from 

the training region where spatial autocorrelation exists, the 

test and train data share similar patterns by increased chance 

of pulling test data from those in geographic proximity to 

train data. Because this risks inflating the model's reliabil-

ity with over- optimistic confidence, the study compares and 

contrasts two cross- validation strategies: (1) a geographic 

block- partitioning strategy (‘block’) and (2) a random partition 

for comparison (‘random’) (Roberts et al. 2017). The former, 

‘block’ approach allows a self- extrapolation test within the 

native range by leaving out all occurrences within selected 

geographic blocks for testing. The latter, ‘random’ approach 

uses test data randomly selected from the entire studied re-

gion, regardless of geographic proximity. By comparing val-

idation results from these two approaches, we can compare 
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the potential predictive errors when transferring the trained 

model to novel environments.

For the ‘block’ strategy, spatial blocks were generated and assigned 

to study regions in folds (k = 4), allowing even allocation of oc-

currence data across specified folds. The training data are taken 

from k- 1 folds while the remaining data are used in validation. 

The size of the square blocks for each species was automatically 

determined using the ‘cv_spatial_autocor’ function from the 

BLOCKCV library v3.1–3 (Valavi et  al.  2023). For the ‘random’ 

strategy, 25% of occurrence data were set aside for cross- validation. 

For both approaches, 10- fold cross- validations paired with 5 sets of 

pseudo- absence samples resulted in a total of 50 models.

The performance of the model was evaluated using two met-

rics: the True Skill Statistics (TSS) that combine sensitivity 

(true positive rate) and specificity (true negative rate) into a 

single metric ranging from −1 to +1, and the AUC that dis-

criminates between presence and absence across all possible 

threshold values (0–1).

2.5.4   |   Projecting Habitat Suitability (HS)

All trained models from native regions were projected onto the 

UK region to generate HS. These resulting HS values were then 

averaged to create a single projection. The raw HS values were 

multiplied by 0.01 to standardise from highest suitability, 1, to 

lowest suitability, 0. Lastly, HS values assigned to each cell were 

aggregated and generated a single mean value for each local 

district corresponding to the location of selected urban botanic 

gardens. Specifically, these local districts are Richmond upon 

Thames for KEW, Cotswold for WESB, and Midlothian and 

West Lothian for RBGE. For Edinburgh, surrounding counties 

were selected rather than the city itself, as soil variables were 

only available for non- urban areas.

The complete modelling process illustrated from 2.5.1 to 2.5.4 

was performed using ‘dismo’ v1.3–9 (Hijmans et al. 2017) and 

‘biomod2’ v4.2–4 (Thuiller et  al.  2023) and run on the high- 

performance cluster at the University of Sheffield.

2.6   |   Standardising Survival Rates (SSRs)

Mortality rates for the selected species were obtained based on 

the previous research (Kim et al. 2023). These retrieved mortal-

ity rates were originally collected from the three botanic gardens 

in the UK; the Royal Botanic Gardens Kew (KEW), Westonbirt, 

the National Arboretum (WESB), and the Royal Botanic Garden 

Edinburgh (RBGE). Specific methods used in filtering inven-

tory data and calculating the mortality rates can be found in the 

original paper. Briefly to summarise, all mortality events were 

filtered out to leave only those explicitly related to climate or un-

known cause. The retrieved mortality rates were then converted 

into species- specific SR and standardised as follows,

where SR for species i in a given period j (2000 to 2021), within 

region k was first calculated from the species- specific mortality 

rate, MR. The resulting SR is then standardised in relation to the 

native species' mean SR, SR
�
, with its standard deviation, �. The 

purpose of SSR is to calculate relative distance to mean SR, SR
�
 

of locally native species.

