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Robust projective measurements through measuring code-inspired observables

Yingkai Ouyang1, ∗

1Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom

Quantum measurements are ubiquitous in quantum information processing tasks, but errors can
render their outputs unreliable. Here, we present a scheme that implements a robust projective
measurement through measuring code-inspired observables. Namely, given a projective POVM, a
classical code and a constraint on the number of measurement outcomes each observable can have, we
construct commuting observables whose measurement is equivalent to the projective measurement in
the noiseless setting. Moreover, we can correct t errors on the classical outcomes of the observables’
measurement if the classical code corrects t errors. Since our scheme does not require the encoding
of quantum data onto a quantum error correction code, it can help construct robust measurements
for near-term quantum algorithms that do not use quantum error correction. Moreover, our scheme
works for any projective POVM, and hence can allow robust syndrome extraction procedures in
non-stabilizer quantum error correction codes.

INTRODUCTION

Quantum measurements, ubiquitous in quantum infor-
mation processing tasks, are basic building blocks used
in all quantum algorithms, such as in quantum sampling
[1–3], quantum learning [4–8], quantum channel estima-
tion [9–12], quantum parameter estimation [13–20], or
universal quantum computations [21–24]. However, er-
rors in quantum measurements prevent these quantum
algorithms from unlocking their full potential.
Quantum algorithms use either just the classical out-

puts of quantum measurements or both the classical out-
puts and the measured states. Near-term quantum al-
gorithms such as quantum sampling, quantum learning,
and quantum parameter estimation algorithms use pri-
marily the classical outputs of quantum measurements.
When errors afflict the classical outcomes these near-
term quantum algorithms’ measurements, the precision
of these quantum algorithms’ outputs suffers. Regarding
near-term quantum algorithms, there has been a plethora
of recent recent on the topic of quantum error mitigation
[25–30], where the goal is to reduce the statistical error
of quantum measurements. This is achieved through re-
peated experiments and classical post-processing of the
additional classical data obtained. However, the ques-
tion of how to directly correct such measurement errors
in these near-term algorithms without access to quantum
error correction (QEC) is an open problem.
However, these mitigation schemes do not correct the

measurement errors that occur. Hence arises the question
that has been open since the dawn of the research field
of quantum computing:
Universal quantum computations can use both quan-

tum and classical outputs of measurements. Correction
of both quantum and classical errors in measurements us-
ing stabilizer codes has been discussed in the context of
data-syndrome codes [31–37], single-shot QEC [38–40],
and fault-tolerant quantum computing [41]. However,
the pertinent question of how to correct measurement
errors for non-stabilizer codes, such as for bosonic codes

[42–46], remains unanswered.

Here, we present a scheme that implements a ro-
bust projective measurement through measuring code-
inspired observables. Namely, given a projective POVM,
a classical code and a constraint on the number of
measurement outcomes each observable can have, we
construct commuting observables whose measurement
is equivalent to the noiseless projective measurement.
Moreover, we can correct t errors on the classical out-
comes of the observables’ measurement if the classical
code corrects t errors. The minimum number of com-
muting observables required depends on (1) the number
of measurement outcomes for each commuting observ-
able, (2) the number of measurement outcomes for the
underlying projective measurement, and (3) the number
of errors on classical outcomes that we wish to correct.
We obtain bounds on the minimum number of commut-
ing observables required based on bounds on the param-
eters of classical codes.

We suggest how to implement our scheme using an-
cillary coherent states. The requirements are modest.
Namely, we need access to a linear coupling between the
observables and ancillas, and the ability to perform ho-
modyne measurement on the ancillas. Hence, using a
modest amount of quantum control, we can in fact cor-
rect measurement errors, without need for quantum error
correction codes.

We explain how our scheme allows the correction of
measurement errors in any QEC code that satisfies the
Knill-Laflamme QEC criterion [47]. Namely, given any
QEC code that corrects a set of errors K, we bound
the minimum number of commuting observables nK,t

required to correctly perform the syndrome extraction
stage in the Knill-Laflamme recovery procedure if there
are up to t errors on the syndrome. Based on this, we
give bounds on nK,t, and elucidate this bound for binary
QEC codes and the binomial code.

