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Abstract

A relationship between the rate of molecular change and diversification has long been1

discussed, on both theoretical and empirical grounds. However, the effect on our2

understanding of evolutionary patterns is yet to be fully explored. Here we develop a new3

model, the Covariant Evolutionary Tempo (CET) model, with the aim of integrating4

patterns of diversification and molecular evolution within a framework of a continuously5

changing ‘tempo’ variable that acts as a master control for molecular, morphological and6

diversification rates. Importantly, tempo itself is treated as being variable at a rate7

proportional to its own value. This model predicts that diversity is dominated by a small8

number of extremely large clades at any historical epoch including the present; that these9

large clades are expected to be characterised by explosive early radiations accompanied by10

elevated rates of molecular evolution; and that extant organisms are likely to have evolved11

from species with unusually fast evolutionary rates. Under such a model, the amount of12

molecular change along a particular lineage is essentially independent of its height, which13

weakens the molecular clock hypothesis. Finally, our model explains the existence of ‘living14

fossil’ sister groups to large clades that are species poor and exhibit slow rates of15

morphological and molecular change. Our results demonstrate that the observed historical16

patterns of evolution can be modelled without invoking special evolutionary mechanisms or17

innovations that are unique to specific times or taxa, even when they are highly18
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non-uniform.19

Key words : Patterns of diversification, Molecular clocks, living fossils20

21

Introduction22

The relationship between micro- and macroevolution has long been debated23

(Rolland et al., 2023; Jablonski, 2000; Erwin, 2000). A central question is the extent to24

which large-scale evolutionary patterns—observed in the fossil record and inferred from25

phylogenies—are shaped by the processes operating at the population level. Regardless of26

the outcome of this debate, however, there is often a methodological assumption of27

independence between microevolutionary changes (e.g., shifts in gene frequencies due to28

selection) and macroevolutionary patterns (e.g., diversification trends within a clade).29

Contemporary models of evolutionary history conceptualise the overall process as being30

governed by three independent components: the model of molecular substitution, the rate31

at which substitutions occur, and the nature of the branching process (Warnock and32

Wright, 2021). The simplest approach would be to employ a strict molecular clock with a33

Jukes-Cantor substitution model (Jukes and Cantor, 1969) on a known phylogeny, and34

assuming a fixed rate of branching—often represented by a homogeneous birth-death35

process (BDP) (Nee, 2006). Methodological advances, such as the development of relaxed36

clocks, now allow substitution rates to vary across the tree (see Dos Reis et al. (2016) for a37

review). Additionally, increasingly sophisticated models of molecular evolution have been38

introduced (Arenas, 2015). More recently, models have also emerged that incorporate39

variable diversification rates (see below), allowing for more complex representations of40

evolutionary trees, although the broad-scale patterns resulting from such models remain41

relatively unexplored.42

Increasing sophistication in modelling ability has naturally also fuelled attempts to43
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understand the causes behind the variation being captured. To take molecular substitution44

rate variation first: two broad hypotheses exist about its causes. The first encompasses a45

range from mutational effects to features of the entire organism (such as body size or46

generation time); and the second is a ‘speciation rate hypothesis’ that links molecular47

change to speciation (Jobson and Albert, 2002). There are sound empirical and conceptual48

reasons for thinking that speciation and molecular change may well be intimately related49

(Hua and Bromham, 2017), and attempts have sometimes been made to consider them50

jointly (e.g. Sarver et al. (2019); Ritchie et al. (2022b)). Indeed, Eo and DeWoody go so far51

as to claim that “One of the most basic predictions in evolutionary biology is that the rate52

of diversification along a particular branch of the tree of life is some function of the rate of53

genome evolution on that branch.” (Eo and DeWoody (2010), p. 3587). Provocative54

evidence for a close correlation of the two processes is seen for example in the early history55

of arthropods (Lee et al., 2013), where early branches of the clade contain just as much56

molecular change as later branches despite being far shorter in duration (Budd and Mann,57

2020b), at least when the tree height is constrained by the fossil record. However, this is58

just one of several studies that over the last few decades have debated a potential link59

between both morphological and molecular rates of change and rates of speciation (e.g.,60

Bromham (2024); Rabosky et al. (2013); Xiang et al. (2004); Webster et al. (2003);61

Venditti and Pagel (2010); Lanfear et al. (2010); Berv and Field (2018); Barraclough and62

Savolainen (2001)), although it should be noted that not all studies have found clear63

evidence of this link (e.g., Goldie et al. (2011)). There are at least two factors that might64

cloud the relationship between diversification and molecular change through time. The first65

is the so-called ‘node density’ effect, wherein in clades with more terminals, a resulting66

greater number of internal nodes will recover more molecular change and thus generate a67

spurious relationship between clade size and amount of molecular change (Hugall and Lee,68

2007). The second is that if a relaxed clock methodology is employed to ascertain the time69

of origin of a clade, then any early burst of molecular (or morphological (Beck and Lee,70
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2014)) change or indeed diversification is likely to be smoothed out by pushing the age of71

the root deeper (Budd and Mann, 2020b; Bromham, 2020, 2003; Beaulieu et al., 2015;72

Shafir et al., 2020). If one were simply to accept the result of the molecular clock, then the73

apparent elevated early rates could theoretically be explained as an artefact caused by74

”bunching up” the early lineages to artificially squeeze the clade into a too-narrow time75

interval (c.f. Bromham and Hendy (2000)). However, we have previously marshalled strong76

reasons for thinking that the fossil record in such instances is often reliable, in which case77

early bursts of diversification should be taken seriously and not dismissed as dating78

artefacts (Budd and Mann, 2020a,b, 2024; Holmes and Budd, 2022). As a result, the79

well-known mismatch between the explicit fossil record and molecular clock origination80

estimates for many major clades such as animals (Budd and Mann, 2020b), birds (Berv81

and Field, 2018), placental mammals (Budd and Mann, 2024) and angiosperms (Smith and82

Beaulieu, 2024), (Coiro et al., 2019) itself points to cryptic excess molecular change at the83

base of trees (Beaulieu et al., 2015; Berv and Field, 2018). Previous critiques of molecular84

clocks have focused on either inappropriate age priors (e.g. Budd and Mann (2024); Brown85

and Smith (2018)) or issues with rate heterogeneity (e.g. Bromham and Woolfit (2004);86

Berv and Field (2018)); below we will suggest these are effectively two sides of the same87

coin. Clearly, if the branching process and rate of molecular change really are correlated,88

then this would have a significant impact on our understanding of the patterns of89

evolutionary change through time (see Duchêne et al. (2017) for investigation and90

discussion of this point).91

Causes of variation in diversification rates are likewise much debated (e.g. Moen92

and Morlon (2014)). It is clear that, similarly to the case of molecular evolution itself, rates93

of diversification must vary across the tree, as a single homogeneous BDP cannot possibly94

capture the true patterns of diversification reflected in evolutionary history (c.f. Benton95

and Emerson (2007)). Notwithstanding this, the homogeneous birth death process (BDP)96

(Nee, 2006) (in which rates of speciation and extinction are fixed) is still commonly97
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employed in molecular analysis, especially for dating purposes, although its inadequacies98

are increasingly being recognised (e.g. Khurana et al. (2024)).99

Any attempt to investigate a link between rates of genetic/morphological evolution100

and speciation must reckon with the heterogeneous nature of all of these variables.101

Historically, rate heterogeneity has largely been addressed in one of two ways: either by102

assuming rate shifts occur at significant points (e.g., Soltis and Soltis (2016)), or by103

assuming broad secular variation, e.g. with declining rates through time across the entire104

tree (Nee et al., 1994b; Strathmann and Slatkin, 1983); or some combination of both (e.g.105

in BAMM (Rabosky et al., 2014)). More recent models have moved away from considering106

isolated rate shifts to allow rates to vary either in small frequent increments associated107

with speciations (Maliet et al., 2019; Shafir et al., 2020), or continuously through108

anagenetic diffusion (Quintero et al., 2024) (for other non-continuous models, see the109

review in the supplementary information of Maliet et al. (2019)). The primary goal of110

these models has been the inference of rates through time, based on molecular data from111

extant taxa (Barido-Sottani and Morlon, 2023) which has now been implemented in112

BEAST2 (Bouckaert et al., 2019), clearly a substantial step forward from homogeneous113

models. However, some forward simulation has also revealed that these models can114

generate clades that match empirical observation; in particular simulated clades are often115

imbalanced and ‘stemmy’ (Maliet et al., 2019). This suggests that diversification rate116

heterogeneity may be one key to understanding the patterns of modern diversity. This is117

largely because the distribution of modern diversity predicted by homogeneous or118

epochally time-varying BDPs is geometric (Nee et al., 1994b; Kendall, 1948), and this119

remains the case even when non-selective mass extinctions are considered (Budd and120

