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Abstract.—A relationship between the rate of molecular change and diversification has long been discussed, on both theo‑
retical and empirical grounds. However, the effect on our understanding of evolutionary patterns is yet to be fully explored.
Here, we develop a new model, the Covariant Evolutionary Tempo model, with the aim of integrating patterns of diver‑
sification and molecular evolution within a framework of a continuously changing “tempo” variable that acts as a master
control for molecular, morphological, and diversification rates. Importantly, tempo itself is treated as being variable at a
rate proportional to its own value. This model predicts that diversity is dominated by a small number of extremely large
clades at any historical epoch including the present; that these large clades are expected to be characterised by explo‑
sive early radiations accompanied by elevated rates of molecular evolution; and that extant organisms are likely to have
evolved from species with unusually fast evolutionary rates. Under such a model, the amount of molecular change along
a particular lineage is essentially independent of its height, which weakens the molecular clock hypothesis. Finally, our
model explains the existence of “living fossil” sister groups to large clades that are species poor and exhibit slow rates of
morphological and molecular change. Our results demonstrate that the observed historical patterns of evolution can be
modelled without invoking special evolutionary mechanisms or innovations that are unique to specific times or taxa, even
when they are highly nonuniform. [living fossils, molecular clocks, patterns of diversification.]

The relationship between micro‑ and macroevolution
has long been debated (Jablonski, 2000; Erwin, 2000;
Rolland et al., 2023). A central question is the extent
to which large‑scale evolutionary patterns—observed
in the fossil record and inferred from phylogenies—
are shaped by the processes operating at the popula‑
tion level. Regardless of the outcome of this debate,
however, there is often a methodological assumption
of independence between microevolutionary changes
(e.g., shifts in gene frequencies due to selection) and
macroevolutionary patterns (e.g., diversification trends
within a clade). Contemporary models of evolutionary
history conceptualize the overall process as being gov‑
erned by three independent components: the model of
molecular substitution, the rate at which substitutions
occur, and the nature of the branching process (Warnock
and Wright, 2021). The simplest approach would be to
employ a strict molecular clock with a Jukes–Cantor
substitution model (Jukes and Cantor, 1969) on a known
phylogeny, and assuming a fixed rate of branching—
often represented by a homogeneous birth–death pro‑
cess (BDP) (Nee, 2006). Methodological advances, such
as the development of relaxed clocks, now allow substi‑
tution rates to vary across the tree (see Dos Reis et al.
(2016) for a review). Additionally, increasingly sophis‑
ticated models of molecular evolution have been intro‑
duced (Arenas, 2015). More recently, models have also
emerged that incorporate variable diversification rates
(see below), allowing for more complex representations

of evolutionary trees, although the broad‑scale patterns
resulting from such models remain relatively unex‑
plored.

Increasing sophistication in modeling ability has nat‑
urally also fuelled attempts to understand the causes
behind the variation being captured. To take molecular
substitution rate variation first: two broad hypotheses
exist about its causes. The first encompasses a range
from mutational effects to features of the entire organ‑
ism (such as body size or generation time), and the sec‑
ond is a “speciation rate hypothesis” that links molecu‑
lar change to speciation (Jobson and Albert, 2002). There
are sound empirical and conceptual reasons for think‑
ing that speciation and molecular change may well be
intimately related (Hua and Bromham, 2017), and at‑
tempts have sometimes been made to consider them
jointly (e.g., Sarver et al. (2019); Ritchie et al. (2022b)).
Indeed, Eo and DeWoody go so far as to claim that “One
of the most basic predictions in evolutionary biology is
that the rate of diversification along a particular branch
of the tree of life is some function of the rate of genome
evolution on that branch.” (Eo and DeWoody (2010), p.
3587). Provocative evidence for a close correlation of the
two processes is seen for example in the early history
of arthropods (Lee et al., 2013), where early branches
of the clade contain just as much molecular change
as later branches despite being far shorter in duration
(Budd and Mann, 2020b), at least when the tree height
is constrained by the fossil record. However, this is just
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one of several studies that over the last few decades have
debated a potential link between both morphological
and molecular rates of change and rates of speciation
(e.g., Barraclough and Savolainen (2001); Webster et al.
(2003); Xiang et al. (2004); Venditti and Pagel (2010); Lan‑
fear et al. (2010); Rabosky et al. (2013); Berv and Field
(2018); Bromham (2024)), although it should be noted
that not all studies have found clear evidence of this link
(e.g., Goldie et al. (2011)). There are at least two factors
that might cloud the relationship between diversifica‑
tion and molecular change through time. The first is the
so‑called “node density” effect, wherein in clades with
more terminals, a resulting greater number of internal
nodes will recover more molecular change and thus
generate a spurious relationship between clade size and
amount of molecular change (Hugall and Lee, 2007).
The second is that if a relaxed clock methodology is em‑
ployed to ascertain the time of origin of a clade, then any
early burst of molecular (or morphological (Beck and
Lee, 2014)) change or indeed diversification is likely to
be smoothed out by pushing the age of the root deeper
(Bromham, 2003; Beaulieu et al., 2015; Budd and Mann,
2020b; Bromham, 2020; Shafir et al., 2020). If one were
simply to accept the result of the molecular clock, then
the apparent elevated early rates could theoretically be
explained as an artefact caused by “bunching up” the
early lineages to artificially squeeze the clade into a too‑
narrow time interval (c.f., Bromham and Hendy (2000)).
However, we have previously marshalled strong rea‑
sons for thinking that the fossil record in such instances
is often reliable, in which case early bursts of diversi‑
fication should be taken seriously and not dismissed as
dating artifacts (Budd and Mann, 2020a,b, 2024; Holmes
and Budd, 2022). As a result, the well‑known mismatch
between the explicit fossil record and molecular clock
origination estimates for many major clades such as an‑
imals (Budd and Mann, 2020b), birds (Berv and Field,
2018), placental mammals (Budd and Mann, 2024), and
angiosperms (Coiro et al., 2019; Smith and Beaulieu,
2024) itself points to cryptic excess molecular change at
the base of trees (Beaulieu et al., 2015; Berv and Field,
2018). Previous critiques of molecular clocks have fo‑
cused on either inappropriate age priors (e.g., Budd and
Mann (2024); Brown and Smith (2018)) or issues with
rate heterogeneity (e.g., Bromham and Woolfit (2004);
Berv and Field (2018)); below, we will suggest that these
are effectively two sides of the same coin. Clearly, if
the branching process and rate of molecular change re‑
ally are correlated, then this would have a significant
impact on our understanding of the patterns of evolu‑
tionary change through time (see Duchêne et al. (2017)
for investigation and discussion of this point).

Causes of variation in diversification rates are like‑
wise much debated (e.g., Moen and Morlon (2014)). It
is clear that, similarly to the case of molecular evo‑
lution itself, rates of diversification must vary across
the tree, as a single homogeneous BDP cannot pos‑
sibly capture the true patterns of diversification re‑
flected in evolutionary history (c.f., Benton and Emerson

(2007)). Notwithstanding this, the homogeneous BDP
(Nee, 2006) (in which rates of speciation and extinction
are fixed) is still commonly employed in molecular anal‑
ysis, especially for dating purposes, although its inade‑
quacies are increasingly being recognised (e.g., Khurana
et al. (2024)).

Any attempt to investigate a link between rates of
genetic/morphological evolution and speciation must
reckon with the heterogeneous nature of all of these
variables. Historically, rate heterogeneity has largely
been addressed in one of two ways: either by assum‑
ing rate shifts occur at significant points (e.g., Soltis and
Soltis (2016)), or by assuming broad secular variation,
for example, with declining rates through time across
the entire tree (Strathmann and Slatkin, 1983; Nee et al.,
1994b); or some combination of both (e.g., in BAMM
(Rabosky et al., 2014)). More recent models have moved
away from considering isolated rate shifts to allow rates
to vary either in small frequent increments associated
with speciations (Maliet et al., 2019; Shafir et al., 2020)
or continuously through anagenetic diffusion (Quin‑
tero et al., 2024) (for other noncontinuous models, see
the review in the supplementary information of Maliet
et al. (2019)). The primary goal of these models has been
the inference of rates through time, based on molecular
data from extant taxa (Barido‑Sottani and Morlon, 2023)
which has now been implemented in BEAST2 (Bouck‑
aert et al., 2019), clearly a substantial step forward from
homogeneous models. However, some forward simula‑
tion has also revealed that these models can generate
clades that match empirical observation; in particular,
simulated clades are often imbalanced and “stemmy”
(Maliet et al., 2019). This suggests that diversification
rate heterogeneity may be one key to understanding
the patterns of modern diversity. This is largely because
the distribution of modern diversity predicted by homo‑
geneous or epochally time‑varying BDPs is geometric
(Kendall, 1948; Nee et al., 1994b), and this remains the
case even when nonselective mass extinctions are con‑
sidered (Budd and Mann, 2020a). However, a certain
amount of evidence suggests that extant sizes are in fact
over‑dispersed relative to this expectation (Blum and
François, 2006; Stadler et al., 2016). Consider, for exam‑
ple, the crown‑group animal phyla, which for the sake
of argument, we can assume all emerged around 500
Ma (Budd and Mann, 2024). Estimating total species di‑
versity in the phyla is fraught with difficulty, but even
so the species count differs widely. For example, the
phyla have an average diversity of c. 50 000 species, but
the arthropods have a diversity of well over one mil‑
lion species, thus being over twenty times larger than
expected. Under a geometric distribution, this is es‑
sentially impossible (𝑝 ∼ 10−7). This pattern is seen
repeated hierarchically: for example, most arthropods
are insects, and most insects appear to be hymenopter‑
ans (Forbes et al., 2018). Similarly, the angiosperms are
much more diverse than any other plant clades (e.g., c.
300 000 vs. 1000 gymnosperms) and birds much more
so than crocodiles in the archosaurs (c.10 000 vs. c. 85).
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In other words, the existence of Stanley’s “supertaxa”
(Stanley, 1998) does not seem compatible with a purely
geometric distribution of clade sizes as predicted by the
homogeneous BDP. In addition, clade sizes show a com‑
plex relationship with age that is not easily explained by
homogeneous diversification (Magallon and Sanderson,
2001; McPeek and Brown, 2007; Rabosky, 2010), and in‑
deed attempts to estimate absolute diversification rates
within a clade suggest several orders of magnitude vari‑
ation (Magallon and Sanderson, 2001). It thus seems that
clade sizes do often appear overdispersed relative to any
expected geometric distribution (Khurana et al., 2024).

