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Functional Connectivity of the Scene
Processing Network at Rest Does Not
Reliably Predict Human Behavior on
Scene Processing Tasks

David M. Watson and Timothy J. Andrews

Department of Psychology and York Neuroimaging Centre, University of York, York YO10 5DD,
United Kingdom

Abstract

The perception of scenes is associated with processing in a network of scene-selective regions in the

human brain. Prior research has identified a posterior–anterior bias within this network. Posterior

scene regions exhibit preferential connectivity with early visual and posterior parietal regions,

indicating a role in representing egocentric visual features. In contrast, anterior scene regions

demonstrate stronger connectivity with frontoparietal control and default mode networks, suggesting

a role in mnemonic processing of locations. Despite these findings, evidence linking connectivity in

these regions to cognitive scene processing remains limited. In this preregistered study, we obtained

cognitive behavioral measures alongside resting-state fMRI data from a large-scale public dataset to

investigate interindividual variation in scene processing abilities relative to the functional connectivity of

the scene network. Our results revealed substantial individual differences in scene recognition, spatial

memory, and navigational abilities. Resting-state functional connectivity reproduced the posterior–anterior

bias within the scene network. However, contrary to our preregistered hypothesis, we did not observe any

consistent associations between interindividual variation in this connectivity and behavioral performance.

These findings highlight the need for further research to clarify the role of these connections in scene

processing, potentially through assessments of functional connectivity during scene-relevant tasks or in

naturalistic conditions.
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Significance Statement

Our ability to process scenes is crucial for interacting with our environment as it allows us to extract

spatial, contextual, and navigational information. However, the mechanisms by which the scene

network in the human brain supports these abilities remain poorly understood. To investigate this,

we compared behavioral measures of scene processing with resting-state functional connectivity

within the scene network. Extensive individual variability was evident in scene recognition, spatial

memory, and navigational abilities. However, contrary to our preregistered hypothesis, we did not

observe any consistent associations between task performance and the resting-state functional

connectivity of the scene network. These results suggest that future research employing task-related

or naturalistic designs may be necessary for elucidating the neural basis of scene perception.

Introduction
The ability to extract spatial, contextual, and navigational information from visual scenes

is key to how we interact with our environment. It is thought the processing of this
information is underpinned by a core network of scene-selective regions in the human
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brain (Epstein and Baker, 2019). These include the parahippocampal place area (PPA; Epstein and Kanwisher, 1998)
in the ventral temporal cortex, the retrosplenial complex/medial place area (RSC/MPA; Maguire, 2001; Silson et al.,
2016) in the medial parietal cortex, and the occipital place area (OPA; Dilks et al., 2013) in the lateral occipital
cortex. Additionally, an extended network of regions has also been implicated in scene processing. For instance, cortical
patches directly anterior to the core scene regions have been linked to the representation and recall of familiar environments
(Steel et al., 2021, 2023, 2024). Furthermore, medial temporal regions are implicated in spatial memory and navigation
(O’Keefe and Nadel, 1978), while posterior parietal regions have been linked to visuospatial coding of scenes (Kravitz et
al., 2011).
A full understanding of scene-selective regions requires an appreciation of how they interact with each other and wider

brain networks. Previous studies measuring resting-state functional connectivity have proposed a bias between posterior
and anterior aspects of the scene network (Baldassano et al., 2013, 2016; Nasr et al., 2013; Silson et al., 2016; Boccia
et al., 2017a). The posterior network includes the OPA, and the anterior network includes the RSC, with both networks
converging within the PPA. The posterior network connects more strongly with early visual regions and is thought to sup-
port processing of egocentric visual features. Meanwhile the anterior network is preferentially connected with more ante-
rior extended scene regions and is thought to support higher-level mnemonic processing of scenes. Recently,Watson and
Andrews (2024) demonstrated this posterior–anterior bias is also evident in functional connectivity measured during nat-
uralistic viewing and in structural connectivity. They also found that posterior scene regions showed preferential connec-
tivity with posterior parietal cortices, suggesting these regions may also support higher-level cognitive processes
associated with the dorsal visual stream.
Resting-state functional connectivity is widely used to predict individual differences on cognitive tasks because it

captures intrinsic brain network organization without task-specific demands. For example, individual variation in the
resting-state functional connectivity of many brain networks has been shown to predict performance on numerous cog-
nitive and behavioral measures (Stevens and Spreng, 2014; Finn et al., 2015; Rosenberg et al., 2016; Beaty et al., 2018;
Ooi et al., 2022). Given that higher-level cognitive processes involved in processing scenes are thought to be supported
by connections between the core scene network and other brain regions, a number of studies have investigated
whether connectivity between specific regions is linked to performance on scene processing tasks. For instance,
Sulpizio et al. (2016) demonstrated a positive correlation between performance on a self-report questionnaire of nav-
igational ability and resting-state functional connectivity between the right RSC and posterior hippocampus. Other
studies using task fMRI have found connectivity between the PPA, RSC, and hippocampus is modulated by perception
and imagery of familiar places (Boccia et al., 2017b, 2019; Tullo et al., 2023). Furthermore, developmental topographic
disorientation—a neurodevelopmental disorder marked by impaired navigational abilities (Iaria et al., 2009; Burles and
Iaria, 2020)—has been associated with decreased functional connectivity between the RSC and PPA (Kim et al., 2015;
but see Iaria et al., 2014). Nevertheless, previous research has largely focused on a limited number of behavioral tasks
and connectivity among a relatively small set of brain regions. Consequently, there remains a gap in understanding how
a broader selection of cognitive measures correlate with functional connectivity between scene regions and wider net-
works throughout the brain.
In this preregistered study, we utilize behavioral and resting-state fMRI data from a large-scale public dataset devel-

oped by Clark andMaguire (2023). This includes an extensive battery of cognitive behavioral measures, including tests
of scene recognition, spatial memory, and navigational ability, in a large sample comprising over 200 participants.
We used fMRI data to measure resting-state functional connectivity of the scene network in the same participants.
We investigated the association between scene processing abilities and functional connectivity by comparing interin-
dividual variation in functional connections to performance on the behavioral measures. We predicted that if connec-
tions subserve higher-level cognitive processing of scenes, then the strength of connectivity should be positively
correlated with performance on behavioral measures of those processes. Contrary to our hypothesis, we did
not find any consistent evidence of an association between human behavior and the functional connectivity of the
scene network.

