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Abstract

Malaria causes significant morbidity and mortality worldwide,

disproportionately impacting sub-Saharan Africa. Disease phenotypes

associated with Plasmodium falciparum infection can vary widely, from

asymptomatic to life-threatening. To date, prevention efforts, particularly

those related to vaccine development, have been hindered by an

incomplete understanding of which factors impact host immune responses

resulting in these divergent outcomes. Here, we conducted a field study of

224 individuals to determine host-parasite factors associated with symptomatic

malaria “patients” compared to asymptomatic malaria-positive “controls” at

both the community and healthy facility levels. We further performed

comprehensive immune profiling to obtain deeper insights into differences

in response between the pair. First, we determined the relationship between

host age and parasite density in patients (n = 134/224) compared to controls

(n = 90/224). Then, we applied single-cell RNA sequencing to compare the

immunological phenotypes of 18,176 peripheral blood mononuclear cells

isolated from a subset of the participants (n = 11/224), matched on age, sex,

and parasite density. Patients had higher parasite densities compared to the

controls, although the levels had a negative correlation with age in both groups,

suggesting that they are key indicators of disease pathogenesis. On average,

patients were characterized by a higher fractional abundance ofmonocytes and

an upregulation of innate immune responses, including those to type I and type
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II interferons and tumor necrosis factor-alpha signaling via NFκB. Further, in the

patients, we identified more putative interactions between antigen-presenting

cells and proliferating CD4 T cells, and naïve CD8 T cells driven by MHC-I and

MHC-II signaling pathways, respectively. Together, these findings highlight

transcriptional differences between immune cell subsets associated with

disease phenotypes that may help guide the development of improved

malaria vaccines and new therapeutic interventions.

KEYWORDS

uncomplicated malaria, Plasmodium falciparum, scRNA-Sequencing, immune

responses, cell-cell interactions, TNF-α signaling via NFκB, monocytes

Impact statement

Nearly 50% of the world population is at risk of Plasmodium

infection, although sub-Saharan Africa carries the greatest share

of global burden of malaria. In 2022, the WHO reported

249 million cases, and children under 5 years were the most

vulnerable group accounting for 80% of the deaths in Africa.

Advances in understanding the molecular basis of pathogenesis

at the single-cell level can fuel the development of new

therapeutics and malaria vaccines. Previous studies have

focused on studying gene expression in bulk heterogeneous

cell populations of blood, brain, liver, or spleen tissues, but

here, we describe the gene expression in single cells of

peripheral blood mononuclear cells. We provide details into

the abundance of cell types, genes expressed in each cell

subset, and signaling pathways that are associated with

malaria. Such information can be used to help design and

develop well-targeted malaria therapeutics and vaccines.

Introduction

In 2022, global estimates of malaria cases and deaths have

increased to 249 million cases and 608,000 deaths [1]. However,

the development of an effective vaccine to address this global

health threat remains challenging due to an incomplete

understanding of the parasite’s biology and limited knowledge

of which host factors influence clinical responses to infection.

In malaria-endemic communities, individuals may harbor

malaria infections with mild to no symptoms warranting

treatment, here referred to as healthy community controls.

Such infections may be cleared naturally or progress to

uncomplicated malaria, where symptoms become profound

enough to necessitate medical intervention. Instructive factors

include environmental exposures, transmission intensity, host

and parasite genetics, host-pathogen interactions, and host

immune responses [2–5]. Illustratively, upregulation of

interferon responses and p53 gene expression can attenuate

inflammation and protect children from fever [6]; and, when

comparing children with asymptomatic and severe malaria, the

genes most upregulated in severe cases are related to

immunoglobin production and interferon signaling [7]. As

reviewed previously, studies have postulated that interferons

can orchestrate immune regulatory networks to dampen

inflammatory responses and restrict humoral immunity, thus

playing a critical role as a wedge that determines protection

versus permissiveness to malaria infection [8, 9].

Similarly, it has been shown that the number and phenotype

of cells responding to infection can vary with exposure to

Plasmodium [10]. For example, Africans, who tend to have

higher levels of exposure, have been shown to exhibit

metabolic and platelet activation during malaria infection as

compared to typically infection-naïve Europeans [10].

Similarly, children who experience high cumulative malaria

episodes show upregulation of interferon-inducible genes and

immunoregulatory cytokines, suggesting an immune

modification to prevent immunopathology and severe

outcomes during new infections [11]. Beyond differences in

exposure and infection history, the strain responsible for each

infection can also alter immune response dynamics and disease

pathogenesis [12, 13].

Since so many factors can influence host response dynamics

to infection (e.g., exposure, the timing of infection), some studies

have implemented tightly regulated models of malarial infection,

such as controlled human-malaria infections (CHMI). CHMI

studies have identified several pathways, including toll-like

receptor signaling [14], platelet activation [10], interferon

signaling [10, 15, 16], and B-cell receptor signaling, that are

involved in immunological modulation of Plasmodium

falciparum infections [6]. Although CHMI enables more

controlled examinations of host-pathogen dynamics post-

malaria infection, clinically relevant differences can arise

between responses seen in CHMI and natural exposure due to

unresolved immunopathological mechanisms elicited during P.

falciparum infection [10]. Thus, studies involving natural cohorts

provide a better avenue to understand variability in immune

responses developed through repeated exposure and how they

influence disease phenotypes. Besides, immunity to malaria

develops very slowly through repeated infections and can

wane quickly if individuals leave malaria-endemic areas,

suggesting that continuous natural exposure to malaria

antigens is important for the development of long-term
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immunity [11]. Collectively, these studies demonstrate the

importance of obtaining a more comprehensive understanding

of the host and pathogen factors that influence immune

responses to inform the development of new therapeutic

approaches and improved vaccines.