The analysis first assumes that the SRs of native species follow 

a normal distribution. For region k, SSR values within ±2 indi-

cate that species' SR falls within the expected range of native 

species with 95% confidence. This ±2 window thus defines the 

‘suitable’ range, where species' performance is comparable to 

that of locally established species. However, when ex- situ spe-

cies show increasingly higher mortality rates, the distribution 

becomes left- skewed (Figure 3). In such a left- skewed curve, the 

lower bound of the 95% confidence interval can hypothetically 

shift towards the left, reaching a minimal SR of 0.1, denoted as 

− �. Consequentially, the suitable range that is comparable to 

native species narrows, while a larger proportion of SRs falls 

below this suitable range but remains just above the minimal SR 

(> 0.1). This intermediate range is considered marginal but still 

suitable, as species are surviving but not thriving. It is import-

ant to distinguish this marginally suitable range from the opti-

mally suitable range, especially when assigning corresponding 

HS values.

HS values are typically continuous, ranging from 0 to 1. 

Converting these values into binary presence/absence pre-

dictions requires setting an arbitrary threshold, often at 0.5 

(Li et  al.  1997). For presence- background algorithms such as 

MaxEnt, the threshold can be lowered to 0.3 or even below in 

certain cases, as these algorithms calibrate based on a large 

pseudo- absence samples across broad background areas 

(Jiménez- Valverde and Lobo 2007; Sillero et al. 2021). We set a 

threshold of 0.3. Areas below this threshold are considered ‘un-

suitable,’ corresponding to locations where SR is predicted to fall 

below 10%. Areas above this threshold can be more ambiguous 

in relating to SR as species presence alone does not necessarily 

indicate demographic performance (Roloff and Kernohan 1999). 

However, a midpoint threshold of 0.6 was arbitrarily applied to 

differentiate between marginally suitable and optimally suitable 

locations.

Lastly, in addition to their relation to HS, all species- specific 

SRs were examined in relation to their phylogeny to identify 

any consistent patterns among more closely related species. 

For this analysis, the SRs of species identified as sister spe-

cies were rearranged based on the previous research (Kim 

et al. 2023).

3   |   Results

3.1   |   Niche Similarity and Phylogeny

Overall, A. davidii demonstrated greater niche overlap with both 

A. campestre and A. platanoides, with this overlap particularly 

significant within the UK distributions compared to the entire 

distributions across Europe (Table  S2). This contrasts with A. 

palmatum and A. pictum, which exhibited significantly greater 

niche similarity with A. platanoides across broader Europe, but 

SRijk = 1 −MRijk

SSRijk =

(

SRijk − SR
�jk

)

�
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not within the UK (Table S3). It is also noted that A. palmatum, 

in particular, exhibited no overlap, a very strong dissimilar cli-

matic pattern within the UK range.

According to the phylogenomic analysis conducted by Li 

et al. (2019), each species belongs to a different section: A. davi-

dii to section Macrantha, A. palmatum to section Palmata, and 

A. pictum to section Platanoidea. Interestingly, both of the UK 

native species selected for niche comparison belonged to the sec-

tion Platanoidea. Based on this phylogenetic tree, A. pictum is 

most closely related to these UK species, while A. palmatum is 

most distantly related.

3.2   |   Comparing Model Predictions Between 
Native and Novel Environment

Within species' native range, the overall discriminatory 

power, measured by AUC, was fairly good with mean valida-

tion values of 0.74, 0.72, and 0.78 for A. davidii, A. palmatum, 

and A. pictum, respectively. In contrast, the model's accuracy, 

measured by TSS, decreased sharply from moderate to weak, 

with its mean validation values of 0.33, 0.32, and 0.44 for A. 