Materials and Methods
This study was preregistered on the Open Science Framework (https://osf.io/m2qb6).

Dataset
We obtained behavioral and MRI data for 217 participants (109 females, 108 males, age range 20–41 years) from a pub-

licly available dataset collected by Clark and Maguire (2023; https://doi.org/10.5061/dryad.2v6wwpzt3). This includes a
comprehensive battery of cognitive behavioral measures assessing scene processing, memory, and navigational abilities.
The dataset additionally includes resting-state fMRI data, which we used to measure functional connectivity. In brief, data
were collected on 3 T Siemens MAGNETOM TIM Trio scanners. Whole-brain resting–state data were acquired in a single
scan run lasting ∼13 min. High-resolution T1–weighted anatomical images were also acquired using a FLASH MRI
sequence. We used the anatomical images acquired in the first scanning session, matching the session the resting-state
data were acquired in. Full details are provided in Clark and Maguire (2023).
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Behavioral data analysis
We selected four cognitive behavioral measures that directly assess scene perception and navigational abilities:

1. We used the “scenes” subscale of the recognitionmemory (RM) test (Warrington, 1984; Cipolotti andMaguire, 2003),
which tests participants’ ability to learn and recognize previously unfamiliar images of buildings and landscapes.

2. The Santa Barbara Sense of Direction Scale (SBSOD) is a self-report questionnaire measuring spatial navigation
ability (Hegarty, 2002). Participants rate 27 statements (e.g., “I am very good at judging distances”) for agreement
on a Likert scale.

3. We used the “spatial” subscale of the Survey of Autobiographical Memory (SAM; Palombo et al., 2013), which pro-
vides a self-report questionnaire measuring spatial memory. Participants rate six statements (e.g., “In general, my
ability to navigate is better than most of my family/friends”) for agreement using a Likert scale. The scores are then
standardized, such that the expected population average is 100.

4. The navigation test (Woollett and Maguire, 2010) assesses real-world navigation ability. Participants watch videos
depicting navigation along routes through an unfamiliar town and then are tested on their knowledge of the town’s
layout. We utilized data from all five subscales of this test: (1) clip recognition; (2) scene recognition; (3) proximity
judgements between landmarks; (4) knowledge of the order of locations along the routes; and (5) the sketchmap, in
which participants draw the routes frommemory. We also used the overall summary score, calculated by summing
the scores over all subscales.

We reverse-scored values on the SBSOD, such that on all measures a higher score indicates better performance. To
compare performance on the tasks, we conducted exploratory analyses correlating participants’ scores between pair-
wise combinations of behavioral measures (including the overall score and all subscales for the navigation test). We
derived two additional visualizations by converting the resulting correlations matrix into units of correlation distance.
First, we applied hierarchical clustering, using an unweighted average distance linkage (implemented in scipy;
Virtanen et al., 2020). Second, we applied metric multidimensional scaling (implemented in scikit-learn; Pedregosa
et al., 2011).

MRI data analysis

Preprocessing. The MRI data were preprocessed using FSL (Jenkinson et al., 2012). The T1 anatomical images were
processed using the fsl_anat script provided with FSL (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/structural/fsl_anat). First, a
bias field correction is applied using FAST (Zhang et al., 2001). A nonlinear registration to the MNI152 standard space
is then computed using FNIRT (Andersson et al., 2010). Removal of nonbrain structures is performed by transforming
the MNI brain mask back to the T1 space. The brain extracted volume is then reprocessed with FAST to derive tissue seg-
mentations. Finally, FIRST (Patenaude et al., 2011) is used to automatically segment subcortical structures.
The functional resting-state data were first preprocessed using FEAT.We removed three dummy volumes (10.08 s) from

the start of the scan run and applied motion correction using MCFLIRT (Jenkinson et al., 2002), slice-timing correction,
nonbrain removal using BET (Smith, 2002), spatial smoothing using a Gaussian kernel (FWHM, 6 mm; twice the voxel res-
olution), and grand-mean intensity normalization by a single multiplicative factor. Additionally, functional images were cor-
egistered to the T1 anatomical images via boundary based registration (Greve and Fischl, 2009). Two additional denoising
steps were then applied. First, MELODIC (Beckmann and Smith, 2004) derived spatiotemporal independent components
from the data, and then ICA-AROMA (Pruim et al., 2015) automatically labeled noise components associated with head
motion and regressed them out of the data. We employed an aggressive denoising strategy, such that all variance asso-
ciated with noise components was removed from the data. High-pass temporal filtering was applied following the ICA
denoising (σ=50 s). Second, a component-based (CompCor) denoising approach (Behzadi et al., 2007) was applied to
remove CSF-related signals. The CSF partial volume estimates derived from the tissue segmentations of the T1 images
were transformed to the functional volumes and thresholded at 90%. The average time series and first four principal com-
ponents from the CSF voxels were then regressed out of the data.

