
This is a repository copy of Enhancing battery durable operation: Multi-fault diagnosis and 
safety evaluation in series-connected lithium-ion battery systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224169/

Version: Accepted Version

Article:

Zhao, Y., Deng, J., Liu, P. et al. (5 more authors) (2025) Enhancing battery durable 
operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion 
battery systems. Applied Energy, 377 (Part C). 124632. ISSN 0306-2619 

https://doi.org/10.1016/j.apenergy.2024.124632

This is an author produced version of an article published in Applied Energy, made 
available under the terms of the Creative Commons Attribution License (CC-BY), which 
permits unrestricted use, distribution and reproduction in any medium, provided the 
original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Enhancing Battery Durable Operation: Multi-Fault Diagnosis 

and Safety Evaluation in Series-Connected Lithium-ion Battery 

Systems  

Yiwen Zhaoa,b, Junjun Denga,b, Peng Liua,b,c, Lei Zhanga,b, Dingsong Cuid, Qiushi 
Wanga,b,e, Zhenyu Sunf,g,* and Zhenpo Wanga,b,c,** 
 

a. National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, 

Beijing, 100081, China 

b. Beijing Co-innovation Centre for Electric Vehicles, Beijing, 100081, China 

c. Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China 

d. Institute for Transport Studies, University of Leeds, LS2 9JT, United Kingdom 

e. Beijing Automotive Research Institute Co., Ltd, Beijing, 100176, China 

f. South China University of Technology, Guangzhou, 510640, China 

g. Sunwoda Power Technology Co., Ltd., Shenzhen, 518107, China 

Corresponding Author: 
**Zhenpo Wang (wangzhenpo@bit.edu.cn) and *Zhenyu Sun (bitzhenyu@163.com) 

 

Corresponding Address: 
National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, 

Beijing, 100081, China 

 

  



Abstract 

Precise fault identification and evaluation of battery systems are indispensably required 

to facilitate safe and durable operation for electric vehicles. With the core objective of 

addressing the challenges of inaccurate evaluation and misdiagnoses of multi-fault in existing 

methods, this paper proposes a deep-learning-powered diagnosis and evaluation scheme for 

series-connected battery systems. First, we conduct series-connected cycling experiments 

to simulate the two most common faults including capacity anomaly fault and short circuit 

fault happening concurrently to observe the failure phenomena of different faulty batteries 

and fault-free batteries. Then, the evolutional processes of various faults are analyzed and 

compared for a deeper understanding of the battery fault mechanism. In addition, we 

establish an elaborate deep-learning-based model, achieving satisfactory realizations on 

predicting the reference voltage (with the mean square error of 7.84×10-5 V) while 

categorizing the current fault state (with an accuracy of 98.2%). At last, a comprehensive fault 

identification and quantification strategy is constructed to minimize the misdiagnosis. All 

proposed methodologies demonstrate the advancement compared to other state-of-the-art 

algorithms. The results are thoroughly validated with two different experimental datasets and 

real-world cloud vehicle datasets, affirming the efficiency and practical applicability, 

contributing to enhancing the active safety capabilities of battery systems. 

Keywords: Lithium-ion Batteries; Multi-Fault Diagnosis; Deep-Learning Technologies; 

Safety Evaluation Strategy 

 

 

  



1 Introduction 

The world is becoming increasingly electrified [1–3]. Transportation, renewable energy 

storage systems and mobile devices, especially for ramping electric vehicle (EV) deployment, 

are calling for much better batteries [4,5]. The commercialization of lithium-ion batteries (LIBs) 

has accelerated the electrification process of vehicles [6–8]. To develop a longer all-electric 

driving range, series/parallel assembly with higher battery power density (250-693 Wh/L and 

100-265 Wh/kg for LIBs [9]) individual cells have highlighted an increasing and continuing 

concern on safety issues [10]. The risk of hazardous failure of LIBs from reputable 

manufacturers is less portable but needs to be understood solidly for regulators [11]. Accurate 

and advanced pre- and diagnosing potential faults is extremely challenging prior to a 

destructive explosion of safety issues. Additionally, since the LIB is essentially an 

electrochemical energy storage system, the safety issues of LIBs are directly related to the 

materials of key internal components and their chemical stability. This will ultimately be 

reflected in abnormal variations of external parameters. Therefore, we focus on resolving the 

diagnosis challenges by dealing with external characteristics of LIBs in this paper.  

The most catastrophic failure mode of LIBs is thermal runaway (TR) [12], which has a 

high probability of evolving gradually from the inconsistencies of the battery system in realistic 

operation [13,14]. This condition can be caused and enlarged by continuous 

overcharge/overdischarge [15,16], short circuit (SC) [17], connection issues, sensor fault [18], 

capacity anomaly (CA) [19], etc., leading to rapid and uncontrolled increase in temperature, 

and eventually develops into TR [20]. An SC in a LIB occurs when there is an unintended 

connection between the positive and negative terminals, typically caused by manufacturing 

defects, physical damage and so on [21]. Among all the known types of battery failure modes, 

the SC tops the list of the major safety concerns for LIBs [22]. A micro SC fault only manifests 

negligible abnormalities in the early stage, while it will be a severe deterioration after a long 



evolution process [23], causing improving self-discharge rate and calorific value. Similarly, 

the CA fault will directly cause inconsistency of the battery system, while the cells in the 

battery pack will experience differing rates of degradation, as illustrated in our previous work 

[24]. Frequent failure abuse for cells as well as unbalanced initial cell capacity in the battery 

pack can result in the CA fault. Nevertheless, motivated by the confusing external properties 

and similar evolutionary progress of these faults, this paper aims to enhance the safety risk 

early-warning capability of battery systems considering these two electrical abuse conditions 

deeply.  

An associated strand of research has diagnosed the faults with model- and data-driven- 

based methods. The model-based methods focus on employing battery models to generate 

residuals, which help in identifying the presence of faults [25,26]. These methods are widely 

appreciated for their high precision in detecting faults. However, the complexity involved in 

developing and solving these models cannot be overlooked. The mathematical models 

require a deep understanding of the battery's internal mechanisms and intricate computations, 

making them resource-intensive and challenging to implement on a large scale. Better yet, 

data-driven-based methods straightly cope with the battery running data, eliminating the need 

for constructing explicit mathematical models or possessing in-depth knowledge of the 

battery's internal dynamics [24,27,28]. These methods leverage advanced algorithms and 

statistical tools to diagnose faults [29]. Specifically, deep learning (DL) algorithms, traditional 

machine learning algorithms, and various statistical instruments are effectively utilized for this 

purpose [30–32]. The reliability of these methods heavily depends on the quality of the data 

being analyzed. Nevertheless, advanced data collection technology for batteries enables it 

possible for a widespread data-driven application. 

Focusing on the model application scenario, it can be noted that plentiful studies have 

only investigated the specific battery fault diagnosis, such as single SC fault diagnosis [33,34]. 



However, various types of battery faults generally coincide in real-world applications due to 

uncertain external environments and operating situations of EVs. These faults are generally 

insidious and similar, bringing challenges to differentiate and detect promptly. Thus, 

diagnosis methods for a single fault are not universal enough, while multi-fault diagnosis will 

be difficult to implement. That is the main gap that we find in previous studies and the first 

issue that we aim to solve in this paper. Moreover, a battery management system (BMS) can 

only detect obvious faults by thresholds such as drastic over/under voltage, overcurrent and 

overtemperature. The external characteristics of most of the micro failures in the early stage 

are tiny and hidden due to a long-term evolutionary process before the TR of the battery, 

which cannot be pre-detected by the BMS in time. That is the second problem covered and 

investigated in this paper. Thus, a comprehensive multi-fault diagnosis scheme based on the 

fault mechanism and DL-powered technologies is proposed to solve the above problems. 

