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Graph-enhanced Large Language Models in Asynchronous Plan Reasoning

Fangru Lin 1 Emanuele La Malfa 1 2 Valentin Hofmann 1 3 4 Elle Michelle Yang 1

Anthony G. Cohn 2 5 Janet B. Pierrehumbert 1

Abstract

Planning is a fundamental property of human in-

telligence. Reasoning about asynchronous plans

is challenging since it requires sequential and par-

allel planning to optimize time costs. Can large

language models (LLMs) succeed at this task?

Here, we present the first large-scale study in-

vestigating this question. We find that a repre-

sentative set of closed and open-source LLMs,

including GPT-4 and LLaMA-2, behave poorly

when not supplied with illustrations about the

task-solving process in our benchmark Asyn-

cHow. We propose a novel technique called Plan

Like a Graph (PLaG) that combines graphs with

natural language prompts and achieves state-of-

the-art results. We show that although PLaG

can boost model performance, LLMs still suf-

fer from drastic degradation when task complex-

ity increases, highlighting the limits of utiliz-

ing LLMs for simulating digital devices. We

see our study as an exciting step towards using

LLMs as efficient autonomous agents. Our code

and data are available at https://github.com/

fangru-lin/graph-llm-asynchow-plan.

1. Introduction

As large language models (LLMs) show unprecedented ca-

pabilities, claims surge that artificial general intelligence is

close (Bubeck et al., 2023). Planning is an important prop-

erty of human intelligence (Sternberg, 1984; Colom et al.,

2010), and it is also vital in many downstream tasks such as

developing autonomous robotic agents (Huang et al., 2022a;

Shinn et al., 2023). While symbolic processors have been

historically used for handling plan design (Fikes & Nilsson,

1971; McDermott, 2000), LLMs have recently emerged as a

relevant complementary approach (Ahn et al., 2022; Dagan
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Figure 1. A planning task (top) can be executed sequentially, in

parallel, or asynchronously. Blue arrows denote action ordering

constraints. Although complete parallelism is logically the most

time-efficient strategy, it results in invalid reasoning steps (e.g.

‘Baking’ cannot happen at the same time with ‘Rolling the

dough’); at the same time, sequentially executing each task neg-

atively affects efficiency. Given infinite resources, an optimal

(asynchronous) plan should parallelize actions wherever possible.

et al., 2023; Song et al., 2023). Although LLMs gener-

ate reasonable elementary planning steps when informed

with appropriate guidance (Huang et al., 2022b; Yuan et al.,

2023), they cannot combine those units effectively and de-

velop optimal plans without external processors (Silver et al.,

2022; Dagan et al., 2023; Yang et al., 2023). This might be

an issue if LLMs are deployed for related tasks.

This work explores the reasoning ability of LLMs in natu-

ralistic asynchronous planning, which we define as complex

planning tasks involving both sequential and parallel actions.

Given a set of steps for a task, the time required for each

step, and step ordering constraints, we ask whether LLMs

can compute the shortest possible time needed for an opti-

mal plan for the task (Figure 1). We note that asynchronous

planning problems involve (i) time summation (correctly

adding time durations), (ii) time comparison (correctly mak-
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Graph-enhanced Large Language Models in Asynchronous Plan Reasoning

Figure 2. Comparing standard Input-Output (IO) prompting with our method (PLaG). Here, we illustrate PLaG (explicit graph) with an

adjacency list, but it can be of any graph type in practice. The standard IO method is similarly deployed in zero-shot, zero-shot + CoT,

k-shot, k-shot + CoT in this paper. Please refer to Appendix A.8 for more details.

Figure 3. GPT-3.5 and GPT-4 accuracy as a function of asyn-

chronous planning task complexity |V | + |E| (see Section 2),

after binning results by width of 2. The upper figure plots the per-

formance of methods without PLaG (our method), and the lower

plot displays the best method with/without PLaG.

ing time duration comparisons), and (iii) constrained reason-

ing (correctly solving constrained optimization problems)

— this compositionality of skills makes asynchronous plan-

ning a challenging task, and it is yet unclear whether LLMs

are capable of solving it. To enable a large-scale evalu-

ation of LLMs, we automatically generate a new bench-

mark, Asynchronous WikiHow (AsyncHow), with 1.6K

high-quality instances for real-life tasks.

We use AsyncHow to evaluate GPT-3.5-turbo (GPT-3.5),

GPT-4 (OpenAI, 2023), Cohere Command1, LLaMA-2-

70B-chat (Touvron et al., 2023), and Mistral-7B-Instruct

(v0.2; Jiang et al., 2023) on asynchronous planning. We find

1https://cohere.com/models/command

that while GPT-4 with few-shot task solution illustrations

dominates other models in terms of accuracy, all models

perform poorly without illustrations about how to solve

the task. However, even with few-shot illustrations, model

performance is unsatisfactory, with the LLMs failing on

instances that are trivial for humans. To remedy this, we

propose a novel prompting technique, namely Plan Like

a Graph (PLaG; Figure 2), to instruct models to represent

a planning problem like a graph. By converting natural-

istic questions to equivalent graph problems, we find that

our method boosts the performance of all tested models.

Moreover, it can be applied off the shelf to models such as

GPT-4 to achieve new state-of-the-art (SOTA) results and

consistently improve on all task complexity levels (Figure 3,

lower). Nonetheless, we find that the improved models still

suffer from drastic performance degradation on complex

planning tasks.

In summary, the main contributions of this paper are:

• We automatically generate a high-quality natural-

istic benchmark for asynchronous plan reasoning,

AsyncHow, and open-source it.

• We show that LLMs cannot efficiently execute asyn-

chronous plans unless they are supplied with detailed

solution illustrations.

• We provide a formalism to define the complexity of

naturalistic asynchronous planning tasks, which suc-

cessfully predicts LLMs’ performance trends.

• We propose PLaG, an off-the-shelf method to consis-

tently boost SOTA model performance across all con-

sidered task complexities.
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Figure 4. The series-parallel DAG used to solve the planning task

in Figure 1. The path for calculating optimal time duration is

highlighted in red.

• We show that despite the performance boost, SOTA

LLMs suffer from drastic degradation with increasing

task complexity, which indicates that there are limits

to using LLMs as digital devices.

The paper is structured as follows. Section 2 introduces our

asynchronous planning task, and formally defines its com-

plexity as an optimization problem as well as our technique.

Section 3 describes how we generate the benchmark. Sec-

tion 4 lays out the experimental setting and overall results.

The results are then analyzed in more detail in Section 5.

We review relevant related works and conclude the article

with our main contributions in Sections 6 to 7.

2. Preliminaries: Naturalistic Asynchronous

Planning

We define our task as follows: assuming infinite resources

(e.g., as many agents and tools as needed to achieve optimal

parallelism are available) for a naturalistic task with a set of

compulsory steps, the time needed for each step, and step

ordering constraints, we assess whether LLMs can compute

the optimal time needed for the task. Formally, we can cast

this as the problem to find the longest path on a Directed

Acyclic Graph (DAG, Figure 4). A key advantage of doing

so is that we can easily estimate the complexity of our

task despite the fact that it is a natural language processing

problem. This distinguishes our work from many other

studies. We empirically prove that our complexity measure

predicts LLM behavior in all prompt settings (Figure 3 and

Section 5.1), with variance explained in Section 5.4.

Since our task is essentially similar to DAG search, it sheds

light on the limits of LLMs as digital devices (La Malfa

et al., 2024) and, specifically, as solvers of discrete opti-

mization problems on graphs (Wang et al., 2023). It also

serves as (i) an example of an optimal succinct routine that

an LLM might be able to implement internally (Weiss et al.,

2021) to solve a planning problem and (ii) a baseline to

measure the loss induced by specifying a problem in natural

language, namely an LLM’s language divide.

2.1. Complexity of Naturalistic Planning

We briefly introduce the complexity measure for our task

in this subsection, which we will later show correlates with

LLM behavior. With infinite resources, the formalism of a

DAG captures the complexity of finding the optimal execu-

tion order of compulsory actions a in a plan P to minimize

the time cost TC(P ). A DAG G(P ) representing P can be

defined as G(P ) = ⟨V,E,w⟩, where V is a set of nodes

v, each representing an action a in the planning problem,

including auxiliary START (vsrc) and END (vdst). E is a

directed set of flow relations e representing ordering con-

straints, while w is a function that assigns a weight to all

edges in the graph w : E → R
+. Each flow relation ei,j

is associated with a positive number w(ei,j) to express that

node/action vi is connected to node/action vj and requires

w(ei,j) time to be completed. The edges also represent

causal links in that the precondition for an action/node a is

met if and only if all actions/nodes linked to and preceding

a are performed. For simplicity, we denote G(P ) as G in

the remaining part of the paper.