davidii, A. palmatum, and A. pictum, respectively. As dis-

cussed in 2.5.3, the random validation approach generally pro-

duces higher TSS scores than the block validation approach 

(Figure  4). These results suggest model prediction capacity 

weakens when validated using independently held- out block, 

which represents novel environment outside the training 

range. Furthermore, the choice of validation approach did not 

substantially affect the prediction alignment between HS and 

SR for A. davidii (Figure  5). However, the choice of pseudo- 

absence sampling strategy had a stronger influence on pres-

ence–absence predictions for all species. When comparing 

only pseudo- absence sampling approaches while keeping all 

other configurations set constant including environmental 

variables, the model using the ‘G.E.’ approach improved the 

model performance, yielding higher TSS scores. For A. pal-

matum, the best model combined random validation with the 

G.E. pseudo- absence sampling approach (‘random + G.E.’), 

using either climate- only ‘bio A' (TSS 0.56) or ‘bio B' (TSS 0.52) 

variable selections (Supplemental file I). These were only mod-

els that achieved both the highest validation TSS scores and 

perfect agreement between HS- SR in all three sites. For A. da-

vidii, the best performing models were the ‘random + G.E.’ ap-

proach using the complete bio A variable set that includes soil 

and land cover (TSS 0.46) and the ‘random + E.S.’ approach 

using the complete bio B variable set (TSS 0.45). However, 

while these models demonstrated good HS- SR alignment (two 

out of three aligned), it should be noted that the overall degree 

of HS- SR alignment resulted similar among different model 

configurations for A. davidii. Furthermore, none of the result-

ing estimates for A. pictum showed any agreement between 

HS- SR except one model using ‘block + E.S.’ approach that 

predicted two regions–Lothian and Richmond–marginally 

suitable, with a full bio C variable set (TSS 0.25). This mis-

alignment in particular contrasts with A. pictum's high pre-

diction capacity shown in its native range, exhibiting highest 

model performance among the studied species.

Overall, additions of soil and land cover variables improved 

model performance for A. davidii and A. pictum at least for bi-

nary presence–absence predictions within their native range. 

This contrasts with models for A. palmatum, which performed 

better without soil and land cover variables: it exhibited  

the best predictions in species' native range with ‘bio C' (high-

est TSS) and the highest alignments between HS- SR and 

‘bio A'.

FIGURE 3    |    A hypothetical distribution curve for ex- situ species' standardised survival rates (SSR) shown in red, in relation to native species' SR 

distribution shown in grey. Three intervals of habitat suitability (HS) values are mapped to SSR: The optimal interval I, HS between 0.6 and 1.0, is 

mapped to the 95% SR range of native species; the unsuitable interval III, HS between 0 and 0.3, corresponds to areas below where ex- situ species' SR 

< 0.1; the marginal interval II represents the range between the unsuitable and the optimal interval.
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3.3   |   SR- HS Alignment Within Phylogeny

While the aggregated means of projected HS, collapsing regional 

differences, were highest in the order of A. davidii (0.66) > A. 

palmatum (0.40) > A. pictum (0.09), the SR followed exactly the 

reverse order, with aggregated SR means of 0.53, 0.73, and 0.81, 

respectively. This means that some models for A. davidii showed 

moderate agreements between the projected HS and SR, but many 

other models yielded overestimated values (Figure 5). In contrast, 

the projected HS of the other two species was mostly underesti-

mated. Contrary to optimistic HS estimation, A. davidii exhibited 

the lowest range of SRs, all below 0.6, with the lowest value of 0.49 

observed at KEW (Richmond). When standardised against native 

species, all SRs observed fell below the 5th percentile (SSR < −2) 

of native species' range (Figure 6). On the other hand, A. pictum 

demonstrated the highest SR among the selected species, with all 

values above 0.7, within a range comparable to that of the native 

species. The SR of A. palmatum varies by region, with the highest 

value of 0.87 observed at KEW (Richmond), followed by 0.70 at 

RBGE (Lothian), and 0.61 at WESB (Cotswold), which falls slightly 

outside the native range (SSR −2.26). Native species in these re-

gions show SRs ranging from 0.75 to 1.0, with regional means of 

0.8, 0.88, and 0.87 for KEW (Richmond), RBGE (Lothian), and 

WESB (Cotswold), respectively.