To date, most genomic analyses of immunological responses

to malarial infection have been performed in heterogeneous cell

populations of blood, brain, liver, or spleen tissues [17]. The

majority of these studies have been conducted in children and the

studies show that symptomatic infections, as mentioned above,

are characterized by upregulated expression of genes involved in

interferon signaling, antigen presentation, neutrophil-associated

signatures, and B cell modules relative to healthy controls [17].

Adults, meanwhile, present slightly varying responses:

symptomatic Malian adults, compared to naïve individuals,

had upregulated B cell receptor signaling but more modest

upregulation of interferon responses, while symptomatic

Cameroonian adults showed marked induction of genes

related to interleukins and apoptosis compared to

presymptomatic individuals [18, 19]. These inconsistencies

may be related to patient history/exposure or differences in

cellular composition influencing clinical course through a

combination of direct and indirect responses. The emergence

of single-cell transcriptomics provides a unique opportunity to

examine the sources of this variability [20] by profiling

abundance and transcriptomic variation across immune cell

populations in individuals with high malaria exposure but

divergent clinical phenotypes. Moreover, by examining the

expression of ligands, receptors, and genes involved in

intercellular signaling, we can identify the critical mediators of

immune responses and the pathogenesis of malaria for

subsequent validation [21].

Here, we present a comparative analysis of peripheral blood

mononuclear cells (PBMCs) phenotypes in children from two

related surveys conducted in 2019. An active case detection of P.

falciparum infections at the community level (controls) and

passive case detection at the health facility level for patients

with uncomplicated malaria (patients) in an endemic area in

northern Ghana. Our data describe in unprecedented detail, cell

subsets and signaling pathways associated with disease severity to

provide new insights into the immune response mechanisms that

influence the course of P. falciparum infections in

young children.

Materials and methods

Study design and sample collection

In 2019, we conducted a cross-sectional active case detection

survey in the Kassena-Nankana Municipality of the Upper East

Region of Ghana, to recruit children with uncomplicated malaria

and controls with P. falciparum infections. About

1000 community members were screened for malaria infection

using a CareStart™ PfHRP2-based malaria Rapid Diagnostic

Test (RDT, Access Bio, NY, United States). Positive cases in

the community were defined as “controls” since these individuals

hadn’t sought treatment within the past 2 weeks. Similarly, a

passive case detection of uncomplicated malaria cases was carried

out using the samemRDTs to screen individuals presenting at the

Navrongo War Memorial Hospital outpatient department.

Individuals who tested positive for malaria and who provided

written informed consent were recruited into the study and

defined as “patients”. Five milliliters (mL) of whole blood was

collected for PBMC isolation and thick and thin blood smears

were for parasite identification and quantification using

microscopy. Linear regression analysis was used to determine

the relationship between parasite density and age in patients and

controls using R software (version 4.2.1).

Of the 224 individuals recruited in both arms of the study,

five control participants and six patients were selected for single-

cell transcriptomic analysis. Due to the observed clear differences

in clinical presentation between the groups driven by fever,

headache, and parasite density, the 11 children selected for

single-cell analysis had close similarity in these factors.

PBMCs were isolated in ACD tubes and spun at

2,000 revolutions per minute (rpm) for 10 min, and the

leukocyte layer was transferred to 15 mL. The leukocytes were

mixed with phosphate-buffered saline (PBS) and layered on 3 mL

of lymphoprep in a 15 mL falcon tube. The layered cells were

spun for 30 min at 800 g without breaks and harvested carefully

by taking the buffy layer into another falcon tube. The PBMCs

were washed twice with PBS and stored in freezing media. During

thawing, complete media (RP10) with 20% Fetal Bovine Serum

(FBS) was prepared by diluting 20 mL of FBS in 80 mL of

Roswellpark Memorial Institute (RPMI) media [22]. PBMCs

were removed from Liquid Nitrogen to the −80°C freezer and

then thawed during each experiment. Thawing was done by

placing the vial in a clean water bath at 37°C until a small crystal

of frozen cells was visible. The tubes were cleaned with 70%

ethanol, and the contents were transferred to 10 mL of

RP10 gently to minimize stressing the cells. The cells were

centrifuged at 500 g for 10 min and resuspended in RP10.

Cell viability was estimated using Hemocytometer and PBMCs

were used after 1 h of resting in the incubator at 37°C.

Seq-Well scRNA-Seq workflow

Seq-Well scRNA-Seq S3 workflow was performed according

to the published methods [23, 24]. In brief, 5 × 105 PBMCs from

each patient were dispensed into a single array containing

barcoded mRNA capture beads. The arrays were sealed with a

Polycarbonate Track Etch (PCTE) membrane (pore size of 0.01 μ

M), allowing cells to remain separated through the lysis and

hybridization steps. mRNA transcripts were hybridized and
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recovered for reverse transcription using the Maxima H Minus

Reverse Transcriptase in the first strand synthesis

step. Exonuclease (I) was used to remove excess primers and

mRNA was captured via poly-T priming of the poly-A mRNA.