In this setting, finding the time cost for an optimal plan P ∗

in a planning problem is equivalent to finding the longest

path G∗ on G and can be cast as the following optimization

problem on a subgraph G′ = ⟨V ′, E′, w⟩, G′ ⊆ G. Ex-

haustively searching a graph and comparing every path’s

length can deterministically find the gold answer. On series-

parallel graphs (Eppstein, 1992), which are sufficient to

describe planning tasks with infinite resources, the average

time complexity is O(|V |+ |E|) (Takamizawa et al., 1982),

i.e., it is linear with respect to the number of nodes and

edges in G.2 We define our task complexity accordingly.

2.2. Method: Plan Like a Graph

In our work, we propose a novel prompting technique Plan

Like a Graph (PLaG, Figure 2). Taking inspiration from

Discourse Representation Theory (Wolf et al., 2004) and

relevant works on graphical prompt representations (Fatemi

et al., 2023; Wang et al., 2023), PLaG includes a graph

representation in the prompt, where we give models k-shot

illustrations with graphs describing the task and instruct

them to either reason based on a given graph (i.e., explicit

graph) or to generate a graph themselves and then reason

about it (i.e., Build a Graph/BaG; Wang et al., 2023). We

instruct models to produce graph representations of the nat-

uralistic question and then use the information to solve

relevant tasks.

2While we assume infinite resources to complete a planning
task, the natural extension to the case of finite resources (i.e., not
all independent actions can be parallelized) is better captured by
the formalism of a Petri net (or discrete-time Markov chains with
constraints). We introduce the current formalism and Petri net in
more detail in Appendix A.1.
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Figure 5. Overview of the AsyncHow benchmark. The three bar charts on the left display the instance numbers for the shortest/longest

sequential path length and |V | + |E| in different plans. The pie chart on the right shows the topic distribution in our dataset. See

Appendix A.3 for details about the topic assignment.

3. The AsyncHow Benchmark for Planning

Since there is no existing dataset appropriate for our defined

task, we generate a new naturalistic asynchronous planning

benchmark called Asynchronous WikiHow (AsyncHow).

This section describes and validates an automatic method

for generating this benchmark. With LLMs that consume

new benchmarks at an unprecedented pace, our contribution

goes beyond AsyncHow and can be used by practitioners to

synthesize new datasets.

In addition to the existing data in ProScript (Sakaguchi et al.,

2021), an end-to-end human-annotated partial-order plan

dataset3, we use WikiHow (Koupaee & Wang, 2018; Zhang

et al., 2020) to collect the planning tasks we need. In line

with recent works, we use LLMs as data annotators (Gilardi

et al., 2023; Huang et al., 2023). Specifically, we use the

GPT models for part of pre-processing, time annotation,

and step dependency annotation, as they exhibit impressive

annotation capabilities (He et al., 2023). However, we would

like to stress that (i) any LLM (or equivalent algorithmic

procedure) can be used as an annotator and (ii) the LLM

used to annotate is not involved in the ground truth answer

generation, where we use deterministic procedures such as

the longest path on a DAG. This means that the GPT models

used for annotation should not be considered oracles in the

benchmarking experiments.

This process culminates in AsyncHow, a curated list of

1.6K data points for asynchronous planning. We provide

an overview of the benchmark structure in Figure 5. We

evaluate the dependency annotation quality automatically

and the general generation quality with human annotators

(Section 3.1). We do not verify the time annotation because

the task time estimation in a less grounded setting such as

ours tends not to have a unique gold answer (e.g., ‘finding

a gym’ may take five minutes or a week to different people),

and GPT-3.5 (the model we use for time annotation) is

reported to be a reliable annotator for this task (Jain et al.,

3ProScript is similar to our dataset, but it is not suitable enough
for our task. See Section 6 for discussions.

2023). Furthermore, our interest is in assessing whether an

LLM outputs the optimal plan for a task, and we expect end

users to supply different time durations when querying a

model.

We now briefly describe the data generation process, with

more details in Appendix A.2.

First, we preprocess the dataset to collect high-quality plans

rated by WikiHow users. Then, given our task definition

(e.g., all steps need to be executed, etc.), we filter out plans

with optional steps and others that do not fit into our research

goal by both matching keywords and prompting GPT-3.5

to answer relevant questions (e.g., Are all steps needed

in this plan?). Then, we use GPT-3.5 to estimate the

time duration per step and exclude instances whose step

durations cannot be quantified numerically.

Next, we use GPT-4 to annotate step dependencies with

the dot language. After removing redundant dependencies

(e.g., in an answer saying ‘step 1 → step 2’, ‘step

2 → step 3’, ‘step 1 → step 3’, we remove ‘step

1 → step 3’), we keep data points that have at least

four consistent answers that form asynchronous plans and

discard the others.

After the above steps, we combine all asynchronous in-

stances with complete time annotation for all meaning-

ful steps in ProScript with our generated asynchronous in-

stances from WikiHow, after which we obtain a collection

of 1.6K instances. We then generate natural language

prompts based on the task information in dot language,

as users tend to use natural language descriptions to spec-

ify such a task. We have 10 trivially different plausible

templates with their succinct use cases in our dataset (e.g.

‘step 1 -> step 2, step 1 -> step 3’ may be ex-

pressed as ‘Step 1 must precede step 2, step 1

must precede step 3’, and succinctly as ‘Step 1 must

precede step 2 and 3’) to allow for relevant paraphrase

robustness studies (Elazar et al., 2021).

Last, we generate equivalent DAGs representing the work-
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Table 1. Comparison of our step dependency annotation for the ProScript dev and test set, with mean and standard deviation performance

on three randomized experiments (100 instances per experiment).

dev (in-domain) test (cross-domain)

F1 P R F1 P R

Humans 89.32 89.60 89.21 89.28 89.91 88.86

GPT-4 89.80±1.70 90.65±1.36 89.30±2.09 85.59±2.92 85.95±2.43 85.77±3.56

flow and compute the optimal time duration for a plan by

calculating the time duration for the longest one. Each plan-

ning task is eventually accompanied by four types of graph

representations: the adjacency and the edge list, the adja-

cency matrix, and the compressed sparse row (csr), which

can be used to aid LLMs in structural reasoning and assess

LLMs’ robustness against different graph representations.

We do not further vary natural language representations

for graphs because relevant investigations can be found in

Fatemi et al. (2023).

3.1. Quality Check

On top of the intermediate quality check stages in the above

process (e.g., filtering out inconsistent answers and low-

scored scripts, etc.), we finally perform two other rounds of

quality checks to further ensure high data quality.

First, we assess step dependency annotation quantitatively:

in three randomized experiments, we sample 100 instances

from the ProScript dev and test sets. Following Sakaguchi

et al. (2021), we compare the pair-wise precision, recall,

and F1 score of our generated dependency annotations with

human performance, which is obtained via asking crowd-

workers to annotate partially-ordered scripts for randomly

shuffled steps.4 Our annotation method has near human-

level performance, as reported in Table 1.

In addition, we randomly sample 80 instances with a mix-

ture of LLM and human-annotated data and qualitatively

survey experts without informing them which data points are

human-annotated. We follow the ‘prescriptive’ approach

in Röttger et al. (2021) by instructing them to consider

the acceptability of the task time estimations and step or-

dering constraints. Human-annotated and LLM-generated

instances receive similar levels of acceptability.

4. Benchmarking Experiment

We are interested in answering the following questions.

First, can a model efficiently solve asynchronous plan-

ning tasks with existing prompting techniques such as k-

4Precision, recall, and F1 score are defined as follows:

Precision =
|E∩Ê|
|E|

, Recall =
|E∩Ê|

|Ê|
, F1 =

2∗Precision∗Recall
Precision+Recall

, with

E being the gold edges and Ê denoting the predictions in each
discourse graph, respectively.

shot (Brown et al., 2020) and Chain of Thought prompting

(CoT; Wei et al., 2022)? Second, can we develop a better

method to prompt models to improve their performance?

Third, how do scale effects manifest when varying problem

complexity and model size? Last, is an LLM’s performance

robust to trivially different linguistic or graphical prompts?

We design the experiments accordingly.

4.1. Experimental Setting and Design

We conduct experiments with GPT-3.5, GPT-4, and Com-

mand, three closed-source LLMs, as well as LLaMA-2-

70B-chat and Mistral-7B-Instruct (v0.2), two open-source

LLMs.5 We first experiment with different language de-

scriptions of our problem in a zero-shot setting with 100

sampled prompts (see details in Appendix A.7) and use the

best-performing one for the successive experiments.

We then benchmark our models in full scale in four prompt-

ing regimes: (i) zero-shot: only prompting models with task

descriptions without additional information or training; (ii)

k-shot (Brown et al., 2020): prompting with k in-context

instances with desired outputs preceding the task descrip-

tion; (iii) zero-shot with CoT (zero-shot+CoT; Kojima

et al., 2022): prompting the model with the task description

along with the instruction ‘Let’s think step by step’,

and (iv) k-shot with CoT (k-shot+CoT; Wei et al., 2022):

prompting the model with k in-context instances with CoT

illustrations for the problem-solving process and desired

outputs preceding the task description with CoT.6

Then, we experiment by sampling 100 instances for the

adjacency list, edge list, adjacency matrix, and csr in the

5In a preliminary experiment, we also tested
CodeLlama-34B (Roziere et al., 2023) and Phi-2 (Gunasekar
et al., 2023) , but we exclude them from the evaluation due to
poor performance. Our observation that the code models perform
poorly is in line with La Malfa et al. (2024) and Liu et al. (2024),
showing that simulation is more difficult than generation.