Mann, 2020a). However, a certain amount of evidence suggests that extant sizes are in fact121

over-dispersed relative to this expectation (Blum and François, 2006; Stadler et al., 2016).122

Consider, for example, the crown group animal phyla, which for the sake of argument we123

can assume all emerged around 500 Ma (Budd and Mann, 2024). Estimating total species124
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diversity in the phyla is fraught with difficulty, but even so the species count differs widely.125

For example, the phyla have an average diversity of c. 50,000 species, but the arthropods126

have a diversity of well over one million species, thus being over twenty times larger than127

expected. Under a geometric distribution this is essentially impossible (p ∼ 10−7). This128

pattern is seen repeated hierarchically: e.g. most arthropods are insects, and most insects129

appear to be hymenopterans (Forbes et al., 2018). Similarly, the angiosperms are much130

more diverse than any other plant clades (e.g. c. 300000 versus 1000 gymnosperms) and131

birds much more so than crocodiles in the archosaurs (c.10000 versus c. 85). In other132

words, the existence of Stanley’s ”supertaxa” (Stanley, 1998) does not seem compatible133

with a purely geometric distribution of clade sizes as predicted by the homogeneous BDP.134

In addition, clade sizes show a complex relationship with age that is not easily explained135

by homogeneous diversification (Rabosky, 2010; Magallon and Sanderson, 2001; McPeek136

and Brown, 2007), and indeed attempts to estimate absolute diversification rates within a137

clade suggest several orders of magnitude variation (Magallon and Sanderson, 2001). It138

thus seems that clade sizes do often appear overdispersed relative to any expected139

geometric distribution (Khurana et al., 2024).140

Taking these empirical findings together, and noting the apparent importance of141

rate heterogeneity across both microscopic and macroscopic evolutionary scales142

(Henao-Diaz and Pennell, 2023), it seems that a need exists for a synthesis that unites143

molecular evolution and species diversification, in which both vary through time. In this144

paper, then, we develop a model of diversification and molecular change in which all145

evolutionary rates covary, being controlled by a single variable evolutionary tempo that146

differs both between species, and within a species over time. Although our model does not147

depend on a particular instantiation of tempo, we nevertheless offer some suggestions148

about how it might be encoded in a realistic way in the genome below (see schematic for149

genetic encoding of tempo in Appendix 1). Our analysis of this model will show that it is150

consistent with the concentration of species into relatively few ‘supertaxa’ (Stanley, 1998);151
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that it offers a resolution to conflict between the fossil record and molecular clocks; and152

that it makes new predictions about the early history of major clades and the fate of the153

smaller clades that constitute the remaining part of modern diversity. Because of the way154

we formulate the model, it is amenable to numerical solution that allows us to investigate155

its general features, as opposed to simulations that would show the outcomes of rates over156

specific trees.157

Methods and Materials158

Model outline159

As indicated above, heterogeneity in rates of speciation and extinction are key to160

explaining important empirical features of diversification. We here extend earlier161

approaches to model such heterogeneity (Rabosky et al., 2014; Maliet et al., 2019; Ritchie162

et al., 2022a; Quintero et al., 2024), and create a BDP model in which rates of speciation163

and extinction vary continuously and covariantly through anagenetic diffusion. We call this164

model the Covariant Evolutionary Tempo (CET) model. Under CET, all evolutionary165

rates are specific to a given taxon at a specific moment in time. Our model is close in166

formulation to that of Quintero et al. (2024). However, whereas they model this variation167

in speciation and extinction rates as geometric Brownian motion with an overall drift, and168

treat speciation and extinction independently, we instead posit that there exist baseline169

rates of speciation (λ) and extinction (µ) that are linearly modulated by a new variable we170

label as tempo, τ , which controls the relative rates of all evolutionary processes. At any171

given time a taxon with tempo τ has a speciation rate τλ and an extinction rate τµ.172

This model is fully covariant, in that all rates are linked directly to τ ; in effect the173

tempo represents a local speeding-up or slowing-down of evolutionary time, such that all174

processes happen faster or slower. In particular, we posit that tempo itself varies through175

time, and because we posit that tempo is in some way genetically encoded, this implies176
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that the evolution of τ itself proceeds at a rate proportional to τ , since the effect on177

molecular rates of mutation will obtain upon whichever part of the genome is responsible178

for this encoding. Specifically we model the log-tempo (x = log τ) as evolving according to179

a modified Ornstein–Uhlenbeck (OU) process that incorporates the effect of the tempo180

itself on all rates:181

dx = −θexxdt+
√
2θs2exdW (1)

where dW represents an incremental change from a Wiener process (popularly known as182

Brownian motion). We impose this model for the evolution of the log-tempo x since the183

tempo itself is constrained to be positive. The parameters of this stochastic differential184

equation are the mean reversion rate θ and the stationary variance of the process, s2. The185

ex terms in this equation come from the self-interaction of the tempo, which as well as186

multiplying the rate of all other processes also determines the rate at which it evolves187

itself, such that the effective increment of time is τdt = exdt. Our use of an OU process is188

motivated by two considerations. First, as we shall show, a Wiener process without a189

restoring force would lead to a runaway effect, where tempos increase without limit.190

Secondly, in Appendix 1 we describe a plausible schematic for how tempo is inherited that191

produces an inherent reversion to a mean value via entropic forces.192

As we show in Appendix 1, this results in a drift-diffusion partial differential193

equation for the generating function of the resulting birth-death process:194

∂Gx

∂t
= ex

(

(λGx − µ)(Gx − 1)− θx
∂Gx

∂x
+ θs2

∂2Gx

∂x2

)

(2)

where Gx(t, z) =
∑∞

n=0 Pn(t, x)z
n, with Pn(t, x) being the probability of generating n195

species over time t in a process starting with log-tempo x. Solving this equation for an196

initial condition Gx(t = 0, z) = z provides the value of the generating function Gx(t, z).197

Equation 2 does not appear to permit solution in closed form, except for the198

long-term extinction probability Gx(t, z = 0) for t → ∞, which is µ
λ
for all x, and is199

therefore tempo invariant. More generally, equation 2 can be straightforwardly solved200

numerically. The values of Pn(t, x) can be retrieved from this generating function by201
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Fourier inversion (see Appendix 1).202

We can derive further equations specifying the evolution of the mean number of203

species generated by the process over time, the expected number of lineages (species that204

will have modern descendants) and the distribution of tempos over time. Derivation of205

these equations is described in Appendix 1. The most important of these equations206

specifies the evolution of the mean number of species through time. Given a generating207

function Gx, the mean of the distribution, Nx(t) ≡ E(n | t, x) is given by:208

Nx(t) =
∂Gx(t, z)

∂z

∣

∣

∣

∣

z=1

(3)

Using this relation, equation 2 can be transformed into a simpler, linear form to represent209

the dynamics of the mean:210

∂Nx

∂t
= ex

(

rNx − θx
∂Nx

∂x
+ s2θ

∂2Nx

∂x2

)

, (4)

where r = λ− µ is the baseline net diversification rate. This equation reveals the key211

dynamics of the process: the expected number of species with log-tempo x locally increases212

exponentially at the rate r modulated by τ = ex. At the same time a drift-diffusion process213

modifies the tempo of each species, such that species tend to move towards a log-tempo of214

0 (i.e. τ = 1).215

Justification for a Covariant Theory216

Why should all evolutionary rates be covariant? As we have discussed above,217

previous birth-death models have allowed for independent variation in speciation and218

extinction (while in practice sometimes holding one of these constant), while the rates of219

molecular evolution have been assumed (generally implicitly) to be completely independent220

of diversification rates. In one sense our choice is pragmatic: we seek to explore the221

consequences of linking changing rates of molecular evolution to diversification rates, and222

the most parsimonious way to do this is to impose a perfect correlation between the two.223

Allowing for speciation and extinction rates to vary independently (or with some224



10 BUDD AND MANN

non-unitary correlation) would greatly complicate the mathematical formulation of the225

birth-death model and its analysis, and cloud its implications. Empirically we are also226

strongly motivated by the apparently close (inverse) correlation between rates of molecular227

evolution and branch durations in for example Lee et al. (2013) and other studies, as noted228

in the introduction. Finally our choice is also theoretically informed. It is clear that as229

speciation and extinction vary, they must remain close to one another over time; a230

sustained period of much higher speciation will quickly produce an unrealistically large231

number of species, while a period of greater extinction than speciation will almost certainly232

drive the clade to extinction. Indeed, the linkage between the two has been formulated by233