Taking these empirical findings together, and noting
the apparent importance of rate heterogeneity across
both microscopic and macroscopic evolutionary scales
(Henao‑Diaz and Pennell, 2023), it seems that a need ex‑
ists for a synthesis that unites molecular evolution and
species diversification, in which both vary through time.
In this paper, then, we develop a model of diversifi‑
cation and molecular change in which all evolutionary
rates covary, being controlled by a single variable evo‑
lutionary tempo that differs both between species, and
within a species over time. Although our model does
not depend on a particular instantiation of tempo, we
nevertheless offer some suggestions about how it might
be encoded in a realistic way in the genome below (see
schematic for genetic encoding of tempo in Appendix
1). Our analysis of this model will show that it is con‑
sistent with the concentration of species into relatively
few “supertaxa”’ (Stanley, 1998); that it offers a resolu‑
tion to conflict between the fossil record and molecu‑
lar clocks; and that it makes new predictions about the
early history of major clades and the fate of the smaller
clades that constitute the remaining part of modern di‑
versity. Because of the way we formulate the model, it is
amenable to numerical solution that allows us to investi‑
gate its general features, as opposed to simulations that
would show the outcomes of rates over specific trees.

METHODS AND MATERIALS

Model Outline
As indicated above, heterogeneity in rates of specia‑

tion and extinction is key to explaining important em‑
pirical features of diversification. We here extend earlier
approaches to model such heterogeneity (Rabosky et al.,
2014; Maliet et al., 2019; Ritchie et al., 2022a; Quintero
et al., 2024) and create a BDP model in which rates of
speciation and extinction vary continuously and covari‑
antly through anagenetic diffusion. We call this model
the Covariant Evolutionary Tempo (CET) model. Un‑
der CET, all evolutionary rates are specific to a given
taxon at a specific moment in time. Our model is close
in formulation to that of Quintero et al. (2024). How‑
ever, whereas they model this variation in speciation
and extinction rates as geometric Brownian motion with
an overall drift, and treat speciation and extinction

independently, we instead posit that there exist baseline
rates of speciation (𝜆) and extinction (𝜇) that are linearly
modulated by a new variable we label as tempo, 𝜏, which
controls the relative rates of all evolutionary processes.
At any given time, a taxon with tempo 𝜏 has a speciation
rate 𝜏𝜆 and an extinction rate 𝜏𝜇.

This model is fully covariant, in that all rates are
linked directly to 𝜏; in effect, the tempo represents a lo‑
cal speeding‑up or slowing‑down of evolutionary time,
such that all processes happen faster or slower. In par‑
ticular, we posit that tempo itself varies through time,
and because we posit that tempo is in some way genet‑
ically encoded, this implies that the evolution of 𝜏 itself
proceeds at a rate proportional to 𝜏, since the effect on
molecular rates of mutation will obtain upon whichever
part of the genome is responsible for this encoding.
Specifically, we model the log‑tempo (𝑥 = log 𝜏) as
evolving according to a modified Ornstein–Uhlenbeck
(OU) process that incorporates the effect of the tempo
itself on all rates

𝑑𝑥 = −𝜃𝑒𝑥𝑥𝑑𝑡 + √2𝜃𝑠2𝑒𝑥𝑑𝑊, (1)

where 𝑑𝑊 represents an incremental change from a
Wiener process (popularly known as Brownian motion).
We impose this model for the evolution of the log‑tempo
𝑥 since the tempo itself is constrained to be positive. The
parameters of this stochastic differential equation are
the mean reversion rate 𝜃 and the stationary variance of
the process, 𝑠2. The 𝑒𝑥 terms in this equation come from
the self‑interaction of the tempo, which as well as mul‑
tiplying the rate of all other processes also determines
the rate at which it evolves itself, such that the effec‑
tive increment of time is 𝜏𝑑𝑡 = 𝑒𝑥𝑑𝑡. Our use of an OU
process is motivated by two considerations. First, as we
shall show, a Wiener process without a restoring force
would lead to a runaway effect, where tempos increase
without limit. Secondly, in Appendix 1, we describe a
plausible schematic for how tempo is inherited that pro‑
duces an inherent reversion to a mean value via entropic
forces.

As we show in Appendix 1, this results in a drift‑
diffusion partial differential equation for the generating
function of the resulting BDP

𝜕𝐺𝑥
𝜕𝑡 = 𝑒𝑥 ((𝜆𝐺𝑥 − 𝜇)(𝐺𝑥 − 1) − 𝜃𝑥𝜕𝐺𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝐺𝑥
𝜕𝑥2 ) ,

(2)
where 𝐺𝑥(𝑡, 𝑧) = ∑∞

𝑛=0 𝑃𝑛(𝑡, 𝑥)𝑧𝑛, with 𝑃𝑛(𝑡, 𝑥) being the
probability of generating 𝑛 species over time 𝑡 in a pro‑
cess starting with log‑tempo 𝑥. Solving this equation for
an initial condition 𝐺𝑥(𝑡 = 0, 𝑧) = 𝑧 provides the value
of the generating function 𝐺𝑥(𝑡, 𝑧).

Equation 2 does not appear to permit solution in
closed form, except for the long‑term extinction prob‑
ability 𝐺𝑥(𝑡, 𝑧 = 0) for 𝑡 → ∞, which is 𝜇

𝜆 for all 𝑥, and
is therefore tempo invariant. More generally, equation 2
can be straightforwardly solved numerically. The values
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of 𝑃𝑛(𝑡, 𝑥) can be retrieved from this generating function
by Fourier inversion (see Appendix 1).

We can derive further equations specifying the evo‑
lution of the mean number of species generated by
the process over time, the expected number of lineages
(species that will have modern descendants), and the
distribution of tempos over time. Derivation of these
equations is described in Appendix 1. The most impor‑
tant of these equations specifies the evolution of the
mean number of species through time. Given a gener‑
ating function 𝐺𝑥, the mean of the distribution 𝑁𝑥(𝑡) ≡
𝔼(𝑛 ∣ 𝑡, 𝑥) is given by

𝑁𝑥(𝑡) = 𝜕𝐺𝑥(𝑡, 𝑧)
𝜕𝑧 ∣

𝑧=1
. (3)

Using this relation, equation 2 can be transformed into
a simpler, linear form to represent the dynamics of the
mean

𝜕𝑁𝑥
𝜕𝑡 = 𝑒𝑥 (𝑟𝑁𝑥 − 𝜃𝑥𝜕𝑁𝑥

𝜕𝑥 + 𝑠2𝜃 𝜕2𝑁𝑥
𝜕𝑥2 ) , (4)

where 𝑟 = 𝜆 − 𝜇 is the baseline net diversification rate.
This equation reveals the key dynamics of the process:
the expected number of species with log‑tempo 𝑥 lo‑
cally increases exponentially at the rate 𝑟 modulated by
𝜏 = 𝑒𝑥. At the same time, a drift‑diffusion process mod‑
ifies the tempo of each species, such that species tend to
move toward a log‑tempo of 0 (i.e., 𝜏 = 1).

Justification for a Covariant Theory
Why should all evolutionary rates be covariant? As

we have discussed above, previous birth–death mod‑
els have allowed for independent variation in specia‑
tion and extinction (while in practice sometimes hold‑
ing one of these constant), while the rates of molecular
evolution have been assumed (generally implicitly) to
be completely independent of diversification rates. In
one sense, our choice is pragmatic: we seek to explore
the consequences of linking changing rates of molecu‑
lar evolution to diversification rates, and the most par‑
simonious way to do this is to impose a perfect cor‑
relation between the two. Allowing for speciation and
extinction rates to vary independently (or with some
nonunitary correlation) would greatly complicate the
mathematical formulation of the birth–death model and
its analysis, and cloud its implications. Empirically, we
are also strongly motivated by the apparently close (in‑
verse) correlation between rates of molecular evolution
and branch durations in for example Lee et al. (2013) and
other studies, as noted in the introduction. Finally, our
choice is also theoretically informed. It is clear that as
speciation and extinction vary, they must remain close
to one another over time; a sustained period of much
higher speciation will quickly produce an unrealisti‑
cally large number of species, while a period of greater
extinction than speciation will almost certainly drive the
clade to extinction. Indeed, the linkage between the two

has been formulated by Marshall as the third of his five
“paleobiological laws” (see Marshall (2017) for discus‑
sion and justification of this point). Moreover, we expect
that rates of speciation and extinction may largely be
driven by the same causal factors, for example, genera‑
tion times and population size (for a classical discussion
of the various links between speciation and extinction
rates, see Stanley (1990), and more recently Greenberg
and Mooers (2017)). Therefore, while we anticipate sig‑
nificant deviations from covariance between these pro‑
cesses at sufficiently short time scales, we expect it to be
a realistic first‑order approximation when considering
rates on the scale of millions of years. We also note that
although most discussions of molecular evolution have
considered a link with speciation, we consider that in
practice, this implies a link with extinction too, for the
reasons given above.

As far as our model is concerned, we note that many
of the factors operating on speciation rates are also
likely to affect molecular rates of change. For example,
Bromham has stressed the need to consider the genome
itself as a life‑history trait ((Bromham, 2003, 2009, 2020),
and thus open to the same influences [population size,
generation time, etc]) as other traits. Thus, under such
a view of evolution, small body size or small popu‑
lations might both influence speciation rate (Martin,
2017; Cooney and Thomas, 2021) and molecular evolu‑
tion rates (Bromham, 2020) together, thus uniting the
two broad ways of considering the causes of molecu‑
lar change (Jobson and Albert, 2002). Naturally, such
a linkage between the two might itself vary, but in or‑
der to investigate its general effects, and certainly to
greatly simplify the analysis, we have chosen a model
with complete linkage.

Few studies have shown a convincing direct link
between molecular substitution rates and phenotypic
change (Bromham and Woolfit, 2004). Nevertheless, the
two may be indirectly linked by other factors such as
speciation rate, as both phenotypic and molecular are
plausibly linked to speciation (for discussion of this
point with some examples such as placental mammals
and lungfish, see Budd and Mann (2018)). As we sug‑
gest below, some empirical evidence points to this being
true, at least in some clades.