We envision our scheme to complement existing quan-
tum error mitigation techniques, and thereby enhance
the performance of near-term quantum algorithms. In
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FIG. 1. Our scheme. Suppose that a projective measure-
ment P projects a quantum state into one of 8 orthogonal sub-
spaces. We label each subspace with a codeword of a classical
code C. We depict a shortened Hamming code with 8 code-
words. Each codeword is a 6-bit string, and the code corrects
one error. Then we illustrate the commuting q-observables
Q1, . . . , Q6 as columns on the right side of the diagram. Each
q-observable is an appropriate linear combination of projec-
tors in P . Here, q = 2, corresponding to binary outcome
observables. A spider illustrates an error that occurs on the
measurement outcome of Q5. We can correct this error using
the decoder of C, recovering the correct measurement out-
come. We conclude that the quantum state has been pro-
jected to the third subspace.

the longer term, our scheme can also enhance the design
of fault-tolerant quantum computations on non-stabilizer
codes, such as those reliant on bosonic codes [46, 48, 49].

MEASUREMENTS

We can describe a measurement as a POVM [50], which
is a set of positive operators that sum to the identity op-
erator. Without loss of generality, we can always focus
on projective POVMs, where the positive operators are
furthermore pairwise orthogonal projectors. This is be-
cause Naimark’s theorem ensures that for any POVM, we
can always perform a projective POVM on an extended
Hilbert space [51].

From the Born rule, measuring a projective POVM
P := {P1, . . . , PM} with pairwise orthogonal projectors
on an input state ρ yields the post-measurement state

ρk := PkρPk/ tr[ρPj ] with probability pk := tr[ρPk]. We
denote the measurement’s output as (ρk, k) where k is
the measurement’s classical outcome that allows us to
uniquely identify the post-measurement state ρk.

Mathematically, an observable is a Hermitian operator.
Consider an observable O =

∑

k λkPk, where λk are dis-
tinct real numbers for different values of k. Measurement

of O on ρ gives an output (ρk, λk) comprising of a post-
measurement state and some eigenvalue of O. According
to the Born rule, we obtain (ρk, λk) with probability pk.
Since there exists a function that maps λk back to k, the
measurement of O is the same as the measurement of P .
Errors affect a measurement’s output in two different

ways. First, errors can corrupt the classical outcome k.
Such errors can lead us to mistakenly conclude that the
post-measurement state is ρv for v ̸= k when the true
post-measurement state is in fact ρk. Second, errors can
corrupt the post-measurement state ρk. Here, we propose
a measurement scheme that allows correction of errors on
classical outcomes.
Now, let q be an integer where q ≥ 2, and let us de-

fine a Hermitian operator with q distinct eigenvalues as
a q-observable. Operationally, the integer q counts the
number of possible measurement outcomes of each ob-
servable.

COMMUTING OBSERVABLES FROM

CLASSICAL CODES

In the observable O, the integers 1, . . . ,M label M dis-
tinct measurement outcomes. Consider a classical code
C comprising of M distinct codewords. When C is a
q-ary code of length n, each codeword is a vector in
{0, 1, . . . , q − 1}n. We denote

x(k) = (x
(k)
1 , . . . , x(k)

n )

as the kth codeword of C, and we can write C = {x(k) :
k = 1, . . . ,M}.
Each integer 1, . . . ,M labels exactly one codeword in

C. The encoder EC of C is a bijective map from the
classical labels in {1, . . . ,M} to codewords in C. Namely,
EC(k) = x(k). Without errors on the components of x(k),
a decoder of C performs the inverse map of EC , and maps
the codeword x(k) back to the label k.

In the measurement of P , errors could afflict its clas-
sical outcome. To address this, we propose the measure-
ment of n commuting q-observables Q1, . . . , Qn that en-
code redundant information about P . We denote the
classical outcome of Qj ’s measurement as yj and de-
note the output of the measurements of Q1, . . . , Qn as
(τ,y) where τ denotes the post-measurement state and
y = (y1, . . . , yn). We want the q-observables to be con-

sistent with P , in the sense that measurement of the q-
observables performs the same measurement as P in the
noiseless setting. Hence we give the following definition.

Definition 1. Let P be a projective POVM and

Q1, . . . , Qn be commuting observables. The observables

Q1, . . . , Qn are consistent with P if there exists a func-

tion f such that for any output (τ,y) of the measurement

of Q1, . . . , Qn on ρ, we have τ = ρf(y).
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We propose to construct q-observables using informa-
tion about a projective POVM P and a classical q-ary
code C. Namely, for j = 1, . . . , n we define the q-
observables as

Qj(C,P ) :=

M
∑

k=1

x
(k)
j Pk. (1)