Marshall as the third of his five ”paleobiological laws” ( see Marshall (2017) for discussion234

and justification of this point). Moreover, we expect that rates of speciation and extinction235

may largely be driven by the same causal factors, e.g., generation times and population236

size (for a classical discussion of the various links between speciation and extinction rates,237

see Stanley (1990), and more recently Greenberg and Mooers (2017)). Therefore, while we238

anticipate significant deviations from covariance between these processes at sufficiently239

short time scales, we expect it to be a realistic first-order approximation when considering240

rates on the scale of millions of years. We also note that although most discussions of241

molecular evolution have considered a link with speciation, we consider that in practice242

this implies a link with extinction too, for the reasons given above.243

As far as our model is concerned, we note that many of the factors operating on244

speciation rates are also likely to affect molecular rates of change. For example, Bromham245

has stressed the need to consider the genome itself as a life-history trait ((Bromham, 2003,246

2009, 2020), and thus open to the same influences (population size, generation time, etc)247

as other traits. Thus, under such a view of evolution, small body size or small populations248

might both influence speciation rate (Martin, 2017; Cooney and Thomas, 2021) and249

molecular evolution rates (Bromham, 2020) together, thus uniting the two broad ways of250

considering the causes of molecular change (Jobson and Albert, 2002). Naturally, such a251
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linkage between the two might itself vary, but in order to investigate its general effects, and252

certainly to greatly simplify the analysis, we have chosen a model with complete linkage.253

Few studies have shown a convincing direct link between molecular substitution254

rates and phenotypic change (Bromham and Woolfit, 2004). Nevertheless, the two may be255

indirectly linked by other factors such as speciation rate, as both phenotypic and molecular256

are plausibly linked to speciation (for discussion of this point with some examples such as257

placental mammals and lungfish, see Budd and Mann (2018)). As we suggest below, some258

empirical evidence points to this being true, at least in some clades.259

Results260

We analysed our model by solving the probabilistic equations given above to obtain261

distributions at different time epochs, rather than by direct simulation of the tree262

evolution. Notably, our analysis does not provide a probability distribution over specific263

trees, but over coarser-grained variables such as diversity. It is not our goal to264

quantitatively fit our model to the modern diversity or evolutionary history of any specific265

clade, but rather to reveal the qualitative features the model predicts. Throughout we use266

a core set of parameters λ = 0.51 per species per myrs, µ = 0.5 per species per myrs,267

θ = 0.01/myrs, s = 1. These parameters are chosen to reflect reasonable expectations268

about the real evolutionary process: a baseline extinction rate of µ = 0.5 per species per269

myrs comports with that chosen in previous analyses (e.g. Budd and Mann (2018)) and,270

combined with a speciation rate of λ = 0.51 per species per myrs is consistent with a271

typical species existing for c. 1 myrs, in broad agreement with the fossil record (see. e.g.272

Budd and Mann (2018)). The speciation rate is chosen to be of similar magnitude to the273

extinction rate, such that extinction plays a significant role in the evolutionary dynamics274

(Marshall, 2017) but is otherwise arbitrary. We choose a mean-reversion parameter275

θ = 0.01/myrs to be equal to the net diversification rate as we will later show that if r = θ276

then the mean log-tempo converges to 0 (see Appendix 1, equation 40). Although this277
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choice is mathematically convenient, we do not expect that it represents any necessary278

feature of the evolutionary process, nor do the general features of our results depend on it.279

Finally the diffusion parameter s = 1 is chosen to be large enough to produce significant280

effects of the diffusive dynamics, and otherwise is simply a mathematically convenient281

choice.282

Distribution of clade sizes283

We solved equation 2 for times 0 ⩽ t ⩽ 500 myrs and starting log-tempos284

−10 < x < 10 and performed a Fourier inversion (see Appendix 1) to retrieve the implied285

probability distribution Pn(t = 500myrs, x). The distribution of clade sizes for a clade that286

starts with log-tempo x = 0, excluding clades of size zero, is shown in Figure 1A. The287

clade sizes follow a distribution that differs strongly from the geometric distribution288

expected under a typical BDP (indicated by the dashed line, assuming the same mean289

clade size). This distribution is characterised by most clades being small, but with a few290

extremely large clades. This means that clades that are many times greater than average291

(either mean or median) are much more probable than under a standard birth-death292

process. A corollary of this is that clade size a typical species ‘experiences’ (i.e. the293

expected clade size of a randomly selected species) is c. 8 times greater than the mean294

clade size. For clarity, we here define the experienced and mean clade sizes as the sizes of295

clades containing living organisms that have the same time of origin (for example, the sizes296

of parent clades that are all 500 myrs old).297

In Figure 1A we indicate both the mean clade size and the mean experienced clade298

size for illustration. This result should be compared to the equivalent result from a299

standard BDP where the mean experienced clade is only two times greater than the mean300

(Budd and Mann, 2018). This implies that the large majority of species we might301

encounter and/or study are contained in extremely large clades. Since clades are302

hierarchically structured this also implies that the diversity of any clade is likely to be303
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dominated by its largest sub-clade. To illustrate this we consider the two sister-groups of a304

clade originating 500 Ma, and calculate the expected proportion of the total diversity that305

is contained in one sister-group chosen at random. As shown in Figure 1B, the probability306

that a given proportion of total diversity is contained in a given sister-group is peaked307

strongly close to zero and one, indicating that one sister-group or the other typically308

contains the large majority of species in the clade as a whole. For example, there is a c.309

50% chance that the larger sister group is at least 20 times larger than the other. This can310

be compared to the equivalent result under a standard BDP, in which the proportion of311

diversity contained in one sister-group is uniformly distributed between zero and one312

indicated by the dashed line), and thus the probability of such an imbalance is only 10%.313

This implies that diversity among clades of the same age tends to follow the Single Big314

Jump principle (Vezzani et al., 2019), whereby sums of heavy-tailed random variables are315

dominated by their largest component.316

Diversification through time317

The above analysis reveals the expected pattern of diversity in clades of a fixed age318

(500 myrs) which all start from a common ancestor with a typical tempo (x = 0). How319

does this pattern change through time, and between clades with different initial tempos?320

To explore these questions, we focused on how the expected clade size varies through time321

for different initial values of x. We numerically solved equation 4 to obtain the expected322

clade size as a function of time values 0 < t < 500 myrs, and for different initial values of323

x0 ∈ {−2, 0, 2}. In Figure 2A we show how the mean clade size varies through time for324

different initial tempos including clades that have gone extinct before the time in question.325

In Figure 2B we show the variation in the mean number of species through time326

conditioned on knowing that the clade survives to the present day (solid lines), and also327

the expected number of lineages (dashed lines) through time – these are species that have328

at least one descendant in the present day, and form the ‘reconstructed process’ that can329
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Figure 1. (A) Distribution of the number of species generated in clades that survive 500 myrs, with parameters
λ = 0.51 per species per myrs, µ = 0.5 per species per myrs, θ = 0.01/myrs ,s = 1, and an initial log-tempo x = 0.
Note the log scale on the y-axis. The distribution is long-tailed and is characterised by a high probability of few
species (P (n < 1000) ≃ 1/3) and a long tail allowing some very large clades to be generated
(P (n > 50, 000) ≃ 1/4). The blue and red lines indicate the mean clade size (c. 60,000) and the mean experienced
clade size of a randomly chosen taxon (c. 400,000) respectively, indicating that most taxa are found in very large
clades. The dashed line shows the geometric distribution with the same mean expected under a standard BDP. (B)
The probability distribution for the proportion of diversity contained within one randomly chosen sister group of a
crown group, indicating that clades are typically highly imbalanced, with one sister group being much larger than
the other. The dashed line shows the uniform distribution expected under a standard BDP

.