RESULTS
We analyzed our model by solving the probabilistic

equations given above to obtain distributions at differ‑
ent time epochs, rather than by direct simulation of the
tree evolution. Notably, our analysis does not provide
a probability distribution over specific trees, but over
coarser‑grained variables such as diversity. It is not our
goal to quantitatively fit our model to the modern di‑
versity or evolutionary history of any specific clade,
but rather to reveal the qualitative features the model
predicts. Throughout we use a core set of parameters
𝜆 = 0.51 per species per myr, 𝜇 = 0.5 per species
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per myr, 𝜃 = 0.01/myr, and 𝑠 = 1. These parameters
are chosen to reflect reasonable expectations about the
real evolutionary process: a baseline extinction rate of
𝜇 = 0.5 per species per myr comports with that cho‑
sen in previous analyses (e.g., Budd and Mann (2018))
and, combined with a speciation rate of 𝜆 = 0.51 per
species per myr is consistent with a typical species ex‑
isting for c. 1 myr, in broad agreement with the fossil
record (see. e.g., Budd and Mann (2018)). The speciation
rate is chosen to be of similar magnitude to the extinc‑
tion rate, such that extinction plays a significant role in
the evolutionary dynamics (Marshall, 2017) but is other‑
wise arbitrary. We choose a mean‑reversion parameter
𝜃 = 0.01/myr to be equal to the net diversification rate
as we will later show that if 𝑟 = 𝜃, then the mean log‑
tempo converges to 0 (see Appendix 1, equation A28).
Although this choice is mathematically convenient, we
do not expect that it represents any necessary feature of
the evolutionary process nor do the general features of
our results depend on it. Finally, the diffusion parame‑
ter 𝑠 = 1 is chosen to be large enough to produce signif‑
icant effects of the diffusive dynamics, and otherwise is
simply a mathematically convenient choice.

Distribution of clade sizes
We solved equation 2 for times 0 ≤ 𝑡 ≤ 500 myr and

starting log‑tempos −10 < 𝑥 < 10 and performed a
Fourier inversion (see Appendix 1) to retrieve the im‑
plied probability distribution 𝑃𝑛(𝑡 = 500 myr, 𝑥). The
distribution of clade sizes for a clade that starts with log‑
tempo 𝑥 = 0, excluding clades of size zero, is shown in

Figure 1A. The clade sizes follow a distribution that dif‑
fers strongly from the geometric distribution expected
under a typical BDP (indicated by the dashed line, as‑
suming the same mean clade size). This distribution is
characterised by most clades being small, but with a
few extremely large clades. This means that clades that
are many times greater than average (either mean or
median) are much more probable than under a stan‑
dard BDP. A corollary of this is that clade size a typi‑
cal species “experiences” (i.e., the expected clade size of
a randomly selected species) is c. 8 times greater than
the mean clade size. For clarity, we here define the ex‑
perienced and mean clade sizes as the sizes of clades
containing living organisms that have the same time of
origin (e.g., the sizes of parent clades that are all 500 myr
old).

In Figure 1A, we indicate both the mean clade size
and the mean experienced clade size for illustration.
This result should be compared to the equivalent re‑
sult from a standard BDP where the mean experienced
clade is only two times greater than the mean (Budd
and Mann, 2018). This implies that the large majority of
species we might encounter and/or study are contained
in extremely large clades. Since clades are hierarchically
structured this also implies that the diversity of any
clade is likely to be dominated by its largest sub‑clade.
To illustrate this, we consider the two sister‑groups of
a clade originating 500 Ma and calculate the expected
proportion of the total diversity that is contained in one
sister‑group chosen at random. As shown in Figure 1B,
the probability that a given proportion of total diversity
is contained in a given sister‑group is peaked strongly

FIGURE 1. A) Distribution of the number of species generated in clades that survive 500 myr, with parameters 𝜆 = 0.51 per species per myr,
𝜇 = 0.5 per species per myr, 𝜃 = 0.01/myr ,𝑠 = 1, and an initial log‑tempo 𝑥 = 0. Note the log scale on the y‑axis. The distribution is long‑tailed
and is characterized by a high probability of few species (𝑃(𝑛 < 1000) ≃ 1/3) and a long tail allowing some very large clades to be generated
(𝑃(𝑛 > 50 000) ≃ 1/4). The blue and red lines indicate the mean clade size (c. 60 000) and the mean experienced clade size of a randomly chosen
taxon (c. 400 000) respectively, indicating that most taxa are found in very large clades. The dashed line shows the geometric distribution with
the same mean expected under a standard BDP. B) The probability distribution for the proportion of diversity contained within one randomly
chosen sister group of a crown group, indicating that clades are typically highly imbalanced, with one sister group being much larger than the
other. The dashed line shows the uniform distribution expected under a standard BDP.
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FIGURE 2. Diversification through time as a function of starting tempo. A) The expected number of species through time for 𝑥0 = −2 a
clade starting 500 Ma with different initial log‑tempos: 𝑥0 = −2 (blue line); 𝑥0 = 0 (black line); 𝑥0 = 2 (red line). These expectations include
clades that are extinct. Clades with a higher starting tempo initially diversify more quickly (on average); eventually diversification stabilizes to
a fixed rate independent of the starting tempo. B) Expected diversification profiles for clades that survive to the present day. Solid lines indicate
the expected number of species through time; dashed lines indicate the expected number of lineages—species with surviving descendants.
Surviving clades of all starting tempos experience the Push of the Past, mirrored by the Pull of the Present in the lineages (Nee et al., 1994a).
This effect is especially pronounced in the clades starting with the highest tempo.

close to zero and one, indicating that one sister‑group or
the other typically contains the large majority of species
in the clade as a whole. For example, there is a c. 50%
chance that the larger sister group is at least 20 times
larger than the other. This can be compared with the
equivalent result under a standard BDP, in which the
proportion of diversity contained in one sister‑group is
uniformly distributed between zero and one indicated
by the dashed line), and thus, the probability of such
an imbalance is only 10%. This implies that diversity
among clades of the same age tends to follow the Sin‑
gle Big Jump principle (Vezzani et al., 2019), whereby
sums of heavy‑tailed random variables are dominated
by their largest component.

Diversification Through Time
The above analysis reveals the expected pattern of

diversity in clades of a fixed age (500 myr) which all
start from a common ancestor with a typical tempo
(𝑥 = 0). How does this pattern change through time,
and between clades with different initial tempos? To ex‑
plore these questions, we focused on how the expected
clade size varies through time for different initial val‑
ues of 𝑥. We numerically solved equation 4 to obtain
the expected clade size as a function of time values
0 < 𝑡 < 500 myr, and for different initial values of
𝑥0 ∈ {−2, 0, 2}. In Figure 2A, we show how the mean
clade size varies through time for different initial tem‑
pos including clades that have gone extinct before the
time in question. In Figure 2B, we show the variation
in the mean number of species through time condi‑
tioned on knowing that the clade survives to the present

day (solid lines), and also the expected number of lin‑
eages (dashed lines) through time—these are species that
have at least one descendant in the present day, and
form the “reconstructed process” that can (in principle)
be inferred from modern molecular data. Clades that
survive to the present experience the “Push of the Past”
(Budd and Mann, 2018), an initial period of increased
diversification when the clade is small.

These results show that the initial tempo has a sub‑
stantial impact on how the clade diversifies and its
eventual expected size. As we would intuitively ex‑
pect, clades with high tempos initially diversify more
quickly, and conversely, those with low tempos diver‑
sify slowly. However, after some period of time, the
rate of diversification becomes stable; initially, high‑
tempo clades slow down and initially low‑tempo clades
speed up, such that all clades eventually diversify at the
same fixed rate, as seen in emergence of parallel lines of
growth from all 3 initial conditions.

The tempo of the root node of a clade therefore has
transient effects that eventually decay as new species
emerge whose own tempos diffuse away from the initial
state. The duration of these transient effects is longer in
clades that start with low tempos, since all processes in‑
cluding those that control the diffusion of tempos over
time run slower. Although the effect of initial tempo is
transient, it leaves an important signature in the even‑
tual size of clades over the long term: because initially
high tempo clades diversify more quickly in their early
history, they reach a larger size before reverting to a
constant diversification rate, meaning that they have a
much greater expected diversity in the present. This in‑
tuitively suggests that the largest clades of a given age

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaf020/8125207 by guest on 18 August 2025



2025 BUDD AND MANN ‑ EVOLUTIONARY TEMPO, SUPERTAXA, AND LIVING FOSSILS 7

FIGURE 3. A) The evolution of the distribution of log‑tempos through time for clades starting from different initial log‑tempos: 𝑥0 = −2 (blue
line); 𝑥0 = 0 (black line); 𝑥0 = 2 (red line). Lines indicate the expected log‑tempo of a randomly chosen species, and shaded areas represent the
standard deviation. Regardless of starting tempo, clades converge to the same equilibrium distribution of log‑tempos. This convergence is fast
in clades that start with high tempos. B) Evolution of the log‑tempo distribution for clades with different values of the diversification param‑
eter 𝑟, with a fixed value of 𝜃 = 0.01/myr. Starting from the same tempo (𝑥0 = 0), clades reach different equilibrium log‑tempo distributions
depending on the value of 𝑟; higher values of 𝑟 produce higher average tempos.

in the present are likely to be those that originated from
a high‑tempo common ancestor.

Distribution of Tempos Over Time
As a clade diversifies, the various taxa will develop

different tempos as they diverge independently from
the initial starting tempo, leading to a time‑dependent
distribution of log‑tempos 𝑝(𝑡, 𝑥). In Appendix 1, we
show that the evolution of this distribution obeys a
replicator‑mutation equation

𝜕𝑝
𝜕𝑡 = 𝑟𝑝 (𝑒𝑥 − ⟨𝑒𝑥⟩) + 𝜃 𝜕𝑥𝑒𝑥𝑝

𝜕𝑥 + 𝑠2𝜃 𝜕2𝑒𝑥𝑝
𝜕𝑥2 , (5)

where the term ⟨𝑒𝑥⟩ = ∫∞
−∞ 𝑒𝑥𝑝(𝑡, 𝑥)𝑑𝑥 indicates the

average value of 𝑒𝑥 at a given time.
We numerically integrated this equation through

times 0 < 𝑡 < 500 myr for 3 initial starting log‑tempos:
𝑥0 ∈ {−2, 0, 2} specified by initial conditions of the
form 𝑝(𝑡 = 0, 𝑥) = 𝛿(𝑥 − 𝑥0), where 𝛿(⋅) is the Dirac
delta function (Shutovskyi, 2023). The resulting evolu‑
tion of the log‑tempo probability distributions is shown
in Figure 3. These results show that regardless of the
starting tempo of the process, our model converges over
time to the same stable distribution of log‑tempos that is
approximately normally distributed. Using the core set
of model parameters described earlier gives a mean log‑
tempo of zero. When the process is initiated with a high
tempo (𝑥 = 2), the convergence to this stable distribu‑
tion is very rapid (red line). This is because the initially
high tempo forces all processes to run fast, so time is
effectively compressed. Conversely when the process is
initiated with a slow tempo 𝑥 = −2, the convergence
is much slower, potentially taking hundreds of millions

of years. In practical terms, this predicts the existence
of long‑lived substructures of the evolutionary tree in
which evolution is effectively “running slow.” If other
evolutionary processes such as molecular and morpho‑
logical change are also covariant to the tempo, this
would imply the existence of lineages with low diver‑
sity and minimal morphological or molecular change
over very long periods of time. Since such small clades
are common (Figure 1A), we expect that these “living
fossils” will be ubiquitous, and in particular, that they
will often be the sister group to the few large clades that
dominate total diversity.