6We use k = 3. We do not conduct full-scale benchmarking
on other prompting techniques such as Chain-of-Thought Self-
Consistency (CoT-SC; Wang et al., 2022) and Tree of Thought
(ToT; Yao et al., 2024) as they primarily use standard IO prompts
like CoT, and our method can be deployed in addition to these
prompting techniques. We show that our method is superior to
using CoT-SC and ToT alone for a more comprehensive compar-
ison in Appendix A.10. See also the latency analysis for cost-
performance trade-offs in Appendix A.11.
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Table 2. Model accuracy in different settings on the AsyncHow benchmark. Model performances without our method are in plain

background, while those with our method are in blue background. We mark the best performance per model in bold. Following Dror et al.

(2018), we use McNemar’s tests (McNemar, 1947) to obtain p-values and Holm-Bonferroni method (Holm, 1979) to correct them for

each evaluation to test the statistical significance of performance difference between experiment with and without our proposed method.

We denote with † when the performances with PLaG are significantly better (p < 0.05) than the best result without.

Without PLaG With PLaG

Model zero-shot zero-shot + CoT k-shot k-shot + CoT PLaG (explicit graph) PLaG (BaG)

GPT-4 0.130 0.129 0.107 0.657 0.730† 0.777†

GPT-3.5 0.199 0.224 0.248 0.226 0.290† 0.355†

Command 0.078 0.015 0.050 0.078 0.100 0.050

LLaMA-2-70B-chat 0.039 0.038 0.053 0.076 0.101† 0.069

Mistral-7B-Instruct 0.078 0.070 0.098 0.149 0.161 0.146

setting of PLaG (explicit graph). We use the best type for

full-scale PLaG experiments (explicit graph/BaG). Prompt

examples are given in Appendix A.8.

4.2. Experiment Results

We evaluate each model’s performance by the accuracy of

correctly reporting the shortest time needed for different

plans. Main results are in Table 2.7

The strongest performance is obtained by GPT-4 with PLaG

(BaG). This is surprising given that GPT-3.5 does better

than GPT-4 (though not very well) on the zero-shot, zero-

shot+CoT, and k-shot settings, which lack explicit illustra-

tions. A solid performance gap divides open-source models

from GPT models, although Mistral-7B-Instruct performs

better despite being much smaller than LLaMA-2-70B-chat.

PLaG (our method) successfully boosts the performance of

all models. This is particularly interesting considering that

while natural language prompts in the vanilla setting essen-

tially represent the same information as the graphs, explic-

itly providing prototypical graph-structured data enhances

LLM performance and highlights its inherent limitation of

reasoning at a conceptual level. Furthermore, many other

real-world tasks in natural language such as dialogue state

tracking (Lin et al., 2021) can be abstracted as graphs. Thus,

our finding is relevant for future research on enhancing

conceptual representations in LLMs.

Surprisingly, PLaG with BaG, which does not require exter-

nal processing to supply new graphs explicitly in every task

description, improves the performance of the most capable

models (GPT-3.5 and GPT-4) across all complexity levels

off the shelf.8 These results suggest that PLaG benefits

7If a closed-source model does not return anything due to con-
tent filtering, we consider the answer to be false. In Appendix A.9,
we provide analyses where we exclude such invalid instances.

8We emphasize that the superior performance of BaG does
not result from noise in sampling (see Appendix A.12 for discus-
sion). We hypothesize that the superior performance of the explicit

Figure 6. The upper plot refers to average model accuracy with

100 instances of PLaG (explicit graph) in different graphs. Colored

bars refer to model performance with different graph types. Black

dashed lines refer to average accuracy with different graph types.

The lower plot refers to the average zero-shot accuracy in 100

instances of different text prompts (without economic usage). Error

bars in both plots refer to worst/best performance per model.

LLMs by adding graph information and indicates the poten-

tial of boosting capable models’ performance in planning

without external processors.

Next, we report our experiment results on different text

prompts and graph types. As shown in Figure 6, different

text prompts and graph types induce variations in model

performance, and models have different preferences for

these variables. In general, using more succinct and more

natural expressions (see Appendix A.2.4 for details) tends

to downgrade model performance (results are reported in

Appendix A.13), a hint that models cannot adapt to slight

variations of the same prompts.

graph in other models results from their incapability of generating
accurate graph representations.
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5. Further Analysis of GPT-3.5/4 Results

This section investigates which factors influence the most

potent models in our task, namely GPT-3.5 and GPT-4. We

first relate an LLM’s accuracy with task complexities, then

provide an ablation study to identify the salient characteris-

tics that make a planning problem inherently complex. Next,

we use a synthetic dataset that covers and goes beyond the

distribution of AsyncHow to estimate model performance in

the potential scenarios that might fall out of the distribution

of our benchmark. Last, we perform a qualitative analysis

to provide further rationales for some surprising phenomena

observed in our results.

5.1. Accuracy vs. Complexity

In Figure 3 (Section 1), we plot the accuracy of GPT-3.5

and GPT-4 as a function of the task complexity |V |+ |E|.9

Generally, the accuracy negatively correlates with the com-

plexity of the task for all models and all settings, with graphs

of complexity |V |+ |E| ≥ 18 already resulting in challeng-

ing problems for the most capable model and best setting.

The complexity measure also predicts the model accuracy

trends well in settings without graphs. We notice a little

jump at complexity |V | + |E| ≥ 20, for which we will

discuss possible reasons in Section 5.4.

Without our method, GPT-4 with k-shot + CoT consistently

outperforms any other settings by a solid margin, while

all the other settings have comparable performances inde-

pendently from the number of illustrations provided or the

model employed (Figure 3, upper).

Our method (PLaG) consistently improves over k-shot+CoT,

the best method without PLaG, among tasks of all complex-

ities (Figure 3, lower) for both GPT-3.5 and GPT-4. In line

with what was observed before, the accuracy drops signifi-

cantly with complex planning tasks, once again proving that

LLMs are not yet robust enough to be deployed as generally

intelligent agents in planning.

5.2. Ablation Study

Solving our planning task requires a certain degree of com-

positionality in combining time comparison, time summa-

tion, and constraint reasoning correctly. We perform an

ablation study to identify which skills LLMs lack. We

sample 200 sequential planning tasks (i.e., the optimal time

calculation only requires summation) and fully parallel tasks

(i.e., the optimal time calculation only requires comparison)

from the non-asynchronous part in our generated dataset.

We sample equal numbers of plans per step with a minimum

of three steps and a maximum of seven, as smaller plans

9We show in Appendix A.14 that |V | and |E| equally contribute
to the complexity of a planning task, with no clear dominance of
one over the other.

Figure 7. Comparison of parallel/sequential plan execution accu-

racy with asynchronous plans. All experiments are done in the

setting of k-shot + CoT. Blue and red lines refer to GPT-4 and

GPT-3.5 results, respectively.

are trivial while higher ones are sparse in AsyncHow, which

can potentially lead to sampling bias. We experiment with

k-shot + CoT and compare model performance across step

numbers in different plan types in Figure 7.

While GPT-3.5 and GPT-4 have a similar accuracy in par-

allel tasks requiring time comparison, GPT-4 outperforms

GPT-3.5 on sequential tasks, i.e., at time summation. Our re-

sults suggest a performance gap between parallel/sequential

and asynchronous plans for both models. We conclude that

reasoning about task constraints adds special difficulty on

top of time comparison and summation for LLMs.

5.3. Out-of-distribution Probing

We estimate LLMs’ performance on out-of-distribution data

points whose complexities fall out of the data-rich part (i.e.,

complexity |V | + |E| < 20) of AsyncHow. As our nat-

uralistic planning problem can be cast into longest-path

graph search (refer to formalism in Section 2), we generate

a synthetic dataset of 2,000 data points evenly distributed

between complexity 10 to 40 for prototypical shortest-path

graph search (we can cast the longest-path search to shortest-

path search by negating edge weights). By prototypical, we

refer to formulating prompts for dynamic programming

problems where an LLM is queried to compute the longest

path on a graph with numerical edge weights to simulate

time durations for each node the edge starts from. For con-

sistency, we sample the graphs as similar to AsyncHow data

as possible (see details in Appendix, Section A.14). We

prompt GPT-3.5 and GPT-4 in zero-shot + CoT with their

respective best graph representations found in Section 4.2.

We compare its accuracy with the accuracy in zero-shot +

CoT in the naturalistic experiment.