(in principle) be inferred from modern molecular data. Clades that survive to the present330

experience the ‘Push of the Past’ (Budd and Mann, 2018), an initial period of increased331

diversification when the clade is small. These results show that the initial tempo has a332

substantial impact on how the clade diversifies and its eventual expected size. As we would333

intuitively expect, clades with high tempos initially diversify more quickly, and conversely334

those with low tempos diversify slowly. However, after some period of time the rate of335

diversification becomes stable; initially high-tempo clades slow down and initially336

low-tempo clades speed up, such that all clades eventually diversify at the same fixed rate,337

as seen in emergence of parallel lines of growth from all three initial conditions.338

The tempo of the root node of a clade therefore has transient effects that eventually339
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Figure 2. Diversification through time as a function of starting tempo. (A) The expected number of species
through time for x0 = −2 for a clade starting 500 Ma with different initial log-tempos: x0 = −2 (blue line); x0 = 0
(black line); x0 = 2 (red line). These expectations include clades that are extinct. Clades with a higher starting
tempo initially diversify more quickly (on average); eventually diversification stabilises to a fixed rate independent
of the starting tempo. (B) Expected diversification profiles for clades that survive to the present day. Solid lines
indicate the expected number of species through time; dashed lines indicate the expected number of lineages –
species with surviving descendants. Surviving clades of all starting tempos experience the Push of the Past,
mirrored by the Pull of the Present in the lineages. This effect is especially pronounced in the clades starting with
the highest tempo.

decay as new species emerge whose own tempos diffuse away from the initial state. The340

duration of these transient effects is longer in clades that start with low tempos, since all341

processes including those that control the diffusion of tempos over time run slower.342

Although the effect of initial tempo is transient, it leaves an important signature in the343

eventual size of clades over the long term: because initially high tempo clades diversify344

more quickly in their early history, they reach a larger size before reverting to a constant345

diversification rate, meaning that they have a much greater expected diversity in the346

present. This intuitively suggests that the largest clades of a given age in the present are347

likely to be those that originated from a high-tempo common ancestor.348
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Distribution of tempos over time349

As a clade diversifies, the various taxa will develop different tempos as they diverge350

independently from the initial starting tempo, leading to a time-dependent distribution of351

log-tempos p(t, x). In the Appendix 1 we show that the evolution of this distribution obeys352

a replicator-mutation equation:353

∂p

∂t
= rp (ex − ⟨ex⟩) + θ

∂xexp

∂x
+ s2θ

∂2exp

∂x2
(5)

where the term ⟨ex⟩ =
∫∞
−∞ exp(t, x)dx indicates the average value of ex at a given time.354

We numerically integrated this equation through times 0 < t < 500 myrs for three355

initial starting log-tempos: x0 ∈ {−2, 0, 2} specified by initial conditions of the form356

p(t = 0, x) = δ(x− x0), where δ(·) is the Dirac delta function (Shutovskyi, 2023). The357

resulting evolution of the log-tempo probability distributions is shown in Figure 3. These358

results show that regardless of the starting tempo of the process, our model converges over359

time to the same stable distribution of log-tempos that is approximately normally360

distributed. Using the core set of model parameters described earlier gives a mean361

log-tempo of zero. When the process is initiated with a high tempo (x = 2) the362

convergence to this stable distribution is very rapid (red line). This is because the initially363

high tempo forces all processes to run fast, so time is effectively compressed. Conversely364

when the process is initiated with a slow tempo x = −2, the convergence is much slower,365

potentially taking hundreds of millions of years. In practical terms, this predicts the366

existence of long-lived substructures of the evolutionary tree in which evolution is367

effectively ‘running slow’. If other evolutionary processes such as molecular and368

morphological change are also covariant to the tempo this would imply the existence of369

lineages with low diversity and minimal morphological or molecular change over very long370

periods of time. Since such small clades are common (Figure 1A), we expect that these371

‘living fossils’ will be ubiquitous, and in particular that they will often be the sister group372

to the few large clades that dominate total diversity.373

Varying the parameters of our model produces changes in the stable distribution of374
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tempos. In particular the mean of this distribution increases with larger r and decreases375

with larger θ (Figure 3B); in the limiting case where r = 0, the mean log-tempo can be376

shown to converge to -1 in closed form (see Appendix 1, equation 40). The dynamics of377

diversification tend to elevate the mean tempo, since higher tempo lineages produce more378

descendants on average per unit time, which inherit the same high tempo from their379

parents nodes. An interesting corollary to this point is that without any sort of mean380

reversion process, tempos (and thus diversification rates) would simply tend to rapidly381

increase without limit. As this is not observed empirically, the suggestion must be that382

something tends to draw log-tempos towards a characteristic mean value (c.f. Maliet et al.383

(2019); Aris-Brosou and Yang (2003); Lepage et al. (2006)). In Appendix 1 we show that384

such a mean reversion can arise without implying any necessary ecological mechanism: if385

tempo is encoded genetically then intermediate tempos are consistent with a greater386

number of possible genetic configurations, such that random mutations tend to cause a387

drift towards these values.388

Patterns of historical tempo389

So far we have considered what happens to various features of the evolutionary390

process as it is run forward from a particular initial condition. However, evolutionary391

analysis can be considered to be retrospective as well: one attempts to identify and explain392

patterns of evolution looking back in time from a vantage point in the present. As393

discussed by Budd and Mann (2018) this perspective necessarily distorts the patterns we394

are likely to observe, especially if one also chooses to analyse clades that have unusual395

modern-day properties. Such choices are commonplace: the most studied clades are often396

unusually diverse relative to clades of similar age; since most species are contained in these397

large clades they are often taken to be particularly representative of a particular epoch,398

despite in fact being a highly unrepresentative sample of clades in general.399

To investigate the role that contingencies of clade selection have on the observed400
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Figure 3. (A) The evolution of the distribution of log-tempos through time for clades starting from different initial
log-tempos: x0 = −2 (blue line); x0 = 0 (black line); x0 = 2 (red line). Lines indicate the expected log-tempo of a
randomly chosen species, and shaded areas represent the standard deviation. Regardless of starting tempo, clades
converge to the same equilibrium distribution of log-tempos. This convergence is fast in clades that start with high
tempos. (B) Evolution of the log-tempo distribution for clades with different values of the diversification parameter
r, with a fixed value of θ = 0.01/myrs. Starting from the same tempo (x0 = 0), clades reach different equilibrium
log-tempo distributions depending on the value of r; higher values of r produce higher average tempos.

patterns of evolution, we considered two questions. First, if one randomly selects a species401

in the present and traces its lineage back in time, what expectations should we have about402

the evolutionary tempo of those ancestors? Second, what expectations should we have403

about the average tempo of earlier members of that clade overall? These are different404

questions since most historical taxa, even those with modern descendants (the lineages)405

will contribute little to modern diversity, owing to the Single Big Jump Principle (Vezzani406

et al., 2019) identified earlier (cf. Figure 1B). That is, the ancestors of most modern taxa407

constitute a very small subset of historical diversity.408

First we consider how likely it is that a species alive today at time T originated from409

an ancestor at time t with log-tempo x. Since we assumed that the clade originates with an410

ancestor drawn from the equilibrium distribution p(x), the prior probability that a species411

alive at time t has log-tempo x remains p(x) by definition of the equilibrium. We can412
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determine a posterior estimate for the ancestor’s log-tempo by application of Bayes rule:413

p(x | ancestor of random modern taxon)

=
p(ancestor of random modern taxon | x)p(x)

p(ancestor of random modern taxon)

(6)

The likelihood term in this equation, p(ancestor of random modern taxon | x) is414

proportional to the expected number of modern species that an ancestor at time t will415

generate, Nx(T−). This means we can rewrite the above as:416

p(x | ancestor of random modern taxon) =
p(x)Nx(T − t)

∫∞
−∞ p(x′)Nx′(T − t)dx′

(7)

The equation above estimates the log-tempo of a direct ancestor of a modern taxon.417

We can also ask what the tempo of a randomly chosen member of the clade in the past is.418

To estimate this we consider the probability of generating nT species at time T from any419

starting log-tempo (based on solution of the generating function Gx) and the probability420

that a randomly chosen species at time t has log-tempo xt if the process starts at x0,421

p(xt | x0). From these probabilities we can infer the probability of a historical log-tempo xt422

conditioned on the current diversity nT , using Bayes formula and marginalising over the423

unknown starting log-tempo x0:424

p(xt | nT ) =

∫ ∞

−∞
p(xt | x0, nT )p(x0|nT )dx0

=

∫∞
−∞ p(xt | x0)P (nT | x0, xt)p(x0)dx0

P (nT )

≃
∫∞
−∞ p(xt | x0)P (nT | x0)p(x0)dx0

P (nT )

(8)

where the final approximation assumes that P (nT | x0, xt) ≃ P (nT | x0). In general this425

approximation will be reasonable, because of the earlier result that modern diversity arises426

from a small subset of historical taxa. If the historical number of species at time t is high,427

a randomly chosen taxon is unlikely to contribute significantly to modern diversity and we428

can therefore treat nT as being independent of this species and its tempo. Because of the429

Push of the Past (Budd and Mann, 2018), surviving clades will rapidly reach this state,430

and in the special case where t = 0 (i.e. the origin of the clade) the approximation holds431
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exactly.432

Figure 4 illustrates our expectations about the historical patterns of tempo. Figure433