Varying the parameters of our model produces
changes in the stable distribution of tempos. In partic‑
ular, the mean of this distribution increases with larger
𝑟 and decreases with larger 𝜃 (Figure 3B); in the limiting
case where 𝑟 = 0, the mean log‑tempo can be shown to
converge to −1 in closed form (see Appendix 1, equation
A26). The dynamics of diversification tend to elevate
the mean tempo, since higher tempo lineages produce
more descendants on average per unit time, which in‑
herit the same high tempo from their parent nodes. An
interesting corollary to this point is that without any
sort of mean reversion process, tempos (and thus diver‑
sification rates) would simply tend to rapidly increase
without limit. As this is not observed empirically, the
suggestion must be that something tends to draw log‑
tempos towards a characteristic mean value (c.f., Aris‑
Brosou and Yang (2003); Lepage et al. (2006); Maliet et al.
(2019)). In Appendix 1, we show that such a mean rever‑
sion can arise without implying any necessary ecolog‑
ical mechanism: if tempo is encoded genetically, then
intermediate tempos are consistent with a greater num‑
ber of possible genetic configurations, such that random
mutations tend to cause a drift toward these values.
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Patterns of Historical Tempo
So far, we have considered what happens to various

features of the evolutionary process as it is run forward
from a particular initial condition. However, evolution‑
ary analysis can be considered to be retrospective as
well: one attempts to identify and explain patterns of
evolution looking back in time from a vantage point in
the present. As discussed by Budd and Mann (2018),
this perspective necessarily distorts the patterns we are
likely to observe, especially if one also chooses to ana‑
lyze clades that have unusual modern‑day properties.
Such choices are commonplace: the most studied clades
are often unusually diverse relative to clades of simi‑
lar age; since most species are contained in these large
clades, they are often taken to be particularly represen‑
tative of a particular epoch, despite in fact being a highly
unrepresentative sample of clades in general.

To investigate the role that contingencies of clade se‑
lection have on the observed patterns of evolution, we
considered 2 questions. First, if one randomly selects a
species in the present and traces its lineage back in time,
what expectations should we have about the evolution‑
ary tempo of those ancestors? Second, what expecta‑
tions should we have about the average tempo of earlier
members of that clade overall? These are different ques‑
tions since most historical taxa, even those with modern
descendants (the lineages) will contribute little to mod‑
ern diversity, owing to the Single Big Jump Principle
(Vezzani et al., 2019) identified earlier (c.f., Figure 1B).
That is, the ancestors of most modern taxa constitute a
very small subset of historical diversity.

First, we consider how likely it is that a species alive
today at time 𝑇 originated from an ancestor at time 𝑡
with log‑tempo 𝑥. Since we assumed that the clade orig‑
inates with an ancestor drawn from the equilibrium dis‑
tribution 𝑝(𝑥), the prior probability that a species alive at
time 𝑡 has log‑tempo 𝑥 remains 𝑝(𝑥) by definition of the
equilibrium. We can determine a posterior estimate for
the ancestor’s log‑tempo by application of Bayes’ rule

𝑝(𝑥 ∣ ancestor of random modern taxon)

= 𝑝(ancestor of random modern taxon ∣ 𝑥)𝑝(𝑥)
𝑝(ancestor of random modern taxon) .

(6)

The likelihood term in this equation, 𝑝(ancestor of
random modern taxon ∣ 𝑥) is proportional to the ex‑
pected number of modern species that an ancestor at
time 𝑡 will generate, 𝑁𝑥(𝑇−). This means we can rewrite
the above as

𝑝(𝑥 ∣ ancestor of random modern taxon)

= 𝑝(𝑥)𝑁𝑥(𝑇 − 𝑡)
∫∞

−∞ 𝑝(𝑥′)𝑁𝑥′(𝑇 − 𝑡)𝑑𝑥′
. (7)

The equation above estimates the log‑tempo of a di‑
rect ancestor of a modern taxon. We can also ask what
the tempo of a randomly chosen member of the clade in

the past is. To estimate this, we consider the probabil‑
ity of generating 𝑛𝑇 species at time 𝑇 from any starting
log‑tempo (based on solution of the generating function
𝐺𝑥) and the probability that a randomly chosen species
at time 𝑡 has log‑tempo 𝑥𝑡 if the process starts at 𝑥0, 𝑝(𝑥𝑡 ∣
𝑥0). From these probabilities, we can infer the probabil‑
ity of a historical log‑tempo 𝑥𝑡 conditioned on the cur‑
rent diversity 𝑛𝑇 , using Bayes’ rule and marginalizing
over the unknown starting log‑tempo 𝑥0

𝑝(𝑥𝑡 ∣ 𝑛𝑇) = ∫
∞

−∞
𝑝(𝑥𝑡 ∣ 𝑥0, 𝑛𝑇)𝑝(𝑥0|𝑛𝑇)𝑑𝑥0

=
∫∞

−∞ 𝑝(𝑥𝑡 ∣ 𝑥0)𝑃(𝑛𝑇 ∣ 𝑥0, 𝑥𝑡)𝑝(𝑥0)𝑑𝑥0
𝑃(𝑛𝑇)

≃
∫∞

−∞ 𝑝(𝑥𝑡 ∣ 𝑥0)𝑃(𝑛𝑇 ∣ 𝑥0)𝑝(𝑥0)𝑑𝑥0
𝑃(𝑛𝑇) , (8)

where the final approximation assumes that 𝑃(𝑛𝑇 ∣
𝑥0, 𝑥𝑡) ≃ 𝑃(𝑛𝑇 ∣ 𝑥0). In general, this approximation will
be reasonable, because of the earlier result that modern
diversity arises from a small subset of historical taxa.
If the historical number of species at time 𝑡 is high, a
randomly chosen taxon is unlikely to contribute signif‑
icantly to modern diversity and we can therefore treat
𝑛𝑇 as being independent of this species and its tempo.
Because of the Push of the Past (Budd and Mann, 2018),
surviving clades will rapidly reach this state, and in the
special case where 𝑡 = 0 (i.e., the origin of the clade), the
approximation holds exactly.

Figure 4 illustrates our expectations about the histor‑
ical patterns of tempo. Figure 4A shows the distribu‑
tion of log‑tempos for ancestors of a randomly chosen
modern taxon, conditioned on our standard set of pa‑
rameters (𝜆 = 0.51 per species per myr, 𝜇 = 0.5 per
species per myr, 𝜃 = 0.01/myr, 𝑠 = 1). In the present,
these are centered around 𝑥 = 0, which is the stable
overall distribution of log‑tempos shown in Figure 3A.
As we look backward in time the expected log‑tempo of
the ancestor rises sharply, before plateauing at 𝑥 ≃ 0.6
at c. 100 Ma. While the uncertainty represented by the
standard deviation in gray permits a wide variety of
ancestral tempos, beyond 100 Ma, these ancestors will
have elevated tempos with very high probability. Con‑
versely, the tempo of the clade as a whole tends to peak
at its origin, as shown in Figure 4B. This illustrates the
overall expected log‑tempo of historical species within a
clade inhabited by a typical modern taxon (i.e., one with
a diversity equal to the mean experienced clade size).
That is, the clades that contain most modern taxa are
defined by a high early rate of evolution, which then un‑
dergoes a consistent secular decline to the present, while
the direct ancestors of most modern taxa have uniformly
elevated rates of evolution across the history of the clade
until close to the present. A consequence of this result is
that most modern taxa share relatively recent common
ancestors (c. 100–150 Ma), as they overwhelmingly tend
to originate via a small subset of lineages that maintain
high tempos until this point. This is despite the most
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2025 BUDD AND MANN ‑ EVOLUTIONARY TEMPO, SUPERTAXA, AND LIVING FOSSILS 9

FIGURE 4. Expected patterns of historical tempo evolution. Lines indicate the expected log‑tempo and shaded areas represent the standard
deviation. A) The expected historical log‑tempo of ancestors of a randomly chosen modern taxon, following its lineage back to the origin of
the clade. Throughout this lineage, expected log‑tempos are elevated relative to the present day, declining rapidly shortly before the present.
B) Expected historical log‑tempo of species in the clade as a whole. This is shown for a clade of the mean experienced clade size (the typical
clade size of a randomly chosen modern species). Expected tempos are highest at the origin of the clade and decline through time as the clade
diversifies. In both panels, the distribution of tempos at time = 0 Ma represents the equilibrium distribution derived as the stable solution to
equation A24.

recent common ancestor of all species being close to the
origin of the clade (in other words; the crown group
is expected to emerge soon after the total group—for
analysis see, e.g., Budd and Mann (2018)).

Effect of Tempo Variation on Branch Lengths and Duration
We have now considered the effect of tempo variation

on the dynamics of the BDP, and by extension on di‑
versification. We motivated our approach by noting that
rates of molecular evolution are commonly assumed to
vary in modern relaxed molecular clock analyses, and
now, we turn our attention to the interaction of molec‑
ular evolution and diversification. Specifically, we con‑
sider the expected duration (in real time, equivalent to
branch height) and amount of molecular change along
branches (= branch length) with differing initial log‑
tempo values. In our model, tempo can vary within a
branch, so the duration of branches is not necessarily
exponentially distributed, in contrast to standard BDP
models. Instead, the probability that a branch termi‑
nates (either by speciation or extinction) in a small in‑
terval of time Δ𝑡 depends on its current log‑tempo and
is given by 𝑒𝑥(𝜆 + 𝜇)Δ𝑡.

As shown in Appendix 1, this implies that the prob‑
ability density 𝑓𝑥(𝑡) that a branch originating with log‑
tempo 𝑥 terminates at time 𝑡 obeys a partial differential
equation of the form

𝜕𝑓𝑥
𝜕𝑡 = 𝑒𝑥 (−(𝜆 + 𝜇)𝑓𝑥 − 𝜃𝑥𝜕𝑓𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝑓𝑥
𝜕𝑥2 ) , (9)

with initial condition 𝑓𝑥(𝑡 = 0) = −𝑒𝑥(𝜆 + 𝜇). Figure 5A
shows the solution to this equation for 3 different

values of 𝑥 ∈ {−2, 0, 2}, illustrating the intuitive result
that branches with lower initial tempos tend to have
a greater duration—that is they exist for a longer time
before either speciating or going extinct.