The main contributions of the paper are listed as follows: 

a. Cycles of multi-fault simulation experiments are conducted to concurrently observe the 

characteristics and discrepancies of cells, enabling us to analyze the evolution mechanism 

of different faults, providing a solid fault-mechanism-based foundation and labeled insights 

for constructing a reasonable diagnostic scheme. 

b. The entire diagnostic scheme only adopts directly measurable parameters and as few 

but sufficiently effective fault indicators as possible for feature extraction and model building 

with no need for redundant measurement sensors. The simplicity and practical application 

possibilities can be fully guaranteed. 

c. Taking into account both the abnormal changes at the individual cell level and the 

potential inconsistencies occurring within cells at the module level, we have separately 

constructed a highly accurate Predictor and a well-performed Classifier with the assistance 



of DL algorithms. The proposed models are capable of providing complete diagnostics for the 

entire battery system. 

d. Our paper further extends the application of time windows and statistical methods to 

determine the type of the failure, especially focusing on quantifying the degree of multiple 

faults. The constructed safety evaluation strategy can effectively avoid the probability of 

misdiagnosis. The credibility and practical implementation of the proposed models can also 

be improved efficiently.  

e. All technical processes of the proposed diagnostic framework are validated in the real-

world operational vehicle dataset and perform well, demonstrating strong applicability. 

The remainder of the paper is structured as demonstrated: Section 2 (Framework 

Overview) provides an overview of the motivation and the technological framework of the 

article. Section 3 (Experimental and cloud data) introduces the procedures of fault 

simulation experiments and cloud EV operational data. Section 4 (Methods) details the 

construction of the DL-powered fault identification and quantification strategy. Section 5 

(Results and Discussions) evidences the diagnostic results and applicability of the 

proposed framework include while dialectically outlining the superiorities of the proposed 

methodology. Finally, Section 6 (Conclusions) summarizes the overall technological 

process. The rest of the necessary materials are placed in the Supplementary. 

  



2 Framework Overview 

The primary motivation for this work is to provide as comprehensive and effective a 

diagnosis approach of the battery as possible before it causes further harm and to make it 

practical application. Dedicated to diagnosing multi- fault in battery systems, we carry out 

three main efforts as outlined in Fig.1: (a) Experimental and cloud data: In order to observe 

the behavior of simultaneous faults in a series-connected battery system and to furnish 

theoretical and phenomenological insights for the follow-up fault diagnosis, we conduct cyclic 

multi-fault tests and make further fault evolution mechanism analysis for a reasonable fault 

feature selection. The cloud EV operational data are briefly introduced for the framework 

validation. (b) DL model construction：Leveraging the power of DL algorithms and the 

accessibility of directly measurable parameters, a Predictor and a Classifier are built for 

realizing the prediction of reference voltages at the cell level and the classification of various 

faults at the module level, respectively. All proposed models have been rigorously trained, 

tested, validated and compared to current state-of-the-art algorithms. (c) Safety evaluation 

scheme: Considering maximizing the practical applicability the overall diagnostic framework, 

we contribute to developing a rule for identifying faults to minimize misdiagnosis while at the 

same time quantifying and ranking the fault risk. 



 

Fig.1 Overall workflow of the proposed multi-fault diagnosis framework. 

3 Experimental and Cloud Data  

3.1 Experiment Procedure and Data Generation 

This paper delves into the examination of commercially available cylindrical 18650 

NCR/graphite LIBs, the specifications of the batteries are illustrated in Table 1. A five-cycle 

series-connected test including multiple faults injection is designed to generate the basic data 

for this work. The detailed battery charge/discharge strategies are provided in 

Supplementary Note 1 and Fig.S1. The experimental environment and example data of load 

and response are displayed in Figs.2 a-c, respectively. Specifically, the concrete simulation 

circuit is designed as shown in Fig.2 d that three F-F cells without any fault injection (#1, #3 

and #5), one cell with a lower initial capacity simulating a CA fault (#2) and one cell paralleled 

with an external resistor to replicate an SC fault (#4) are involved in the experiment. An SC 
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of the battery can be regarded as being connected in parallel with a small resistance load, 

which will result in an instantaneous overcurrent and voltage reduction of the battery itself. 

Therefore, we choose to rationally simulate the triggering of SC by connecting resistors in 

parallel. 

Table. 1 Specifications of the Cylindrical Ternary 18650 Batteries in the Experiments. 

Items Specifications Notes 

Manufacturer Code NCR18650BD Manufactured by Panasonic 
Cathode Li(NiCoAl)O2 - 
Anode Graphite - 

Discharge Cut-off Voltage 2.5V - 
Charge Cut-off Voltage 4.2V - 

Nominal Voltage 3.6V 0.61A discharge at 25℃ 

Nominal Rated Capacity 3000mAh 0.61A discharge at 20℃ 

Max Continuous 
Discharge Current 10A 0~+40℃ 

Max Charge Current 1.5A - 
Weight less than 49g - 

Internal Resistance less than 35mΩ AC impedance 1kHz 

Specifically, the initial capacity of Cell #2 is intentionally reduced to nearly 95% of the 

other freshly connected cells in the fault-simulation circuit. RSC is set at 50Ω, representing the 

external resistance of Cell #4. It is activated during the initial charging snippets, approximately 

1,200 seconds into the test. It's worth mentioning that an additional testing dataset with 

different parameters is conducted for further validation. These new tests closely follow the 

experimental procedure described above. However, the state of health (SOH) of Cell #2 is 

decreased to 92%, while the external resistance of Cell #4 is increased to 100Ω. The detailed 

information of two groups of tests is displayed in Table. 2.  

  



Table. 2 Basic Cell Information of the Cyclic Series-Connected Test 

Group Cell No. Initial Capacity (mAh) Fault Injection Type Time of Fault Injection (sec) 

A 

#1 2928 F-F - 
#2 2830 CA Fault (95%SOH) - 
#3 2925 F-F - 
#4 2936 SC Fault (50Ω) 1,200 (±0.05sec) 
#5 2932 F-F - 

 #1 2928 F-F - 
 #2 2760 CA Fault (92%SOH) - 
B #3 2925 F-F - 
 #4 2936 SC Fault (100Ω) 1,200 (±0.05sec) 
 #5 2932 F-F - 

 

 

Fig.2 The schematic illustration of the experimental steps. a The experimental 
environment established by module tester (used for charge and discharge the batteries), host 
PC (data collection) and batteries, 5 cycles are conducted for observation; Detailed b load 
profiles and c voltage responses of the tested cells. d Specific fault simulation circuit with 5 
tested battery cells (18650 NCR/graphite LIBs), assembled with 3 F-F battery cells (#1, #3 
and #5), 1 CA battery cell (#2) and 1 SC battery cell (#4).  
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3.2 Understanding the Fault Evolution Mechanism 

Our primary focus revolves around diagnosing micro electrical faults commonly 

encountered in battery systems, specifically SC and CA faults. As our cyclic experiment 

progresses, cells afflicted with various fault types exhibit distinct deterioration mechanisms. 

Fig.3 a. illustrates the voltage responses during a multi-stage constant current (CC) 

experiment within a sample series-connected battery, comprising an SC cell, a CA cell and 

an F-F cell. Zooming in on the inception of SC triggering (marked by the activation of switch 

S) in Fig.3 b, it can be observed a voltage drop resulting from current leakage, measuring 

approximately 2×10-3 V. This micro drop can be attributed to the application of an external 

resistance of a negligible magnitude. Fig.3 c presents a benchmark scenario involving the F-

F cell during the charging phase, highlighting the occurrence of cell-to-cell inconsistencies. 

The voltage difference (VD) between the CA cell and the F-F cell (as well as between the SC 

cell and the F-F cell) is measured to quantify this variation. Formulation (1) provides a case 

of Cell #3 to calculate the VD:  

 = −( ) ( ) ( )n ref nVD t V t V t  (1) 

wherein, Vref demonstrates the reference voltage of the battery system, which is in this case 

calculated from an F-F cell for standard; Vn is the n-th cell needed being detected; VDn is the 

VD of the n-th cell; t refers to the sample time. 

Furthermore, as depicted in Fig.3 d, we aim to elucidate the differentiation observed in 

cell behavior concerning capacity changes during charging under different failure modes. 