As shown in Figure 8, graph search accuracy shows a down-

going trend similar to the in-domain naturalistic data, which

indicates that model performance in naturalistic planning

tasks is likely to follow the pattern of synthetic data and

continue to drop with complexity further increasing. This

outcome strengthens other findings that LLMs can be unre-
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Figure 8. GPT-3.5 and GPT-4 performance on prototypical longest

path search problem and on natural AsyncHow task with zero-shot

+ CoT. Models’ respective best graph types found in Section 4.2

are used in prototypical probing.

liable routine simulators (La Malfa et al., 2024).

Interestingly, although solving essentially the same task, the

performance of GPT-4 is much higher in the prototypical

setting than the naturalistic one. In comparison, GPT-3.5 de-

rives little benefit from the prototypical setting. We impute

this gap to several concurrent factors. First, computing the

optimal plan with durations expressed as numbers is easier

than naturalistic time conversion (we will discuss this in

the next subsection). Second, naturalistic planning requires

turning language into an effective procedure, which adds to

the difficulty of processing prototypical graphs. The results

also shed light on the reasons behind the boost of perfor-

mance caused by PLaG: PLaG points a model to a setting it

is already familiar with and better masters.

5.4. Qualitative Study

We qualitatively overview some failures and successes of

LLMs, which shed light on edge cases that are of interest to

understanding their capabilities and limitations.

Wrong answers in easy problems. Even for low-

complexity planning instances, GPT-4 may incur trivial

errors. It emerges that errors tend to fall into a few macro-

categories: (i) parallelism error where LLMs cannot ef-

ficiently parallelize as many steps as possible: e.g., when

step 3 (10 min) can be done together with step 1 (5 min)

and 2 (15 min), the model only parallelizes 1 and 3 but

schedules step 2 to follow them; (ii) time unit conversion

error where LLMs cannot efficiently convert time units to

common measures for calculation: e.g., 3 weeks and 1 hour

is wrongly converted to be 5,041 hours (30 weeks and 1

hour) in the final answer. Our findings are in line with Dziri

et al. (2023) and La Malfa et al. (2024) in that LLMs tend

to prefer linear pattern matching and are prone to mistakes

in time carries (Wang & Zhao, 2023).

Correct answers in hard problems. For graphs of com-

plexity |V |+|E| ≥ 20, GPT-3.5 and GPT-4 perform slightly

better than that at |V |+ |E| = 18, which have lower-class

complexity. We impute this phenomenon to (i) the sparsity

of graphs for higher complexities and (ii) an implicit bias

of our benchmark towards easier data conversions for more

complex planning tasks. See a more in-depth discussion of

this phenomenon in Appendix A.15.

Why is BaG better than explicit graph? A symbolic pro-

cessor deterministically generates correct graph representa-

tions, while BaG prompts a model to generate its internal

representation of the problem with no promise of complete

correctness. However, among PLaG methods, BaG per-

forms slightly better than explicit graphs (i.e., generated

algorithmically). We sample some instances and find that

BaG-generated graphs are of the same format as provided in

the k-shot prompt, and we thus impute the performance gap

to a sub-optimal positioning of the graph in the former set-

ting (Liu et al., 2023b; Mao et al., 2023): the explicit graph

prompt setting expresses the prompt in the form ‘[Task

description with graph] Answer:’, with the graph ap-

pearing in the middle of the context, which can be easily

ignored by the model. For BaG, by contrast, the prompt

has the form ‘[Task description] Answer: [Graph]’,

where the graph is generated at a successive step and easier

for models to take into account.

6. Related Work

LLMs for planning. Works focusing on automatically

generating plausible plans for daily tasks show that LLMs

can be used to develop reasonable and ordered actions or

goals (Madaan et al., 2022; Xie et al., 2023; Yuan et al.,

2023). The work most similar to ours is Sakaguchi et al.

(2021): they collected 6.4K ordered plans via crowdsourcing

for ProScript. However, the dataset is insufficient to serve

as a benchmark for asynchronous planning as relevant data

points are sparse and lack diversity.

Another line of work focuses on finding the optimal plan

for domain-oriented tasks such as robotics. Although LLMs

can be readily deployed to parse natural language into log-

ical elements, they alone cannot develop optimal plans to

accomplish a given goal without external symbolic proces-

sors (Collins et al., 2022; Valmeekam et al., 2022; Lawless

et al., 2023; Lin et al., 2023; Liu et al., 2023a; Yang et al.,

2023). While these works focus on domain-oriented tasks

using external symbolic processors, we close the gap be-

tween structured and naturalistic tasks and show the poten-

tial of solely using LLMs for these tasks.

LLMs for graph reasoning. Two complementary lines

of work inform LLMs with graphs and can be categorized

into implicit and explicit methods. Implicit methods help

decompose task goals into atomic steps (Huang et al., 2022a;

Valmeekam et al., 2022; Sakib & Sun, 2024) and help ex-
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plain complex reasoning processes (Madaan et al., 2021;

Saha et al., 2021; Besta et al., 2023; Dziri et al., 2023).

Works on explicit graphs incorporate external knowledge

and reason about more complex problems such as multi-hop

question answering (Chen et al., 2023b; Park et al., 2023; Ye

et al., 2023). Our work shows that instructing LLMs to con-

sider problems like graphs can improve their performance

in planning. It also complements recent discoveries sug-

gesting that LLMs’ performances negatively correlate with

the complexity of graph problems (Fatemi et al., 2023; Guo

et al., 2023; Wang et al., 2023), showing that the conclusion

also holds in relevant naturalistic tasks.

Discourse Representation Theory. Humans produce and

understand language in a structured way. For instance,

when writing a paragraph, people can have a main point

and then elaborate on the supporting elements of the dis-

course (Flower et al., 1992; Limpo & Alves, 2018). Graphs

offer a structured representation of the discourse, with ele-

ments as nodes and relations as edges representing elabora-

tion and parallel or temporally/causally linked actions (Wolf

et al., 2004; Presutti et al., 2012; Ma et al., 2022). Recent

works suggest that LLMs do not possess identical linguistic

representations as humans since they do not compositionally

process language and perform tasks in a human-like way

(Bertolini et al., 2022; Press et al., 2022; Chen et al., 2023a;

Dziri et al., 2023). We find in our work that enriching natu-

ral language prompts in a structured manner helps LLMs in

relevant tasks.

7. Conclusion

In this paper, we automatically generate a benchmark, Asyn-

cHow, and assess LLMs for their performance in asyn-

chronous plan reasoning. We find that if not provided with a

detailed illustration of the task solution process, all models

behave extremely poorly in our task. We propose a for-

malism to classify naturalistic asynchronous planning tasks,

which successfully predicts LLMs’ performance patterns.

We propose PLaG, a method that consistently boosts SOTA

model performance across all task complexity levels off

the shelf. Despite this, we find that model performance

still drastically downgrades with increasing task complexity,

which calls into question using them as digital devices or

generally intelligent agents.

Limitations and Future Work

Some limitations of this work are as follows. We assume that

infinite resources are available in our benchmarking, while

only finite resources may be available for tasks in real life.

Second, we only consider time cost in plan optimization,

while realistically, other restrictions, such as preferences,

should be considered. Regarding future work, it will be

interesting to further elaborate on our benchmark with the

proposed techniques and our dataset to add more elements

such as resource constraints, multimodality, multilingualism,

or other robotics/reinforcement learning features. Practition-

ers can also scale up the complexity of the benchmark to

more complicated tasks. Another promising avenue of re-

search is to compare the performance patterns of LLMs to

those of humans (i.e. are LLMs likely to make the same

mistakes as humans in asynchronous plan reasoning).

Data Access Statement

The dataset used in this paper can be found in https://

github.com/fangru-lin/graph-llm-asynchow-plan.
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A. Appendix

A.1. Extended Preliminaries: Naturalistic Asynchronous Planning

A.1.1. NAIVE ASYNCHRONOUS PLANNING WITH DAG

Assuming infinite resources (e.g. as many agents and tools as needed to achieve optimal parallelism are available), our task

can be considered as finding the optimal time cost TC of a partial-order plan P . A partial-order plan P is classically defined

as P = ⟨A,O,C⟩, where A is a set of actions a (including start and finish), O is a set of ordering constraints which take the

form of ai ≺ aj , meaning ai has to be performed before aj , and C as causal links taking the form of ai
p
−→ aj , meaning

performing ai meets precondition p needed for aj (Russell & Norvig, 1995).

Specifically for our task, with infinite resources, the formalism of a DAG captures the complexity of finding the optimal order

of execution of actions that can or cannot be parallelized in P to minimize time cost TC(P ). A DAG G(P ) representing

P can be defined as G(P ) = ⟨V,E,w⟩, where V is a set of nodes, each representing an action a in the planning problem.