Regions of interest. We defined regions of interest (ROIs) for early visual, core scene, and extended scene areas in each
hemisphere. The Clark and Maguire dataset does not contain a functional localizer, so we instead functionally defined the
core scene regions from an independent fMRI dataset (Noad et al., 2024; https://openneuro.org/datasets/ds004848). In
brief, 45 neurologically healthy subjects completed a functional localizer scan in which they viewed images of scenes,
faces, and phase scrambled faces. A group-level analysis identified scene-selective activation using a contrast of
“scenes > (faces+ scrambled)”. We then defined ROIs for the OPA, PPA, and RSC. We applied a clustering algorithm to
define clusters of 250 spatially contiguous voxels (2,000 mm3) around peak voxels in each region. Following previous
studies (Baldassano et al., 2016; Silson et al., 2016; Watson and Andrews, 2024), we divided the PPA into posterior
(pPPA) and anterior (aPPA) portions by splitting the full region along the y-axis to evenly balance the volumes of each sub-
division (∼1,000 mm3 each). Each of these group-level ROIs was then transformed from the MNI space to the functional
volumes of each participant in the Clark and Maguire dataset.
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Early visual ROIs for V1 and V2 were defined from the Wang retinotopic atlas (Wang et al., 2015). We additionally
defined two extended scene regions that show preferential connectivity with the anterior core scene regions
(Baldassano et al., 2016). We defined an ROI for the caudal inferior parietal lobule (cIPL) from the PGp region of the
JuBrain/SPMAnatomy Toolbox (Eickhoff et al., 2005; Caspers et al., 2006). We also defined an ROI for the hippocampus
using the subcortical segmentations of each participant’s T1 scan. The locations of these ROIs are illustrated in
Figure 1a.

Functional connectivity. The preprocessed and denoised resting-state data were used to estimate functional connec-
tivity. We first measured connectivity between the early visual (V1, V2), core scene (OPA, pPPA, aPPA, RSC), and extended
scene regions (cIPL, hippocampus). Time series were averaged over voxels within each ROI and then correlated pairwise
between regions. Correlations were converted to units of Fisher’s z. This produced a correlations matrix for each partic-
ipant representing the functional connectivity between regions. To visualize the overall pattern of connectivity, the matri-
ces were averaged over participants then converted back to units of Pearson’s r. Additional visualizations were derived by
converting the group average matrix to units of correlation distance, then submitting this to both hierarchical clustering
(using an average distance linkage) and metric multidimensional scaling.
We also examined the connectivity between the core scene regions (OPA, pPPA, aPPA, RSC) and the rest of the brain.

We measured cortical connectivity between these regions and each of 17 resting-state networks across the brain (Yeo
et al., 2011; Fig. 1b). To prevent double-dipping, we removed any voxels overlapping between a particular network and
scene region from the network prior to calculating the connectivity. We additionally measured connectivity between
each of the core scene regions and seven subcortical structures: the nucleus accumbens, amygdala, caudate nucleus,
hippocampus, pallidum, putamen, and thalamus (Fig. 1c). The subcortical regions were identified from the automatic
subcortical segmentation of the T1 scans. Note that the hippocampus region is the same as the one included in the
extended scene ROIs.
For each of the connectivity analyses (main ROIs, core scene ROIs with Yeo networks, core scene ROIs with subcortical

structures), we compared interindividual variation in functional connectivity with performance on the behavioral measures.
The Fisher’s z connectivity values for each connection across participants were correlated with scores on each behavioral
measure. This produced an additional matrix for each behavioral measure, indicating the correlation between the beha-
vioral performance and the functional connectivity for each connection. We applied a Holm–Bonferroni correction
(Holm, 1979) for multiple comparisons over connections. We additionally calculated Bayes factors for each correlation,
implemented with the BayesFactor R package (https://cran.r-project.org/package=BayesFactor) and using the default
prior distribution.
To investigate whether behavior can be predicted from the interaction of multiple connections, we conducted explor-

atory analyses using a series of ridge regression models. For each connectivity analysis (main ROIs, core scene ROIs
with Yeo networks, core scene ROIs with subcortical regions) and for each behavioral measure, we constructed a ridge
regressionmodel using all connections within the connectivity matrix as predictors and the behavioral measure as the out-
come variable. Model performance was assessed using cross-validated R2 values, employing a five-fold cross-validation
over participants. The regularization parameter for each model was optimized with a further five-fold cross-validation
nested within each training set, using a Bayesian optimization routine to search over the parameter space (implemented
with scikit-optimize; https://scikit-optimize.readthedocs.io).
Finally, we conducted seed-based analyses to provide a finer-grained examination of the connectivity between the core

scene regions (OPA, pPPA, aPPA, RSC) and the rest of the brain. For each seed, the preprocessed and denoised time
series were extracted and averaged over voxels within the region. This was then entered into a first-level FEAT analysis
(Woolrich et al., 2001) as the sole regressor. Connectivity estimates for each seed were then combined over subjects
in a series of higher-level mixed-effect FEAT analyses using FLAME (Woolrich et al., 2004). To estimate the overall pattern
of connectivity, we conducted higher-level analyses calculating a single group average contrasting the connectivity
against zero. To measure the correlation between connectivity and a particular behavioral measure, we extracted and
demeaned the scores for that measure over participants. A design matrix for a higher-level analysis was then constructed
including an intercept term plus a slope term comprising the demeaned scores. A cluster correction (Worsley, 2001) was
applied to the statistical images, using a stringent cluster forming threshold of Z>4.9 (two-tailed p<10−6) for the group
average and a laxer threshold of Z>3.3 (two-tailed p<0.001) for the behavioral analyses and a cluster significance thresh-
old of p<0.05.