When the context is clear, we use Qj to denote Qj(C,P ).
From the orthogonality of the projectors Pk, the observ-
ables Q1, . . . , Qn are pairwise commuting, which allows
us to measure Q1, . . . , Qn in any order.
In our construction, the correctibility of errors on the

measurement outcomes of our q-observables depends on
the minimum distance of C, given by

d(C) := min
y ̸=z∈C

dH(y, z),

where dH(y, z) := |{i : yi ̸= zi}| is the Hamming distance
between tuples y and z. Namely, we can correct any
t(C) := ⌊(d(C) − 1)/2⌋ errors on the classical outcomes
of Q1, . . . , Qn.
A decoder of a classical code can correct up to t(C)

measurement errors on y. This is because a noiseless y
must be a codeword in C. Here, a decoder D of a code
C is a function D : {0, . . . , q − 1}n → {1, . . . ,M} which
maps an n-tuple to an index that labels the codewords.
Given some non-negative integer a, we say that D is an
a-decoder of C, if for all k = 1, . . . ,M, and for all y such
that d(y,xk) ≤ a, we have

D(y) = k. (2)

An a-decoder corrects a errors. When d(C) = d, then
there is a t(C)-decoder for C. Our main result is the
following.

Theorem 1. Let C be a q-ary code of length n,
and let D be a t(C)-decoder for C. We measure

Q1(C,P ), . . . , Qn(C,P ) on a quantum state ρ, and ob-

tain the classical outcome y = (y1, . . . , yn) along with

the post-measurement state τ . Suppose that at most t(C)
components of y have been corrupted. Then τ = ρD(y).

Proof. Let z = (z1, . . . , zn) denote the classical outcome
if no errors occurred. Then, z−y has a Hamming weight
of at most t. Furthermore, we have

D(z) = D(y). (3)

Case 1: No errors on measurement outcomes.
When we measure the observable Qj(C,P ) and obtain
the classical outcome zj , the resultant state must be on
the support of the projector

Pj,zj =
∑

k:zj=xk,j

Pk. (4)

After measuring the observables Q1(C,P ), . . . , Qn(C,P ),
we obtain the classical outcomes z1, . . . , zn. Then the
state τ is on the support of

n
∏

j=1

Pj,zj =
∑

k:zj=xk,j ,j=1,...,n

Pk =
∑

k:z=xk

Pk. (5)

From (5), z must belong to C. Since there are no re-
peated codewords in C, there is a unique k for which
z = xk. Together with the fact that t(C) ≥ 0, it follows
that

n
∏

j=1

Pj,zj = PD(z). (6)

The state τ must be on the support of PD(z), which
means that τ = ρD(z).

Case 2: At most t(C) errors on classical outcomes.
From case 1, we know that τ = ρD(z). Since D(y) =
D(z), we have τ = ρD(y).

In our proof of Theorem 1, we show that in the noise-
less setting, the n-tuple of classical outcomes is a code-
word of C. When there are at most t(C) errors on the
classical outcomes, the decoder D corrects these errors.
Hence, the observables Q1(C,P ), . . . , Qn(C,P ) are con-
sistent with P , even in the presence of some errors on the
classical outcomes.

As an example, consider a scheme that uses the short-
ened Hamming code C6 and a projective POVM P =
{P1, . . . , P8} to define the six binary observables to mea-
sure both in the noiseless setting. In this example, the
parameters of the code are q = 2, n = 6, d(C6) = 3,
and M = 8. Now the code C6 is a linear code gener-
ated by binary vectors a1 = 100011, a2 = 010101, and
a3 = 001110, and has eight codewords given by

x1 = 000000,

x2 = 100011 = a1,

x3 = 010101 = a2,

x4 = 001110 = a3,

x5 = 110110 = a1 + a2,

x6 = 101101 = a1 + a3,

x7 = 011011 = a2 + a3,

x8 = 111000 = a1 + a2 + a3. (7)

Applying the definition (1) along with the form for the
codewords in (7), the corresponding binary observables
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are

Q1(C6, P ) = P2 + P5 + P6 + P8

Q2(C6, P ) = P3 + P5 + P7 + P8

Q3(C6, P ) = P4 + P6 + P7 + P8

Q4(C6, P ) = P3 + P4 + P5 + P6

Q5(C6, P ) = P2 + P4 + P5 + P7

Q6(C6, P ) = P2 + P3 + P6 + P7.