Additionally, these SRs are compared among other Acer species 

within the phylogenetic group (Table 1). It is observed that sec-

tion member species display similar SRs among themselves. For 

example, within sect. Platanoidea, to which A. pictum belongs, 

species such as A. cappadocicum (0.84 ~ 0.91), A. platanoides 

(0.75 ~ 0.85), and A. campestre (0.84 ~ 1.0) exhibit a similar range 

of high SRs. On the other hand, those member species within 

sect. Macrantha, to which A. davidii belongs, have shown rel-

atively lower SRs as observed in A. pensylvanicum (0.29 ~ 0.59) 

and A. crataegifolium (0.25 ~ 0.43). Lastly, A. palmatum belong-

ing to sect. Palmata also shows a similar range of SRs with mem-

ber species within this section such as A. japonicum (0.73 ~ 1.0) 

and A. circinatum (0.71 ~ 0.86). In particular, sect. Macrantha 

FIGURE 4    |    The comparative distributions of model evaluation output. Model performance varies with different combinations of cross- validation 

and pseudo- absence strategy for each species, A. davidii, A. palmatum, and A. pictum. (a) AUC with calibrated means (green) and validated means 

(red), and (b) TSS with calibrated means (green) and validated means (red).
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statistically differed from the rest of the species, with markedly 

lower ranges of SRs in all three sites. Additionally, patterns are 

not only evident in the interspecific SRs but also evidenced in the 

variations of intraspecific SRs among the botanic gardens. For 

instance, the SRs of those species from sect. Macrantha are sim-

ilarly lowest at KEW and highest at WESB, whereas those spe-

cies from sect. Palmata exhibited the opposite patterns, lowest at 

WESB and highest at KEW.

4   |   Discussion

4.1   |   Phylogenetic and Environmental Distance 
Are Complementary Rather Than Collinear

Acer is a highly diverse genus, comprising approximately 152 

species, with its ancestral biogeographic region disputed be-

tween Eastern Asia (Gao et al. 2020; Li et al. 2019) and North 

America (Wolfe and Tanai  1987). There are about a dozen 

species native to Europe, while the majority of Acer species 

are predominantly distributed in Eastern Asia. The selected 

ex- situ species in this study—A. davidii, A. palmatum, and 

A. pictum—each originated from Eastern Asia, representing 

a distinct phylogenetic section: Macrantha, Palmata, and 

Platanoidea, respectively, with a distinct biogeographical 

range (Figure 2). Among the sections, Macrantha represents 

the earliest divergence, while Palmata is the latest divergence 

and contains the largest number of species (de Jong 1976; Li 

et al. 2019). Both sections consist of species with a disjunct dis-

tribution in East Asia and North America. In contrast, section 

Platanoidea consists of species from Europe and East Asia: 

A. campestre, A. platanoides, and A. pictum are all under one 

umbrella.

Therefore, our hypothesis test worked for A. pictum, which 

exhibited significantly greater niche similarity with its sister 

FIGURE 5    |    The cumulative count of alignment between the predicted habitat suitability (HS) and survival rate (SR) from all models for species, 

A. davidii, A. palmatum, and A. pictum. The alignment between HS and SR is determined by the mapping illustrated in Figure 3 as HS = SR indicat-

ed by ‘agree’ in green, HS>SR indicated by ‘over’ in orange and HS<SR indicated by ‘under’ in grey. The threshold 0.3 classifies unsuitable- suitable 

while the threshold 0.6 classifies marginal- suitable. Pseudo- absence sampling based on environmental similarity is abbreviated as E.S and the geo-

graphic exclusion strategy is abbreviated as G.E.