4A shows the distribution of log-tempos for ancestors of a randomly chosen modern taxon,434

conditioned on our standard set of parameters (λ = 0.51 per species per myrs, µ = 0.5 per435

species per myrs, θ = 0.01/myrs, s = 1). In the present these are centered around x = 0,436

which is the stable overall distribution of log-tempos shown in Figure 3A. As we look437

backwards in time the expected log-tempo of the ancestor rises sharply, before plateauing438

at x ≃ 0.6 at c. 100 Ma. While the uncertainty represented by the standard deviation in439

grey permits a wide variety of ancestral tempos, beyond 100 Ma these ancestors will have440

elevated tempos with very high probability. Conversely, the tempo of the clade as a whole441

tends to peak at its origin, as shown in Figure 4B. This illustrates the overall expected442

log-tempo of historical species within a clade inhabited by a typical modern taxon (i.e. one443

with a diversity equal to the mean experienced clade size). That is, the clades that contain444

most modern taxa are defined by a high early rate of evolution, which then undergoes a445

consistent secular decline to the present, while the direct ancestors of most modern taxa446

have uniformly elevated rates of evolution across the history of the clade until close to the447

present. A consequence of this result is that most modern taxa share relatively recent448

common ancestors (c. 100-150Ma), as they overwhelmingly tend to originate via a small449

subset of lineages that maintain high tempos until this point. This is despite the most450

recent common ancestor of all species being close to the origin of the clade (in other451

words; the crown group is expected to emerge soon after the total group — for analysis see452

for example see Budd and Mann (2018)).453

Effect of tempo variation on branch lengths and duration454

We have now considered the effect of tempo variation on the dynamics of the455

birth-death process, and by extension on diversification. We motivated our approach by456

noting that rates of molecular evolution are commonly assumed to vary in modern relaxed457
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Figure 4. Expected patterns of historical tempo evolution. Lines indicate the expected log-tempo and shaded areas
represent the standard deviation. (A) The expected historical log-tempo of ancestors of a randomly-chosen modern
taxon, following its lineage back to the origin of the clade. Throughout this lineage, expected log-tempos are
elevated relative to the present day, declining rapidly shortly before the present. (B) Expected historical log-tempo
of species in the clade as a whole. This is shown for a clade of the mean experienced clade size (the typical clade
size of a randomly chosen modern species). Expected tempos are highest at the origin of the clade and decline
through time as the clade diversifies. In both panels, the distribution of tempos at time = 0 Ma represents the
equilibrium distribution derived as the stable solution to equation 36

.

molecular clock analyses, and now we turn our attention to the interaction of molecular458

evolution and diversification. Specifically, we consider the expected duration (in real time,459

equivalent to branch height) and amount of molecular change along branches (= branch460

length) with differing initial log-tempo values. In our model, tempo can vary within a461

branch, so the duration of branches is not necessarily exponentially distributed, in contrast462

to standard BDP models. Instead, the probability that a branch terminates (either by463

speciation or extinction) in a small interval of time ∆t depends on its current log-tempo464

and is given by ex(λ+ µ)∆t.465

As shown in Appendix 1, this implies that the probability density fx(t) that a466

branch originating with log-tempo x terminates at time t obeys a partial differential467
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equation of the form:468

∂fx
∂t

= ex
(

−(λ+ µ)fx − θx
∂fx
∂x

+ θs2
∂2fx
∂x2

)

, (9)

with initial condition fx(t = 0) = −ex(λ+ µ). Figure 5A shows the solution to this469

equation for three different values of x ∈ {−2, 0, 2}, illustrating the intuitive result that470

branches with lower initial tempos tend to have a greater duration – that is they exist for a471

longer time before either speciating or going extinct.472

How does this effect of the initial tempo translate into the amount of molecular473

change that occurs within a branch? This is an important question, because the474

relationship between branch duration and molecular change is fundamental to the practice475

of molecular dating and potentially more broadly to the inference of phylogenetic476

relationships based on the molecular genetic data from modern taxa because of the477

problems caused by long branch attraction (Kapli et al., 2021; Shafir et al., 2020).478

If we assume that rates of molecular change co-vary with tempo alongside all other479

rates then the amount of molecular change ∆w that occurs in some small unit of time ∆t480

is given by:481

∆w = ex∆t ⇒ dw

dt
= ex (10)

Applying a change of variables to express Equation 9 in terms of the molecular change w482

gives an equation obeyed by the probability density of molecular change fx(w) in a branch483

that starts with log-tempo x:484

∂fx
∂w

=

(

−(λ+ µ)fx − θx
∂fx
∂x

+ θs2
∂2fx
∂x2

)

, (11)

with initial condition fx(w = 0) = λ+ µ. Noticing that the partial derivatives in this485

equation will remain zero for all values of w, this simplifies to a standard exponential486

distribution:487

fx(w) = (λ+ µ)e−(λ+µ)w. (12)

That is, the amount of molecular change contained in a branch is independent of the value488

of the tempo. This is illustrated in Figure 5B.489
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Figure 5. The distribution of branch durations (A) and amounts of molecular change along branches (B) for
branches starting with different log-tempos: x0 = −2 (blue); x0 = 0 (black); x0 = 2 (red), assuming that molecular
evolution is covariant with tempo. Branches that start with lower tempos are much longer on average in real time
than those with high tempos. However, the expected amount of molecular change is independent of the starting
tempo.

The key result then is that branches that start at higher tempos are typically490

shorter, but contain just as much molecular change, as longer branches that originate from491

lower tempos. This implies that a clade that starts with a high tempo is likely to be492

characterised in its early stages by short-duration branches that nonetheless contain just as493

much molecular change as later branches that are longer in duration. Since we have shown494

above that early high tempos are expected especially in clades that are particularly large,495

we can expect this pattern to be commonly observed. As a corollary, if we further assume496

that morphological change also co-varies with tempo (c.f. Omland (1997); Lee et al.497

(2013)) then the same pattern of rapid change along short early branches would be498

observed morphologically by an analogous argument.499
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Discussion500

We have described the CET model of macroevolution that allows the rates of501

speciation, extinction and molecular/morphological evolution to co-evolve through a502

variable evolutionary tempo parameter. This model provides a resolution to several503

outstanding difficulties in reconciling classical birth death models with empirical data.504

Allowing for tempo variation produces much greater variation in clade sizes over a given505

time horizon than under homogeneous models, consistent with the fact that modern506

diversity is dominated by a relatively small number of very large clades across different507

taxonomic levels. An underappreciated consequence of this distribution is that if we wish508

to understand how modern patterns of diversity arose, it is important to study the509

characteristic behaviour of such large clades, which, as we have shown here, differs510

markedly from that of clades as a whole. In other words, large and arguably charismatic511

clades such as arthropods, birds and angiosperms that are the subject of understandable512

interest have quite different patterns of evolution than what an ‘average’ clade might be513

inferred to have.514

Our anaylsis predicts that these clades containing the bulk of modern diversity are515

likely to result from very high early evolutionary tempos, leading to short early branches516

(measured in real time). Because we conjecture that evolutionary tempo affects all rates in517

a covariant fashion, these short early branches are nonetheless expected to contain as much518

molecular and morphological change as later, longer branches, because the rates of519

molecular and morphological change are elevated in direct proportion to speciation and520

extinction.521

This offers an explanation for the observation of, for example, such elevated rates522

coupled in short early branches found in molecular studies that take the fossil record as a523

reliable guide to the age of the clade (e.g. Lee et al. (2013)). In that example, early rates524

seem to be approximately 10 times higher than later ones, which would give a log(x) value525

of 2.3, in a clade that is at least 20 times larger than average. Our initial value of log(x) of526
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c. 0.7 for a clade c. 8 times larger than average in Figure 4B seems to be broadly527

compatible with this. We note that such studies tend to indicate a much older origin of the528

clade when the firm calibration based on the fossil record is removed; this emerges because529

of the use of a model that assumes a homogeneous birth death process as the underlying530

description of diversification (Budd and Mann, 2024), and because of a questionable531

assumption that the processes of diversification and molecular evolution are independent.532