Typically, cells arranged in a battery series commence their charge-discharge cycle with an 

identical initial state of charge (SOC). Owing to the inherent characteristics of a series-

connected configuration, both the CA cell and the F-F cell are charged to the same capacity, 

albeit exhibiting divergent voltage profiles. Notably, the voltage of CA cells experiences a 



more rapid ascent during the charging process due to the less initial capacity. Concurrently, 

the SC cell exhibits a reduced charging capacity in comparison to the F-F cell, primarily 

attributable to the fact that SC leads to current leakage. Consequently, a battery afflicted with 

an SC fault during the charging process typically manifests a lower voltage level.  

As mentioned above in Fig.3 c, VDs respond sensitively to injected faults of the 

experiment in this paper. Thus, the faulty progress by inter-cell VDs is further analyzed in 

Fig.4. We count the VDs of cells with different failure modes cycle by cycle to illustrate and 

compare the evolutionary process of faults involved in this paper. During the experiment, the 

CA and F-F cell show a relatively stable distribution, while the CA cell shows a wider range 

than that of the F-F cell. Differently, as the cycle deepens, the SC performs an incrementally 

larger, while others are virtually unchanged. It can be derived that (a). VDs of CA, F-F and 

SC varies in same charging snippets; (b). VDs of CA, F-F and SC evolve divergently in cycles 

as well. These are the reasons to choose VD as the key indicator to identify the failure modes 

in this work.  



 

Fig.3 Distinct deterioration mechanisms of various fault types. a. Voltage responses 
during a multi-stage CC process; b. Local amplification of voltage drops at SC trigger; c. VD 
between CA cell, SC cell and FF cell; d. Charging capacity changes of different failure modes 
in series-connected battery system. 

 

Fig.4 The evolutionary process of VDs of various fault types., in which subplots #1-#5 
represent the cycle 1-5 of the experiment, respectively. 
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3.3 Real-World EV Operational Data 

In real-world EV application scenarios, due to the uncertainty caused by external 

environment, operating conditions, user behaviours, incidental events and so on, batteries 

may act differently than in a lab setting. To validate the feasibility of the proposed concept 

and models constructed by experimental datasets, we employ real-world EV operational 

data to further examine and optimize the overall diagnostic framework. These operational 

data are sourced from a typical EV model of the National Big Data Alliance of New Energy 

Vehicles (NDANEV) Open Lab, including normal vehicles and those involved in battery TR-

induced accidents, is obtained for this part of the study. According to the standardized data 

transmission protocol, 73 data items, encompassing both vehicle and battery states, are 

collected to the platform in real-time with a sampling frequency of 0.1 Hz. The readers may 

refer to [35] for thorough particulars of data preprocessing and segment division. The 

detailed specifications of the studied vehicles are listed in Table. 3. 

Table. 3 Specifications of the Studied EV Model 

Items Specifications 

Curb Weight (kg) 1595 

Pack Configuration 1p95s 

Cell Cathode NCM 

Cell Capacity (Ah) 126 

Cell Nominal Voltage (V) 3.65 

The Battery Energy Capacity (kWh) 45 

 

 

  



4 Methods 

Theoretically, LIBs are complex and nonlinear electrochemical systems with a lack of 

measurable parameters in practical BMSs. This paper only utilizes measurable battery 

responses and the calculation of VDs of battery systems as the foundation to investigate 

the diagnostic strategies with the assistance of DL algorithms. With this simplification, the 

requirement for extra battery parameter identification and redundant parameter capturing is 

eliminated. Herein, we leverage the power of DL algorithms to transform cell responses into 

a time series problem, encompassing the electrochemical properties of the battery itself, the 

failure mechanisms and fault-induced variation in external characteristics across cells. 

Concretely, our diagnostic framework consists of three key sections: (a) Predicting future 

reference voltage responses at the cell level (4.1.1) and (b) Classifying multiple faults at the 

module level (4.1.2). (c) Determining the type of fault and quantifying the degree of the fault 

(4.2). 

4.1 DL-Powered Diagnostic Algorithms 

4.1.1 Reference Voltage Predictor 

Terminal voltage is usually the most direct and rapid manifestation of the battery faults 

and abnormal states. Ideally, within a module, when the internal resistance and initial 

available remaining capacity of individual cells are consistent, the voltage profiles of the cells 

should coincide. Furthermore, when each cell is subjected to identical operational conditions 

and environments, their degradation trajectories should also be consistent, implying that the 

voltage profiles should exhibit the same trend of variation [36]. However, when some of the 

cells in the actual battery module are faulty, the voltage profiles of the faulty cells produce a 

different degree of outliers from the F-F cells.  

Based on the above description, in this section we introduce the hypothesis of the 

reference voltage. The reference voltage in our diagnostic scheme demonstrates the 

standardized future voltage value of a battery cell. The predicted reference voltage values 



enable further determination of whether an abnormality occurs by evaluating the actual 

measured voltage values. In Formulation (1), we select an F-F cell as a reference to calculate 

the VDs and analyze the fault mechanism, however, the reference cell is hard to select in 

operating batteries. Thus, our goal is to predict the reference voltage in this section, providing 

a criterion of diagnostics for battery systems in advance. DL models are capable of 

automatically learning and extracting relevant features from time series data. This eliminates 

the need for manual feature engineering, making them more adaptable to a wide range of 

time series problems. In this paper, the recurrent neural network (RNN) kernel is used to 

establish the prediction model due to its strong capabilities in solving forecasting challenges 

in time series. Here we choose the gated recurrent unit (GRU) as the core layer of RNN. The 

  

Fig.5. The modelling scheme illustration of the Predictor. The Predictor includes four 
main components: In a, the past X of the model input matrix involves a 500-second time 
window time series including total voltage (TV), charging current(I), charging capacity(Q) 
of the battery system and the corresponding future Y is the 500-second cell voltage 
response. Both time windows of X and Y samples every 1-second a stride. The core layer 
of the model consisting of a three-layer GRU for the forecasting task is provided in b. The 
information from previous layers is integrated in c, enabling the neural network to better 
understand complex relationships within the input data. d. The model output is the cell 
voltage with a 500-second sequence (same length as input Y) in this paper. 



constructed GRU structure is displayed in Fig.5 and the explanation of each applied layers 

are detailed in Supplementary Note 2. In addition, the time window is introduced for 

achieving multi-forward prediction and fully studying the information of the battery sequence, 

intercepting several 500-second battery sequence data with a 1-second stride to slide the 

time window as shown in Fig.6. In the Predictor, the past parameters collected from time 

series including charge current, charge capacity, total voltage and the corresponding terminal 

voltage of the battery system are used as the inputs of the model. The future reference 

voltage sequence is set as output. 

4.1.2 Fault State Classifier 

A hybrid algorithm, convolutional neural network (CNN) augmented with multi-head 

attention (CNN-mAtt), is utilized for the fault classification in selected charging snippets. As 

analyzed in Section 3.2, when multiple faults occur in battery systems at the same time, the 

VDs of different faulty cells exhibit variously and deteriorate at different rates. Thus, we select 

 

Fig.6 The processing of the input sequence battery data. Wherein, the blue (red) areas 
indicate a time window for the independent (dependent) variables for the training dataset, 
respectively. TVt, It and Qt represent the total voltage, charging current and charging capacity at 
the moment t; The movement for the time windows can be noted from the dashed box to the 
solid one. The method will be scanned from the beginning of the sequence to the end.  
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VDs as the key fault indicator and then feed them into the Classifier as input. And the fault 

state labels (F-F, SC and CA) provided by experimental data is the output of the Classifier 

during the training phase, while a possibility of the fault state (PF-F, PSC and PCA) will be finally 

predicted by the trained model. The construction of the Classifier model is sketched in Fig.7 

and the specific introduction of the algorithm and selected layers of the Classifier is 

demonstrated in Supplementary Note 3. Additionally, different from the Predictor, the 

Classifier requires one-hot encoding of their inputs for the data pre-processing (see 

Supplementary Note 4). These chosen algorithms have demonstrated their effectiveness in 

analyzing large datasets and are widely utilized. All proposed models are developed using 

the open-source neural network library Keras and the Python machine learning library scikit-

learn. 