FIGURE 6    |    Relative position of Standardised Survival Rate (SSR) for A. davidii (red), A. palmatum (orange), and A. pictum (green) in each bo-

tanic garden: (a) Royal Botanic Gardens, Kew (KEW) (b) the National Arboretum, Westonbirt (WESB), and (c) the Royal Botanic Garden Edinburgh 

(RBGE).
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species, A. platanoides, despite their non- overlapping geo-

graphic distributions. A. pictum and A. platanoides are indeed 

most closely related, with the shortest phylogenetic distance 

and very low genetic divergence observed (Suh et  al.  2000). 

Both species are distributed at relatively higher latitudes, and 

their distributions are largely constrained by winter tempera-

tures. Nonetheless, A. pictum did not show significant similar-

ity to A. campestre, despite being a member species within the 

same section. As observed in these results, phylogenetic rela-

tionships and niche overlap are not always straightforward. 

Some studies found that niche similarity did not directly cor-

relate with the phylogenetic distance, and niche differentia-

tion could occur at any phylogenetic level (Knouft et al. 2006; 

Silvertown et al. 2001).

Essentially, phylogeny is more concerned with evolutionary 

patterns in shaping functional traits and how these traits are 

conserved within a lineage (Ackerly 2003). The combination 

of two pressures, (1) environmental filtering–selecting favour-

able traits–and (2) competitive interaction–differentiating 

traits–has led to either variability or conservation of these 

traits over time (Ackerly  2003; Thakur and Wright  2017). 

Therefore, the phylogeny- environment relationship provides 

a complementary perspective rather than a linear covariate. 

For example, while closely related species conserve traits 

through environmental filtering, the same mechanism also 

drives traits to ‘converge’ and become similar when distant 

species need to co- exist (Cavender- Bares et al. 2004; Thakur 

and Wright 2017). Further, closely related species tend to di-

versify traits or habitat features due to competitive interaction 

over the limiting resource.

Considering the complexity between environment- trait, the 

resulting niche similarity test based on macro- environmental 

variables may not always accurately reflect the degree of con-

served ecological traits. It is more likely that species show con-

served traits when congeneric species show a certain degree of 

conserved niche (Warren et al. 2014), as may be the case with A. 

palmatum and A. platanoides in this study (Table S3). However, 

while low niche overlap between relative species initially indi-

cates low niche conservation at the macro- scale, these species 

may still share certain conserved traits depending on their bio-

geographic history and evolutionary patterns (Cavender- Bares 

et al. 2004; Losos 2011).

Nonetheless, niche similarity tests yielded inconsistent results 

when tested on the different spatial scale—UK vs. Europe—or 

with different selections of variables. For example, A. davidii, 

which exhibited no significant niche overlap with native spe-

cies across Europe, displayed significant niche overlap over the 

UK range. This contrasts with the other two species that ex-

hibited significant niche similarity with native species across 

Europe but displayed no significant overlap over the UK range 

(Table S3). Notably, high HS predictions corresponded with sig-

nificant niche overlap in the UK, whereas SRs generally corre-

sponded with significant niche overlap at the continental scale. 

TABLE 1    |    Survival rates (SRs) by phylogenetic group and botanic garden. The italic numbers indicate SRs of the selected species (in bold text) 

in this study.

Phylogenetic group Native to Species

Survival rates by botanic garden

KEW—Richmond RBGE—Lothian WESB—Cotswold

Sect. Macrantha Asia A. crataegifolium 0.43 0.25 0.40

Asia A. davidii 0.46 0.55 0.59

Asia A. rufinerve 0.57 0.73 0.67

America A. pensylvanicum 0.29 0.48 0.59

Asia A. tschonoskii NA NA 0.62

mean 0.44*** 0.50* 0.57*

Sect. Palmata Asia A. campbellii NA 0.76 0.75

America A. circinatum NA 0.86 0.71

Asia A. japonicum 1.00 0.87 0.73

Asia A. palmatum 0.87 0.70 0.61

mean 0.94 0.80 0.70

Sect. Platanoidea Europe A. campestre 0.84 1.00 1.00

Europe A. platanoides 0.75 0.86 0.85

Asia A. cappadocicum 0.91 0.84 0.86

Asia A. pictum 0.73 0.70 0.95

mean 0.81 0.85 0.92

Note: The Mann–Whitney U test was conducted to compare each section against the other sections for each site. ***p < 0.001,   *p < 0.05. The section that showed a 
significant difference in SR distribution compared to other sections is highlighted, with its mean SR shown in bold.
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These findings suggest that niche similarity tests better reflect 