How does this effect of the initial tempo translate
into the amount of molecular change that occurs within
a branch? This is an important question, because the
relationship between branch duration and molecular
change is fundamental to the practice of molecular dat‑
ing and potentially more broadly to the inference of
phylogenetic relationships based on the molecular ge‑
netic data from modern taxa because of the problems
caused by long branch attraction (Shafir et al., 2020;
Kapli et al., 2021).

If we assume that rates of molecular change covary
with tempo alongside all other rates, then the amount
of molecular change Δ𝑤 that occurs in some small unit
of time Δ𝑡 is given by

Δ𝑤 = 𝑒𝑥Δ𝑡 ⇒ 𝑑𝑤
𝑑𝑡 = 𝑒𝑥. (10)

Applying a change of variables to express Equation 9
in terms of the molecular change 𝑤 gives an equation
obeyed by the probability density of molecular change
𝑓𝑥(𝑤) in a branch that starts with log‑tempo 𝑥

𝜕𝑓𝑥
𝜕𝑤 = (−(𝜆 + 𝜇)𝑓𝑥 − 𝜃𝑥𝜕𝑓𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝑓𝑥
𝜕𝑥2 ) , (11)

with initial condition 𝑓𝑥(𝑤 = 0) = 𝜆 + 𝜇. Noticing
that the partial derivatives in this equation will remain
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FIGURE 5. The distribution of branch durations A) and amounts of molecular change along branches B) for branches starting with different
log‑tempos: 𝑥0 = −2 (blue); 𝑥0 = 0 (black); 𝑥0 = 2 (red), assuming that molecular evolution is covariant with tempo. Branches that start with
lower tempos are much longer on average in real time than those with high tempos. However, the expected amount of molecular change is
independent of the starting tempo. 1 myrs‑equivalent is the expected molecular change in 1 myrs at a fixed tempo of 𝜏 = 1.

zero for all values of 𝑤, this simplifies to a standard
exponential distribution

𝑓𝑥(𝑤) = (𝜆 + 𝜇)𝑒−(𝜆+𝜇)𝑤. (12)

That is, the amount of molecular change contained in a
branch is independent of the value of the tempo. This is
illustrated in Figure 5B.

The key result then is that branches that start at higher
tempos are typically shorter, but contain just as much
molecular change, as longer branches that originate
from lower tempos. This implies that a clade that starts
with a high tempo is likely to be characterized in its early
stages by short‑duration branches that nonetheless con‑
tain just as much molecular change as later branches
that are longer in duration. Since we have shown above
that early high tempos are expected especially in clades
that are particularly large, we can expect this pattern
to be commonly observed. As a corollary, if we further
assume that morphological change also covaries with
tempo (c.f., Omland (1997); Lee et al. (2013)), then the
same pattern of rapid change along short early branches
would be observed morphologically by an analogous
argument.

DISCUSSION
We have described the CET model of macroevolution

that allows the rates of speciation, extinction, and molec‑
ular/morphological evolution to coevolve through a
variable evolutionary tempo parameter. This model
provides a resolution to several outstanding difficulties
in reconciling classical birth death models with empiri‑
cal data. Allowing for tempo variation produces much
greater variation in clade sizes over a given time hori‑
zon than under homogeneous models, consistent with
the fact that modern diversity is dominated by a rela‑
tively small number of very large clades across different

taxonomic levels. An underappreciated consequence of
this distribution is that if we wish to understand how
modern patterns of diversity arose, it is important to
study the characteristic behavior of such large clades,
which, as we have shown here, differs markedly from
that of clades as a whole. In other words, large and
arguably charismatic clades such as arthropods, birds,
and angiosperms that are the subject of understandable
interest have quite different patterns of evolution than
what an “average” clade might be inferred to have.

Our anaylsis predicts that these clades containing the
bulk of modern diversity are likely to result from very
high early evolutionary tempos, leading to short early
branches (measured in real time). Because we conjecture
that evolutionary tempo affects all rates in a covariant
fashion, these short early branches are nonetheless ex‑
pected to contain as much molecular and morphologi‑
cal change as later, longer branches, because the rates
of molecular and morphological change are elevated in
direct proportion to speciation and extinction.

This offers an explanation for the observation of, for
example, such elevated rates coupled in short early
branches found in molecular studies that take the fossil
record as a reliable guide to the age of the clade (e.g., Lee
et al. (2013)). In that example, early rates seem to be ∼10
times higher than later ones, which would give a log(𝑥)
value of 2.3, in a clade that is at least 20 times larger
than average. Our initial value of log(𝑥) of c. 0.7 for a
clade c. 8 times larger than average in Figure 4B seems
to be broadly compatible with this. We note that such
studies tend to indicate a much older origin of the clade
when the firm calibration based on the fossil record is
removed; this emerges because of the use of a model
that assumes a homogeneous BDP as the underlying
description of diversification (Budd and Mann, 2024),
and because of a questionable assumption that the pro‑
cesses of diversification and molecular evolution are in‑
dependent. Modern molecular clock analyses typically
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employ a “relaxed‑clock” methodology that permits
substantial changes in the rate of molecular evolution
across time and between lineages, but these rates are de‑
coupled from the rates of speciation, extinction, and lin‑
eage creation (e.g., Aris‑Brosou and Yang (2003)). Such
a rigorous decoupling between evolutionary processes
seems intuitively unrealistic, and indeed, elevated rates
of molecular evolution have been posited as a cause of
radiations (Lancaster, 2010), while in the fossil record,
morphological change is (necessarily) the key signature
of diversification. As such, we argue that recognizing
the likely covariance between these rates is key to un‑
derstanding apparent discrepancies between molecular
signatures of diversification and the fossil record. Nev‑
ertheless, our model does not rely on any particular
causal relationship between molecular change and di‑
versification, and indeed, these variables may be linked
by underlying factors such as body size (Berv and Field,
2018).

A covariant process that extends to rates of molecu‑
lar evolution will produce similar amounts of molec‑
ular change on all branches of the tree, regardless of
their duration in time. This suggests that from a molec‑
ular standpoint, there will be little or no difference be‑
tween an older tree whose branch rates exhibit no sec‑
ular trend, and a younger tree that experiences rapid
early evolution and diversification followed by a slow‑
down (or indeed an even older tree that experienced
very slow early evolution, although these will typically
represent only a small proportion of modern diver‑
sity). As such, molecular data from modern taxa are
unlikely to be able to discern which of these scenarios
led to the molecular and species diversity we observe
today. Precise and reliable fossil calibrations, in combi‑
nation with molecular data, can potentially reveal the
typical distribution of rates within the time scope of
those calibrations. However, extrapolation of younger
rates into deeper time is problematic, as we have shown
that these are likely to be higher in the past, beyond
the deepest precise calibrations (c.f., Budd and Mann
(2020b)). This imposes a currently insurmountable bar‑
rier to the use of the molecular clock for providing reli‑
able clade age estimates, unless one can argue that rates
of speciation and extinction are substantially decoupled
from the process of molecular change. As noted ear‑
lier, making such an argument would preclude many
putative explanations for observed rapid radiations, as
well as being counter‑intuitive. Although we have an‑
alyzed a model in which there is a perfect correlation
between all evolutionary rates, in practice, we expect
that any significant coupling will severely hamper the
use of current clock methodologies. We suggest there‑
fore that the use of molecular clocks for making extrap‑
olative deep‑time age estimates is fundamentally unre‑
liable (interpolations within a tree, between nodes of
known age are likely to be more constrained, but here,
we expect that molecular data will add little to dates
derived directly from fossils (e.g., Brown and Smith
(2018)).

As well as revealing the broad outlines of the dy‑
namics of a varying tempo model of evolution, our
analysis of this model also provides several empirical
predictions:

1. Analysis of clades which are known to originate
at similar times will show that the large majority
of modern diversity is contained in a small sub‑
set of these clades. Most concretely, we anticipate
that in pairs of sister groups, one group is likely
to greatly dominate the diversity of the total (c.f.,
Aldous (2001)).

2. The smaller sister group in a clade will be that
which also experiences lower aggregate molecu‑
lar and morphological change over its history. As
such, the species in this group will tend to retain
more plesiomorphic features relative to those in
the larger sister group. Potential examples of such
a phenomenon include the onychophorans rela‑
tive to arthropods, cyclostomes relative to gnathos‑
tomes (Yu et al., 2024), or priapulids relative to
other ecdysozoans (e.g., Webster et al. (2006)). This
prediction gives some succour to the popular no‑
tion of “living fossil” that are slow‑evolving, have
few species, and which to some extent resemble
ancestral taxa (c.f., Crisp and Cook (2005) for the
traditional view that “basal,” species‑poor groups
should not be regarded as ancestral or “primitive”;
and Jenner (2022) for a more general discussion of
the issue).

3. The direct ancestors of most modern species will
show elevated rates of evolution (diversification,
molecular, and morphological) throughout their
history. Those lineages that gave rise to a major‑
ity of modern species will therefore show consis‑
tent rates of molecular evolution until close to the
present, when they fall. However, if one analyses
all historical taxa in a large clade (which is where
most modern taxa reside), we expect to see very
high rates of molecular change concentrated at the
origin of the clade, declining consistently to the
present. Nevertheless, both of these expected pat‑
terns take place within a wider context in which
rates of evolution remain consistent overall—that
is, measured over all species in all clades at a given
time.

4. If we further assume that rates of evolution are as‑
sociated with body size and generation time (e.g.,
high rates being linked to small bodies and short
generation times), we expect that a randomly cho‑
sen modern species will have experienced an in‑
crease in body size and generation time in the re‑
cent past, having probably originated from ances‑
tors with smaller body size and shorter generation
time (c.f., Berv and Field (2018)).

Each of these predictions already enjoys some degree of
empirical support in the existing literature, as indicated
above. However, further research is needed to test each
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systematically to the extent that these predictions could
be judged to be successful or falsified.