Deviations from preregistration
We note the following deviations from our preregistered design plan. First, we proposed to use all behavioral measures

available in the Clark and Maguire dataset and apply exploratory factor analysis to identify a smaller number of factors for
comparison with the functional connectivity. However, the behavioral measures cover a very wide range of cognitive abil-
ities beyond just scene processing, and consequently the resulting factors did not clearly identify scene perception or nav-
igational abilities. We therefore opted to manually select the most relevant behavioral measures instead. Second, the
correlation analyses between behavioral measures and the ridge regression analyses predicting behavior from functional
connectivity were not preregistered.
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Results

Behavioral data analysis

We obtained behavioral data from four measures of scene processing and navigational ability included in the Clark and
Maguire (2023) dataset. The RM test measures the ability to learn and remember novel scenes. The SBSOD and spatial
subscale of the SAM measure self-reported spatial navigation and memory abilities. The navigation test measures real-
world scene processing abilities by having participants learn novel routes around an unfamiliar environment. This includes
subscales measuring clip and scene recognition, proximity judgments between landmarks, knowledge of locations along
the routes, and a sketch map reproducing the layout of the environment, plus an overall score combining all subscales.
We first conducted exploratory analyses of the behavioral performance on each measure. Figure 2a shows kernel den-

sity estimates illustrating the distribution of scores across participants for each measure. There was a slight ceiling effect
for RM, while the SBSOD, spatial SAM, and overall score on the navigation test all indicated broad distributions of scores.
Among the subscales of the navigation test, the clip and scene recognition measures showed slight ceiling effects, while
the proximity judgments, route knowledge, and sketch map showed broader distributions. Thus, a wide range of scene
processing abilities were observed across participants.

Figure 1. Locations of ROIs for connectivity analyses. a, Main regions: early visual (V1, V2); core scene (OPA, pPPA, aPPA, RSC); extended scene [cIPL,

hippocampus (not pictured)]. Note that surface projections of volumetric regions provide only approximate visualizations—see Extended Data Figure 1-1

for an alternative volume-based visualization. b, 17 cortical resting-state networks from the Yeo atlas (Yeo et al., 2011). c, Subcortical structures seg-

mented from T1 anatomical scan.
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To compare the different tasks, we correlated the scores from individual participants for all pairwise combinations of
measures (Fig. 2b). Alternative visualizations are also provided by hierarchical clustering (Fig. 2c) and multidimensional
scaling (Fig. 2d). This highlighted a wide range of correlations between measures, from r=0.04 (between the SBSOD
and proximity judgments subscale of the navigation test) up to r=0.99 (between the sketch map subscale and overall
score of the navigation test). This indicates that different measures were able to assess different aspects of scene pro-
cessing. The overall score and sketch map subscale of the navigation test had the highest correlation—the sketch
map has the highest maximum score of all the subscales and hence makes the largest contribution to the sum over all
scores. High correlations were also observed between the route knowledge subscale and both the overall score
(r=0.74) and sketch map subscale (r=0.66) of the navigation test. A strong correlation was also observed between the
SBSOD and spatial SAM (r=0.80). However, the proximity judgments subscale of the navigation test showed relatively

Figure 2. Behavioral measures of scene processing: RM for scenes; SBSOD; SAM (spatial subscale); navigation test (overall score and subscales).

a, Kernel density estimates illustrating distributions of scores on each measure. Higher scores indicate better performance. The horizontal axes extend to

the limits of each measure, except the SAM where the axis extends to the data limits. b, Correlations between measures. Significant correlations are labeled

in bold with an asterisk (p<0.05; FWER corrected). c, Hierarchical clustering and (d) multidimensional scaling visualizations of the correlation matrix.
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weaker correlations with the other measures and indeed appeared more distant in the hierarchical clustering and multi-
dimensional scaling visualizations, indicating this may reflect somewhat different aspects of scene processing to the other
measures.
In summary, each of the behavioral measures captured wide individual differences in scene processing abilities.

Correlations between measures highlighted a wide range of correlations, with performance appearing highly consistent
between some tasks and more distinct between others. This indicates that different tasks assessed different aspects
of cognitive processing of scenes.

Functional connectivity of scene regions

We next measured the resting-state functional connectivity of the scene network. We first estimated the functional con-
nectivity between early visual (V1 and V2), core scene (OPA, pPPA, aPPA, RSC), and extended scene (cIPL, hippocampus)
ROIs (Fig. 1a). The group average connectivity matrix between these regions is illustrated in Figure 3a. Alternative visual-
izations are also provided by hierarchical clustering (Fig. 3b) and multidimensional scaling (Fig. 3c). Consistent with pre-
vious research, we observed a bias between more posterior scene regions (OPA and pPPA), which connected more
strongly with the early visual regions, and more anterior scene regions (aPPA and RSC), which connected more strongly
with the extended scene regions.
We next conducted a series of analyses estimating functional connectivity between the core scene regions and the rest

of the brain. We first measured connectivity with 17 cortical resting-state networks (Yeo et al., 2011) throughout the brain
(Figs. 1b, 3d). We observed preferential connectivity between posterior scene regions (OPA, pPPA) and Component A of
the visual network, which includes posterior occipital regions. The OPA also displayed preferential connectivity with
Component A of the dorsal attention network, spanning lateral occipital and posterior parietal cortices. By comparison,
anterior scene regions (aPPA, RSC) indicated stronger connectivity with Component C of the frontoparietal control net-
work and Components A and C of the default mode network. These networks include medial and lateral parietal, dorso-
lateral and ventromedial prefrontal, and medial temporal cortices.
We also measured connectivity between the core scene regions and seven subcortical structures (Figs. 1b, 3e).