The captured mRNA underwent first-strand synthesis to

generate single-stranded cDNA while bound to the beads.

Enzymes with terminal transferase were used to create 3’

overhangs and three cytosines. The overhangs are used in

template switching, whereby a SMART sequence is appended

to the overhang on both ends of the cDNA molecule during the

first strand synthesis. Some templates fail to switch, resulting in

loss of the mRNA; hence they are chemically denatured using

0.1M NaOH with random octamer with the SMART sequence in

5’ orientation, and a second strand is synthesized. Whole

transcriptome amplification of the cDNA was performed

using the KAPA HiFi PCR master mix (Kapa Biosystems).

Libraries were pooled and purified using AgenCourt AMPure

XP Beads. The quality of the library was assessed using Agilent

Tape Station with D5000 High Sensitivity tapes and reagents.

Samples were barcoded as described in the Nextera XT DNA

(Illumina, United States) segmentation method. Tagmentation

was important because, after cDNA amplification and clean-up,

there are usually very long cDNA molecules that need to be

fragmented to be sequenced by Illumina. The Nextera XT DNA

tagmentation method is effective and allows for the addition of

adaptors and multiplex indexes at both ends of each fragment

[24]. Finally, the amplified library was purified using SPRI beads,

pooled, and sequenced using the NextSeq500 kit (Illumina,

United States). Paired-end sequencing was performed with a

read structure of 20 bp read one, 50 bp read two, and 8 bp index

one as recommended for Seq-Well. The targeted sequencing

depth was 100 million reads for all samples.

Processing sequencing reads

The raw data were converted to demultiplexed FastQ files

using bcl2fastq (Version 5, Terra Workspace) using the Nextera

XT indices and then aligned to the hg19 human genome using

STAR aligner (Version 2.7.9) within the Broad Institute DropSeq

workflow (Version 11, Terra Workspace). The data was cleaned

using Cell Bender (V 0.2.0) with default settings, to remove

ambient RNA [25]. The raw expression matrices and sample

information were loaded into the open-source statistical software

R (R version 4.2.1). An array with 45,691 gene features for

22,819 cells described data collected across 11 samples. The

data were filtered to include only features expressed in more

than 20 cells, and the resultant matrix described 18,303 gene

features across 22,819 cells. A Seurat (Version 4.0) object was

created, and the metadata was added to it to identify the

participants [26]. Cell cycle scoring was performed and

computation of the percentage of mitochondria genes before

integration. The object from each participant was transformed

individually within the object using SCTransform followed by the

selection of integration features, finding the anchors, and finally

combined integration. Principal component analysis was

performed to reduce the dimensionality of the data to identify

clusters of cells with similar transcriptomic profiles. Clusters and

cluster resolution were determined using FindNeighbors and a

customized FindClusters function that showed that the best

resolution was 0.523, with an average silhouette score of:

0.2 and 11 clusters. One cluster showed no cluster-specific

genes and was removed as multiplets, leaving 18,176 cells. The

remaining clusters were re-clustered and re-embedded, resulting

in 10 clusters with a resolution of 0.292, and an average silhouette

score of: 0.301. The average number of transcripts and expressed

genes were evaluated per cluster using half violin and boxplots.

The clusters were projected to a two-dimensional space using the

Uniform Manifold Approximation and Projection (UMAP) [27]

algorithm in Seurat.

Reference-based mapping

Immune cell subsets were identified using common cell

markers to identify the Mono, T cells, B cells, NK cells, DC,

and other immune cell populations. Uniform Manifold

Approximation and Projection for Dimensional Reduction

(UMAP) was used to embed the cell populations and color

code based on the expression of surface markers. The

clustered PBMC dataset in this study (query) was mapped to

a reference CITE-Seq dataset of 162,000 PBMCS measured with

228 antibodies [26]. The query data were projected into the same

dimensional space as the reference dataset, thus separating the

cells into the cell types present in the reference dataset. The

method first projected the reference data transformation onto the

query data, followed by the application of KNN-based

identification of mutual nearest neighbors (anchors) between

the reference and query. On an L2-normalized dimensional

space, the reference data transferred continuous data onto the

query data to annotate the scRNA data based on a weighted vote

classifier. For visualization, reference-based UMAP embedding

was used, considering that all the immune cell populations are

well represented.

Analyzing differences in samples

Cluster/sample composition was calculated to determine the

proportion of cells per cluster and per cell type. Cell subsets that

were significantly different between patient and control groups

were identified by computing Dirichlet Regression using the

DirichReg function in DirichletReg Package in R [28].

Differentially expressed (DE) genes were computed using the

FindMarkers function on Seurat (Version 4.0), which we used to

determine differentially expressed genes in the patient and
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control groups usingMASTwith significance at (P< 0.05) and log

fold change of > 0.2. Control 4 was not included in the DE

analysis due to different levels of cytokine module scores

compared to the other control participants (Supplementary

Figure S1E). DE genes were visualized using volcano-like plots

and heatmaps to compare all the cell types between patients and

controls. The fgsea (R-package) was used to analyze the pre-

ranked gene set enrichment analysis (GSEA). Module scores for

HLA genes, ISG, NFκB target genes, and cytokines were analyzed

using the AddModuleScore function in the Seurat R package, and

it calculates the normalized average expression of our ISG gene

list for each single cell across cell types. Statistical differences in

module scores between the patients and control groups for each

cell subset were computed using theWilcoxon sign-rank test with

Bonferroni correction. The difference between groups was

considered statistically significant at P-value < 0.05. Boxplots

were used to visualize the module scores for each cell, denoting

the median and interquartile range.