In conclusion, our analysis suggests that a strong cor‑
relation between rates of molecular evolution and di‑
versification would explain several empirical features
of the natural world, unify two key areas of statistical
modeling within a common framework, and point to‑
ward necessary developments in phylogenetic inference
and molecular dating in which this link is made explicit,
such as an extension of the CET model to permit di‑
rect inference of actual historical rates from molecular
data.
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APPENDIX ₁

We will make extensive use of probability generating
functions. A quick review of their important properties

follows. A probability generating function, 𝐺(𝑧) for the
random variable 𝑋 is defined as:

𝐺(𝑧) = ∑
𝑘

𝑃(𝑋 = 𝑘)𝑧𝑘 (A.1)

The probability generating function has several im‑
portant properties that will be useful in the subsequent
exposition. In particular:

1. Normalisation: 𝐺(𝑧 = 1) = ∑𝑘 𝑃(𝑋 = 𝑘) = 1 (in
cases where 𝑃(𝑋 = 𝑘) represents a full probability
distribution)

2. Extinction probability: 𝐺(𝑧 = 0) = 𝑃(𝑋 = 0)
3. Expectation: 𝔼(𝑋) = ∑𝑘 𝑘𝑃(𝑋 = 𝑘) = 𝜕𝐺

𝜕𝑧 |𝑧=1
4. Sum of random variables: If 𝑊 = 𝑋 + 𝑌, then

𝐺𝑊(𝑧) = 𝐺𝑋(𝑧)𝐺𝑌(𝑧)
5. Retrieval of probabilities: 𝑃(𝑋 = 𝑘) = 1

𝑘!
𝑑𝑘𝐺(𝑧)

𝑑𝑧𝑘 ∣
𝑧=0

In respect of point (5) above, the values of 𝑃(𝑋 = 𝑘) can
be retrieved efficiently by Fourier inversion:

𝑃(𝑋 = 𝑘) = 1
𝑘!

𝑑𝑘𝐺(𝑧)
𝑑𝑧𝑘 ∣

𝑧=0

= 1
2 ∫

𝜋

−𝜋
𝐺(exp(𝑖𝜃)) exp(−𝑖𝑘𝜃)𝑑𝜃 (A.2)

Where the integral expression makes use of the Cauchy
integral formula. This expression can be efficiently
solved numerically using Fast Fourier Transform meth‑
ods (Gleeson et al., 2014).

DERIVATION OF EQUATION SPECIFYING EVOLUTION OF THE
GENERATING FUNCTION

Define 𝐺𝑥(𝑡, 𝑧) = ∑𝑛 𝑃𝑛(𝑡, 𝑥)𝑧𝑛 as the generating
function for the number of species alive at time 𝑡 from
a process that starts at log‑tempo 𝑥 at time 𝑡 = 0. We
indicate the 𝑥 dependence by means of a subscript for
reasons of notational clarity in later analysis.

Assume that we know the generating function for
all 𝑥 at some time 𝑡. How will the generating function
change over a small increment of time Δ𝑡? Since the pro‑
cess is fundamentally homogeneous in time (i.e., there
are no ‘special’ times’), we can construct this by con‑
sidering a process that starts incrementally earlier than
the known generating function. Within this small in‑
terval of time the process will change log‑tempo incre‑
mentally according to an OU process, and furthermore
may either speciate (producing two new independent
processes with identical starting tempos) or go extinct.
Given a current tempo 𝑥, the probability of speciation
is 𝑒𝑥Δ𝑡𝜆, and that of extinction is 𝑒𝑥Δ𝑡𝜇. Based on these
possible events, the new generating function is given by
a mixture of generating functions at time 𝑡:

𝐺𝑥(𝑡 + Δ𝑡, 𝑧) = 𝐺𝑥(𝑡, 𝑧) + 𝑒𝑥Δ𝑡 ∫
∞

−∞
(𝜆𝐺𝑥′(𝑡, 𝑧)2 + 𝜇 − (𝜆 + 𝜇)𝐺𝑥′(𝑡, 𝑧)) 𝑝(𝑥′ ∣ 𝑥)𝑑𝑥′. (A.3)
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Here 𝑝(𝑥′ ∣ 𝑥) specifies the probability for the tempo
to transition from 𝑥 to 𝑥′ over the time interval Δ𝑡. We
take 𝑥 to evolve via an OU process, with autocorrelation
parameter 𝜃 and a stationary variance 𝑠2, experiencing
an effective time 𝑒𝑥Δ𝑡 within real time Δ𝑡. Given this
specification we have:

𝑥′ ∣ 𝑥 ∼ 𝒩(𝑥 − 𝜃𝑥𝑒𝑥Δ𝑡, 2𝑠2𝜃𝑒𝑥Δ𝑡) (A.4)

which yields: 𝔼[𝑥′ − 𝑥] = −𝜃𝑥𝑒𝑥Δ𝑡 and 𝔼[(𝑥′ − 𝑥)2] =
2𝜃𝑠2𝑒𝑥Δ𝑡 up to first order terms in Δ𝑡.

Taking a 2nd‑order Taylor expansion of 𝐺𝑥′(𝑡, 𝑧))
around 𝑥 and retaining first‑order terms in Δ𝑡 gives:

𝐺𝑥′ − 𝐺𝑥 ≃ 𝑒𝑥Δ𝑡 ((𝜆𝐺𝑥 − 𝜇)(𝐺𝑥 − 1))

+ 𝔼[𝑥′ − 𝑥]𝜕𝐺𝑥
𝜕𝑥 + 1

2𝔼[(𝑥′ − 𝑥)2]𝜕2𝐺𝑥
𝜕𝑥2 . (A.5)

Where we have dropped the explicit dependence of
𝐺𝑥 on arguments 𝑡 and 𝑧 for concision. Substituting the
above expressions for 𝔼[𝑥′ − 𝑥] and 𝔼[(𝑥′ − 𝑥)2] and
taking the limit as Δ𝑡 → 0 gives the fundamental PDE of
diversity evolution as given in equation 2.

𝜕𝐺𝑥
𝜕𝑡 = 𝑒𝑥 ((𝜆𝐺𝑥 − 𝜇)(𝐺𝑥 − 1) − 𝜃𝑥𝜕𝐺𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝐺𝑥
𝜕𝑥2 )

(A.6)

INITIAL AND BOUNDARY CONDITIONS
The most obvious question one can ask of this equa‑

tion is: what is the probability that a process starting
at log‑tempo 𝑥 will generate 𝑛 species over time 𝑡? To
answer this question we must solve equation 2 for dif‑
ferent values of 𝑧, and use the Fourier inversion formula
to retrieve the probability distribution 𝑃𝑛(𝑥, 𝑡). Solving
equation 2 requires both initial and boundary condi‑
tions. For the question posed above the appropriate ini‑
tial condition is given by 𝐺(𝑡 = 0, 𝑥, 𝑧) = 𝑧∀𝑥, since a
process that does not evolve for any time must have one
species. Choosing appropriate boundary conditions is
more difficult; since we must solve equation 2 numeri‑
cally we take ’no flow’ boundary conditions (𝜕𝐺

𝜕𝑥 = 0) at
some finite bounds 𝑥min and 𝑥max (we will usually use
−10 < 𝑥 < 10).

We can also ask how many species of log‑tempo 𝑦 will
be produced at time 𝑡 by a process that starts with log‑
tempo 𝑥 at time 𝑡 = 0. Define the generating function of
this distribution by 𝐺𝑦

𝑥(𝑡, 𝑥, 𝑧). Some consideration will
show that the time evolution of 𝐺𝑦

𝑥 obeys the same PDE
as that of 𝐺𝑥, but with a different initial condition. Since
a process that starts with log‑tempo 𝑥 cannot instanta‑
neously evolve to one of 𝑦 ≠ 𝑥, we use the initial condi‑
tion: 𝐺𝑦

𝑥(𝑡 = 0, 𝑥, 𝑧) = 𝛿(𝑥 − 𝑦)𝑧, where 𝛿(⋅) is the Dirac
delta function.

EVOLUTION OF THE MEAN DIVERSITY
The mean of a distribution is straightforwardly recov‑

ered from its generating function via the relationship
𝔼(𝑛) = ∑𝑛 𝑛𝑃𝑛 = 𝜕𝐺

𝜕𝑧 |𝑧=1. Applying this to the equa‑
tion derived above for the evolution of the generating
function gives the evolution of the mean diversity for a
process that starts with log‑tempo 𝑥. Defining 𝑁𝑥(𝑡) ≡
𝔼(𝑛 ∣ 𝑥, 𝑡) as the expected value of 𝑛 at time 𝑡 for a
process starting with log‑tempo 𝑥:

𝜕𝑁𝑥
𝜕𝑡 = 𝜕2𝐺𝑥

𝜕𝑡𝜕𝑧 ∣
𝑧=1

= 𝑒𝑥 (2𝜆𝐺𝑥|𝑧=1𝑁𝑥 − (𝜆 + 𝜇)𝑁𝑥 − 𝜃𝑥𝜕𝑁𝑥
𝜕𝑥 + 𝑠2𝜃 𝜕2𝑁𝑥

𝜕𝑥2 )

(A.7)

Since 𝐺|𝑧=1 = 1∀ 𝑥, 𝑡 by definition, we can simplify this
to the expression given in equation 4:

𝜕𝑁𝑥
𝜕𝑡 = 𝑒𝑥 (𝑟𝑁𝑥 − 𝜃𝑥𝜕𝑁𝑥

𝜕𝑥 + 𝑠2𝜃 𝜕2𝑁𝑥
𝜕𝑥2 ) (A.8)

where 𝑟 = 𝜆 − 𝜇.
By using initial conditions 𝑁𝑥(𝑡 = 0) = 1∀ 𝑥, solving

this equation gives the mean number of species gener‑
ated by a process starting at time 𝑡 = 0 and log‑tempo
𝑥. As with the discussion of initial conditions above, we
can also apply the same equation with different initial
conditions to consider how many species with specific
log‑tempo 𝑦 are generated by a process that starts at log‑
tempo 𝑥. Denoting the expected number of such species
of this type as 𝑁𝑦

𝑥(𝑡), in this case we use the initial con‑
dition 𝑁𝑦

𝑥(𝑡 = 0) = 𝛿(𝑥 − 𝑦), analogously to the case
of solving for the generating function. By definition, the
expected number of species in total will be the sum over
all final log‑tempos: 𝑁𝑥(𝑡) = ∫∞

−∞ 𝑁𝑦
𝑥(𝑡)𝑑𝑦. Furthermore,

we can ask what the expected number of species with
log‑tempo 𝑦 is at time 𝑡 if the starting log‑tempo is un‑
known but specified by a probability distribution 𝑝(𝑥).
In this case we have:

𝑁𝑦 = ∫
∞

−∞
𝑁𝑦

𝑥𝑝(𝑥)𝑑𝑥 (A.9)

and the expected total number of species (consider‑
ing all possible starting and current log‑tempos) can be
denoted simply as 𝑁(𝑡) and is given by:

𝑁 = ∫
∞

−∞
∫

∞

−∞
𝑁𝑦

𝑥𝑝(𝑥)𝑑𝑥𝑑𝑦 (A.10)

CONDITIONING ON SURVIVAL
Equation 4 describes the evolution of the mean num‑

ber of species through time, including all cases where
the process goes extinct before the current time. If we
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want to ask how many species will be alive at time 𝑡, as‑
suming that the process hasn’t gone extinct, we can do
so straightforwardly by excluding the extinct cases:

𝔼(𝑛𝑡 ∣ 𝑛𝑡 > 0) = 𝔼(𝑛𝑡)
𝑃(𝑛𝑡 > 0) = 𝑁𝑥(𝑡)

𝑆𝑥(𝑡) (A.11)

where 𝑆𝑥(𝑡) = 1−𝐺𝑥(𝑡, 𝑧 = 0) is the survival probability
for a process starting at log‑tempo 𝑥, determined from
solving equation 2 for 𝑧 = 0. However, we may also
want to know the expected number of species at some
time 𝑡, conditioned on knowing that the process will sur‑
vive to some future time 𝑇. In this case the conditioning
is more complex. We make use of the identity:

𝑃(𝑛𝑡) = 𝑃(𝑛𝑡, 𝑛𝑇 > 0) + 𝑃(𝑛𝑡, 𝑛𝑇 = 0), (A.12)

which leads to:

∑
𝑛𝑡

𝑛𝑡𝑃(𝑛𝑡 ∣ 𝑛𝑇 = 0) =
∑𝑛𝑡

𝑛𝑡𝑃(𝑛𝑡) − ∑𝑛𝑡
𝑛𝑡𝑃(𝑛𝑡, 𝑛𝑇 = 0)

𝑃(𝑛𝑇 > 0)

⇒ 𝔼(𝑛𝑡 ∣ 𝑛𝑇 > 0) = 𝑁𝑥(𝑡) − 𝐶𝑥(𝑡)
𝑆𝑥(𝑇) ,

(A.13)

where 𝐶𝑥(𝑡) is a correction term depending on 𝑥 and
𝑡 that we need to determine. Define a new generating
function 𝐻𝑥(𝑡, 𝑧) = ∑𝑛𝑡

𝑃(𝑛𝑡, 𝑛𝑇 = 0)𝑧𝑛𝑡 . Differentiat‑
ing 𝐻𝑥 with respect to 𝑧 and evaluating at 𝑧 = 1 gives
the required correction term in the equation above. As
with the generating function 𝐺, the evolution of 𝐻 is
governed by equation 2:

𝜕𝐻𝑥
𝜕𝑡 = 𝑒𝑥 ((𝜆𝐻𝑥 − 𝜇)(𝐻𝑥 − 1) − 𝜃𝑥𝜕𝐻𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝐻𝑥
𝜕𝑥2 )
(A.14)

Differentiating with respect to 𝑧 gives:

𝜕𝐶𝑥
𝜕𝑡 = 𝑒𝑥 ((𝜆(2𝐻𝑥|𝑧=1 − 1) − 𝜇)𝐶𝑥 − 𝑥𝜃 𝜕𝐶𝑥

𝜕𝑥 + 𝑠2𝜃 𝜕2𝐶𝑥
𝜕𝑥2 ) .

(A.15)
Unlike in the case for 𝐺𝑥, 𝐻𝑥|𝑧=1 varies as a function
of 𝑥 and 𝑡, and so solution of this equation for 𝐶𝑥 re‑
quires simultaneously solving this PDE and 2 with ini‑
tial conditions: 𝐻𝑥(𝑡, 𝑧) = 𝑧𝐺𝑥(𝑇 − 𝑡, 𝑧 = 0) and 𝐶𝑥(𝑡) =
𝐺𝑥(𝑇 − 𝑡, 𝑧 = 0).

LINEAGES
Lineages are species in the past that have descen‑

dants in the present. Since molecular studies are based
on extant species, any phylogeny reconstructed from
these must consist of lineages. The evolution of lineages
has thus been dubbed the ‘reconstructed process’ (Nee
et al., 1994b), since these constitute the phylogeny that
can, in principle, be reconstructed from molecular or
morphological analysis of modern taxa.

We are interested in the number of species alive at
time 𝑡 which will have descendants at some later time
𝑇. Recall 𝑁𝑦

𝑥(𝑡) is the expected number of species of log‑
tempo 𝑦 at time 𝑡 in a process that starts at log‑tempo
𝑥. The expected number of these that will have descen‑
dants at time 𝑇 is 𝑆𝑦(𝑇−𝑡) (the survival probability over
time 𝑇 − 𝑡 for a new process starting with log‑tempo 𝑦).
Thus the expected number of lineages of log‑tempo 𝑦 at
time 𝑡 is 𝑆𝑦(𝑇 −𝑡)𝑁𝑦

𝑥(𝑡). Summing over values of 𝑦 gives
the total expected number of lineages, 𝑀𝑥(𝑡) at time 𝑡
for a process starting with log‑tempo 𝑥, viewed from
the perspective of time 𝑇 (we leave this dependence on
the time of observation implicit in the notation, but note
that lineages are only defined from the perspective of a
specific point in time):

𝑀𝑥(𝑡) = ∫
∞

−∞
𝑆𝑦(𝑇 − 𝑡)𝑁𝑦

𝑥(𝑡, 𝑥)𝑑𝑦 (A.16)

This expectation includes the cases where the number
of lineages is zero, i.e where there are no species at time
𝑇. If we wish to condition on the process surviving to
the present we must remove these cases by dividing by
𝑃(𝑛𝑇 > 0) = 𝑆𝑥(𝑇)

𝑀𝑥(𝑡) ∣ [𝑁(𝑇, 𝑥) > 0] =
∫∞

−∞ 𝑆𝑦(𝑇 − 𝑡)𝑁𝑦(𝑡, 𝑥)𝑑𝑦
𝑆𝑥(𝑇)

(A.17)

EVOLUTION OF TEMPO DISTRIBUTION
Assuming that we start a process with log‑tempo 𝑥,

over time species generated by that process will diverge
in tempos. How does this distribution of tempos evolve?

Consider starting a process with log‑tempo 𝑥, and
then selecting a species at random at some time 𝑡. The
probability that this species has log‑tempo 𝑦 is given by:

𝑝(𝑦 ∣ 𝑥, 𝑡) = 𝑁𝑦
𝑥(𝑡)

∫∞
−∞ 𝑁𝑦′

𝑥 (𝑡)𝑑𝑦′
(A.18)

If the starting log‑tempo is unknown, but drawn from
a distribution 𝑝(𝑥), then we can marginalise the above
equation with respect to 𝑥 to find the later distribution
𝑝(𝑦 ∣ 𝑡):

𝑝(𝑦 ∣ 𝑡) =
∫∞

−∞ 𝑁𝑦
𝑥(𝑡, 𝑥)𝑝(𝑥)𝑑𝑥

∫∞
−∞ ∫∞

−∞ 𝑁𝑦′
𝑥 (𝑡)𝑝(𝑥)𝑑𝑥𝑑𝑦′

(A.19)

Taking the derivative with respect to time gives:

𝜕𝑝(𝑦 ∣ 𝑡)
𝜕𝑡 = 𝑝(𝑦 ∣ 𝑡) (𝑓 (𝑦) − ∫

∞

−∞
𝑝(𝑦′ ∣ 𝑡)𝑓 (𝑦′)𝑑𝑦′)

(A.20)
where 𝑓 (𝑦) = 1

𝑁𝑦
𝜕𝑁𝑦

𝜕𝑡 . That is, the distribution of
log‑tempos evolves according to a replicator equation,
where the ‘fitness’ of a log‑tempo 𝑦 is given by the
proportional increase in 𝑁𝑦 = ∫∞

−∞ 𝑁𝑦
𝑥𝑝(𝑥)𝑑𝑥.
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If we assume that at some point in time the distribu‑
tion of log‑tempos is given by 𝑝(𝑥), we can consider the
instantaneous evolution of 𝑁𝑦 from this time. Defining
the current time to be 𝑡 = 0, we have the initial condition:

𝑁𝑦
𝑥(𝑡 = 0) = 𝛿(𝑥 − 𝑦) (A.21)

From equation 4, this implies that:

𝜕𝑁𝑦
𝑥

𝜕𝑡 |𝑡=0 = 𝑒𝑥 (𝑟𝛿(𝑥 − 𝑦) − 𝑥𝜃 𝜕𝛿(𝑥 − 𝑦)
𝜕𝑥 + 𝑠2𝜃 𝜕2𝛿(𝑥 − 𝑦)

𝜕𝑥2 )
(A.22)

Applying standard rules for the operation of derivatives
of the Dirac delta function, we can marginalise the above
equation with respect to the initial distribution 𝑝(𝑥) to
give:

𝜕𝑁𝑦

𝜕𝑡 |𝑡=0 = ∫
∞

−∞

𝜕𝑁𝑦
𝑥

𝜕𝑡 𝑝(𝑥)𝑑𝑥

= 𝑟𝑒𝑦𝑝(𝑦) + 𝜃 𝜕𝑒𝑦𝑦𝑝(𝑦)
𝜕𝑦 + 𝑠2𝜃 𝜕2𝑒𝑦𝑝(𝑦)

𝜕𝑦2 (A.23)

Substituting this into equation A.20, and noting that
again that 𝑁𝑦 = ∫∞

−∞ 𝑁𝑦
𝑥𝑝(𝑥)𝑑𝑥, we get:

𝜕𝑝(𝑦)
𝜕𝑡 = 𝑟𝑝(𝑦) (𝑒𝑦 − ⟨𝑒𝑦⟩) + 𝜃 𝜕𝑒𝑦𝑦𝑝(𝑦)

𝜕𝑦 + 𝑠2𝜃 𝜕2𝑒𝑦𝑝(𝑦)
𝜕𝑦2

(A.24)
Where ⟨𝑒𝑦⟩ = − ∫∞

−∞ 𝑒𝑦′𝑝(𝑦′)𝑑𝑦′ is the mean value of 𝑒𝑦.
This then provides a replicator‑mutation equation for

the evolution of the tempo distribution, with the ‘fitness’
of log‑tempo 𝑦 being 𝑟𝑒𝑦. In particular, it specifies that
the stable long term distribution of log‑tempos is given
by the solution to:

𝑟𝑝(𝑦) (𝑒𝑦 − ⟨𝑒𝑦⟩)+𝜃 𝜕𝑒𝑦𝑦𝑝(𝑦)
𝜕𝑦 +𝑠2𝜃 𝜕2𝑒𝑦𝑝(𝑦)

𝜕𝑦2 = 0 (A.25)

Notably, we can see that if 𝑟 = 0, we recover the stan‑
dard Fokker‑Planck representation for the stationary
OU process in the transformed distribution 𝑒𝑦𝑝(𝑦):

𝜕𝑒𝑦𝑦𝑝(𝑦)
𝜕𝑦 + 𝑠2 𝜕2𝑒𝑦𝑝(𝑦)

𝜕𝑦2 = 0 (A.26)

with the stationary solution 𝑝(𝑦) = exp(−𝑠/2)
√2𝜋𝑠2

𝑒−𝑦 exp (−𝑦2

2𝑠2 ),
implying a mean log‑tempo of ⟨𝑦⟩ = −1.