 

Fig.7 The modelling scheme illustration of the Classifier. The Classifier consists of four 

main components: Two kinds of convolutional layers are provided in a and b; The max pooling 

layer is shown in c, while the global average pooling layer is in f, respectively; The fully-

connected layer is in d; The multi-head attention layer is in e.  
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4.2 Comprehensive Fault Identification and Quantification Strategy 

As described previously, high-functioning DL models are constructed for reference 

voltage prediction and fault possibility classification. Still, misdiagnosis happens and cannot 

be completely avoided, given the occasional instability of the sensor-acquired data or 

changes in charging excitation. Herein, we try to provide a more reasonable and accurate 

solution to determine the fault type and fault degree. First, due to the contingent nature of 

each single diagnosis, we introduce evaluation windows and put into continuous results of 

the Predictor, where the diagnoses within a window will be again synthesized and evaluated. 

Then, the median for a certain number of probabilistic outcomes is calculated in each 

evaluation window to characterize the statistic assessment of the current window. The reason 

for choosing the median to characterize the statistical properties of each window is because 

of its robustness to outliers and extreme values. In addition, the results of the Classifier are 

presented in the form of probabilities and usually in machine learning multi-classification 

problems, the column with the largest probabilistic performance of classification results is 

considered to be more consistent with the current state. Therefore, in the second step of our 

strategy, we compare the three classes of probabilistic results and select the class with the 

largest probability to characterize the current fault state (F-F, CA or SC).  

 

Fig.8 The overall workflow of the proposed fault identification and quantification strategy. 
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Once the type of fault has been identified, its corresponding probability will be used as 

an indicator to quantify its degree of failure. In this section, we artificially grade the degree of 

failure according to the median probability of the evaluation window, categorizing the severity 

of the failure into early-, middle- and late-stage. In our large number of observations, a 

probability of around 60% can be considered as a starting point for determining a failure, 

while 100% indicates a strong correlation. Thus, 60% to 75% (~75% to 90%, ~90% to 100%) 

is considered to be indicative of an early-stage (~middle-stage, ~late-stage) fault. The 

effectiveness of this grading strategy is also fully validated in the Results and Discussion 

section. In Fig.8, we summarily sketch the fault identification and quantification scheme of 

the paper as a whole, highlighting in particular the comprehensive fault identification and 

quantification strategy mentioned at the end. 

5. Results and Discussions 

We generate two separate experimental datasets, Group A and Group B, for training, 

validation and testing of all the models discussed. Indeed, we used the data from the first four 

cycles of Group A as the training dataset and the data from the last cycle of Group A as Test 

Dataset 1. To rigorously assess the performance of the Predictor and Classifier, instead of 

the traditional approach of splitting a portion of the original dataset for testing, we utilize an 

independent Testing Dataset 2 derived from the five-cycle data of Group B. This approach 

introduces more challenges for model construction but underscores the robustness of the 

proposed diagnostic scheme. In Section 5.1, 5.2 and 5.3, we mainly validate the effectiveness 

of the proposed method through the experimental dataset. Furthermore, we employ the real-

world EV operational data for the applicability validation, demonstrating and enhancing the 

value of the practical application of the proposed framework. 



The algorithm code was written in Python 3.10 and executed on a personal computer 

with a 13th Gen Intel(R) Core(TM) i5-13500H processor running at 2.60 GHz. The results of 

the diagnostic scheme are presented below: 

5.1 Cell-Level Reference Voltage Prediction 

Accurately predicting the reference voltage of each cell within a battery pack constitutes 

the primary objective of the diagnostic framework presented in this study. To this end, we 

harness the RNN for multi-step forward time series data prediction. Specifically, the GRU is 

chosen as the core layer in the RNN algorithm and the detailed structure of the prediction 

model is elucidated in the Method section. The proposed algorithm attains noteworthy 

performance metrics, with a mean square error (MSE) of 7.84×10-5 V, a mean average 

percentage error (MAPE) of 0.16% and an R square (R2) value of 0.9, thereby manifesting a 

highly effective predictive capability. To underscore the advancements achieved by the finalized 

model, Fig.9. visually represents prediction results and compares the proposed method against other 

state-of-the-art algorithms. In pursuit of selecting the most suitable algorithm, a comprehensive 

analysis is conducted: (a). GRU structure comparison: Various GRU structures are compared 

to identify optimal parameters. We designate two additional GRU models as GRU1 and 

GRU2 (detailed in Supplementary Table S1). Among the three GRU structures depicted in 

Figs. 9 a-e, the structure exhibiting the most favorable overall performance is selected for 

the predictive model in this paper. This optimal model reveals errors smaller than 0.02 V in 

over 95% of the total samples. (b). Algorithm comparison: GRUs are juxtaposed with both 

common shallow learning algorithms and other DL algorithms. Fig.9 g illustrates that GRUs 

exhibit a lower MAE of approximately 0.0015 V, establishing their superiority compared to 

other state-of-the-art algorithms. Additionally, in Table. 4, we compare the prediction error of 



the proposed algorithm and other state-of-the-art algorithms including support vector 

regression (SVR), eXtreme Gradient Boost (XGB), attention (Att) and transformer (TF). The 

comparison of the computing time between the mentioned algorithms is illustrated in Table. 

5. We adopt MSE, MAPE and R2 as evaluation indicators (see Supplementary Note 5) to 

provide more detailed comparative results for both Test Dataset1 and Test Dataset2, offering 

a full validation of the proposed algorithm. Notably, Test Dataset2, being an entirely new 

dataset, yields slightly inferior model results, albeit within acceptable limits. Importantly, our 

proposed model consistently outperforms other evaluated algorithms across all metrics in 

both datasets. 

  

 

Fig. 9. Prediction results of a. Proposed algorithm; b. GRU1; c. GRU2. Prediction error 
probability density plots of d. Proposed algorithm; e. GRU1; f. GRU2. In g, we set out MAE 
boxplots of different state-of-the-art algorithms to present the superiority of our algorithm. 
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d. e. f.

g.
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Table. 4 Comparison of Prediction Errors of Different State-of-the-Art Algorithms. 

Algorithms 
Test Dataset1 Test Dataset2 

MSE (V) MAPE (%) R2 MSE (V) MAPE (%) R2 

Proposed 7.84×10-5 0.16 0.94 3.5×10-4 0.32 0.95 

SVR 8.00×10-4 0.63 0.42 1.52×10-3 0.75 0.80 

XGB 1.80×10-4 0.21 0.87 6.43×10-3 1.66 0.76 

Att 2.12×10-4 0.26 0.84 1.09×10-3 0.47 0.86 

TF 1.59×10-4 0.22 0.89 1.17×10-3 0.51 0.84 

GRU1 1.36×10-4 0.19 0.90 3.41×10-4 0.36 0.92 

GRU2 1.34×10-4 0.19 0.90 3.03×10-4 0.29 0.91 

 
 

Table. 5 Comparison of Computing Time of Different State-of-the-Art Algorithms. 

Algorithms 
Computing Time (s) 

Training Testing 

Proposed 1,765.35 3.82 

SVR 1120.60 9.98 

XGB 10,329.71 10.19 

Att 5956.05 2.34 

TF 1,766.58 1.96 

 
 
 
 
 
 
 
 
  



5.2 Module-Level Fault Classification 

After obtaining reference voltage responses for individual cells through a constructed 

Predictor, a CNN-mAtt is employed for the classification of cell states (F-F, SC and CA) to 

determine the safety of the battery. VDs are chosen as the model input due to their superior 

sensitivity to faults and relevance to underlying mechanisms, effectively representing 

distinctions among cells within a battery pack for Predictor training. Our Classifier 

demonstrates commendable performance after the appropriate process of training. Notably, 

the Classifier achieves a prediction accuracy of 91.96% and 89.20% on Test Dataset1 and 

Test Dataset2, respectively. The predictive performance of each category presented by 

 

Fig.10 Classification results of the proposed Classifier. Confusion matrix a. shows the 
predicted effect on Test Dataset1 and each category involves 1,580 samples while b. Test 
Dataset2 contains 11,391 samples. ROC curves of the Classifier are demonstrated on c. Test 
Dataset1 and d. Test Dataset2, respectively. 



confusion matrix is detailed in Figs. 10 a-b. Figs.10 c-d illustrate the receiving operating 

characteristics (ROC) curve of the Classifier, with the area under the curve (AUC) 

representing the discriminative performance across various classes (see Supplementary 

Note 6). In addition, we calculate micro-average ROC and macro-average ROC for a clearer 

insight into the model performance. The AUC results for each category demonstrate the 

strong classification ability of the proposed model, with proceeding 96% for each category 

both on Test Dataset1 and Test Dataset2. This classification capability holds promise for 

practical applications in BMSs of EVs, facilitating accurate identification of LIB fault types.  