Duplicating the analysis from the main ROIs (compare Fig. 3a), preferential connectivity was observed between anterior

Figure 3. Group average functional connectivity between ROIs. a, Connectivity between early visual, core scene, and extended scene regions.

b, Hierarchical clustering and (c) multidimensional scaling representations of the connectivity matrix. Connectivity of the core scene regions was also

measured with (d) 17 cortical resting-state networks and (e) subcortical regions. See Extended Data Figure 3-1 for split-half reliability estimates of the

functional connectivity.
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scene regions and the hippocampus. Anterior scene regions also showed stronger connectivity with the amygdala and to
some extent the thalamus. The PPA and OPA also displayed moderate connectivity with the putamen.
To determine the reliability of these connectivity patterns, we split the resting-state data between the first and second

halves of the scan runs and repeated the above connectivity analyses for each split. Extended Data Figure 3-1 indicates
that connectivity patterns were stable across the splits, and high split-half correlations were observed between the con-
nectivity matrices across subjects for all analyses.
Finally, to provide a finer-grained measure of whole-brain connectivity, we conducted a series of seed-based analyses

measuring the connectivity between the core scene regions and all voxels throughout the brain. Figure 4 shows group-
level statistical maps for each seed region. All of the core scene regions highlighted extensive bilateral functional connec-
tivity, particularly throughout occipital and inferior temporal cortices, but also extending into parietal and frontal cortices.
In summary, the resting-state analyses replicated previous results (Baldassano et al., 2016; Silson et al., 2016; Watson

and Andrews, 2024) indicating extensive bilateral functional connectivity of the core scene regions and connectivity biases
between the posterior and anterior regions. We next sought to compare interindividual variability in this functional connec-
tivity with behavioral performance on measures of scene perception.

Functional connectivity and behavior

We first compared functional connectivity between the main ROIs (early visual, core scene, and extended scene; com-
pare Fig. 3a) with human behavior. For each connection in the connectivity matrix, the correlation values were themselves
correlated with the scores on each behavioral measure. Figure 5 illustrates results for the main behavioral measures—RM
for scenes, SBSOD, spatial subscale of the SAM, and the overall score on the real-world navigation test. Contrary to our
hypothesis, we did not observe any consistent relationships between any of the functional connections and behavioral
measures. The resulting correlations included both positive and negative effects and indicated only small effect sizes
(approximately in the range r=±0.2). A small number of the correlations were significant; however, none of these survived
a correction for multiple comparisons. The corresponding Bayes factors indicatedmoderate-to-strong support for the null
hypothesis in the majority of cases. Analysis of the subscales of the navigation test revealed a similar pattern of results
(Extended Data Fig. 5-1).
Associations with behavior may be better evident in the functional connectivity measured between the scene network

and other higher-level networks through the rest of the brain. To this end, we next considered the functional connectivity
measured between the core scene regions and cortical resting-state networks (Yeo et al., 2011; compare Fig. 3d).
Correlations for the main behavioral measures are illustrated in Figure 6 and for the navigation test subscales in
Extended Data Figure 6-1. However, this again yielded only small effects and included both positive and negative
correlations. Two significant negative correlations, surviving the FWER correction, were observed for the comparison
of RM to the connections between the right frontoparietal control Network C and both the left RSC (r(215) =−0.26;

Figure 4. Group average seed-based functional connectivity for each core scene region. Statistical overlays illustrate cluster-corrected Z-scores for one-

sample tests of connectivity against zero. Black outlines indicate locations of core scene regions (OPA, PPA, RSC), and the green outline indicates the

location of the cIPL.
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p=0.037; BF10=191.97) and right RSC (r(215)=−0.25; p=0.046; BF10=156.90). A small number of other correlations were
significant but did not survive the FWER correction. Bayes factors indicated support for the null hypothesis in the majority
of cases. Thus, there were no consistent relationships between behavioral performance and connectivity of the scene
regions to other cortical networks throughout the brain.
We next applied the same approach to the functional connectivity between core scene regions and subcortical struc-

tures (compare Fig. 3e). Correlations for the main behavioral measures are illustrated in Figure 7 and for the navigation test
subscales in Extended Data Figure 7-1. Again, these analyses indicated a mix of small positive and negative correlations.
The comparison of the clip recognition subscale of the navigation test with connectivity between the left OPA and left puta-
men revealed a positive correlation that was significant after correction for multiple comparisons (r(215)=0.26; p=0.014;
BF(10)=211.45). No other comparisons survived the FWER correction, and Bayes factors indicated support for the null
hypothesis in the majority of cases. Therefore, once again, connectivity between scene and subcortical regions did not
indicate any consistent relationship with behavior.
The above analyses all considered the correlations between behavior and functional connectivity for each connection

independently. It is possible that behavior could be better predicted from the interaction among multiple connections. To
this end, we conducted exploratory analyses employing ridge regression models using all connections in each connec-
tivity matrix (main ROIs, core scene—Yeo networks, core scene—subcortical) to predict scores on each behavioral mea-
sure. These models were cross-validated across participants, such that model performance was assessed via the
coefficient of determination (R2) for participants held out from the model fitting. The resulting R2 values were small and
often negative for all behavioral measures (Fig. 8), indicating that the regression models typically explained even less var-
iance than a simple mean intercept model in the held-out participants. Thus, there was no indication that the interaction
among connections can predict behavioral performance accurately.
Finally, we compared behavioral scores to the seed connectivity analyses to test whole-brain effects at a finer scale.