From the equilibrium equation we can also find an‑
other useful relationship on the mean value. Multiply‑
ing equation A.25 by 𝑦 and integrating gives:

∫
∞

−∞
𝑦 [𝑟𝑝(𝑦) (𝑒𝑦 − ⟨𝑒𝑦⟩) + 𝜃 𝜕𝑒𝑦𝑦𝑝(𝑦)

𝜕𝑦 + 𝑠2𝜃 𝜕2𝑒𝑦𝑝(𝑦)
𝜕𝑦2 ] 𝑑𝑦 = 0

(A.27)
Integrating the partial differential terms by parts

yields:

(𝑟 − 𝜃)⟨𝑦𝑒𝑦⟩ − ⟨𝑦⟩⟨𝑒𝑦⟩ = 0 (A.28)

from which we can see that if 𝑟 = 𝜃 then ⟨𝑦⟩ = 0, i.e.
the mean log‑tempo will converge to zero when the di‑
versification parameter is equal to the mean‑reversion
parameter.

BRANCH DURATION AND EXPECTED MOLECULAR CHANGE
Considering a branch that begins with log‑tempo 𝑥,

what is the expected time until that branch terminates,
either by speciation or extinction? For a branch to en‑
dure for time 𝑡 + Δ𝑡 it must first fail to terminate in time
Δ𝑡, and then survive for a further time 𝑡 with some new
log‑tempo 𝑥′. Integrating over the possible values of 𝑥′

we have:

1−𝐹𝑥(𝑡+Δ𝑡) = (1−𝑒𝑥(𝜆+𝜇)Δ𝑡) ∫
∞

−∞
(1−𝐹𝑥′(𝑡))𝑝(𝑥′|𝑥)𝑑𝑥′,

(A.29)
where 𝐹𝑥(𝑡) is the cumulative probability that the
branch originating with log‑tempo 𝑥 has terminated by
time 𝑡.

Taking a second‑order Taylor expansion of 𝐹𝑥′(𝑡)
around 𝑥′ = 𝑥 and retaining first order terms in Δ𝑡 we
have:

𝜕𝐹𝑥
𝜕𝑡 = 𝑒𝑥 ((𝜆 + 𝜇)(1 − 𝐹𝑥) − 𝜃𝑥𝜕𝐹𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝐹𝑥
𝜕𝑥2 )

(A.30)
The probability density for the branch to terminate at
time 𝑡 is given by differentiation of the cumulative dis‑
tribution: 𝑓𝑥(𝑡) = 𝜕𝐹𝑥

𝜕𝑡 . Applying this transformation to
the equation above yields:

𝜕𝑓𝑥
𝜕𝑡 = 𝑒𝑥 (−(𝜆 + 𝜇)𝑓𝑥 − 𝜃𝑥𝜕𝑓𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝑓𝑥
𝜕𝑥2 ) (A.31)

The probability density for a branch to terminate at time
𝑡 thus follows the same form of differential equation as
that for the mean number of species (equation 4), but
with −(𝜆+𝜇) taking the place of 𝑟. Solving this equation
requires the initial condition 𝐹𝑥(𝑡 = 0) = 0 ∀𝑥, which
implies 𝑓𝑥(𝑡 = 0) = 𝑒𝑥(𝜆 + 𝜇).

Assuming that molecular rates of change are co‑
variant to tempo (𝑒𝑥), for every increment of time Δ𝑡
the expected amount of molecular change Δ𝑤 (in arbi‑
trary units that we label as myrs‑equivalent; 1 myrs‑
equivalent being the expected molecular change in 1
myrs at a fixed tempo of 𝜏 = 1) is Δ𝑤 = 𝑒𝑥Δ𝑡. We can
transform the above equation for 𝐹𝑥(𝑡) (which is given
in terms of real time 𝑡) into one that applies over 𝑤 via a
change of variables, to give the cumulative probability
𝐹𝑥(𝑤) that a branch terminates before accumulating 𝑤
units of molecular change.

𝜕𝐹𝑥
𝜕𝑤 = ((𝜆 + 𝜇)(1 − 𝐹𝑥) − 𝜃𝑥𝜕𝐹𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝐹𝑥
𝜕𝑥2 ) , (A.32)
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and as above we obtain the probability density to termi‑
nate at 𝑤, 𝑓𝑥(𝑤), by differentiation: 𝑓𝑥(𝑤) = 𝜕𝐹

𝜕𝑤 :

𝜕𝑓𝑥
𝜕𝑤 = (−(𝜆 + 𝜇)𝑓𝑥 − 𝜃𝑥𝜕𝑓𝑥

𝜕𝑥 + 𝜃𝑠2 𝜕2𝑓𝑥
𝜕𝑥2 ) (A.33)

Here we have the initial condition 𝐹𝑥(𝑤 = 0) = 0 ∀𝑥,
which implies 𝑓𝑥(𝑤 = 0) = 𝜆 + 𝜇. Consideration of this
equation will show that the partial derivatives in 𝑥 are
initially zero and will remain zero for all values of 𝑤.
Thus we can simplify the equation to:

𝜕𝑓𝑥
𝜕𝑤 = −(𝜆 + 𝜇)𝑓𝑥. (A.34)

The solution to this equation is straightforward and
shows that 𝑤 follows an exponential distribution with
rate 𝜆 + 𝜇:

𝑓𝑥(𝑤) = (𝜆 + 𝜇) exp(−(𝜆 + 𝜇)𝑤) (A.35)
The notable feature of this density is that it does not
depend on the starting log‑tempo 𝑥, implying that the
amount of molecular change in a branch is independent
of tempo.

SCHEMATIC FOR GENETIC ENCODING OF TEMPO
Here we describe a simple model for how a genetic

encoding of tempo can lead to the modified OU pro‑
cess we take as the basis for tempo evolution. Consider a
binary string of 𝑛 bases represented as ’1’ or ’0’, and de‑
fine 𝜌 as the proportion of bases that are ‘active’ – that
is, encoded as ’1’. We assume that these bases mutate
independently and neutrally, and with a rate that is co‑
variant to the tempo 𝑒𝑥, such that the probability for each
base to mutate in a small interval of time Δ𝑡 is 𝑞𝑒𝑥Δ𝑡.

If the number of active bases at time 𝑡 is given by
𝑛𝜌𝑡, then in the interval of time Δ𝑡 the number of bases
that mutate from ’1’ to ’0’ is binomially distributed as
𝐵(𝑞𝑒𝑥Δ𝑡, 𝑛𝜌𝑡), and similarly the number mutating from
’0’ to ’1’ is binomially distributed as 𝐵(𝑞𝑒𝑥Δ𝑡, 𝑛(1 − 𝜌𝑡)).
If we take 𝑛 to be large and Δ𝑡 to be small these binomial
distributions can be approximated by normal distribu‑
tions, such that the number of mutations from ’1’ to ’0’ is
normally distributed with mean 𝑞𝑒𝑥Δ𝑡𝑛𝜌𝑡 and variance
𝑞𝑒𝑥Δ𝑡(1 − 𝑞𝑒𝑥Δ𝑡)𝑛𝜌𝑡, and the number of mutations from
’0’ to ’1’ is normally distributed with mean 𝑞𝑒𝑥Δ𝑡𝑛(1−𝜌𝑡)
and variance 𝑞𝑒𝑥Δ𝑡(1 − 𝑞𝑒𝑥Δ𝑡)𝑛(1 − 𝜌𝑡).

The change in the number of active bases is given by
the number mutating from ’0’ to ’1’, minus the number
mutating from ’1’ to ’0’. Given the results above, this
change is also normally distributed. Taking the limit as
Δ𝑡 becomes infinitesimal (denoted 𝑑𝑡) and retaining only
terms first order in 𝑑𝑡 we have:

𝑑𝜌 ∼ 𝒩(−𝑒𝑥𝑞(2𝜌 − 1)𝑑𝑡, 𝑞𝑒𝑥𝑑𝑡/𝑛) (A.36)
This is equivalent to the following form of stochastic
differential equation:

𝑑𝜌 = −𝑒𝑥𝑞(2𝜌 − 1)𝑑𝑡 + √𝑒𝑥(𝑞/𝑛)𝑑𝑊 (A.37)

where 𝑑𝑊 is an increment from a standard Wiener
process, with mean zero and variance 𝑑𝑡.

To specify a genetic encoding of the log‑tempo, let us
now define 𝑥 = 𝛼(2𝜌−1), where 𝛼 is some arbitrary con‑
stant of proportionality, such that when half of bases are
active this defines 𝑥 = 0. We can then rewrite the above
equation as:

𝑑𝑥 = −2𝑒𝑥𝑞𝑥𝑑𝑡 + √4𝛼2𝑒𝑥(𝑞/𝑛)𝑑𝑊 (A.38)

Defining new variables 𝜃 = 2𝑞 and 𝑠2 = 𝛼2/𝑛, we
have:

𝑑𝑥 = −𝑒𝑥𝜃𝑥𝑑𝑡 + √𝑒𝑥2𝜃𝑠2𝑑𝑊 (A.39)

which is precisely the modified OU process specified in
equation 1. By taking 𝛼 to be sufficiently large we can
extend the boundaries of minimum and maximum val‑
ues of 𝑥 such that arbitrarily high or low values of 𝑥
are possible within this model. We have assumed that
𝑛 is large, and this assumption means that boundary ef‑
fects around 𝜌 = 1 and 𝜌 = 0 can be safely ignored as
these states are highly unlikely to occur under a random
mutation process.

This then provides a schematic representation of how
tempo could be genetically encoded in a manner that
naturally leads to the modified OU process descrip‑
tion that we employ in this paper. The purpose of this
schematic is not to argue that this represents the actual
genetic encoding of tempo in any specific details, but
instead to illustrate how such an encoding would natu‑
rally give rise to the mean‑reversion properties of the
OU process, via the action of entropic forces. That is,
the log‑tempo tends to revert to the mean not due to
any ecological mechanism, but simply because there are
more possible encodings with 𝑥 ≃ 0 than those that
encode more extreme values of 𝑥. One way in which
tempo might influence rates in the way required by the
CET model would be if it was encoded by a multilo‑
cus set of genes that influence body size, as body size
appears to be associated with a syndrome of other fea‑
tures such as generation time and mutation rate (Martin,
2017). This encoding would satisfy the requirements of
the CET model, although we would stress again that we
have no formal commitment to it.
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