ecological traits when conducted across the full biogeographic 

range. However, establishing reliable connections between 

niche overlap and specific ecological traits requires further ver-

ification, as demonstrated here by using SRs as an indicator of 

climate tolerance.

4.2   |   Relating SR to Biogeographic Distributions

Our results demonstrated that models trained on species' native 

regions showed decreased predictive accuracy when applied to 

novel environments beyond the training regions. The decreased 

predictive accuracy was evident in a lower TSS score when using 

a block validation strategy within species' native range. When 

further applied to the UK environment, these models worked 

for at least two species in terms of binary predictions: they pre-

dicted most of the selected regions suitable for A. davidii and 

A. palmatum with HS well above the 0.3 threshold. However, 

interpreting HS on a continuous scale in relation to individual 

performance, discrepancies emerged. Specifically, models with 

strong predictability within their native range tended to overes-

timate (HS>SR) for A. davidii but underestimate (HS<SR) for A. 

palmatum and A. pictum.

However, these apparent over-  and underestimations require 

careful interpretation. For example, the high HS values for A. 

davidii align with its significant niche overlap with native spe-

cies in the UK range, suggesting that greater environmental 

similarity yields higher HS. While both the niche similarity test 

and trained models used the same climate data aggregated over 

the 1981–2010 period, the SR spans 2000–2021. This temporal 

mismatch, coupled with the intensifying climate change effects 

during the latter decade, may explain the observed discrepancy 

in HS- SR. This is further evidenced by the increasing frequency 

of heatwaves, which have become annual events in Southeast 

UK from 2010 onwards, as documented by Kim et  al.  (2023). 

Moreover, mortality events of A. davidii at KEW reached a dra-

matic peak in 2021 (data not shown), reflecting accumulated 

heat and drought stress. Apparently, these drought stress effects 

were not incorporated into our models.

Other notable discrepancies between HS and SR were observed 

in A. pictum. While most regions were predicted to be unsuit-

able, empirical observations from botanic gardens in those re-

gions showed that A. pictum had SRs comparable to those of UK 

native species (Figure 6), suggesting the highest potential for 

adapting to the changing climate in the UK. However, consid-

ering that A. pictum is distributed across the widest geographic 

range, its apparent adaptability may be linked to underlying 

genetic diversity that is masked in the data aggregation pro-

cess: when individual species' data are highly aggregated—in 

this case, subspecies are aggregated to species level—key in-

formation can be lost in the averaging (Clark et al. 2011). Acer 

mono Maxim. is the major subspecies of A. pictum cultivated 

in the selected botanic gardens in this study. A recent study 

by Mori et  al.  (2024) found that this subspecies is predomi-

nantly distributed in drier sites of Northern regions in Japan 

and exhibits greater drought tolerance. This distinguishes it 

from other Japanese subspecies found in wetter regions ex-

tending to Southwestern Japan. The pattern is also observed 

in A. pictum populations in China and Korea, which largely 

consist of two genetically divergent and isolated groups: one 

distributed in cool temperate regions and the other in warm 

temperate regions (Guo et al. 2014; Ye et al. 2015). Such diver-

gent speciation is most often allopatric, caused by geographic 

isolation (Warren et  al.  2014) and can result in contrasting 

traits and habitat preferences. Without properly accounting for 

this genetic difference among populations, the estimated HS 

inferred from the broad community- level summaries might not 

accurately reflect individual tolerance (Clark et al. 2011; Vilà- 

Cabrera et al. 2019).