To further validate the excellence and robustness of our classification model, as in the 

previous section, we use more algorithms (including CNN, ATT, TF, XGB and support vector 

machine (SVM)) and test them on Test Dataset1 and Test Dataset2 for comparison 

(displayed in Table. 6). We prefer to choose the model that all classification results are 

relatively good evenly. Significantly, our proposed model is in the lead in comparison with 

other models. The proposed model performs a 91.7% accuracy in Test Dataset2, while there 

shows an accuracy of 98.7%, 82.0% and 94.1% in three categories, respectively. Different 

from the prediction model, it should be noted that this section is a multi-classification task and 

on top of the accuracy of each class separately that we use as an evaluation metric. It is also 

necessary to comprehensively consider the balance of the accuracy of results of three 

classes. If only accuracy results of individual classes are good among all the results, it will 

instead indicate that the model has a high false alarm rate. Moreover, although the 

comprehensive accuracy of TF in Test dataset2 reaching 80.2%, its classification accuracy 

in the third category can only be 66%. This result means that there is still a high probability 

of predicting SC faults as F-F or CA, which brings a negative impact on improving the 

misdiagnosis rate of the model. Besides, the comparison of computing time of different state-

of-the-art algorithms is illustrated in Table. 7. It can be observed that the proposed model 



requires more training time compared to most of the comparison models due to the increased 

number of network layers. However, the testing time marginally exceeds that of the other 

models. It is worth noting that the proposed battery diagnostic framework is designed to be 

trained in a cloud environment and implemented in onboard BMSs. In this context, the training 

time is not a significant concern, and the proposed model remains feasible for practical 

application. 

 
Table 6. Comparison of Classification Accuracy of Different State-of-the-Art 

Algorithms. 

Algorithms 
Test Dataset1 Test Dataset2 

Acc (%) Acc1 (%) Acc2 (%) Acc3 (%) Acc (%) Acc1 (%) Acc2 (%) Acc3 (%) 

Proposed 98.2 100.0 94.6 100.0 91.7 98.7 82.0 94.1 

CNN 88.3 85.3 90.2 89.4 80.5 89.7 76.6 75.1 

Att 91.3 93.4 92.5 87.9 85.6 90.2 86.7 79.8 

TF 90.8 89.6 92.5 90.3 80.2 85.6 88.9 66.0 

XGB 86.9 99.8 61.1 100.0 75.2 82.9 59.2 83.4 

SVM 91.1 100.0 73.2 100.0 83.4 94.9 81.4 73.8 

NOTE: Acc, Acc1, Acc2, Acc3 demonstrate the accuracy in all of the samples, the first (F-F), the second (CA) 
and the third (SC) category of samples, respectively. 

Table. 7 Comparison of Computing Time of Different State-of-the-Art Algorithms. 

Algorithms 
Computing Time (s) 

Training Testing 

Proposed 5,671.31 8.91 

CNN 4,982.62 7.69 

SVM 7320.89 7.22 

XGB 3480.14 5.83 

Att 1,616.10 2.44 

TF 6,921.42 8.66 

 

5.3 Comprehensive Safety Evaluation Strategy 

To ensure the practical application capability of the overall diagnostic framework, we 

make contributions to minimize potential misdiagnoses and present a comprehensive fault 

identification and quantification strategy. Based on the superior performance of the Predictor 

and Classifier, we further take both the fault type determination and the degree of its 

corresponding safety hazards into account. Herein, we first adopt evaluation windows by 



putting together a period of initial diagnosis results. Then take the median of the data in the 

evaluation windows to characterize and evaluate the results of a range of assessments 

statically. In this section, we focus on the validity of the proposed evaluation strategy and 

carry out the validation on the Test Dataset2. We apply the strategy on an F-F cell, a CA cell 

and an SC cell and check the evaluation performance on evaluation windows of different 

length sizes to determine a better choice of window size. 

In Fig. 11, the three subplots in each row represent F-F, CA and SC cells and each 

column represents a window size of 1, 1,000 and 2,000, respectively. As observed, with the 

increase of the diagnostic window, the frequency of misdiagnosis decreases significantly, 

especially at a window size of 2,000 and misdiagnosis is almost non-existent in our dataset. 

Thus, it is quicker to determine the type of fault and the greater the length of the evaluation 

window, the lower the frequency and the less time consumption required for the evaluation. 

In addition, the quantification efficiency of the proposed evaluation strategy can be strongly 

proved. Fig.11 c presents a very high PF-F, indicating the F-F; In Fig.11 f. the CA cell is first 

diagnosed as middle-stage CA and then becomes late-stage CA. In our strategy, we consider 

the probability at this point to be the severity of the fault. It can also be seen in Fig.11 i that 

our evaluation results of PSC consider the cell to be an early-stage at the beginning of the 

cycle; while the probability grows as the number of cycles goes deeper, gradually becoming 

middle-stage and late-stage. This not only realizes the accurate identification of faults but 

also matches the actual fault deterioration mechanism of the cell in terms of the quantification 

of degree of faults.  

It should be emphasized that the evaluation window does bring more requirements for 

input data but also a better diagnostic performance. The size of the evaluation window can 

be adjusted by the practical application scenario and the tolerability because even under the 

window size of 1, the misdiagnosis rate performed no more than 10%.  



5.4 Diagnostic Framework Feasibility in Real-World Vehicles  

To further prove the practical applicability of the proposed diagnostic framework based 

on experimental datasets, we introduce real-world vehicle data collected from NDANEV to 

comprehensively validate the entire technical framework of diagnostics, including reference 

voltage prediction and battery fault state classification. The diagnostic effectiveness of the 

proposed diagnostic framework in real operating vehicles is presented in this section. The 

detailed information of the applied vehicle model is demonstrated in Section 3.3. Fig.12 

provides a general picture of real-world cloud EV data. Figs.12 a.-c. show the basic collection 

items from the cloud data platform including voltage, current and temperature profiles of 

 

Fig.11 Safety Evaluation results of different cells. a.-c. display possibility results of an 
F-F cell. d.-f. are results of a CA cell; g.-i. are the performance of the SC cell based on 
the proposed strategy. Each column of subfigures represents an evaluation window of 
size 1, 1,000 and 2,000, respectively. 
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operational data of an accident vehicle as an example. In addition, speed, SOC and depth of 

discharge (DOD) have been statistically analyzed in Figs.12 d. - f. for a clear understanding 

of the selected vehicle model. 

Notably, in our previous diagnostic modeling based on experimental data, we utilized all 

parameters directly obtainable from the vehicle, highlighting a key strength of our study. 

Consequently, for real-world vehicle validation, no additional sensors are required, nor are 

any extra calculations or transformations on the parameters necessary. Meanwhile, the core 

layers of all models and the overall framework remain consistent with those described 

previously. However, due to the different data collection frequencies in the laboratory (1Hz) 

and the real-world vehicle (0.1Hz), we adjust the size of the sliding window selection for the 

 

Fig.12 Illustration of the collected real-world cloud dataset. a. is an example clip of an accident 

vehicle before the TR occurred, including driving, charging and rest process. b. and c. are the 

current and temperature profiles. d.- f. are speed, SOC and DOD distribution of the typical 

vehicles. 