Group-level analyses were conducted for each seed and for each behavioral measure, including the behavioral scores
as a slope parameter. We identified voxel clusters showing significant (Z>3.3; two-tailed p<0.001) positive or negative
associations with the behavioral scores following a cluster correction. We observed a number of relatively small clusters
showing positive correlationswith performance on the spatial SAMand scales of the navigation test, but not the SBSOD or
RM tests (Table 1; Fig. 9a). To quantify the locations of the clusters, we calculated the percentage of voxels within the
union of all clusters that overlapped subcortical structures and each of seven cortical resting-state networks (Yeo
et al., 2011; Fig. 9c). The clusters did not consistently overlap any particular networks and instead were spread across
multiple networks and subcortical structures in varying proportions (although no voxels overlapped the visual network).
We also identified a number of relatively small clusters showing negative correlations with performance on the RM, spatial

Figure 5. Correlations between behavioral measures (RM for scenes; SBSOD; SAM, spatial subscale; navigation test, overall score) and functional

connectivity between early visual, core scene, and extended scene regions (compare Fig. 3a). The top row illustrates correlation values—open circles

indicate correlations significant at an uncorrected level (p<0.05). No correlations survived a FWER correction. The bottom row illustrates Bayes factors

on a log scale—positive and negative values indicate support for the alternative and null hypotheses, respectively. Square markers indicate Bayes

factors >3 or <1/3. Correlations with subscales of the Navigation test are illustrated in Extended Data Figure 5-1.
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SAM, and navigation tests, but not the SBSOD (Table 2; Fig. 9b). The clusters were primarily located within the default
mode network (Fig. 9c). No voxels overlapped the somatomotor or limbic networks or any subcortical structures, and
the remaining voxels were distributed among other networks in smaller proportions. Thus, the seed-based analyses
revealed only relatively small clusters, which were not reliably observed across behavioral measures. Furthermore, the
positively correlated clusters did not consistently associate with the dorsal attention, frontoparietal control, or default
mode networks which the scene regions show connectivity biases for.
In summary, ROI-based analyses did not consistently identify any associations between resting-state functional con-

nectivity of the scene network and behavioral measures of scene processing. Instead, the results revealed only weak
effects, including both positive and negative correlations, and corresponding Bayes factors indicated support for the
null hypothesis in themajority of cases. Seed-based analyses identified a number of clusters throughout the brain showing
both positive and negative correlations between functional connectivity and behavior. However, these clusters were rel-
atively small and were not observed reliably over the behavioral measures. Furthermore, the positively correlated clusters
did not consistently identify any particular brain networks, although negatively correlated clusters did frequently overlap
the default mode network.

Discussion
In this study, we utilized data from a large-scale public dataset (Clark and Maguire, 2023) to investigate the relationship

between resting-state functional connectivity of the scene network and performance on cognitive behavioral measures of
scene processing. Our analysis revealed substantial individual differences in scene recognition, spatial memory, and nav-
igational abilities. We also observed a wide range of correlations between measures, indicating consistent performance
across some tasks but greater divergence between others. However, contrary to our preregistered hypothesis, we did not
find any consistent relationship between the resting-state functional connectivity of the scene network and behavioral
performance.
We first conducted exploratory analyses of behavioral measures related to scene processing ability. These included an

RM test for scenes (Warrington, 1984; Cipolotti andMaguire, 2003); the SBSODmeasuring self-reported navigation ability

Figure 6. Correlations between behavioral measures (RM for scenes; SBSOD; SAM, spatial subscale; navigation test, overall score) and functional con-

nectivity between core scene regions and 17 cortical resting-state networks (compare Fig. 3d). The left column illustrates correlation values—open circles

indicate correlations significant at an uncorrected level; filled circles indicate correlations significant following a FWER correction (p<0.05). The right col-

umn illustrates Bayes factors on a log scale—positive and negative values indicate support for the alternative and null hypotheses, respectively. Square

markers indicate Bayes factors >3 or <1/3. Correlations with subscales of the navigation test are illustrated in Extended Data Figure 6-1.

Research Article: New Research 10 of 16

February 2025, 12(2). DOI: https://doi.org/10.1523/ENEURO.0375-24.2024. 10 of 16



(Hegarty, 2002); a subscale of the SAM assessing self-reported spatial memory (Palombo et al., 2013); and a navigation
testmeasuring real-world route learning and navigational ability (Woollett andMaguire, 2010).We observed extensive indi-
vidual differences across all behavioral measures, with some participants performing relatively poorly and others perform-
ing near ceiling. This is consistent with recent large-scale online studies showing wide variation in navigational ability
across individuals and populations (Coutrot et al., 2018, 2022).
While performance was highly consistent between some tasks of scene processing, performance on other tasks was

more divergent. Previous analyses of this dataset have already described that overall performance on the Navigation
test positively correlates with the SBSOD, spatial SAM, and RM for scenes (Clark et al., 2019; Clark and Maguire,
2020). Similarly, Clark and Maguire (2023) previously reported the high correlation between the SBSOD and spatial
SAM, suggesting that both questionnaires measure similar aspects of self-reported spatial cognition. We observed the
highest correlation between the overall score and sketchmap subscale of the navigation test, due to the sketch mapmak-
ing the largest contribution to the overall score. We also observed high correlations for route knowledge with both the

Figure 7. Correlations between behavioral measures (RM for scenes; SBSOD; SAM, spatial subscale; navigation test, overall score) and functional con-

nectivity between core scene and subcortical regions (compare Fig. 3e). The left column illustrates correlation values—open circles indicate correlations

significant at an uncorrected level (p<0.05). No correlations survived the FWER correction. The right column illustrates Bayes factors on a log scale—pos-

itive and negative values indicate support for the alternative and null hypotheses, respectively. Square markers indicate Bayes factors >3 or <1/3.