Modern molecular clock analyses typically employ a ‘relaxed-clock’ methodology that533

permits substantial changes in the rate of molecular evolution across time and between534

lineages, but these rates are decoupled from the rates of speciation, extinction and lineage535

creation (e.g. Aris-Brosou and Yang (2003)). Such a rigorous decoupling between536

evolutionary processes seems intuitively unrealistic, and indeed elevated rates of molecular537

evolution have been posited as a cause of radiations (Lancaster, 2010), while in the fossil538

record morphological change is (necessarily) the key signature of diversification. As such,539

we argue that recognising the likely covariance between these rates is key to understanding540

apparent discrepancies between molecular signatures of diversification and the fossil541

record. Nevertheless, our model does not rely on any particular causal relationship between542

molecular change and diversification, and indeed these variables may be linked by543

underlying factors such as body size (Berv and Field, 2018).544

A covariant process that extends to rates of molecular evolution will produce545

similar amounts of molecular change on all branches of the tree, regardless of their546

duration in time. This suggests that from a molecular standpoint there will be little or no547

difference between an older tree whose branch rates exhibit no secular trend, and a548

younger tree that experiences rapid early evolution and diversification followed by a549

slowdown (or indeed an even older tree that experienced very slow early evolution,550

although these will typically represent only a small proportion of modern diversity. As551

such, molecular data from modern taxa are unlikely to be able to discern which of these552

scenarios led to the molecular and species diversity we observe today. Precise and reliable553
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fossil calibrations, in combination with molecular data can potentially reveal the typical554

distribution of rates within the time scope of those calibrations. However, extrapolation of555

younger rates into deeper time is problematic, as we have shown that these are likely to be556

higher in the past, beyond the deepest precise calibrations (c.f. Budd and Mann (2020b)).557

This imposes a currently-insurmountable barrier to the use of the molecular clock for558

providing reliable clade age estimates, unless one can argue that rates of speciation and559

extinction are substantially decoupled from the process of molecular change. As noted560

earlier, making such an argument would preclude many putative explanations for observed561

rapid radiations, as well as being counter-intuitive. Although we have analysed a model in562

which there is a perfect correlation between all evolutionary rates, in practice we expect563

that any significant coupling will severely hamper the use of current clock methodologies.564

We suggest therefore that the use of molecular clocks for making extrapolative deep-time565

age estimates is fundamentally unreliable (interpolations within a tree, between nodes of566

known age are likely to be more constrained, but here we expect that molecular data will567

add little to dates derived directly from fossils (e.g. Brown and Smith (2018)).568

As well as revealing the broad outlines of the dynamics of a varying tempo model of569

evolution, our analysis of this model also provides several empirical predictions:570

1. Analysis of clades which are known to originate at similar times will show that the571

large majority of modern diversity is contained in a small subset of these clades.572

Most concretely, we anticipate that in pairs of sister groups, one group is likely to573

greatly dominate the diversity of the total (cf. Aldous (2001)).574

2. The smaller sister group in a clade will be that which also experiences lower575

aggregate molecular and morphological change over its history. As such, the species576

in this group will tend to retain more plesiomorphic features relative to those in the577

larger sister group. Potential examples of such a phenomenon include the578

onychophorans relative to arthropods, cyclostomes relative to gnathostomes (Yu579

et al., 2024), or priapulids relative to other ecdysozoans (e.g. Webster et al. (2006)).580
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This prediction gives some succour to the popular notion of ‘living fossil’ that are581

slow-evolving, have few species, and which to some extent resemble ancestral taxa582

(c.f. Crisp and Cook (2005) for the traditional view that ‘basal’, species-poor groups583

should not be regarded as ancestral or ‘primitive’; and Jenner (2022) for a more584

general discussion of the issue).585

3. The direct ancestors of most modern species will show elevated rates of evolution586

(diversification, molecular and morphological) throughout their history. Those587

lineages that gave rise to a majority of modern species will therefore show consistent588

rates of molecular evolution until close to the present, when they fall. However, if one589

analyses all historical taxa in a large clade (which is where most modern taxa reside)590

we expect to see very high rates of molecular change concentrated at the origin of the591

clade, declining consistently to the present. Nevertheless, both of these expected592

patterns take place within a wider context in which rates of evolution remain593

consistent overall – that is, measured over all species in all clades at a given time.594

4. If we further assume that rates of evolution are associated with body size and595

generation time (e.g. high rates being linked to small bodies and short generation596

times), we expect that a randomly chosen modern species will have experienced an597

increase in body size and generation time in the recent past, having probably598

originated from ancestors with smaller body size and shorter generation time (c.f.599

Berv and Field (2018)).600

Each of these predictions already enjoys some degree of empirical support in the existing601

literature, as indicated above. However, further research is needed to test each602

systematically to the extent that these predictions could be judged to be successful or603

falsified.604

In conclusion, our analysis suggests that a strong correlation between rates of605

molecular evolution and diversification would explain several empirical features of the606

natural world, unify two key areas of statistical modelling within a common framework,607
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and point towards necessary developments in phylogenetic inference and molecular dating608

in which this link is made explicit, such as an extension of the CET model to permit direct609

inference of actual historical rates from molecular data.610
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Appendix 1625

Generating functions626

We will make extensive use of probability generating functions. A quick review of627

their important properties follows. A probability generating function, G(z) for the random628
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variable X is defined as:629

G(z) =
∑

k

P (X = k)zk (13)

The probability generating function has several important properties that will be630

useful in the subsequent exposition. In particular:631

1. Normalisation: G(z = 1) =
∑

k P (X = k) = 1 (in cases where P (X = k) represents a632

full probability distribution)633

2. Extinction probability: G(z = 0) = P (X = 0)634

3. Expectation: M(X) =
∑

k kP (X = k) = ∂G
∂z
|z=1635

4. Sum of random variables: If W = X + Y , then GW (z) = GX(z)GY (z)636

5. Retrieval of probabilities: P (X = k) = 1
k!

dkG(z)
dzk

∣

∣

∣

∣

z=0

637

In respect of point (5) above, the values of P (X = k) can be retrieved efficiently by Fourier638

inversion:639

P (X = k) =
1

k!

dkG(z)

dzk

∣

∣

∣

∣

z=0

=
1

2

∫ π

−π

G(exp(iθ)) exp(−ikθ)dθ

(14)

Where the integral expression makes use of the Cauchy integral formula. This expression640

can be efficiently solved numerically using Fast Fourier Transform methods (Gleeson et al.,641

2014)642

Derivation of equation specifying evolution of the generating function643

Define Gx(t, z) =
∑

n Pn(t, x)z
n as the generating function for the number of species644

alive at time t from a process that starts at log-tempo x at time t = 0. We indicate the x645

dependence by means of a subscript for reasons of notational clarity in later analysis.646

Assume that we know the generating function for all x at some time t. How will the647

generating function change over a small increment of time ∆t? Since the process is648
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fundamentally homogeneous in time (i.e., there are no ‘special’ times’), we can construct649

this by considering a process that starts incrementally earlier than the known generating650

function. Within this small interval of time the process will change log-tempo651

incrementally according to an OU process, and furthermore may either speciate (producing652

two new independent processes with identical starting tempos) or go extinct. Given a653

current tempo x, the probability of speciation is ex∆tλ, and that of extinction is ex∆tµ.654

Based on these possible events, the new generating function is given by a mixture of655

generating functions at time t:656

Gx(t+∆t, z) = Gx(t, z)

+ ex∆t

∫ ∞

−∞

(

λGx′(t, z)2 + µ− (λ+ µ)Gx′(t, z)
)

p(x′ | x)dx′.
(15)

Here p(x′ | x) specifies the probability for the tempo to transition from x to x′ over the657

time interval ∆t. We take x to evolve via an OU process, with autocorrelation parameter θ658

and a stationary variance s2, experiencing an effective time ex∆t within real time ∆t.659

Given this specification we have:660

x′ | x ∼ N (x− θxex∆t, 2s2θex∆t) (16)

which yields: E[x′ − x] = −θxex∆t and E[(x′ − x)2] = 2θs2ex∆t up to first order661

terms in ∆t.662

Taking a 2nd-order Taylor expansion of Gx′(t, z)) around x and retaining first-order663

terms in ∆t gives:664

Gx′ −Gx ≃ ex∆t ((λGx − µ)(Gx − 1))

+ E[x′ − x]
∂Gx

∂x
+

1

2
E[(x′ − x)2]

∂2Gx

∂x2
.