2.0

4.0

×103

×103×103

ChargingDriving Rest

TR occurs 

a.

b. c.

d. e. f.



real-world vehicle. The original sliding window containing 500 frames of data is reduced to a 

50-frame sliding data window to ensure the data covered by the window has the same time 

scale.  

In the real-world validation of reference voltage prediction, current, SOC, and TV of the 

battery module obtained from charging segments are selected as inputs for the Predictor, 

with the future reference voltage of individual cells as the model output. To present 

comprehensive demonstrations of the model performance, we have conducted validation 

around the three most common EV charging scenarios including constant current slow 

charging (CCSC), constant current fast charging (CCFC), multi-stage constant current 

charging (MSCC) and differentiated SOC starting and stopping ranges. As shown in Fig.13, 

the Predictor performs well in all three charging scenarios. Concretely, in Figs.13 a.- b., the 

selected CCSC charging snippets charge from ~30% to ~80% SOC, which can be regarded 

 

Fig.13 Reference voltage prediction results under real-world multi-charging scenarios. a., c., 

and e. are the current and SOC profiles during CCSC, CCFC and MSCC charging modes. b., d. 

and f. are the corresponding prediction results under the mentioned charging scenarios. 
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as a most fluent operational distribution of SOC [1]. Besides, as illustrated in Figs.13 c. – f. 

model performance under CCFC and MSCC modes are evaluated as well. And the MSE under 

CCSC, CCFC and MSCC reach 4.12×10-5, 6.67×10-5 and 1.36×10-5, respectively, proving 

the usability of our model in most common cases under actual applications.  

Next, a faulty vehicle is employed to validate the Classifier and the proposed safety 

evaluation strategy. The selected vehicle was dismantled after the accident and it was 

confirmed that the cause of the accident was due to battery failures. In this section, the inputs 

and outputs of the Classifier are all consistent with the previous description. The proposed 

model performs a 97.4% accuracy in the cloud EV dataset, while there shows an accuracy 

of 98.5%, 96.3% and 97.3% in three categories (F-F, CA and SC), and the corresponding 

ROC curves and confusion matrix are shown in Figs.14 a–b. Particularly, practical effects of 

the overall diagnostic frameworks are considered and discussed. Among the 95 cells that make 

up the battery system, two of which (Cell #83 and Cell #24) are suspected to have CA and SC faults. 

Fig.14 c. is the voltage profiles of the charging snippet three-cycle earlier than the accident happens. 

It can be seen that fault characteristics are not directly visible to the naked eye due to it is in the 

beginning of the fault and is very insidious. Fig.14 d., is the last charging snippet before the TR occurs 

and the fault evolution is obvious. Herein, we use three-cycle ago of TR data for the validation and 

the results are shown in Figs.14 e.-g. It is worth to note that we employ evaluation windows of 100-

frame and 60% of probability is considered as the alarm threshold. Specifically, Fig.14 e. is the 

evaluation result of F-F cells, and the PF-F stay near 100%, demonstrating that our diagnostic 

framework can give accurate judgments about the state of normal cells. Fig.14 f. shows the evaluation 

result of Cell #83, the PCA starts to exhibit an increasing trend after the 200th evaluation window and 

finally alarms at the 230th window. Similarly, PSC of Cell # 24 in Fig.14 g. alarms at the 165th 

evaluation window. Detailed alarm moments are also marked in the Fig.14 c. for a more 

intuitive representation. Overall, the proposed diagnostic framework can achieve accurate 



prediction of future reference voltages while also providing precise assessment of the fault 

state of the battery system. 

 

Fig.14 Diagnostic results of potentially faulty vehicles. a. ROC curves; b. Confusion matrix. c. is 
the voltage profile of the charging snippet three-cycle earlier than the accident. d. The last charging 
snippet before the accident. e.- g. are the diagnostic results based on c. mentioned charging snipped 
for the classes of F-F, CA and SC, respectively. 

 

 

 

Evaluation Window

a. b.

c.

d.

e.

f.

g.

alarms

alarms

Cell #83 
CA alarms

Cell #24
SC alarms

Cell #83

Cell #24

F-F Cell

Fault evolves

Cell #24

Cell #1

Cell #83

Cell #95

...

...

...

FPR (%)

T
P

R
 (

%
)



5.5 Comparison of other methods  

The diagnostic framework proposed in this paper mainly addresses the multiple fault 

detection and quantification utilizing DL-based algorithms. Still, there exist methods do not 

rely on artificial intelligence and battery modelling. Here, the diagnostic framework proposed 

in this paper is compared with other fault detection methods in terms of computational 

complexity, fault type, accuracy and capability of implementation. 

5.5.1 Correlation-Based Method 

Xia et al. [37] innovatively adopted Pearson correlation coefficient (PCC) to detect SC 

faults in 2016. This type of method compares the correlation coefficients of the voltages of 

adjacent cells in a series-connected battery module, and determines the location of the SC 

cell by the abnormal correlation coefficients. Later, in recent research work of multiple faults 

diagnosis, correlation-based method is widely applied to detect the existing faults in the 

battery systems. Specifically, researchers [38–40] design redundant interleaved voltage 

measurement topology to detect the fault signal by calculating correlation relationships 

between cells, which is effective but hard to apply to real-world BMS due to the challenges 

for data collection and complicated to compute. The proposed diagnostic scheme directly 

adopts battery responses provided by sensors for the overall technical process, which 

improves the capability and timeliness for practical application with no need for additional 

measuring hardware.  

5.5.2 Unsupervised Learning-based Method 

Unsupervised learning is commonly based on limited data and considers sample points 

that differ from normal data as anomalies, making it difficult to distinguish between faults 

when data is generated by more fault types without pre-training. Besides, faults are usually 

extremely insidious in the early stages of their occurrence and behave similarly to F-F cells, 

making them difficult to diagnose by looking for outliers. Compared to the unsupervised 



learning-based diagnosis scheme [41], the proposed supervised learning-based method 

provides a labeled insight to practical application due to the interpretable experiments. 

5.5.3 Threshold-based Method 

Some researchers consider anomalies in acquired signals as indicators of battery faults. 

To diagnose outliers in a battery module, methods such as calculating entropy, assessing 

curve similarity, and setting thresholds are employed [42,43]. Zhao et al.[24] have deployed 

rate of degradation and divided threshold to whether the capacity of battery cells are 

degraded abnormally. However, faults like sensor malfunctions and connection issues can 

also manifest as anomalies when triggered. Consequently, relying solely on abnormal 

behavior parameters for fault diagnosis is neither comprehensive nor reliable, often leading 

to misdiagnosis. Additionally, threshold-based methods struggle to accurately identify the 

specific type of fault. In contrast, the classification algorithm proposed in this paper enables 

precise identification of fault characteristics through the prior training of labeled data.  

5.5.4 Model-based Method 

Model-based fault diagnosis method compares estimated values from battery models 

with actual measurements. The difference, or residual, serves as a fault signal, which helps 

analyze fault characteristics and supports fault diagnosis. Reference [44,45] use a mean 

difference model and extended Kalman filtering to estimate the difference between the 

individual cell SOC and the average SOC in a battery pack. This difference is then used with 

a recursive least squares filter to form a method for diagnosing micro SC in batteries, allowing 

for accurate detection of SC resistance. However, the authors only discuss identifying fault 

sources using experimental data under adjacent charging and discharging conditions, which 

may not always be available in real-world EVs. Therefore, model-based methods have stricter 

requirements for the form, quality, and accuracy of the data. Using directly measurable 

parameters is more straightforward and less complex. 



The summary of the comparisons of the mentioned fault detection methods are illustrated 

in Table. 8. for more details. 

Table 8. Comparison of Fault Detection Methods. 