Cell-to-cell interaction using CellChat

CellChat (Version 1.1.1) was used to quantitatively infer and

analyze cell-to-cell communication networks [21]. Statistically

significant intercellular communication between cell groups was

identified using permutation tests, and interactions with a

significance level of less than 0.05 were considered significant

[21]. Heatmaps were used to visualize each signaling pathway

and their cell-cell communications, highlighting the number of

interactions, the sources (ligands) of the interactions, and the

receivers (receptors) of the interactions. The relative contribution

of each ligand-receptor pair to the overall signaling was shown in

bar plots. The relative contribution provides a measure of a

particular ligand-receptor interaction in a particular cell-cell

signaling network. This measure demonstrates the importance

or significance of the interaction in mediating cell

communication between the cell types and potential

functional relationships. It is calculated by comparing the

expression levels of different cell receptor and ligand genes

between the cell types while accounting for all the possible

interaction pairs within a signaling network.

Results

Clinical characteristics of study
participants

In this study, we defined “controls” as healthy individuals

who tested Plasmodium positive by rapid diagnostic test (RDT)

in the community. We defined “patients” as individuals with

uncomplicated malaria who visited the health facility from the

same community, tested Plasmodium positive by RDT, and were

treated on an outpatient basis. All samples were collected from

the same region, the Upper East region of Ghana which is a high

transmission area. Overall, 224 individuals were surveyed,

including 40% (90/224) of the participants who were

community healthy controls and 60% (134/224) of the

participants who were patients with uncomplicated malaria

(Figure 1A; Supplementary Table S1). Although most

participants were children between 1 and 15 years, there was

no significant difference between the median age of patients

compared to the controls (Wilcoxon rank-sum test, P = 0.74)

(Supplementary Table S1). However, there was a significant

difference in the median parasite density of patients compared

to the controls (Wilcoxon rank-sum test, P < 0.001)

(Supplementary Table S1). Further, the study sought to

determine if the patients had higher parasite densities than

the controls regardless of age. In general, there was a negative

correlation between parasite density and age regardless of

phenotype up to age 25 years (Figure 1B). Under 3 years, the

patients tended to have lower parasite densities, but these

were still higher than their control counterparts. After about

age 10 parasite densities fell gradually and plateaued around

age 25 but with high variability between the groups

(Figure 1B). The correlation between parasite density and

malaria patients was statistically significant (Pearson

R2 = −0.38, P < 0.001), but the correlation between

parasite density and age was not statistically significant in

the control group (Figure 1B).

Profiling pediatric malaria immune-cell
populations using single-cell analysis

In order to examine global differences in cellular composition,

gene expression, and intercellular communication between the two

groups, wematched individuals based on age (aged 4–8 years), sex,

and parasite density for both patients and controls and performed

single-cell RNA-seq (scRNA-seq) (Figure 1A; Supplementary

Table S2). There was no significant difference in median

parasite density between patients and controls in the matched

individuals (Wilcoxon rank-sum test, P > 0.71) (Supplementary

Table S2). In total, we generated 18,176 high-quality single-cell

profiles across eleven children with P. falciparum infections,

allowing us to ascertain differences in expression patterns of

immune response genes that might influence disease

pathogenesis. Each sample was profiled using Seq-Well S3, a

portable, simple massively parallel scRNA-Seq method [24].

The resulting data were filtered to remove cells based on the

fractional abundance of mitochondrial genes (<30%) and

transcripts expressing in <20 cells. After variable gene selection,

dimensionality reduction, clustering, cluster removal, and

reclustering (Methods), we retained 18,303 transcripts and

identified 10 distinct cell subsets in the 18,176 cells, across the

two groups of children (Figure 1C; Supplementary Figure S1A).
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FIGURE 1

Analysis of scRNA-Seq data from uncomplicated malaria patients and community healthy controls. (A) Experimental flow showing that PBMCs

were collected from eleven individuals out of 224 for scRNA-Sequencing, based on the modeling. (B) Regression analysis between parasite density

and age for patients (grey) and controls (blue). (C) Uniform manifold approximation and projection (UMAP) plot of 22,819 cells from eleven

(Continued )
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We manually annotated these 10 clusters using known RNA

marker genes to identify B cells, CD4 T cells, CD8 T cells, natural

killer (NK) cells, monocytes (Mono), and dendritic cells (DC)

(Supplementary Figures S1B, C). To identify and enumerate cell

subsets in our dataset at higher resolution, we opted to map our

query dataset to an annotated multimodal reference dataset of

PBMCs. First, we confirmed that all the cell subsets identified

using manual annotation were present in the resultant UMAP

(Supplementary Figure S1D). As expected, our reference mapped

dataset recapitulated all PBMC subsets, including B, CD4 T cells,

CD8 T cells, NK cells, Mono, and DC (these subsets are used

throughout the work; Figures 1C, D). We identified several

subclusters, such as intermediate, memory, and naïve B cells;

naïve, proliferating, effector memory and central memory

CD8 and CD4 T cells; proliferating CD56+ NK cells; CD14+

and CD16+ monocytes (Mono); plasmacytoid (pDC) and

conventional (cDC) dendritic cells, and other cell subsets

(Figures 1E, F). Since the reference dataset has only annotated

two Mono clusters (CD14+ and CD16+), we hypothesized that

there might be additional transcriptional heterogeneity

describing actively responding Mono subpopulations.