Pseudo- absence sampling strategy, which is intricately linked to 

local geological conditions, is also an important consideration 

that determines the model performance and discrepancies be-

tween HS- SR. The result that the ‘G.E.’ approach performed better 

than the ‘E.S.’ suggests that physical landscape elements—such 

as topographic variations and structural complexity—may play a 

more crucial role in defining species distributions. For example, 

even when environmental conditions are suitable for a species, 

certain physical landscape features can prevent species from oc-

cupation. Additionally, sampling bias might have influenced the 

‘E.S.’ approach, particularly in areas where occurrence data col-

lection was incomplete due to inaccessibility. Further, species- 

specific characteristics may also have contributed, as in the case 

of A. palmatum, which shows relatively more distinct geographic 

boundaries to its distribution (Chang 1990) and occurs in envi-

ronmentally uniform habitats—specifically areas with a relatively 

narrower range of soil properties and more homogeneous forest 

structure (indicated by lower EVIdis). In this case, ‘G.E.’ proved to 

be an effective pseudo- absence sampling strategy that worked for 

both presence–absence predictions and HS- SR alignment.

Lastly, geographic conditions appear to influence how variable 

selection affects model performance. For instance, additions of 

soil and land cover variables did not improve predictions for A. 

palmatum, whereas these selections improved predictions for the 

other two species. This pattern likely emerged due to differences 

in spatial scale and magnitude of variations between the studied 

regions: the size of study regions can constrain environmental 

variation and lead to more homogeneous conditions. A. palma-

tum occupied a relatively narrower range of soil yet occurred 

in most of the available soil types in the studied area. This con-

trasts with A. davidii, which is distributed across a wider range of 

soil yet occupies only part of the available soil spectrum within 

China. For similar reasons, ‘bio C' variables that predicted best 

for A. palmatum in its native region did not perform the same in 

the UK: the extreme winter temperatures that constrained distri-

bution in its native region rarely occurred in the UK.

When transferring a well- trained model to a novel environment 

for predictions, some loss in predictive capacity is inevitable as 

the similarity to this original context decreases. Further, the HS 

estimations may show some discrepancies with actual individ-

ual tolerance. In essence, it is because geographic marginal-

ity primarily defines species distribution models whereas the 

true ecological marginality, which is more often driven by 

local- scale mechanisms, tends to be lost in aggregation (Vilà- 

Cabrera et al. 2019). Despite these limitations, the species distri-

bution models at a continental scale remain valuable tools that 

can enhance insights when complemented by additional local 
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information, as illustrated in Figure 7. The SRs, representing eco-

logical marginality at the local scale, can inform the state of cur-

rent individual tolerance. For example, HS- SR alignment in the 

novel environment indicates that the species' newly occupied site 

is compatible with the species' geographic bioclimatic range, that 

is, native range. Conversely, if models overestimate HS in relation 

to observed SR, it suggests that there are likely external factors 

triggering local vulnerability, such as changes in climate patterns, 

increased pathogens, or abrupt land use changes. Therefore, the 

species has likely shifted from a position once compatible with its 

native range. However, if models underestimate HS in relation 

to observed SR, it indicates that the current location falls outside 

the species' geographic bioclimatic range. The persistence of the 

species, despite unsuitable conditions, may be attributed to under-

lying internal traits such as genetic variations or other ecological 

traits. This illustration, supported by our findings, demonstrates 

how species distribution models trained on native range may pro-

vide a preliminary assessment when integrated with local SR data.

4.3   |   Implications and Future Research Directions

The SRs in this study do not strictly represent demographic per-

formance as understood in conventional population ecology. 