We illustrate these binary observables in Figure 1. Now
consider no errors on classical outcomes. When we
measure Q1(C6, P ) and obtain the classical outcome 0,
the state must be on the support of I − Q1(C6, P ) =
P1+P3+P4+P7, where I denotes the identity operator.
If we measureQ2(C6, P ) and obtain the classical outcome
1, then the state is on the support of P1 + P3 + P4 + P7

and P3 + P5 + P7 + P8. Hence the state is on the sup-
port of P3 + P7. If we measure Q3(C6, P ) and obtain
the classical outcome 1, then the state is on the sup-
port of P3 + P7 and P4 + P6 + P7 + P8. Hence the state
is on the support of P7. Further measurements of the
observables Q4(C6, P ), Q5(C6, P ), Q6(C6, P ) give redun-
dant information about where the state is projected on,
and we obtain the codeword x7 as the classical outcome.

In Figure 1 we illustrate the measurement of the binary
observables Q1(C6, P ), . . . , Qn(C6, P ) when an error af-
flicts the classical outcome of Q5(C6, P ).

IMPLICATIONS

Combinatorics:- What is the minimum number of q-
observables required to correct t errors on the classical

outcome of a projective POVM with M projectors? We
answer this question in the following.

Corollary 2. Let P be a projective POVM with M pro-

jectors. Let nq(M,d) to be the shortest n such that there

exists a code of length n and with at least M codewords

and distance at least d. Let nq,t,M be the smallest integer

such that there exist observables Q1, . . . , Qn consistent

with P , even after any t errors occur on the classical

outcomes of Q1, . . . , Qn. Then nq,t,M = nq(M, 2t+ 1).

Proof. From Theorem 1, we know that the condition for
Q1, . . . , Qn to be consistent with P after t errors occur
on the classical outcomes is equivalent to the condition
that a q-ary classical code C has length n, distance at
least 2t+ 1, and has M codewords.

The combinatorics of nq(M,d) directly relates to the
combinatorics of Aq(n, d), where Aq(n, d) is the maxi-
mum number of codewords in a q-ary code with Ham-
ming distance d and with codewords having n compo-
nents. Note that nq,t,q = 2t + 1 through the use of a
q-ary repetition code. Using results on the combinatorics

of Aq(n, d) and nq(M,d) [52], we illustrate the values of
nq,t,M , in Table I for q = 2, t = 1, 2, 3 and 2 ≤ M ≤ 40.

t\M 2 4 6 8 12 16 20 38-40

1 3 6 7 7 8 8 9 10
2 5 9 10 11 11 12 12 14
3 7 12 14 14 15 15 16 18

TABLE I. Some values of n2,t,M .

When the number M of projectors in P is very large,
we can bound M in terms of the volume of a q-ary Ham-
ming ball of radius t, which we denote as Vq,n(t) :=
∑t

j=0

(

n
j

)

(q − 1)j . Namely,

qn/Vq,n(2t) ≤ M ≤ qn/Vq,n(t), (8)

where the upper and lower bounds are the Hamming
bound and Gilbert-Varshamov bound respectively [53].
bounds such as Johnson’s bound [54] or linear program-
ming bounds for classical codes [55, 56] can tighten the
upper bound in (8). For large n and t < n(q − 1)/q,
we have 1

n
logq Vq,n(t) = Hq(t/n) + o(1), where Hq(x) :=

−x logq x− (1−x) logq(1−x)+x logq(q− 1) denotes the
q-ary entropy function. Given τ as the fraction of er-
rors on the classical outcomes of the measurement of our
q-observables, for large M , we have

logq M

1−Hq(τ) + o(1)
≤ nq,τn,M ≤

logq M

1−Hq(2τ) + o(1)
. (9)

Implementation:- Similarly to Refs. [57, 58], we can
couple our quantum state to n bosonic modes initialized
as coherent states |α1⟩, . . . , |αn⟩ and measure the modes
to implement our scheme. Let n̂j be the number operator
on the jth mode, and suppose that 2π|αj |2 ≫ q. The
interaction Hamiltonians

Wj = γQj ⊗ n̂j (10)

model a dispersive coupling between the quantum system
and the ancillary bosonic modes.
Now let |φ⟩ be a state for which Qj |φ⟩ = zj |φ⟩ for all

j = 1, . . . , n. Then Wj |φ⟩|αj⟩ = |φ⟩(γzj n̂j |αj⟩). Hence
e−iWθ|φ⟩|αj⟩ = |φ⟩e−iθγzj n̂j |αj⟩ = |φ⟩|e−iθγzjαj⟩. With
θ = 2π/(qγ), the initial phase space distribution of the
jth mode with radius |αj |2 and standard deviation 1/

√
2

maps to up to q different equiangular rotations in the
complex plane. Using balanced homodyne detection [59]
we can measure the quadratures of the output bosonic
fields. Because we chose 2π|αj |2 ≫ q, the distributions
for different zj will be distinguishable. Hence we project
onto the eigenspaces of Qj in a non-destructive way.
Repeating the procedure for j = 1, . . . , n allows us to
obtain the classical outcome (z1, . . . , zn) in the noiseless
setting. From Theorem 1, we can correct up to t errors
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on (z1, . . . , zn) using a classical decoder.