Therefore, further sub-clustering was done which resolved the

Mono into 3 large subpopulations (Mono 1, Mono 2, Mono 3)

and 1 small cluster (Mono 4) (Figures 1G–I) based on previously

reported markers [29]. Taken together, these data distinguish

nearly all distinct cell subsets that were present in PBMCs of

children in both the patients and controls.

Differences in relative cellular
composition between the groups

Next, we asked whether there were significant differences in

the relative proportions of cell types between the patients and the

control group. We found that relative cell proportions of the

major cell subsets (B, CD4 T, CD8 T, NK, Mono, and DC) varied

between individuals in each group (Figures 2A, B; Supplementary

Table S3). The patients exhibited elevated levels of circulating

Mono while the controls had higher proportions of circulating

B cells (Dirichlet-multinomial regression, P < 0.01; Figure 2A;

Supplementary Table S3). Further analysis of the B cell subsets

showed that the abundance of naïve and intermediate B cells was

significantly reduced in the patient group compared to the

control group (Dirichlet-multinomial regression, P < 0.05;

Figure 2B; Supplementary Table S3). We also found a

significant expansion of both CD14+ and CD16+ Mono

subsets in patients compared to the control group (Dirichlet-

multinomial regression, P < 0.01; Figure 2B; Supplementary

Table S3). Although there is evident variation in cellular

proportions of T lymphocytes among all the individuals

(Figures 2A, B), we did not observe any significant difference

in proportions of either CD4 or CD8 T cells between the groups

(Dirichlet-multinomial regression, P > 0.05; Figure 2B;

Supplementary Table S3). However, the proportions of naïve

and central memory CD4 T cells were significantly higher in the

patients compared to the control group (Dirichlet-multinomial

regression, P < 0.01; Figure 2B; Supplementary Table S3). NK cell

frequency was also higher in patients suggesting that they may

play a role in disease progression (Dirichlet-multinomial

regression, P > 0.05; Figure 2B; Supplementary Table S3).

Among NK cells, the proliferating and CD56+ subsets were

higher in patients compared to controls, but these differences

were not statistically significant (Dirichlet-multinomial

regression, P > 0.05; Figure 2B; Supplementary Table S3).

Overall, the minor subsets of T cells and other cell types with

low frequencies did not show differences in proportions between

the groups but the main cell subsets had significant differences in

proportions between patients and controls.

Comparative analysis of inflammatory
responses in children with malaria

Having identified shifts in the composition of circulating

immune cells between the patients and controls, we next asked

whether gene expression differed within each immune cell subset

between the two groups. Comparing patients to controls, we

observed the largest transcriptional changes (measured by

pairwise DE across cell types with adjusted P-value < 0.05 and

log fold change > 0.2) within B cells and Mono (Figure 2C;

Supplementary Table S4). Apart from B cell function genes, there

was a general trend toward upregulation of inflammatory genes

in B and T cells in patients relative to the control group, including

S100A8, CXCL8, and S100A9 (Figure 2C). Significant

transcriptional changes were also observed in Mono, with

genes such as IFITM3, FCER1G, and CCL4 being upregulated

in patients compared to the control group (Figure 2C). Patients

were also associated with the upregulation of Major

FIGURE 1 (Continued)

participants colored by identities of 10 cell clusters: mainly B cells, T cells, and Mono. (D) Expression levels of cluster-defining marker genes

organized by color intensity to show the average expression of the marker in that particular cell type and the proportion of cells with non-zero

expression shown by the size of the dot. (E)Markers used to annotate the subclusters to various cell subsets showing average expression and fraction

of cells expressing the marker. (F) Reference mapped dataset showing the predicted subclusters of B, CD4 T, CD8 T, NK, Mono, and DC cell

subsets. Reference-defined cell subsets were generated fromCITE-seq reference of 162,000 PBMCSmeasured using 228 antibodies [26]. (G)UMAP

of re-clustered and re-embedded Mono showing four subclusters of the CD14 and CD16 Mono. (H)Markers used to identify monocyte subclusters.

(I) Mono top 10 highly expressed genes in each subcluster.
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Histocompatibility Complex I (MHC-I) genes such as HLA-A

and HLA-C which are involved in antigen presentation in Mono

(Figure 2C). In CD4 and CD8 T cells, there was increased

expression of some inflammatory factor signaling genes such

as CXCL8 and NFKBIA in patients relative to the control group,

suggesting direct sensing of parasite products during clinical

presentation (Figure 2C). Using gene set enrichment analyses

(GSEA), we found that the patients had robust induction of

several innate immune response pathways such as tumor

necrosis factor-alpha (TNF-α) signaling via NF-κB, TGF-β

signaling, IL6-JAK-STAT pathway, complement, IL2-STAT5

signaling, inflammatory response, interferon-α response (IFN-

α), and interferon-γ response (IFN-γ) (Figure 3A;