Instead, our approach is more similar to a common garden ex-

periment assessing specific- period climate tolerance at the indi-

vidual level, as we used translocated individuals with no tracked 

records of reproductive capacity. In conventional ecology, the 

individual- level responses have been less of interest. However, 

the SRs of ex- situ species in this study provide a new context 

that extends beyond the species' geographic bioclimatic range, 

serving as a way to test ecological marginality (Takola and 

Schielzeth 2022; Vetaas 2002). Although these SRs capture only 

one aspect of ecological marginality—climate tolerance during 

the specific period, they complement coarse- scaled modelling by 

revealing gaps that suggest the presence of hidden influencing 

factors, often missed in the data aggregation process.

Moreover, despite its limited sample size, the SRs conditioned 

on phylogeny demonstrated that member species within sect. 

Macrantha, where A. davidii belongs, significantly differed from 

the rest of the species (Table 1). This is a particularly interesting case 

as it suggests the presence of the phylogenetic signal (Pearman 

et al. 2008). Linking low SRs of A. davidii to phylogeny leads to 

new questions for future studies. If member species within the 

section exhibit similar climate tolerance despite non- overlapping 

distributions in environmental space, their apparent niche differ-

ences may not be a true representation. It may be necessary to trace 

biogeographic history where geographic isolation has led to specia-

tion (Warren et al. 2014). This is a possible scenario as A. davidii 

is more closely related to North American species. Peterson (2011) 

also pointed out how non- overlapping environments can lead to 

false conclusions about niche differences if species' accessibility to 

other environments is not considered. The temporal scale at which 

niches are defined and compared is therefore a critical consider-

ation. These evolutionary patterns also prompt an exploration into 

common phenotypic or ecotypic traits that might contribute to 

similar survivorship, beyond just environment- centric approach 

such as niche similarities. Such hidden traits may not be easily de-

tectable unless these conditions are tested at individual level on the 

common environment, as also highlighted by Clark et al. (2011). 

Additionally, a test that matches species' different phenotypes to 

environmental gradients could further advance this research direc-

tion, as illustrated by Trappes et al. (2022).

5   |   Conclusion

Most predictive species distribution models rely on correlative 

relationships between environmental occurrences. However, 

FIGURE 7    |    The conceptual relationship between habitat suitability (HS) and survival rate (SR).
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correlative models have intrinsic limitations, especially for 

extrapolated projections, due to two key discrepancies: (1) be-

tween true population density and sampling density, and (2) 

between observed biogeographic range and ecological range, 

influenced by various non- climatic factors such as biotic in-

teractions and inaccessibility. Our findings highlight the sig-

nificance of incorporating local- scale individual survival 

response data to assess modelled predictions in revealing these 

discrepancies. These survival responses were not random but 

rather exhibited patterns within a phylogenetic framework. 

We observed similar climate tolerance among phylogenetically 

closer species, although their biogeographical distributions 

are not necessarily overlapping. In addition, the discrepan-

cies between predictions (HS) and observed SRs provide clues 

to uncover additional key factors that are often overlooked in 

the conventional macroecological modelling approach, such 

as genetic variation, local adaptations, and short- term climate 

stochasticity. Distinguishing these independent factors that 

condition individual responses, in conjunction with macro 

biogeographic distributions, may improve our predictive mod-

elling in future studies. This approach, in particular, should 

incorporate species- specific traits that are conserved across 

phylogenetic lineages as these traits govern species' responses 

to environmental change. Understanding how these intrinsic 

traits interact with external driving forces to shape ecologi-

cal communities has long been a central question in ecology. 

However, balancing these two aspects has also been hindered 

by practical logistical issues, such as difficulties in data collec-

tion and the development of a shared knowledge platform on a 

global scale. In this context, we present the potential of lever-

aging living collections data from the botanic gardens. These 

collections, sourced from diverse provenance, can serve as an 

excellent testing platform for comparative experiments across 

botanic gardens. Further, each botanic garden, as a distinct ref-

erence point within the biogeographic region, can effectively 

manage trait data requiring long- term efforts. Such platforms 

can have impact when acting collectively, transforming their 

roles to extend from local conservation to serving a broader 

global community in facing climate change.
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