Correlations with subscales of the navigation test are illustrated in Extended Data Figure 7-1.
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overall score and sketch map subscale. However, proximity judgments between landmarks showed relatively poorer
agreement with other scales of the navigation test and with the other measures, indicating this subscale may assess
somewhat different aspects of scene perception. Scene perception is a fundamentally multifaceted process. For instance,
neural models propose a distinction between cognitive processes underpinning spatial navigation and scene recognition
(Dilks et al., 2022). Similarly, spatial navigation has been suggested to utilize representations spanning a continuum
between egocentric and allocentric reference frames (Ekstrom et al., 2017). Using multiple distinct behavioral measures
therefore allowed assessing multiple aspects of cognitive processing of scenes.
We next measured the resting-state functional connectivity of the core scene regions, including the OPA, pPPA, aPPA,

and the RSC. Our analyses replicated previous findings of a posterior–anterior bias within the scene processing network
(Baldassano et al., 2013, 2016; Nasr et al., 2013; Silson et al., 2016; Boccia et al., 2017a; Watson and Andrews, 2024).
More posterior regions, particularly the OPA, showed preferential connectivity with early visual regions as well as posterior

Figure 8. Results of ridge regression analyses, predicting behavioral measures from functional connectivity across all connections between: main ROIs

(early visual, core scene, extended scene; compare Fig. 3a), core scene regions and cortical resting-state networks (compare Fig. 3d) and core scene

and subcortical regions (compare Fig. 3e). Plots illustrate mean and standard error of model R2 values over cross-validation folds. a, Prediction of

main behavioral measures (RM for scenes; SBSOD; SAM, spatial subscale; navigation test, overall score). b, Prediction of navigation test subscales.

Table 1. Locations of voxel clusters showing significant positive correlations between seed connectivity and behavioral

measures

Seed Measure Cluster size (mm3) Peak MNI coordinate (x, y, z; mm) Cluster region

Left OPA Navigation (clip recognition) 2,632 −26, 12, 2 Left putamen

1,880 26, 12, 2 Right putamen
944 −44, 42, 4 Left frontal pole

Navigation (proximity judgments) 896 −36, −32, 52 Left postcentral gyrus

Right OPA SAM (spatial) 1,856 −4, −60, 42 Left precuneus
Left pPPA Navigation (proximity judgments) 1,256 10, −62, −26 Bilateral cerebellum

1,192 −58, −40, 6 Left superior temporal sulcus
Left RSC SAM (spatial) 984 −54, 14, −26 Left temporal pole

Navigation (route knowledge) 1,120 18, −82, −44 Right cerebellum

Navigation (scene recognition) 1,296 −62, 8, 4 Left precentral gyrus
1,224 38, 2, 6 Right insula
808 44, −50, 10 Right middle temporal gyrus

Right RSC SAM (spatial) 2,000 −50, 16, −24 Left temporal pole
Navigation (overall) 880 −50, 10, 24 Left inferior frontal gyrus

Navigation (scene recognition) 1,736 −6, −36, 70 Left postcentral gyrus
784 −62, 10, 6 Left precentral gyrus
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parietal cortices. Meanwhile, more anterior regions, such as the RSC, showed preferential connectivity with the cIPL and
hippocampus, and with the frontoparietal control and default mode networks. These biases have previously been taken as
suggestive of a role of the posterior scene network in representing egocentric visual features of scenes, whichmay include
low-level visual processes but potentially also higher-level cognitive functions associated with the dorsal visual stream.
Conversely, it has been suggested that the anterior scene network may be implicated in higher-level mnemonic process-
ing of scenes.
To directly examine the association between the functional connectivity of the scene network and scene perception, we

compared interindividual variability in the strength of these connections to performance on each behavioral measure.

Figure 9. Correlations between behavior and seed-based functional connectivity. Brain plots illustrate clusters showing (a) positive and (b) negative

correlations between connectivity and behavior for each seed region (Z>3.3; two-tailed p<0.001). c, The percentage of voxels across all clusters

overlapping with seven cortical resting-state networks from the Yeo atlas (Yeo et al., 2011) and subcortical structures.
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Contrary to our predictions, we found no consistent associations between functional connectivity and any of the behavioral
measures.We first consideredROI-based analyses,measuring the connectivity of the core scene regionswith early visual and
extended scene regions or with cortical resting-state networks and subcortical structures throughout the brain. These con-
nections showed only weak associationswith the behavioral measures. Although some correlationswere significant, very few
of these survived a correction for multiple comparisons. More importantly, the effect sizes were very small (with Pearson’s r
values typically <0.2) and included both positive and negative effects. Negative correlations are not readily interpretable, as
these imply that decreased resting-state functional connectivity between regions is associated with higher behavioral perfor-
mance. Furthermore, corresponding Bayes factors indicated support for the null hypothesis in the vast majority of cases.
Seed-based analyses revealed a number of clusters showing both positive and negative correlations with behavior.
However, these clusters were typically relatively small, were not observed consistently over behavioral measures, and
were not consistently located within regions or networks showing preferential connectivity with the scene network.
It may be that human behavior depends on the interaction of multiple connections within and between networks, rather

than on the operation of individual connections. To this end, we conducted exploratory analyses of the ROI-based connec-
tivity using ridge regression models that included all connections as predictors simultaneously. This approach allowed inte-
grating predictive information over all connections together. However, these models were also unable to predict
performance on the behavioral tasks. Indeed, the cross-validated R2 values were often negative, indicating even worse per-
formance than a simplemean intercept model. When employing cross-validation, there is no lower limit on the range of pos-
sible R2 values. Thus, while it is clear these regression models performed poorly, it is not unprecedented to obtain negative
R2 values. For instance, Kraljević et al. (2024) report similarly poor performance for ridge regression analyses using resting-
state functional connectivity to make out-of-sample predictions of cognitive abilities. Taken together these results demon-
strate that interindividual variation in resting-state functional connectivity, either in individual connections or in the interaction
between multiple connections, was not predictive of performance on behavioral measures of scene processing.
A potential limitation of our design is that the ROIs were defined at the group-level from an independent localizer dataset.