Supplementary Table S5). We observed that although each cell

FIGURE 2

Profiling of immune cells from patients compared to the controls. (A) Relative cell proportions of the major cell subsets within patients and

control groups. Statistical tests were conducted using the Dirichlet Multinomial Regression in the DirichletReg package in R [28]. The dots represent

individual proportions while the color scheme represents the patients and control groups. (B) Relative proportions of minor cell subsets compared

between patients and controls. Cell proportions per group and P-value are shown in Supplementary Table S1. (C) Violin-like plots showing

genes that are differentially expressed between patients and controls. The x-axis shows the Log2 fold change against the cell subsets

(y-axis) – i.e., B cells, Mono, CD4 T cells, CD8 T cells, other T cells, dendritic cells (DC), and natural killer (NK) cells. The color scheme is based on the

upregulated (up patients) and downregulated (down patients) genes in patients and the size of the point represents the adjusted P-value. The

frequency shows the number of comparisons in which the gene is significantly expressed in the cell subset.
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FIGURE 3

Pathway analysis using gene set enrichment method (A) Pathway analysis using an immunologic signature gene set enrichment analysis (GSEA)

and the color scheme is based on the normalized enrichment score of genes DEG in patients. (B)Dot plots showing some of the leading-edge genes

in IFN-γ and IFN-α response, TNF-α signaling via NFκB and inflammatory response pathways in Mono and, (C) NK cells. Dot size represents the

fraction of cell subsets expressing a given gene. The dot color indicates scaled average expression by gene column.
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type was enriched in one or more of these pathways, there was a

unique molecular signature of the genes involved in each.

Upregulation of IFN-γ and IFN-α response pathways in

Mono were characterized by increased expression of genes

such as IFITM2, IFITM3, IL10RA, and TNFAIP3, while in NK

cells they were typified by genes such as NFKBIA, CD69, and

ISG20 (Figures 3B, C; Supplementary Table S5). Mono and

natural killer cells upregulated TNF-α signaling via the NF-

κB pathway with the induction of genes related to this

pathway such as IL1B and TNFAIP3 for Mono, and IL7R,

CD44, and NFKBIA for NK cells (Figures 3B, C;

Supplementary Table S6). Inflammatory responses in Mono

were characterized by IL10RA, IL1B, and CXCL8 while in NK

cells they were driven by CD69, IL7R, CXCL8, and NFKBIA

among others (Figures 3B, C; Supplementary Table S5). Thus,

the enrichment of unique genes for each cell subset for similar

pathways suggests a specific but concerted contribution of

each cell subset toward the innate immune response

in patients.

Relative enrichment of ISGs genemodules
in monocytes of patients relative
to controls

Since IFN genes were significantly upregulated inMono patients

relative to the control group, we next sought to determine if entire

gene modules were enriched. Interferon stimulated genes (ISGs)

modules scores were significantly higher in B cells, DC, CD4 T cells,

and Mono in patients compared to the control group (Wilcoxon,

adjusted P < 0.05 for all comparisons, Figures 4A, B, D, E); however,

there were no significant differences in ISG module scores in

CD8 T cells and NK cells (Figures 4C, F). Further examination

of intra- and inter-individual variation in these module scores

revealed substantial intra-individual variation in cells from the

same participant and between cells of the same type from

different participants (Supplementary Figure S1E). Overall, our

data show that Mono plays a significant role in defining malaria

patients compared to control participants from the same

community through induction of the ISGs gene modules.

FIGURE 4

Module score analysis of innate immune genemodules. (A) Boxplot showing themedian and interquartile ranges of interferon-stimulated gene

(ISG) module scores per cell subset compared between patients and controls in (A) B cells, (B) CD4 T cells, (C) CD8 T cells, (D) DC (E)Mono, and (F)

NK cells. Module scores are computed using the AddModuleScore function in the Seurat R package, which effectively looks at the normalized

average expression of our ISG gene list for each single cell across cell types. Statistical significance between the patients and controls of each

cell subset was computed using the Wilcoxon sign-rank test with Bonferroni correction (P-value < 0.05). Nonsignificant differences are indicated

by ns.
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FIGURE 5

Primary innate immune cells dominate the cell-to-cell interactions with other cell subsets. (A) Heatmap showing the number of interactions

between the PBMCs cell subsets. The y-axis shows the signal senders, and the x-axis shows the signal receivers. (B) Relative contribution of ligand-

receptor pairs in patients within theMHC class I signaling pathway and (C)MHCclass II signaling networks, respectively. A higher relative contribution

(Continued )
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Role of MHC-I and MHC-II signaling
pathways in cell-to-cell interactions

Next, we used our single-cell data to infer putative axes of cell-

to-cell communication using signaling ligands, cofactors, and

receptors. First, we discerned cell-to-cell interactions in the

patients and found that the number of interactions (ligand-

receptor) originating from primary innate immune cells such as

DC andMonowere greater than those originating fromnon-antigen

presenting cells (Supplementary Table S6). However, our data show

very few inferred cellular communication networks in the control

group (Supplementary Table S7). This analysis suggests a role for

Mono as antigen-presenting cells in orchestrating pro-inflammatory

responses by interacting with proliferating CD4 T cells, intermediate

B cells, effector memory T cells, and naïve CD8 T cells in the patient

group (Figure 5A). Conventional DC also produced factors that

interact with proliferating and effector memory CD4 T cells

respectively, suggesting a concerted effort by antigen-presenting

cells to activate the immune response in patients (Figure 5A).