We serve two auxiliary nodes vsrc (START) and vdst (END) that connect respectively each initial and final component in G

on top of other meaningful nodes but do not impact the optimal solution of the problem (as sketched in Figure 4). E is a

directed set of flow relations representing ordering constraints O, while w is a function that assigns weight to all edges in the

graph w : E → R
+. Each flow relation is associated with a positive number (the weight of a connection), namely w(ei,j),

to express that node/action vi is connected to node/action vj and requires w(ei,j) time to be completed. The edges also

represent causal links C in that the precondition p for an action/node a is met if all actions/nodes linked to and preceding a

are performed. For simplicity, we denote G(P ) as G in the remaining part of the paper.

In this setting, finding the time cost for an optimal plan P ∗ in a planning problem is equivalent to finding the longest path

G∗ on G and can be cast as the following optimization problem on a subgraph G′ = ⟨V ′, E′, w⟩, G′ ⊆ G:

P ∗ ∈ argmin
P=⟨A,O,C⟩

TC(P )

⇔ G∗ ∈ argmax
G′=⟨V ′,E′,w⟩⊆G

∑

ei,j∈E′

w(ei,j)

s.t. ∀v′i ∈ (V ′ \ vdst), ∃! v
′
j ∈ v′i.next | (v

′
j , e

′
i,j) ∈ (V ′, E′)

(vsrc, vdst) ∈ V ′.

(1)

In this formulation, v′i.next are vertices in G that are successors of v′i.

Consider the example in Figure 4, where we sketch the DAG to solve the planning task of Figure 1. The maximum time

to complete the whole task is 65 minutes (i.e. sequentially executing all actions), while parallelizing all actions violates

constraints on the preconditions of some actions (e.g. ‘Roll dough’ and ‘Add filling’ cannot be done simultaneously).

Parallelizing ‘Roll dough’, and ‘Preheat oven’, and then executing the other actions allows solving the problem

optimally.

A.1.2. ASYNCHRONOUS PLANNING WITH PETRI NET

While we assume infinite resources to complete a planning task, the natural extension to the case of finite resources (i.e.,

not all independent actions can be parallelized) is better captured by the formalism of a Petri net. Consider a task where

one needs to make breakfast by grinding coffee (‘Grind-coffee’, 3 min), boiling coffee (‘Coffee’, 8 min), making toast

(‘Bread’, 10 min), and frying an egg (‘Egg’, 7 min). The problem of finding the optimal order of execution of actions

that can or cannot be parallelized is fully captured by the formalism of Petri nets (Petri, 1962). A Petri net consists of a

tuple N = (P, T, F ), where P and T are disjoint finite sets of places and transitions, and F is a directed set of flow relations

associated with a positive number (the weight of a connection), namely (i, j, fi,j ≥ 0). For an initial configuration of N , an

action p ∈ P ‘fires’, sequentially or simultaneously with other actions, a transaction t ∈ T , if it contains a token, usually

represented as a circle that encompasses a single dot.10 An optimal planning problem is equivalent to finding the shortest

transition in a Petri net. Consider the example in Figure 9: while one can execute the actions {‘Grind-coffee’, ‘Bread’,

‘Egg’} simultaneously or in parallel, with the expected completion time reported on the edge, the action ‘Coffee’ must

follow ‘Grind-coffee’. On the other hand, one can execute the actions {‘Egg’, ‘Grind-coffe’} in parallel and start

the action ‘Coffee’ when ‘Grind coffee’ is complete. Similarly to Figure 1, the minimum amount of time required

10We assume states can have at most one token and that a transaction is activated if each ‘firing’ state contains a token.
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Grind coffee

Bread

Egg

Coffee

3

10

8

7

Task complete

{ Bre a d } , { Eg g } , { Grin d  coffe e } , { Coffe e }  2 8  m in s

{ (Grin d -coffe , Coffe e ), (Bre a d , Eg g )}  1 1  m in s

{ (Grin d -coffe , Eg g )} , { (Bre a d , Coffe e )}  1 7  m in s

{ Grin d -coffe } , { Coffe e } , { (Bre a d , Eg g )}  2 1 m in s

t1

t2

Grind coffee

Bread

Egg

Coffee

3

10

8

7

Task complete

Figure 9. On the left, a Petri net representation of the example of making breakfast. A few admissible runs are reported at the bottom with

their completion time. Actions executed sequentially (in parallel) are reported in curly (round) brackets. On the right, the DAG used to

solve the optimal planning problem.

for the task is 28 minutes, while parallelising {‘Grind-coffee’, ‘Bread’, ‘Egg’} and then execute ‘Coffee’ when

‘Grind-coffee’ is complete allows solving the problem optimally. For a Petri net N = (P, T, F ) representing a planning

problem, the maximum completion time is the sum of the weights on the longest path (while the minimum is the minimum

time to reach the last transition from any parent node).

A.1.3. ON THE COMPLEXITY OF A PLANNING TASK WITH FINITE RESOURCES

With infinite resources, i.e., assuming one token per initial node (and thus can ‘fire’ the transition), finding the optimal plan

is equivalent to finding the longest path from the initial to the final state and can thus be computed efficiently. A directed

acyclic graph (DAG) is obtainable from a Petri net by discarding the set of transitions and reversing the sign on each edge,

then using a search algorithm that is linear in complexity for series-parallel graphs. Formally, a DAG for a planning task

has the following formulation: G = ⟨P,W ⟩, such that wi,j = −fi,j , (fi,j , wi,j) ∈ (F,W ), where P is the set of states and

F the set of transitions and weights in the correspondent Petri net. Figure 9 (right) reports the DAG for making breakfast.

On the other hand, when resources are finite, finding the optimal planning corresponds to an optimization problem that is

generally NP-hard to solve (Graham et al., 1979; Jain & Meeran, 1999) as one has to estimate the number of reachable

states (the state space) from a combinatorial number of initial configurations with k resources. While the exact size of the

state space depends on the constraints on sequential actions, such a number is combinatorial and upper-bounded by 2n(n−1),

where n is the number of actions and equivalently the number of states in the correspondent Petri net. Combinatorial

optimization algorithms, including genetic algorithms and simulated annealing, are usually applied to search for solutions in

NP-hard problems as such since exact methods tend to be too complex.

A.2. Data Generation Details

In addition to existing data in ProScript(Sakaguchi et al., 2021), we use WikiHow (Koupaee & Wang, 2018; Zhang et al.,

2020) as a base dataset to derive the planning tasks we need. The data generation strategy is schematized in Figure 10, which

consists of five steps: preprocessing, time duration annotation, step ordering constraint annotation, natural language

prompt generation, and graph and gold answer generation. We first leverage GPT-3.5/4 together with keyword-catching

algorithms to filter out low-quality examples (Section A.2.1) and estimate the time duration of planning steps (Section A.2.2),

and their dependencies for unannotated WikiHow data (Section A.2.3). Then we combine the LLM-annotated WikiHow

data (about 1k) with qualified human-annotated data in ProScript (about 0.6k), to generate natural language prompts based

on pre-defined templates (Section A.2.4) and optimal planning time deterministically by Python, which is by construction

correct (Section A.2.5). We perform automatic and human data quality validation and show that our dataset is similar in

quality to end-to-end human-annotated data (Section 3.1). This process culminates with AsyncHow, a curated list of 1.6K

data points for planning, which enables benchmarking models for asynchronous planning against the gold answer provided

by symbolic processors.

We now provide details about the data generation process. WikiHow dataset consists of different script types, namely (i) flat

scripts, with solely the task the name and step descriptions; (ii) multi-method scripts, which describe different methods to

15



Graph-enhanced Large Language Models in Asynchronous Plan Reasoning

Figure 10. Workflow of data generation and experiment setting. During data generation, we first conduct preprocessing to collect

high-quality scripts from WikiHow that suit our goal with regular expression and GPT-3.5, then prompt GPT-3.5 to generate time

estimations. Data points with non-numerical estimations are discarded. The remaining data points are run through GPT-4 to get step

dependencies in dot language. Then, we combine our dataset with ProScript and pull together information to generate natural language

prompts. We use an external oracle symbolic processor to generate graphs representing given information as well as generate ground

truth answers for optimal task time duration. In benchmarking experiment, we prompt LLMs with natural language task descriptions and

compare models’ answers with gold symbolic processor outputs.

solve one task; and (iii) multi-part scripts, which describe complementary parts to solve a task. We exclude script type (i)

and (iii) instances entirely if any of their sub-parts do not meet our requirement; we only exclude the unqualified methods in

script type (ii) as we can view different methods as different independent scripts. We clarify the qualification criteria below.

A.2.1. PRE-PROCESSING

First, we take the scripts with a collaborative rating score (i.e., the helpful percentage in WikiHow) higher than 60% to

retain only high-quality plans marked as useful by the users of WikiHow. We leverage GPT-3.5 and keywords methods to

filter out plans with optional steps (e.g., ‘If you are not happy with the results, proceed to follow steps’)

and others that do not fit into our research goal (we report a list of filtering keywords and descriptions in Appendix A.4).