Application (Quantum error correction):- We can
describe the recovery channel of any QEC code as a
two-stage process [47]. In the first stage, we measure
a carefully chosen projective measurement with POVM
Π′. Upon measuring Π′, we get a classical outcome and
a quantum output. The classical output labels the sub-
space that the quantum output resides in. In the second
stage, a unitary operation dependent on the classical out-
come brings the quantum output back to the codespace.

The projectors in Π′ depend on the QEC code and the
set of operators K to be corrected. Since the number of
correctible spaces of the code is at most |K|, and at most
one projector corresponds to an uncorrectible space, we
have |Π′| ≤ |K| + 1. For a distance p-ary QEC code on
m qudits that corrects k errors, we can choose K so that
|K| = Vp2,m(k). From [47], |Π′| ≤ |K|. Hence, for an m
qubit QEC code that corrects a single error (has distance
3), we have |Π′| ≤ 2 + 3m.

As an example, consider the optimal non-additive nine-
qubit binary QEC code that has codespace of dimension
12, and with distance 3 [60]. In this case |Π′| ≤ 29 From
Table I, deploying our scheme with 10 binary observables
allows the correction of up to one error on the classical
outcome of Π′. In contrast, the noiseless decoding of
this non-additive nine-qubit code in Ref. [60] requires five
binary observables, and repeating these measurements
thrice to allow the correction of one error necessitates
the use of 15 binary observables, which is greater than
the 10 binary observables our scheme requires.

Now consider p-ary QEC codes that correct k errors
using m qudits. Setting τ as the maximum fraction of
errors on the classical outcome of Π′, from (9), the min-
imum number n of binary observables required to allow
robust syndrome extraction according to Π′ satisfies the
bounds

n ≥ m(Hp2(k/m) log2 p) + o(1))

log2 Hq(τ) + o(1)
(11)

n ≤ m(Hp2(2k/m) log2 p) + o(1))

log2 Hq(2τ) + o(1)
. (12)

As another example, we consider the binomial code
[44], which is a bosonic code on a single mode that cor-
rects gain errors, loss errors and phase errors. Here, loss
errors, gain errors and phase errors are monomials of a,
a† and a†a respectively where a denotes the mode’s low-
ering operator. Namely, a binomial code that corrects
g1 gain errors, g0 loss errors, and k phase errors has as
its set of correctible errors K = {aj : j = 0, . . . , g0} ∪
{(a†)j : j = 0, . . . , g1} ∪ {(a†a)j : j = 0, . . . , k}. Clearly,
|K| = g0+g1+k+1. Such a binomial code has two param-
eters, the gap g = g0 + g1 + 1, and N = max{g0, g1, 2k}
and encodes one logical qubit, and is defined by the log-
ical codewords in [44, Eq. (7)]. For such a binomial code

where g0 = g1 = k, we have |Π′| ≤ 3k + 2. In Table II,
we present the minimum number of binary observables
that are consistent with Π′ after the occurrence of up to
a single error on the classical outcome of their measure-
ment.

k 1 2 3 4 5 6 7 8

|Π′| 5 8 11 14 17 20 23 26
n 7 7 8 8 9 9 10 10

TABLE II. Some values of the minimum number of binary
observables consistent with Π′ needed to correct up to one
error on the classical outcomes of their measurement n, and
furthermore correct k gain, loss and phase errors.

DISCUSSIONS

We proposed a set of commuting q-observables whose
measurement is consistent with a given projective mea-
surement, even after some errors corrupt the classical
outcomes of the measurement of the observables. Hence,
measuring these commuting observables effectively im-
plements a robust projective measurement.

There is potential to study how near-term quantum al-
gorithms that do not rely on QEC can be improved using
our scheme in realistic settings. Moreover, it would be
interesting to explore the implementation of our scheme
with other non-stabilizer codes, such as concatenated cat
codes [42, 61], rotation-invariant codes [46], permutation-
invariant codes [45, 62–67], codeword-stabilized codes
[68], error-avoiding codes [69–71], and certain codes that
lie within the ground space of local Hamiltonians [72].
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