Communication probabilities indicated that MHC-I and MHC-II

play a role in these interactions among other pathways. The most

significant receptor-ligand pairs for HLA-A, HLA-B, HLA-C, HLA-

E, HLA-G, and HLA-F ligands for MHC class I include CD8A,

CD8B, LILRB2, and LILRB1 (Figure 5B). The leading intercellular

ligand-receptor pairs with CD4 T cells as signal receivers were

distinct HLA genes, with the highest relative contribution being

driven byHLA-DRA andHLA-DRB1 (Figure 5C). The otherminor

signaling pathways that were important in patients include MIF,

RESISTIN, ANNEXIN, GALECTIN, ADGRE5, APP, CD22, CD45,

SELPLG, CD99, CLEC, and TNF signaling networks. For the TNF

signaling pathway, the CD56+NK cells were shown to be interacting

withMono and also with proliferating CD4 T cells, effector memory

CD4 and CD8 T cells, and cDC (Figure 5D). This cell

communication network was mediated by TNF in the sender

cells and TNFRSF1B in the receiver subsets (Figure 5E), and this

corroborates the DE results (Figure 5G). We examined the

expression levels of TNFRSF1B across all the cell subsets and

found that indeed it was expressed in all the receiver cells

(Figure 5F). Only the pDC and CD16 Mono showed cell-to-cell

interactions with naïve and intermediate B cells and might be

playing a role in B cell activation and development in the control

group through MHC class II molecules (Figures 5G, H). Therefore,

exposure of innate immune cells to parasite ligands may potentially

activate intracellular signaling cascades through cell-to-cell

interactions to induce rapid expression of a variety of innate

immune genes.

Discussion

Here, we recruited 224 participants from Navrongo, a high

malaria transmission area with seasonal fluctuations [30].

Interestingly, most of the participants indicated that they use long-

lasting insecticide-treated mosquito nets (LLINs), which helps to

explain the low frequency of infections; after screening

1,000 individuals in the community, <10% of them were positive

for P. falciparum as community healthy controls, suggesting a

reduction in the malaria infection reservoir. The National Malaria

Elimination Program (NMEP) distributes LLINs as part of strategy

interventions, including community-based seasonal malaria

chemoprevention initiatives for children under 5 years to reduce

the malaria burden in this area [30]. The ability of insecticide-treated

nets (ITNs) to interrupt malaria transmission has been shown in

large-scale studies, which demonstrated that modern housing and

ITNs could reduce malaria infections by 1% and 16%, respectively

[31]. Further, we investigated the relationship between age and

parasite density and found that parasite densities tended to

decrease with age, but the levels were generally higher in patients

compared to controls in this high transmission intensity area [5].

Immunity to malaria, though partial, depends on exposure levels, or

cumulative infection episodes, as a function of transmission intensity

among other factors [5, 11]. This relationship naturally results in an

association between age and the maturation of the immune response

to malaria. Thus, older children have been shown to have fewer

occurrences of malarial fevers compared to younger children,

demonstrating the impact of immune acquisition through repeated

exposures [12]. Thus, an inverse relationship between age and parasite

density is expected, because older children can immunologically

inhibit, parasite growth and expansion compared to younger children.

To better understand cellular responses driving these divergent

clinical phenotypes, we performed scRNA-seq on PBMC samples

from eleven of the 224 individuals among the two groups,

controlling for group variability driven by age, fever, and parasite

density. This enabled us to identify a potential role for interferon

responses and TNF-α signaling via NFκB in Mono during the

clinical manifestation of pediatric malaria infection. We also found

differences in the fractional abundances of PBMC cell subsets, with

patients characterized by a proportional increase in Mono while

controls had a higher proportion of circulating B cells. We showed

cellular level variations in the expression of innate immune modules

within and between individuals as well as between clinical

phenotypes. Further, we identified a role for Mono and other

innate immune cells through MHC-I and MHC-II molecules in

driving cell-to-cell interactions with CD8 and CD4 T cells,

FIGURE 5 (Continued)

indicates the magnitude of the contribution of the ligand-receptor and its significant role in the MHC I or II signaling networks. (D) Cell

communications through the TNF signaling pathway and the arrows indicate signal sender to receiver. (E) Relative contribution of the TNF-

TNFRSF1B ligand-receptor pair towards the TNF signaling pathway. (F) Violin plots showing the expression levels of the TNFRSF1B in the Seurat

object for the cell subclusters. (G) Heatmap comparison showing the overall signaling between all cell subclusters and the number of

interactions. (H) Relative contribution of MHC class II signaling pathway in the control group.
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respectively. Together, our work recontextualizes the function of the

innate immune cells in malaria, demonstrates how variable their

responses can be, and links specific acute phase response signaling

pathways to clinical presentation.

Differential gene expression comparing patients and controls

across cell types revealed a significant upregulation of genes

associated with innate immunity in different cell types. We show

that CCL3 and CCL4 (also known as macrophage inflammatory

protein MIP-1α and MIP-1β respectively) were upregulated in

Mono of patients, suggesting their possible role in modulating

clinical disease [32]. CXCL8, the most potent human neutrophil

attracting/activation chemokine [33] was also highly upregulated in

B cells, CD4, and CD8 T cells. Other studies have shown that

circulating levels of CXCL8 and CCL4 correlated with parasite

density, and when found in the cerebrospinal fluid they can

predict cerebral malaria mortality [13, 34–36]. Furthermore, the

adaptive immune cell subsets (B cells and T cells) in the patient

group expressed two alarmins (S100A8 and S100A9) that are known

to form calprotein heterodimer, an endogenous TLR4 ligand; this

could suggest a possible role in silencing hyperinflammation [37].