Inspired by Wang et al. (2022), plans that contain unnecessary steps are further filtered with GPT-3.5 in a few-shot setting

by sampling three answers (with the temperature set to one) to exclude those in which the majority vote does not agree on

all parts/steps being necessary for a script (see prompts and details in Appendix A.5).

A.2.2. TIME ANNOTATION

We use GPT-3.5 to estimate the time duration per step. We use a zero-shot setting by sampling three answers (with

temperature set to one) and exclude instances whose steps duration an LLM cannot quantify numerically (see prompts and

details in Appendix A.5). Empirically, we keep the longest among all the time estimations GPT-3.5 proposes for each step.

We note that the longest time estimation is not necessarily always the only acceptable answer. We do not particularly verify

time annotation because the task time estimation in a less grounded setting as ours tends not to have a unique gold answer

(e.g. ‘finding a gym’ may take five minutes or a week to different people), and GPT-3.5 is reported being a reliable

annotator for this task (Jain et al., 2023). Furthermore, our interest is in assessing whether an LLM outputs the optimal plan

for a task, and we expect end users to supply different time durations when querying a model.
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A.2.3. STEP ORDERING CONSTRAINT ANNOTATION

We use GPT-4 in zero shot with the temperature set to one to sample five answers per prompt to annotate dependencies

among steps (see more details in Appendix A.5). Specifically, we first shuffle steps in each script and then use dot language,

an unambiguous syntax (e.g., ‘step 1 must precede step 2’ is expressed as ‘step 1 → step 2’), to obtain step

dependencies to be compliant with the ProScript format. For flat scripts type (i), we annotate dependencies among all steps,

while for multi-method scripts type (ii), we annotate dependencies by method; multi-part task dependencies in type (iii) are

annotated first among different parts and then among different steps per part, which are then combined to formulate the final

dependencies. After removing redundant dependencies, we keep data points that have at least four consistent answers that

form asynchronous plans and discard the others (e.g. in an answer saying ‘step 1 → step 2’, ‘step 2 → step 3’,

‘step 1 → step 3’, we remove ‘step 1 → step 3’) in a similar vein to self-consistency prompting (Narang et al.,

2023).

A.2.4. NATURAL LANGUAGE PROMPT GENERATION

We combine all asynchronous instances with complete time annotation for all meaningful steps in ProScript with our

generated asynchronous instances from WikiHow. We filter out all instances with unannotated preparation steps in ProScript

or those flagged as unsafe by either GPT-3.5 or GPT-4 in WikiHow during the above generation process. By keeping only

high-quality asynchronous plans from the WikiHow and the ProScript datasets, we obtain a collection of 1.6K instances.

We then generate natural language prompts based on the task information. Dot language, which we used for ordering

constraint generation, provides an unambiguous syntax to formulate a planning problem, yet users tend to use natural

language descriptions to specify such a task. We prompt GPT-4 to express the dependency constraint with different linguistic

formulations, and we end up with ten plausible templates. We report all templates in Appendix A.6 and include prompts for

them in our final dataset.

We further note that people can combine different constraint expressions for succinct usage, a phenomenon widely accepted

linguistically known as the principle of quantity/economy (Grice, 1975; Vicentini, 2003). For example, the constraint ‘Step

1 must precede step 2, step 1 must precede step 3’ can be similarly uttered as ‘Step 1 must precede step

2 and 3’. We, therefore, also include economic usage for these templates by combining the steps following the common

preceding step as exemplified above to allow studies about LLMs’ robustness to trivially different natural language prompts.

A.2.5. GRAPH AND GOLD ANSWER GENERATION

To generate gold answers for a planning task, we parse step dependencies with regular expressions and generate an equivalent

DAG representing the workflow. We generate the optimal time duration for a plan by iterating every sequential path and

choosing the longest one (the longest path algorithm would produce an equivalent gold label). Each planning task is

eventually coupled by four types of graph representations: the adjacency and the edge list, the adjacency matrix, and the

compressed sparse row (csr). Such representations can be used to aid LLMs in structural reasoning and assess LLMs’

robustness against different representations of the same graphs.

A.3. Topic Assignment

WikiHow data is coupled with metadata, including category hierarchy. For the WikiHow proportion of our benchmark, we

take the top-ranked category for each instance as its topic. To assign topics for datapoints in ProScript, we use fast-text static

embedding (Mikolov et al., 2018) trained on 600B Common Crawl data to embed task descriptions for both WikiHow and

ProScript data in our benchmark and mean-pooling the representations after removing stop words. We assign a topic its

vector by mean-pool all WikiHow task representations for prompts associated with it. We then calculate the cosine similarity

and select the highest one as the corresponding category between each topic vector and task vector for each task in ProScript

and assign the topic with highest similarity for each task.

A.4. Keywords Excluded From WikiHow Dataset

We exclude instances that contain the following keywords that fall into categories out of our benchmark goal during dataset

pre-processing:

As our task is represented without context such as images in the WikiHow webpage, we exclude context-dependent words:
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this, above, below.

We only maintain tasks that can be calculated for their exact time duration so we exclude words indicating ongoing process

or no time duration: keep, know, knowing, become, be, stay, repeat.

We assume all steps in a plan are compulsory so we exclude words indicating optional procedures: opt, if.

We want all steps in a plan to not overlap each other so we exclude words indicating parallel constraints: when, while.

We assume steps to have no intervals among them so we exclude words indicating intervals between steps: after,

before.

A.5. Prompts and Settings for Dataset Generation

Table 3. Prompts and settings used to generate AsyncHow dataset.
Task Prompt N-shot Example Shot number System Prompt Temperature Sampling strategy

Necessity

Check
Here is a script in [TASK].

[TASK DESCRIPTION]

Question: Is this script

showing different alterna-

tives to complete this task?

Let’s think step by step

then provide final answer

yes or no in double quotes.

Answer:

To ’Make a Chicken Sandwich’,

here is a script in ’Making a Fried

Chicken Sandwich’. step1: Done!;

step2: Add oil to a large frying

pan.; step3: Cut the chicken into

thin strips and add toppings of your

choice.; step4: Get the necessary in-

gredients.; step5: Mix the batter.;

step6: Batter the chicken.; step7:

Put each piece of chicken in the pan.

Question: Is this script showing dif-

ferent alternatives to complete this

task? Let’s think step by step then

provide final answer yes or no in

double quotes. Answer: The steps

as presented are not in a logical se-

quential order. However, they don’t

provide alternative methods to make

a fried chicken sandwich but rather

are parts of a single method that are

out of order. To properly make a

sandwich, these steps need to be re-

arranged into a sensible sequence

(e.g., gathering ingredients, prepar-

ing the chicken and batter, frying the

chicken, and assembling the sand-

wich).

5 You are a helpful plan organizer. 1 Sample 3 answers

and take the majority

vote.

Time

Annotation
Here is a script to [TASK].

[TASK DESCRIPTION]

Question: Can you estimate

each step in this script for

a numerical time duration

where possible? Let’s think

step by step and finally

answer in a json format ”step

index”: ”duration”, each

entry a line with double

quotes and no description

NONE 0 You are a helpful plan organizer. 1 Sample 3 answers

and take the longest

time if any. Exclude

instances which have

unannotatable steps.

Step

Dependency

Annotation

Here are randomly ordered

steps needed to [TASK].

[TASK DESCRIPTION] As-

sume infinite resources are

available and that steps

should be parallelized where

possible. For each step, does

it logically need to follow

others considering the nature

of the task? Let’s think step

by step then finally answer

in dot language for all nec-

essary constraints, each con-

straint per line in the for-

mat of ”preceding step index”

− > ”following step index”

NONE 0 You are ChatGPT. 1 Sample 5 answers

and take the 4 consis-

tent answers after re-

moving auxiliary de-

pendencies. Exclude

instances that have

less than 4 consistent

answers.
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A.6. Natural Language Prompts for Step Ordering Constraints

We prompt GPT-4 web interface to provide 10 different ways to express dot language constraints with natural language, and

randomly sample from them to form our prompts.

Prompt

Suppose you need to execute several steps to complete a task. With dot language, you can represent temporal constraints of

the steps such as ”preceding step” − > ”following step”. How can you succinctly express the constraint in natural language?

Give me 10 different expressions.

Response

To express the temporal constraints between a preceding step and a following step in natural language, you could say:

”Before starting [following step], complete [preceding step].”

”[Preceding step] must precede [following step].”

”Upon completing [preceding step], proceed to [following step].”

”After [preceding step], [following step] should commence.”

”Prioritize [preceding step] before advancing to [following step].”

”[Preceding step] is a prerequisite for [following step].”

”Initiate [following step] subsequent to [preceding step].”

”Ensure [preceding step] is done before [following step].”

”Sequence the tasks: firstly [preceding step], then [following step].”

”[Following step] follows the completion of [preceding step].”