Detection 
Method 

Battery Model Accuracy 
Computational 

Complexity 
Fault Type Implementation 

Correlation-
based[38–40] 

No High High No No 

Unsupervised 
Learning-
based[41] 

Yes Low High No Yes 

Threshold-
based[42,43] 

No Low High No Yes 

Model-
based[44,45] 

Yes High High No No 

Proposed Yes High Low Yes Yes 

 

 

6. Conclusions  

This paper proposes a DL-powered multi-fault diagnostic scheme for series-connected 

battery systems. First, we carry out series-connected cycling battery experiments while 

injecting the two most common electrical faults including CA fault and SC fault concurrently 

within the circuit. By observing the external characteristics of cells of different faults and 

comparing them with F-F cells, the fault mechanism and its evolutional processes of various 

faults are further analyzed, providing a solid foundation for the following fault feature selection. 

Subsequently, our paper employs DL-powered algorithms, including an RNN-based Predictor 

and a CNN-based Classifier. These algorithms are designed to predict the reference voltage 

at the cell level while categorizing cells at the module level. The Predictor is trained with 

present TV, I and Q as inputs and future V as output, achieving an impressive MSE of 

7.84×10-5 V. Meanwhile, the Classifier, trained with VDs as input and probability of fault state 

as output, attains an accuracy of 98.2%. The efficacy and superiority of our proposed models 

are extensively validated across diverse datasets, outperforming other state-of-the-art 

algorithms. Furthermore, we develop a comprehensive fault identification and quantification 



strategy. This strategy involves applying evaluation windows and statistical tools to determine 

the fault type. Subsequently, the probability values corresponding to the identified fault types 

are utilized to quantify the degree of failure. Specifically, probabilities falling within 60%-75% 

are categorized as early-stage faults, 75%-90% as middle-stage faults and those ranging 

from 90% to 100% as late-stage faults. In order to further validate the implementability of the 

proposed diagnostic method, we introduce the cloud real-world EV data from NDANEV. The 

validation results show that the proposed models enable effective multiple fault detection in 

various practical operational scenarios. Consequently, the technical framework presented in 

this paper aims to enable the effective diagnosis of multi-faults in battery systems, thereby 

enhancing the active safety capabilities and prolonging the lifespan of EVs. 

While our present work contributes significantly, it is essential to acknowledge certain 

limitations. On the one hand, we recognize that temperature is an important factor that affects 

both the internal and external performance of LIBs, representing the thermal characteristics 

as well. All of the experiments in this paper are conducted under controlled indoor 

temperature with the ignorance of diverse ambient conditions. Exploring the coupling effect 

of temperature gradients and the injection of multiple faults into LIB systems presents an 

avenue for valuable research. On the other hand, the proposed fault diagnosis scheme is 

constructed for individual types of LIBs (cylindrical ternary cells with Li(NiCoAl)O2 cathode 

and graphite anode) and thus the generalizability to other types of LIBs is not explicit. 
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Supplementary 

 

Enhancing Battery Durable Operation: Multi-Fault Diagnosis and 
Safety Evaluation in Series-Connected Lithium-ion Battery 
Systems   



Note 1. Detailed Charge and Discharge Regime of Cycling Experiment 
Prior to serial connection, each cell underwent a fresh cell activation and a standard 

capacity test. The charging and discharging of series-connected batteries adhered to the 

benchmark values of 4.2 V for charging and 3 V for discharging. To mimic real-world 

operational driving conditions, we employ multi-stage constant current (CC) and Dynamic 

 tress Test (D T) procedures as displayed in Fig. S1.  

 
Fig. S1 The flow block diagram of the cyclic experiment.  

 
Note 2. Predictor for Reference Voltage Responses at Cell Level 

Recurrent Neural Network (RNN) is specifically designed to handle sequences of data, 

which is well-suited for time series analysis [1]. It can capture dependencies and patterns in 

the data that evolve over time. It is crucial in understanding and predicting time-dependent 

phenomena. RNNs can be adapted to one-step-ahead prediction, multi-step prediction and 

anomaly detection. It can also be powered with advanced variants like Long  hort-Term 

Memory (L TM) or Gated Recurrent  nit (GR ) to capture longer-range dependencies. It 

should be also noted that the process is a classical multi-step forecasting model. Considering 

the handling capacity for vanishing- and exploding gradient, and lower calculation complexity, 

GR -based is used to establish the framework rather than RNN or L TM. Here, 3-layer 

GR s are organized as the core layer to model the Predictor, and each of them embodies 
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50 recurrent units (see Fig. S2). To enhance the robustness of the model, some Dropout 

layers are established between each core-layer. Finally, a Dense layer with  igmoid 

activation function is used to output the forecasted battery voltage.  pecifically, the input list 

can be described as Formulation S1.  

  = 1 2 3, , ,...,Predictor NX K K K K  (S1) 

where, every K in the XPredictor represents every input of the Predictor; N represents the 

number of the time window. And KN can be expanded a matrix as Formulation S2: 
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Fig. S2 Detailed algorithm structure of the Predictor. The total framework for the Predictor, 
including 3 GR -based layers, 3 Dropout layers and 1 Dense-based layer (generated by 
Netron). The activation functions are described with a deep red box. This framework was 
established using Keras version 2.10.0. 
 
Note 3. Classifier for Battery States at Module Level 

Convolutional neural network (CNN) is recognized for its success in image recognition 

tasks, while it can also be applied to time series classification tasks [2]. The key idea is to 

leverage convolutional operations to automatically learn hierarchical representations from the 

temporal data. CNN excels in time series classification due to their ability to automatically 

extract local features, handle translational invariance, and share parameters, reducing 

computational complexity. They capture multi-scale features and manage multi-channel data 

effectively, enhancing model performance. Moreover, adding attention mechanisms to CNN 

for time series classification enhances feature selection by focusing on important time steps 

or features, improves model interpretability by highlighting critical parts of the sequence, 

captures long-term dependencies, dynamically adjusts weights for better adaptability, and 

reduces information loss. This results in improved classification accuracy and a more 

transparent decision-making process [3]. The proposed classifier has combined CNN with a 

multi-head attention (CNN-mAtt) mechanism to achieve a better performance for multiple 

faults classification. The detailed structure of this model can be found in Fig. S3.  pecifically.  

GRU

GRU

GRU

https://github.com/lutzroeder/netron


Input layer: Considering the application of the Predictor, we also intercept 500-second 

sequence VD data with a 1-second stride to slide the time windows (see Formulation S3). 

The input to the Classifier is a time series sequence, where each data point represents a 

measurement at a specific time step. 
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where XClassifier is the matrix for the input data; each x in the matrix represents the VD of each 

timeslot; T is the timeslot of the time series. 

Convolutional layers: we utilize 2 layers of 1D CNN, the first of which consists of 256 

filters with a kernel size of 10, while the second involves 128 filters with the same kernel size 

as the first layer. In addition, a Max pooling with a pool size of 3 is utilized to reduce the spatial 

dimensionality and further extract hierarchical features from the input. The convolutional 

operation is defined as Formulation S4:  

 ( )i i Classifier iC f W X b= +  ( 4) 

where bi is the bias term of the i-th filter; Wi is the weight matrix of the i-th filter; Ci is the output 

feature map of the filter matrix and the f (·) is an activation function (In this paper, we select 

‘ReLu’ for its adaption to time series tasks).  

Fully-connected layers: we set two dense layers with 128 neurons for further refining 

the learned representations.  

Attention layer: A Multi-Head Attention layer with 5 attention heads and a 50-

dimensionality key vector is applied here in our model. For the multi-head attention 

mechanism, multiple heads perform in parallel to pursue a better performance of the model, 

and the results are concentrated a linearly transformed. The attention mechanism can be 

mathematically represented as follows for a single head as shown in Formulation S5: 



 Attention( , , ) softmax( )
T

k

QK
Q K V V

d
=  ( 5) 

where Q,K,V are the query, key, and value matrices; dk is the dimensionality of the key vectors; 

softmax(.) represents the normalization function to obtain the attention weights. 

Output layer: A three-category labeled data representing the classifications of batteries 

are outputted, including F-F,  C and CA, respectively. 