This was necessary as the Clark and Maguire dataset itself does not include a scene localizer task. Future research may
benefit from using individualized ROIs that account for interindividual variation in the location of category-selective
regions. Nevertheless, despite using group-level ROIs, our analyses successfully replicated previously reported connec-
tivity biases between anterior and posterior regions of the scene network (Baldassano et al., 2016), indicating that our
group-level ROIs still adequately captured individual participants’ scene-selective regions.
In many cases a null result is not unexpected—we would not predict a correlation between behavior and connections

that are not suggested to subserve that behavior (such as connections with primary sensory regions). However, we do not
observe positive behavioral associations even with connections that have been posited to underpin higher-level cognitive
processes. Previous studies using both resting-state and natural viewing paradigms have reported preferential functional
connectivity between scene regions and the dorsal attention, frontoparietal control, and default mode networks
(Baldassano et al., 2016; Sulpizio et al., 2016; Boccia et al., 2017a,b, 2019; Tullo et al., 2023; Watson and Andrews,
2024). Although we replicate these results in the current study, we did not observe any consistent associations between
these connections and behavioral performance. Note that we failed to replicate the results of Sulpizio et al. (2016), which
indicated a positive correlation between navigational ability and resting-state functional connectivity of the right RSC and
posterior hippocampus. This may reflect differences in methodology—Sulpizio and colleagues used a median split of
behavioral scores (while we treat them as continuous measures) and divided the hippocampus into posterior and anterior
subsections (while we considered it as a single region).
The absence of consistent associations between the resting-state functional connectivity of the scene network and

behavior raises important questions. One possibility is that functional connections with scene-selective regions do not
underlie cognitive processes that are reflected in scene processing abilities. However, such a conclusion would be at
odds with the observation that the core scene regions do differentially show preferential connectivity with specific regions
and networks, including those implicated in higher-level cognitive processes. An alternative possibility is that such con-
nections do subserve behavior, but our experimental design was insufficient to reveal this. Previous research has

Table 2. Locations of voxel clusters showing significant negative correlations between seed connectivity and behavioral

measures

Seed Measure
Cluster size
(mm3)

Peak MNI coordinate
(x, y, z; mm) Cluster region

Right pPPA RM (scenes) 1,424 0, −74, 52 Left precuneus
Navigation (scene recognition) 992 −4, −48, 18 Left posterior cingulate

888 4, −36, 34 Right posterior cingulate

Left aPPA Navigation (scene recognition) 542 10, 52, −6 Bilateral ventromedial prefrontal cortex
326 −6, −52, 16 Bilateral posterior cingulate

Left RSC SAM (spatial) 928 −16, 26, 36 Left cingulate sulcus
Right RSC SAM (spatial) 2,448 4, 32, 2 Bilateral anterior cingulate

Navigation (scene recognition) 912 10, 54, 20 Right superior frontal gyrus
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demonstrated that brain-wide resting–state functional connectivity is capable of predicting various cognitive abilities,
including intelligence, attention, and creative ability (Finn et al., 2015; Rosenberg et al., 2016; Beaty et al., 2018).
However, other studies have suggested that resting-state functional connectivity may be a poor predictor of performance
on certain cognitive tasks (Marek et al., 2022; Kraljević et al., 2024). The efficacy of resting-state functional connectivity as
a predictor may be contingent upon the specific brain networks and behaviors under examination. In the domain of scene
perception, there may exist a substantial disconnect between scene processing abilities assessed outside the scanner
and the functional connectivity of the scene network measured at rest within the scanner.
To address this issue, an alternative approach would be to measure functional connectivity while participants actively

perform tasks relevant to scene processing. For instance, the perception and imagery of familiar places have been shown
to modulate the functional connectivity between the PPA, RSC, and hippocampus (Boccia et al., 2017b, 2019; Tullo et al.,
2023). A more task-general possibility would be to compare behavior measured outside the scanner with functional con-
nectivity measured during naturalistic viewing, which is intended to provide a more ecologically valid estimate of brain
states than resting-state (Finn, 2021). Indeed, movie watching has been shown to outperform resting-state at predicting
behavioral traits (Finn and Bandettini, 2021). Furthermore, while our analysis focused exclusively on functional connectiv-
ity, future studies could also test associations between behavior and the structural connectivity of the scene network. For
example, themicrostructure of the fornix (projecting from the hippocampus) has been linked to performance on scene dis-
crimination and navigation tasks (Postans et al., 2014; Hodgetts et al., 2015, 2020).
In conclusion, this study used behavioral and fMRI data from a large public database to compare resting-state functional

connectivity of the scene network with performance on behavioral measures of scene perception. We found substantial
individual differences in scene recognition, spatial memory, and navigational abilities. Furthermore, there was wide vari-
ability in the correlations between behavioral measures, suggesting that the measures assessed different aspects of
scene processing. However, we did not find any consistent associations between interindividual variability in functional
connectivity and performance on the behavioral measures. Future research is required to clarify the role of these connec-
tions in the cognitive processing of scenes, potentially by measuring functional connectivity while engaged in
scene-relevant tasks or under more naturalistic viewing conditions.
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