A.7. Varying Natural Language Prompting Details

We first sample 100 prompts for all templates in A.6 to compute model accuracies in these templates without succinct usage

(e.g. ‘Step 1 must precede step 2, step 1 must precede step 3’). Then, as we note that the succinct usage of

such linguistic utterances is widely accepted as the principle of economy/quantity: do not say more than what’s needed

(Grice, 1975; Vicentini, 2003), we choose the best template and test whether a model can achieve better performance with

succinct usage (e.g. ‘Step 1 must precede step 3’). Then, we choose the best-performing prompting setting for the

rest of the experiment.

A.8. Prompt Examples for Benchmarking Experiment

Zero shot (zero-shot)

To create a video game, here are the steps and the times needed for each step.

Step 1. Learn the basics of programming (180 days)

Step 2. Learn to use a language that is used in games (60 days)

Step 3. Learn to use an existing game engine (30 days)

Step 4. Program the game (90 days)

Step 5. Test the game (30 days)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 2.

Step 1 must precede step 3.

Step 2 must precede step 4.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to create a video game? Answer the time in double quotes.

Answer:
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Zero shot+CoT (zero-shot+CoT)

To create a video game, here are the steps and the times needed for each step.

Step 1. Learn the basics of programming (180 days)

Step 2. Learn to use a language that is used in games (60 days)

Step 3. Learn to use an existing game engine (30 days)

Step 4. Program the game (90 days)

Step 5. Test the game (30 days)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 2.

Step 1 must precede step 3.

Step 2 must precede step 4.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to create a video game? Let’s think step by step and then answer the time in double

quotes.

Answer:

k-shot

###Examples:

To Make Calzones, here are the steps and the times needed for each step.

Step 1. Preheat the oven to 425 degrees. (10 min)

Step 2. Roll out the dough. (10 min)

Step 3. Add the filling. (15 min)

Step 4. Fold and pinch the dough. (5 min)

Step 5. Bake the calzones. (25 min)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 5.

Step 2 must precede step 3.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to Make Calzones? Answer the time in double quotes.

Answer: The shortest possible time to Make Calzones is ”55 min”.

...[TWO MORE EXAMPLES]...

###

[ZERO SHOT PROMPT]

k-shot+CoT

###Examples:

To Make Calzones, here are the steps and the times needed for each step.

Step 1. Preheat the oven to 425 degrees. (10 min)

Step 2. Roll out the dough. (10 min)

Step 3. Add the filling. (15 min)

Step 4. Fold and pinch the dough. (5 min)

Step 5. Bake the calzones. (25 min)
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These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 5.

Step 2 must precede step 3.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to Make Calzones? Answer the time in double quotes.

Answer: Since step 1 must precede step 5, step 2 must precede step 3, step 3 must precede step 4, step 4 must precede step 5,

we can conclude that we must execute step 2, step 3, step 4, then step 5 sequentially, and since step 1 happens before step 5,

it can be done in parallel with step 2, 3, and 4, preceding step 5. Since sequentially executing step 2, 3, 4, and 5 takes 10 +

15 + 5 + 25 = 55 min, while sequentially executing step 1 then step 5 only takes 10 + 25 = 35 min, the shortest possible time

to Make Calzones is ”55 min”.

...[TWO MORE EXAMPLES]...

###

[ZERO SHOT+COT PROMPT]

PLaG (explicit graph, graph is adjacency list)

###Examples:

To Make Calzones, here are the steps and the times needed for each step.

Step 1. Preheat the oven to 425 degrees. (10 min)

Step 2. Roll out the dough. (10 min)

Step 3. Add the filling. (15 min)

Step 4. Fold and pinch the dough. (5 min)

Step 5. Bake the calzones. (25 min)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 5.

Step 2 must precede step 3.

Step 3 must precede step 4.

Step 4 must precede step 5.

Here is the adjacency list representation of the step ordering constraints:

{’1’: [’5’], ’2’: [’3’], ’3’: [’4’], ’4’: [’5’], ’5’: [’END’], ’END’: [], ’START’: [’1’, ’2’]}
Time for each step can be represented as a dictionary:

{’1’: ’10 min’, ’2’: ’10 min’, ’3’: ’15 min’, ’4’: ’5 min’, ’5’: ’25 min’}

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to Make Calzones? Answer the time in double quotes.

Answer: Since step 1 must precede step 5, step 2 must precede step 3, step 3 must precede step 4,

step 4 must precede step 5, we can conclude that we must execute step 2, step 3, step 4, then step 5 sequentially, and since

step 1 happens before step 5, it can be done in parallel with step 2, 3, and 4, preceding step 5. Since sequentially executing

step 2, 3, 4, and 5 takes 10 + 15 + 5 + 25 = 55 min, while sequentially executing step 1 then step 5 only takes 10 + 25 = 35

min, the shortest possible time to Make Calzones is ”55 min”.

...[TWO MORE EXAMPLES]...

###

To create a video game, here are the steps and the times needed for each step.

Step 1. Learn the basics of programming (180 days)

Step 2. Learn to use a language that is used in games (60 days)

Step 3. Learn to use an existing game engine (30 days)

Step 4. Program the game (90 days)
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Step 5. Test the game (30 days)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 2.

Step 1 must precede step 3.

Step 2 must precede step 4.

Step 3 must precede step 4.

Step 4 must precede step 5.

Here is the adjacency list representation of the step ordering constraints:

{’1’: [’2’, ’3’], ’2’: [’4’], ’3’: [’4’], ’4’: [’5’], ’5’: [’END’], ’END’: [], ’START’: [’1’]}
Time for each step can be represented as a dictionary:

{’1’: ’180 days’, ’5’: ’30 days’, ’2’: ’60 days’, ’4’: ’90 days’, ’3’: ’30 days’}

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to create a video game? Let’s think step by step and then answer the time in double

quotes.

Answer:

PLaG (BaG, graph is adjacency list)

###Examples:

To Make Calzones, here are the steps and the times needed for each step.

Step 1. Preheat the oven to 425 degrees. (10 min)

Step 2. Roll out the dough. (10 min)

Step 3. Add the filling. (15 min)

Step 4. Fold and pinch the dough. (5 min)

Step 5. Bake the calzones. (25 min)

These ordering constraints need to be obeyed when executing above steps:

Step 1 must precede step 5.

Step 2 must precede step 3.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to Make Calzones? Let’s construct a graph with the nodes and edges first to

represent step ordering constraints, and also construct a dictionary to represent time needed for each step. Use the graph and

dictionary to calculate the shortest possible time needed for the task. Let’s think step by step and then answer the time in

double quotes.

Answer: Here is the adjacency list representation of the step ordering constraints:

{’1’: [’5’], ’2’: [’3’], ’3’: [’4’], ’4’: [’5’], ’5’: [’END’], ’END’: [], ’START’: [’1’, ’2’]}
Time for each step can be represented as a dictionary:

{’1’: ’10 min’, ’2’: ’10 min’, ’3’: ’15 min’, ’4’: ’5 min’, ’5’: ’25 min’}
Since step 1 must precede step 5, step 2 must precede step 3, step 3 must precede step 4, step 4 must precede step 5, we can

conclude that we must execute step 2, step 3, step 4, then step 5 sequentially, and since step 1 happens before step 5, it can

be done in parallel with step 2, 3, and 4, preceding step 5. Since sequentially executing step 2, 3, 4, and 5 takes 10 + 15 + 5

+ 25 = 55 min, while sequentially executing step 1 then step 5 only takes 10 + 25 = 35 min, the shortest possible time to

make Calzones is ”55 min”.

...[TWO MORE EXAMPLES]...

###
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To create a video game, here are the steps and the times needed for each step.

Step 1. Learn the basics of programming (180 days)

Step 2. Learn to use a language that is used in games (60 days)

Step 3. Learn to use an existing game engine (30 days)

Step 4. Program the game (90 days)

Step 5. Test the game (30 days)

These ordering constraints need to be obeyed when executing above steps.

Step 1 must precede step 2.

Step 1 must precede step 3.

Step 2 must precede step 4.

Step 3 must precede step 4.

Step 4 must precede step 5.

Question: Assume that you need to execute all the steps to complete the task and that infinite resources are avail-

able. What is the shortest possible time to create a video game? Let’s construct a graph with the nodes and edges first to

represent step ordering constraints, and also construct a dictionary to represent time needed for each step. Use the graph and

dictionary to calculate the shortest possible time needed for the task. Let’s think step by step and then answer the time in

double quotes.

Answer:

Prototypical task (edge list)

The following lists of nodes [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and edges [[0, 1, 1], [1, 2, 1],[1, 3, 1], [2, 10, 1], ..., [9, 10, 5]]

define a directed acyclic graph. Each element in the list of edges is expressed in the form (i,j,w), and specifies that node i

connects to node j with weight w. What is the length of the longest path from node 0 to node 10? Think step by step and

then reply with the numerical value of the shortest path enclosed by <result><result> tags.