(17)

Where we have dropped the explicit dependence of Gx on arguments t and z for665

concision. Substituting the above expressions for E[x′ − x] and E[(x′ − x)2] and taking the666

limit as ∆t → 0 gives the fundamental PDE of diversity evolution as given in equation 2.667

∂Gx

∂t
= ex

(

(λGx − µ)(Gx − 1)− θx
∂Gx

∂x
+ θs2

∂2Gx

∂x2

)

(18)
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Initial and boundary conditions668

The most obvious question one can ask of this equation is: what is the probability669

that a process starting at log-tempo x will generate n species over time t? To answer this670

question we must solve equation 2 for different values of z, and use the Fourier inversion671

formula to retrieve the probability distribution Pn(x, t). Solving equation 2 requires both672

initial and boundary conditions. For the question posed above the appropriate initial673

condition is given by G(t = 0, x, z) = z∀x, since a process that does not evolve for any time674

must have one species. Choosing appropriate boundary conditions is more difficult; since675

we must solve equation 2 numerically we take ’no flow’ boundary conditions (∂G
∂x

= 0) at676

some finite bounds xmin and xmax (we will usually use −10 < x < 10).677

We can also ask how many species of log-tempo y will be produced at time t by a678

process that starts with log-tempo x at time t = 0. Define the generating function of this679

distribution by Gy
x(t, x, z). Some consideration will show that the time evolution of Gy

x680

obeys the same PDE as that of Gx, but with a different initial condition. Since a process681

that starts with log-tempo x cannot instantaneously evolve to one of y ̸= x, we use the682

initial condition: Gy
x(t = 0, x, z) = δ(x− y)z, where δ(·) is the Dirac delta function.683

Evolution of the mean diversity684

The mean of a distribution is straightforwardly recovered from its generating685

function via the relationship E(n) =
∑

n nPn = ∂G
∂z
|z=1. Applying this to the equation686

derived above for the evolution of the generating function gives the evolution of the mean687

diversity for a process that starts with log-tempo x. Defining Nx(t) ≡ E(n | x, t) as the688

expected value of n at time t for a process starting with log-tempo x:689

∂Nx

∂t
=

∂2Gx

∂t∂z

∣

∣

∣

∣

z=1

= ex
(

2λGx|z=1Nx − (λ+ µ)Nx − θx
∂Nx

∂x
+ s2θ

∂2Nx

∂x2

) (19)
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Since G|z=1 = 1∀ x, t by definition, we can simplify this to the expression given in equation690

4:691

∂Nx

∂t
= ex

(

rNx − θx
∂Nx

∂x
+ s2θ

∂2Nx

∂x2

)

(20)

where r = λ− µ.692

By using initial conditions Nx(t = 0) = 1∀ x, solving this equation gives the mean693

number of species generated by a process starting at time t = 0 and log-tempo x. As with694

the discussion of initial conditions above, we can also apply the same equation with695

different initial conditions to consider how many species with specific log-tempo y are696

generated by a process that starts at log-tempo x. Denoting the expected number of such697

species of this type as Ny
x (t), in this case we use the initial condition Ny

x (t = 0) = δ(x− y),698

analogously to the case of solving for the generating function. By definition, the expected699

number of species in total will be the sum over all final log-tempos: Nx(t) =
∫∞
−∞ Ny

x (t)dy.700

Furthermore, we can ask what the expected number of species with log-tempo y is at time701

t if the starting log-tempo is unknown but specified by a probability distribution p(x). In702

this case we have:703

Ny =

∫ ∞

−∞
Ny

xp(x)dx (21)

and the expected total number of species (considering all possible starting and current704

log-tempos) can be denoted simply as N(t) and is given by:705

N =

∫ ∞

−∞

∫ ∞

−∞
Ny

xp(x)dxdy (22)

Conditioning on survival706

Equation 4 describes the evolution of the mean number of species through time,707

including all cases where the process goes extinct before the current time. If we want to708

ask how many species will be alive at time t, assuming that the process hasn’t gone709

extinct, we can do so straightforwardly by excluding the extinct cases:710

E(nt | nt > 0) =
E(nt)

P (nt > 0)
=

Nx(t)

Sx(t)
(23)
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where Sx(t) = 1−Gx(t, z = 0) is the survival probability for a process starting at711

log-tempo x, determined from solving equation 2 for z = 0. However, we may also want to712

know the expected number of species at some time t, conditioned on knowing that the713

process will survive to some future time T . In this case the conditioning is more complex.714

We make use of the identity:715

P (nt) = P (nt, nT > 0) + P (nt, nT = 0), (24)

which leads to:716

∑

nt

ntP (nt | nT = 0) =

∑

nt
ntP (nt)−

∑

n′

t
ntP (nt, nT = 0)

P (nT > 0)

⇒ E(nt | nT > 0) =
Nx(t)− Cx(t)

Sx(T )
,

(25)

where Cx(t) is a correction term depending on x and t that we need to determine. Define a717

new generating function Hx(t, z) =
∑

nt
P (nt, nT = 0)znt . Differentiating Hx with respect718

to z and evaluating at z = 1 gives the required correction term in the equation above. As719

with the generating function G, the evolution of H is governed by equation 2:720

∂Hx

∂t
= ex

(

(λHx − µ)(Hx − 1)− θx
∂Hx

∂x
+ θs2

∂2Hx

∂x2

)

(26)

Differentiating with respect to z gives:721

∂Cx

∂t
= ex

(

(λ(2Hx|z=1 − 1)− µ)Cx − xθ
∂Cx

∂x
+ s2θ

∂2Cx

∂x2

)

. (27)

Unlike in the case for Gx, Hx|z=1 varies as a function of x and t, and so solution of this722

equation for Cx requires simultaneously solving this PDE and 2 with initial conditions:723

Hx(t, z) = zGx(T − t, z = 0) and Cx(t) = Gx(T − t, z = 0).724

Lineages725

Lineages are species in the past that have descendants in the present. Since726

molecular studies are based on extant species, any phylogeny reconstructed from these727

must consist of lineages. The evolution of lineages has thus been dubbed the ‘reconstructed728
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process’ (Nee et al., 1994b), since these constitute the phylogeny that can, in principle, be729

reconstructed from molecular or morphological analysis of modern taxa.730

We are interested in the number of species alive at time t which will have731

descendants at some later time T . Recall Ny
x (t) is the expected number of species of732

log-tempo y at time t in a process that starts at log-tempo x. The expected number of733

these that will have descendants at time T is Sy(T − t) (the survival probability over time734

T − t for a new process starting with log-tempo y). Thus the expected number of lineages735

of log-tempo y at time t is Sy(T − t)Ny
x (t). Summing over values of y gives the total736

expected number of lineages, Mx(t) at time t for a process starting with log-tempo x,737

viewed from the perspective of time T (we leave this dependence on the time of738

observation implicit in the notation, but note that lineages are only defined from the739

perspective of a specific point in time):740

Mx(t) =

∫ ∞

−∞
Sy(T − t)Ny

x (t, x)dy (28)

This expectation includes the cases where the number of lineages is zero, i.e where there741

are no species at time T . If we wish to condition on the process surviving to the present we742

must remove these cases by dividing by P (nT > 0) = Sx(T )743

Mx(t) | [N(T, x) > 0] =

∫∞
−∞ Sy(T − t)Ny(t, x)dy

Sx(T )
(29)

Evolution of tempo distribution744

Assuming that we start a process with log-tempo x, over time species generated by745

that process will diverge in tempos. How does this distribution of tempos evolve?746

Consider starting a process with log-tempo x, and then selecting a species at747

random at some time t. The probability that this species has log-tempo y is given by:748

p(y | x, t) = Ny
x (t)

∫∞
−∞ Ny′

x (t)dy′
(30)

If the starting log-tempo is unknown, but drawn from a distribution p(x), then we can749
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marginalise the above equation with respect to x to find the later distribution p(y | t):750

p(y | t) =
∫∞
−∞ Ny

x (t, x)p(x)dx
∫∞
−∞

∫∞
−∞ Ny′

x (t)p(x)dxdy′
(31)

Taking the derivative with respect to time gives:751

∂p(y | t)
∂t

= p(y | t)
(

f(y)−
∫ ∞

−∞
p(y′ | t)f(y′)dy′

)

(32)

where f(y) = 1
Ny

∂Ny

∂t
. That is, the distribution of log-tempos evolves according to a752

replicator equation, where the ‘fitness’ of a log-tempo y is given by the proportional753

increase in Ny =
∫∞
−∞ Ny

xp(x)dx.754

If we assume that at some point in time the distribution of log-tempos is given by755

p(x), we can consider the instantaneous evolution of Ny from this time. Defining the756

current time to be t = 0, we have the initial condition:757

Ny
x (t = 0) = δ(x− y) (33)

From equation 4, this implies that:758

∂Ny
x

∂t
|t=0 = ex

(

rδ(x− y)− xθ
∂δ(x− y)

∂x
+ s2θ

∂2δ(x− y)

∂x2

)

(34)

Applying standard rules for the operation of derivatives of the Dirac delta function, we can759

marginalise the above equation with respect to the initial distribution p(x) to give:760