 
Fig. S3 Detailed algorithm structure of the Classifier. The total framework for the 
Classifier, including 2 Conv1D-based layers, 1 MaxPooling1D layer, 1 
GlobalAveragePolling1D layer, a Multi-Head Attention layer and 2 Dense-based layers 
(generated by Netron). The activation functions are shown in deep red boxes and the 
parameters are provided in each module.  
 

Table. S1 GRUs of different structures for comparison 
 

 
Layer 
No. Units 

Proposed 
#1 100 
#2 100 
#3 100 

GR 1 
#1 256 
#2 256 
#3 256 

GR 2 

#1 100 
#2 100 
#3 100 
#4 100 

 
  

MultiHeadAttention

kernel〈128×1×50〉
bias〈1×50〉
kernel〈128×1×50〉
bias〈1×50〉
kernel〈128×1×50〉
bias〈1×50〉
kernel〈1×50×128〉
bias〈128〉

Dense

kernel〈128×3〉
bias〈3〉

Softmax

Conv1D

kernel〈10×256×128〉
bias〈128〉

Conv1D

ReLU

kernel〈10×1×256〉
bias〈256〉

ReLU

MaxPooling1D

ReLU

Dense

kernel〈128×128〉
bias〈128〉

GlobalAveragePooling1D

https://github.com/lutzroeder/netron


Note 4. Data Preprocessing for Classifier Training 

There are two main steps for the data pre-processing for Classifier training, including 

One-hot Encoding Method and Random  huffling (R ).  pecifically,  

Step1: One-hot encoding is a crucial procedure in machine learning and deep learning, 

involving the conversion of categorical data variables [4] . This transformation enhances the 

predictive capabilities and classification accuracy of a model when presented to machine 

learning and deep learning algorithms. It serves as a prevalent method for preprocessing 

categorical features in machine learning models. In this paper, we transformed all categorical 

labels into one-hot encoded matrices (see the first step in Fig. S4). 

Step2: We regard R  as an indispensable phase in our classifier training process, and 

aim to elucidate its significance here. R  constitutes a conventional practice in DL 

classification pipelines, involving the random reordering of examples within datasets before 

the commencement of DL model training [5]. Given the specialized sorting of our battery data, 

organized cell by cell and cycle by cycle (where all instances of one class follow another in a 

specific order), there exists a risk that the model may glean patterns influenced more by the 

order than the intrinsic characteristics of the data. R  proves invaluable in mitigating such 

concerns, ensuring that the model remains impervious to order-induced patterns.  

 
Fig. S4 The processing of one-hot encoding and R  of input data for Classifier. There are 
three labels for the battery data. Therefore, after the process of the One-Hot Encoding, F-F, 
CA,  C will be transferred into [1,0,0], [0,1,0] and [0,0,1], respectively. Origin label sequence 
was also be disarrayed using R  method. Above processes are coded using Numpy in 
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Python library.  
 
Note 5. Model Evaluation for Predictor 

In this work, some classical indicators are used to assess the performance of the 

Predictor. Mean  quared Error (M E) is a common metric to measure the accuracy of a 

prediction model. It represents the average of the squared differences between the predicted 

value and the true value (shown in formulation ( 6)). Mean Absolute Error (MAE) is always 

used to represent the average level of the absolute error (shown in formulation ( 7)). Mean 

Absolute Percentage Error (MAPE) is always used to evaluate the performance of the 

regression model. The closer the value is to 0, the smaller the difference between the 

predicted value and the true value (shown in formulation ( 8)). In addition, we also use R2 to 

evaluate the model performance, which is provided in formulation ( 9). These various metrics 

can provide a relatively comprehensive assessment to show a convincing prediction model.  
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where N is the total sample used in the model with the index n; yi is the ground truth; ˆ
iy is the 

predicted value.  

Note 6. Model Evaluation for Classifier  

We have selected three important indicators to evaluate the performance of the 

Classifier, including Confusion Matrix, Receiving Operating Characteristics (ROC) Curve 

and Area  nder ROC Curve (A C).  pecifically,  



Indicator 1: The confusion matrix plays a vital role in evaluating the classification 

performance of CNN. It provides a detailed classification of the prediction results in different 

categories, which allows a thorough analysis of its strengths and weaknesses (see Fig. S5). 

Each column of the confusion matrix represents the predicted category, and the total number 

of the data in each column indicates the number of data predicted to be in that category; Each 

row represents the true category to which the data belongs, and the total number of data in 

each row represents the number of instances of data in that category; the value in each 

column represents the number of real data predicted to be in that category. In addition, 

accuracy (Acc) is used to evaluate the overall performance of the classifiers, which 

demonstrates the ratio of correctly classified samples to the total number of samples (see 

Formulation  10). 

 

Fig. S5 Schematic diagram of confusion matrix [6]. True Positive: true class. The true 
class of the sample is positive and the result recognized by the model is also positive. False 
Negative: false negative class. The true class of the sample is a positive class, but the model 
recognizes it as a negative class. False Positive: false positive category. The true category 
of the sample is negative, but the model recognizes it as positive. True Negative: The true 
category of the sample is negative and the model recognizes it as negative. 

 

Indicator 2: The ROC curve is generated by graphing the True Positive Rate (TPR) 

against the False Positive Rate (FPR) across different threshold settings. Each point on the 

ROC curve signifies a distinct trade-off between sensitivity and specificity. The diagonal line 

in the ROC space symbolizes random guessing, with points positioned above this line 
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denoting performance superior to random chance (see Fig. S6) [7].  

Indicator 3: A C generally measures the area under ROC curve and quantify the overall 

performance of the classification model across different threshold settings [8]. A higher A C 

value indicates a better balance between TPR and FPR, suggesting superior classification 

performance. 

Because the recognition process is a multi-classification model, the model needs to 

transfer the classification label into a binarization matrix in order to evaluate the model 

performance. Micro average ROC and Macro average ROC are both provided to evaluate 

the total performance of the model comprehensively. Primarily, based on the confusion matrix, 

TPR and FPR can be utilized to generate the ROC curve and calculate the A C. The 

calculation methods are provided as the following formulations: 
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where TPc is the True Positive (TP) samples that the model predicts are positive of cth 
clustering class; FPi is the Fale Positive (FP) samples that the model predicts are negative 
of cth clustering class; TNc is the True Negative (TN) samples that the model predicts are 
negative of cth clustering class; FNc is the False Negative samples that the model predicts 
are negative of cth clustering class. 



 
Fig. S6 Schematic diagram of RUC and AUC [8] . The dashed blue line represents the 
ROC curve; the grey areas represent the AUC. When the AUC is closer to 0.5 means the 
model is less effective in classification, and closer to 1 means the classification is more 
effective. When the area is between [0.5,0.7] indicating that the model is generally better at 
classification than random classification; when the area is between [0.7,0.85], it indicates 
that the model has a good classification; when the area is between [0.85,0.95] it indicates 
that the model has an excellent classification. 
 
Note S7. Further comparison between the proposed method and non-AI methods 

This paper primarily employs deep learning methods to construct a multi-fault diagnosis 

framework for batteries. In the main text, we compare the performance of similar machine 

learning algorithms. However, some non-AI-driven algorithms are also widely used in battery 

fault diagnosis. Here, we focus on comparing the proposed method with several typical non-

AI methods in terms of computation time and diagnostic effectiveness. As shown in the Table. 

S2 below, our proposed method leads non-AI based methods in both computational efficiency 

and diagnostic time, further demonstrating the advanced nature of the proposed approach. 

Our diagnostic framework can detect faults during the initial stages, specifically within the 

three cycles preceding TR. In contrast, non-AI methods can only diagnose faults close to the 

onset of thermal runaway, which results in insufficient time for accident prevention in real-

world applications. Additionally, most non-AI methods can only detect anomalies in individual 

parameters and struggle to identify multiple faults simultaneously. 

Table. S2 Comparison between proposed method and non-AI based methods 

Method Computing Time (s) 
Detection Time 

(before TR) 
Fault Type 

Proposed 3.82 three cycles earlier Yes 

10
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PCC 5.73 last cycle No 

Shannon Entropy 7.11 last cycle No 

Mean-Difference 
Model 

15.96 last cycle No 
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