Answer:

A.9. Results after Excluding Invalid Instances

We report results after excluding invalid instances altogether in all models and settings per experiment if an instance is

filtered in any setting in an experiment (e.g. if instance indexed 0 is invalid in zero-shot GPT-4 experiment, we remove it

from all the test results for all models and settings). General conclusions remain the same as our main content.

Table 4. Model accuracy in different settings on the AsyncHow benchmark. Model performances without our method are in plain

background, while those with our method are in blue background. We mark the best performance per model in bold. Following Dror et al.

(2018), we use McNemar’s tests (McNemar, 1947) to obtain p-values and Holm-Bonferroni method (Holm, 1979) to correct them for

each evaluation to test the statistical significance of performance difference between experiment with and without our proposed method.

We denote with † when the performances with PLaG are significantly better (p < 0.05) than the best result without.

Model zero-shot zero-shot + CoT k-shot k-shot + CoT PLaG (explicit graph) PLaG (BaG)

GPT-4 0.128 0.128 0.108 0.657 0.728† 0.771†

GPT-3.5 0.191 0.217 0.241 0.224 0.284† 0.348†

Command 0.079 0.015 0.051 0.078 0.098 0.052

LLaMA-2-70B-chat 0.039 0.036 0.053 0.074 0.101† 0.069

Mistral-7B-Instruct 0.074 0.070 0.099 0.142 0.155 0.144
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Figure 11. Left plot refers to average model performance accuracy with k shot + CoT in different graphs. Dots refer to model performance

with different graph types. Grey lines refer to average accuracy with different graph types. The right plot refers to average zero-shot

accuracy in different text prompts. Error bars in both plots refer to worst/best performance

Figure 12. Comparing parallel/sequential plan execution accuracy with asynchronous plans. All experiments are done in the setting of

k-shot + CoT. Blue and orange lines refer to GPT-4 and GPT-3.5 results respectively.

Figure 13. Model accuracy concerning task complexity. The left figure plots model performance without our method (PLaG), and the

right plot displays the models’ best performance with/without our method.

A.10. Further Comparison with Chain-of-Thought Self-consistency and Tree of Thought

We further added experiments on Chain-of-Thought Self-Consistency (CoT-SC) (Wang et al., 2022) and ToT (Yao et al.,

2024) (both for k shot, k=3 as in our main paper). We report results for k-shot CoT-SC and ToT, in comparison to PLaG

below (best results are in bold). We see that our method outperforms both methods while inducing much less cost (see

Appendix A.11).

Table 5. Comparing k-shot CoT-SC/ToT with PLaG on GPT-3.5 and GPT-4. The best results per model are in bold. Our methods are

always superior.

k-shot CoT-SC k-shot ToT PLaG (explicit graph) PLaG (BaG)

GPT-3.5 0.240 0.263 0.290 0.355

GPT-4 0.625 0.624 0.730 0.777
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A.11. Latency Analysis

We analyze the cost-performance trade-off for PLaG here. PLaG introduces significantly longer inference sequences than

the zero-shot setting, but we note that its cost is reasonable compared to other advanced prompting methods. We provide a

statistical comparison of the average input/output token count per task for GPT-4 below.

We note that the output token lengths of PLaG (explicit graph) are comparable to that of k-shot CoT, while k-shot CoT-SC

and k-shot ToT are much more expensive and underperform both PLaG methods (see Appendix A.10).

Table 6. Latency analysis: comparing PLaG with other prompting methods.

zero shot k-shot CoT PLaG (explicit graph) PLaG (BaG) k-shot CoT-SC k-shot ToT

tokens (input/output) 207/5 1289/135 1698/138 1775/242 1289/407 5212/335

The increased input and output length caused by PLaG may raise concerns about the scaling potential of the technique (i.e.,

whether it is still applicable when there are hundreds of nodes or more in a graph). First, we consider this to be a problem

mainly for LLM context window length, which is universal to all NLP problems in general. In summarization tasks, for

example, an LLM can’t summarize a book whose length goes beyond the LLM’s context length, but this doesn’t invalidate

summarization as a task. Second, the length of graph representation also depends on the graph format: if a graph is provided

as its dependency list, its size will grow linearly with the number of nodes and edges, as opposed to the adjacency matrix,

which scales quadratically.

Second, our dataset, which is generated from real-life tasks without specific pruning for complex ones, shows very sparse

data points for complexity which goes beyond 20 (Figure 5). This observation motivates us to consider additional graph

prompting as a valid technique to improve LLM performance in a wide range of tasks.

A.12. Comparing PLaG Performance on Model-generated and Human-annotated Data

Here, we compare GPT-3.5/4 performance on model-generated and human-annotated data to show that the performance gap

between the explicit graph and BaG used in PLaG is not caused by noise in sampling. We perform additional experiments to

compare BaG and explicit graph on task complexity 14, which has > 100 data points for both the synthetic and human-

annotated parts of our dataset. We find that the BaG framework performs consistently better than the explicit graph as shown

below, which means the superior performance of BaG should not be attributed to noise sampling.

Table 7. Compare explicit graph (left) and BaG (right) as PLaG methods in human-annotated data and model-generated data. The best

results are in bold.
Human-annotated data Generated data

GPT-3.5 (explicit graph/BaG) 0.239/0.279 0.315/0.389

GPT-4 (explicit graph/BaG) 0.614/0.701 0.778/0.796

A.13. Model Performance with Economic Linguistic Expressions

We report results comparing LLMs’ performance between direct and economic expressions in Figure 8. Generally, models’

performance downgrades when using economic expressions except LLaMA-2-70B-chat.

Table 8. Compare model performance with unambiguous direct expression with economic expressions.

Model Best direct expression performance Performance difference after using economic expressions

GPT-3.5 0.222 -0.012

GPT-4 0.171 -0.021

Command 0.06 -0.01

LLaMA-2-70B-chat 0.06 +0.06

Mistral-7B-Instruct 0.08 -0.01
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A.14. The Prototypical Distribution as a Proxy of the Naturalistic Benchmark

In this subsection, we show that |V | and |E| equally contribute to the complexity of a planning task, with no clear dominance

of one over the other Figure 14 and the similarity of prototypical and naturalistic graphs Figure 15.

Figure 14. Comparison of the cumulative number of vertices |V | and edges |E| per-complexity task for the prototypical (left) vs.

naturalistic datasets.

Figure 15. Comparison of the graph distribution of prototypical graphs and that of random graphs. In blue and red, a comparison between

the number of nodes/edges and flows of prototypical and naturalistic graphs. In green, comparison of nodes/edges and flows of prototypical

and random graphs (baseline). For larger complexities, prototypical graphs become similar to DAG in terms of the number of edges,

nodes and flows (i.e., tasks that can be executed simultaneously).

A.15. Analysing Time Units Differences in Complexity Levels 20+ and 18

We define a list of time units [’sec’, ’min’, ’h’, ’day’, ’week’, ’month’, ’year’] and define time unit distance per instance as

the difference between the unit with the highest and lowest index. For instance, a script with steps timed as 5 sec, and 10

min respectively is considered as having a distance of 1, while a script with steps timed as 15 h and 50 h has a distance of 0.

We find that the average time distance over all scripts at 20+ (0.339) is considerably lower than the average distance at

complexity 18 (0.801), which partially explains why the accuracy at 20+ has a jump.

A.16. Experiment Details and Hyperparameters

All experiments are performed from December 2023 to May 2024.
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For data generation, we use Azure OpenAI API and set temperature=1 for both GPT-35-turbo and GPT-4. In dependency

validation, we sample prompts by seed 0, 1, and 2.

During the experiment (i.e. inference stage), we use Azure OpenAI API and set temperature=0 for GPT models to enable

as much reproducibility as possible. We use Cohere API to query the Command model and also set temperature = 0. As

GPT models and Command filter contents, we query API 3 times to see if the corresponding model is willing to answer the

prompt.

We use Huggingface Inference API to query LLaMA-70B-Chat and set do sample=False, max new tokens=4096, and

seed=0. We use 2 V100 GPUs and 1 A100 GPU for Mistral-7B-instruct inference, with do sample=False, temperature=0,

max new tokens=4096 and torch manual seed=2024.

A.17. Dataset Information

We use ProScript and WikiHow as our base dataset in data generation. We follow the licensing guide of ACL and determine

ProScript to be under CC BY 4.0. WikiHow dataset we use is under MIT License. We follow the licenses used by the

existing datasets for our dataset.

A.18. Human Validation

We conduct human validation of WikiHow on a voluntary basis with four experts. Consent was obtained via discussion with

them. We do not provide personally identifiable information in the dataset.

A.19. Statement of Contribution

FL wrote the paper, developed the initial idea, developed part of formalism, generated the AsyncHow dataset, ran all

experiments, and conducted all analyses unless specified below. EMY helped in polishing ideas, rephrasing prompts, and

editing the paper. ELM developed part of formalism, generated a synthetic dataset, ran synthetic experiments, and advised

and edited the paper. AGC obtained funding, advised, and edited the paper. VH and JBP advised and edited the paper.
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