∂Ny

∂t
|t=0 =

∫ ∞

−∞

∂Ny
x

∂t
p(x)dx

= reyp(y) + θ
∂eyyp(y)

∂y
+ s2θ

∂2eyp(y)

∂y2

(35)

Substituting this into equation 32, and noting that again that Ny =
∫∞
−∞ Ny

xp(x)dx, we get:761

∂p(y)

∂t
= rp(y) (ey − ⟨ey⟩) + θ

∂eyyp(y)

∂y
+ s2θ

∂2eyp(y)

∂y2
(36)

Where ⟨ey⟩ = −
∫∞
−∞ ey

′

p(y′)dy′ is the mean value of ey.762

This then provides a replicator-mutation equation for the evolution of the tempo763

distribution, with the ‘fitness’ of log-tempo y being rey. In particular, it specifies that the764
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stable long term distribution of log-tempos is given by the solution to:765

rp(y) (ey − ⟨ey⟩) + θ
∂eyyp(y)

∂y
+ s2θ

∂2eyp(y)

∂y2
= 0 (37)

Notably, we can see that if r = 0, we recover the standard Fokker-Planck representation for766

the stationary OU process in the transformed distribution eyp(y):767

∂eyyp(y)

∂y
+ s2

∂2eyp(y)

∂y2
= 0 (38)

with the stationary solution p(y) = exp(−s/2)√
2πs2

e−y exp
(

−y2

2s2

)

, implying a mean log-tempo of768

⟨y⟩ = −1.769

From the equilibrium equation we can also find another useful relationship on the770

mean value. Multiplying equation 37 by y and integrating gives:771

∫ ∞

−∞
y

[

rp(y) (ey − ⟨ey⟩) + θ
∂eyyp(y)

∂y
+ s2θ

∂2eyp(y)

∂y2

]

dy = 0 (39)

Integrating the partial differential terms by parts yields:772

(r − θ)⟨yey⟩ − ⟨y⟩⟨ey⟩ = 0 (40)

from which we can see that if r = θ then ⟨y⟩ = 0, i.e. the mean log-tempo will converge to773

zero when the diversification parameter is equal to the mean-reversion parameter.774

Branch duration and expected molecular change775

Considering a branch that begins with log-tempo x, what is the expected time until776

that branch terminates, either by speciation or extinction? For a branch to endure for time777

t+∆t it must first fail to terminate in time ∆t, and then survive for a further time t with778

some new log-tempo x′. Integrating over the possible values of x′ we have:779

1− Fx(t+∆t) = (1− ex(λ+ µ)∆t)

∫ ∞

−∞
(1− Fx′(t))p(x′|x)dx′, (41)

where Fx(t) is the cumulative probability that the branch originating with log-tempo x has780

terminated by time t.781
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Taking a second-order Taylor expansion of Fx′(t) around x′ = x and retaining first782

order terms in ∆t we have:783

∂Fx

∂t
= ex

(

(λ+ µ)(1− Fx)− θx
∂Fx

∂x
+ θs2

∂2Fx

∂x2

)

(42)

The probability density for the branch to terminate at time t is given by differentiation of784

the cumulative distribution: fx(t) =
∂Fx

∂t
. Applying this transformation to the equation785

above yields:786

∂fx
∂t

= ex
(

−(λ+ µ)fx − θx
∂fx
∂x

+ θs2
∂2fx
∂x2

)

(43)

The probability density for a branch to terminate at time t thus follows the same form of787

differential equation as that for the mean number of species (equation 4), but with788

−(λ+ µ) taking the place of r. Solving this equation requires the initial condition789

Fx(t = 0) = 0 ∀x, which implies fx(t = 0) = ex(λ+ µ).790

Assuming that molecular rates of change are covariant to tempo (ex), for every791

increment of time ∆t the expected amount of molecular change ∆w (in arbitrary units792

that we label as myrs-equivalent; 1 myrs-equivalent being the expected molecular change793

in 1 myrs at a fixed tempo of τ = 1) is ∆w = ex∆t. We can transform the above equation794

for Fx(t) (which is given in terms of real time t) into one that applies over w via a change795

of variables, to give the cumulative probability Fx(w) that a branch terminates before796

accumulating w units of molecular change.797

∂Fx

∂w
=

(

(λ+ µ)(1− Fx)− θx
∂Fx

∂x
+ θs2

∂2Fx

∂x2

)

, (44)

and as above we obtain the probability density to terminate at w, fx(w), by differentiation:798

fx(w) =
∂F
∂w

:799

∂fx
∂w

=

(

−(λ+ µ)fx − θx
∂fx
∂x

+ θs2
∂2fx
∂x2

)

(45)

Here we have the initial condition Fx(w = 0) = 0 ∀x, which implies fx(w = 0) = λ+ µ.800

Consideration of this equation will show that the partial derivatives in x are initially zero801

and will remain zero for all values of w. Thus we can simplify the equation to:802

∂fx
∂w

= −(λ+ µ)fx. (46)
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The solution to this equation is straightforward and shows that w follows an exponential803

distribution with rate λ+ µ:804

fx(w) = (λ+ µ) exp(−(λ+ µ)w) (47)

The notable feature of this density is that it does not depend on the starting log-tempo x,805

implying that the amount of molecular change in a branch is independent of tempo.806

Schematic for genetic encoding of tempo807

Here we describe a simple model for how a genetic encoding of tempo can lead to808

the modified OU process we take as the basis for tempo evolution. Consider a binary string809

of n bases represented as ’1’ or ’0’, and define ρ as the proportion of bases that are ‘active’810

– that is, encoded as ’1’. We assume that these bases mutate independently and neutrally,811

and with a rate that is covariant to the tempo ex, such that the probability for each base812

to mutate in a small interval of time ∆t is qex∆t.813

If the number of active bases at time t is given by nρt, then in the interval of time814

∆t the number of bases that mutate from ’1’ to ’0’ is binomially distributed as815

B(qex∆t, nρt), and similarly the number mutating from ’0’ to ’1’ is binomially distributed816

as B(qex∆t, n(1− ρt)). If we take n to be large and ∆t to be small these binomial817

distributions can be approximated by normal distributions, such that the number of818

mutations from ’1’ to ’0’ is normally distributed with mean qex∆tnρt and variance819

qex∆t(1− qex∆t)nρt, and the number of mutations from ’0’ to ’1’ is normally distributed820

with mean qex∆tn(1− ρt) and variance qex∆t(1− qex∆t)n(1− ρt).821

The change in the number of active bases is given by the number mutating from ’0’822

to ’1’, minus the number mutating from ’1’ to ’0’. Given the results above, this change is823

also normally distributed. Taking the limit as ∆t becomes infinitesimal (denoted dt) and824

retaining only terms first order in dt we have:825

dρ ∼ N (−exq(2ρ− 1)dt, qexdt/n) (48)
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This is equivalent to the following form of stochastic differential equation:826

dρ = −exq(2ρ− 1)dt+
√

ex(q/n)dW (49)

where dW is an increment from a standard Wiener process, with mean zero and variance827

dt.828

To specify a genetic encoding of the log-tempo, let us now define x = α(2ρ− 1),829

where α is some arbitrary constant of proportionality, such that when half of bases are830

active this defines x = 0. We can then rewrite the above equation as:831

dx = −2exqxdt+
√

4α2ex(q/n)dW (50)

Defining new variables θ = 2q and s2 = α2/n, we have:832

dx = −exθxdt+
√
ex2θs2dW (51)

which is precisely the modified OU process specified in equation 1. By taking α to833

be sufficiently large we can extend the boundaries of minimum and maximum values of x834

such that arbitrarily high or low values of x are possible within this model. We have835

assumed that n is large, and this assumption means that boundary effects around ρ = 1836

and ρ = 0 can be safely ignored as these states are highly unlikely to occur under a837

random mutation process.838

This then provides a schematic representation of how tempo could be genetically839

encoded in a manner that naturally leads to the modified OU process description that we840

employ in this paper. The purpose of this schematic is not to argue that this represents the841

actual genetic encoding of tempo in any specific details, but instead to illustrate how such842

an encoding would naturally give rise to the mean-reversion properties of the OU process,843

via the action of entropic forces. That is, the log-tempo tends to revert to the mean not844

due to any ecological mechanism, but simply because there are more possible encodings845

with x ≃ 0 than those that encode more extreme values of x. One way in which tempo846

might influence rates in the way required by the CET model would be if it was encoded by847
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a multilocus set of genes that influence body size, as body size appears to be associated848

with a syndrome of other features such as generation time and mutation rate (Martin,849

2017). This encoding would satisfy the requirements of the CET model, although we would850

stress again that we have no formal commitment to it.851
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