We also show significant expression of FCER1G in B cells, Mono,

and DC in patients, which is induced by IFN-γ and encodes for a

gamma chain of the FC receptor and it is suggested to play an

important role in controlling parasitemia [6]. Collectively, our data

imply that both adaptive and innate immune cells cooperatively play

a role during the pathogenesis of malaria in patients when compared

to healthy controls.

We showed that several immune-related pathways are activated

by Plasmodium infection and disease including the TNF-a signaling

via NFκB pathway, IFN-α/γ responses, IL2-STAT5 signaling, and

inflammatory response pathway in patients. Since the parasite life

cycle involves repeated red cell invasion and rupture, the release of

pyrogenic cytokines that drive these pathways such as interleukins,

interferons, and TNF in Mono and NK cells, can signify

pathophysiological events occurring in malaria patients [13, 38].

These observations could also mean that children who were patients

were sampled quite early during the onset of the disease progression

trajectory [12]. Our data are consistent with those previously

described by integrating whole blood transcriptomics, flow

cytometry, and plasma cytokine analysis [6], and our results

further identify the cell subsets in which these pathways were

more enriched. We show that each of the cell subsets has a

unique signature of genes enriched in these immunogenic

pathways with minimal sharing. Several studies have shown

similar innate immune response pathways in individuals with

malaria such as whole blood transcriptomics of the Fulani of

West Africa [39], children repeatedly exposed to malaria [6, 11],

controlled human malaria infection (CHMI) studies [16], and even

mice models [37]. We have now confirmed some of these

observations and demonstrated that in the patient state, robust

upregulation of certain genes in specific cell subsets is associatedwith

systemic inflammatory responses. Innate immune cells, such as

Mono, DC, and NK cells, appear to be most reactive in patients,

probably due to continuous exposure in a high transmission area as

suggested by other studies [7, 37, 40].

By collating gene modules of interferon-stimulated genes

(ISGs), we show that there is a differential expression between

patients and controls across different cell subsets. ISGs are normally

produced as a function of interferon responses (IFNs) [8], which we

observe to be enriched in patients. IFNs are produced primarily by

DC to activate ISGs in other cells [41], and we observed that B cells,

T cells, Mono, and DC have higher ISG module scores in patients

compared to controls. Notably, our data show that each cell or cell

subset responds differently upon IFN activation with varying

transcriptional responses of an ISG module between individuals.

This variability was also observed for cytokine modules, NF-κB

target modules, and HLA modules. Similarly, a previous CHMI

study observed striking inter-individual variation in immune cell

composition and immune responses, demonstrating that an

individual can have a unique immune fingerprint [10]. Thus,

the variations in immune responses that we observed could be

attributed to the complexity of the P. falciparum life cycle with

several developmental erythrocytic stages, duration of infections,

intensity of infection in each individual, genetic factors, genetic

variation in immune response genes among other factors [12, 42].

These findings on inter-individual variability in immune responses

could provide insights when considering the design and evaluation

of interventions that target host immunity in the control of malaria.

Our scRNA-Seq data enabled us to quantitatively infer and

analyze cell-to-cell communication networks across all the innate

and adaptive immune cells [21]. This analysis enabled us to uncover

coordinated interactions between innate and adaptive immune cells

through various ligands. The cell-to-cell interactions in patients were

driven by MHC class I and II signaling pathways, whereby antigen-

presenting cells were shown to have more interactions with

proliferating CD4 and naive CD8 T cells. The importance of

HLA genes has long been demonstrated by Hill and colleagues

who associated HLA-Bw53 antigen and

DRB1*1302–DQB1*0501 haplotype to independently protect

against severe malaria in West Africa [43]. Thus, our

observations on cell-cell interaction involving HLA molecules

and T cells support the importance of these molecules during P.

falciparum infection and disease progression, consistent with the

observed varying degrees of interactions in patients compared to

control groups. We also showed that within the patient group, there

are contrasting interactions between various HLA I and HLA II

molecules with CD8 or CD4 T cell receptors, respectively, which

could be related to their tight regulation and antigen-presenting

ability [44, 45]. Activation of CD4 and CD8 T cells has been

correlated with protective immunity to malaria, and they can

differentiate into several functionally distinct subsets in the

presence of various cytokines [46]. It was not surprising that we

identified different fractional abundances of CD4 and CD8 T cell

subsets in patients compared to the control group of children, but we

demonstrate that ultimately this results in varying degrees of

interactions with Mono or DC.
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Future work should seek to identify themechanisms that result

in these variations and their impact in orchestrating phagocytic

and humoral responses as this critical knowledge gap will be

important in developing T cell-based malaria vaccines.

Conclusion

Overall, by using scRNA-seq on PBMCs obtained from patients

and controls in a high transmission area, this work sheds light on the

interplay between peripheral immune cells during uncomplicated

malaria, uncovering the genes and immune pathways in specific cell

types that might play a significant role in defining the outcomes of

infection. Data presented here demonstrate that the patients with

uncomplicated malaria were characterized by the presence of

inflammatory response signatures in specific cell types compared

to the control group. The results could also suggest that in the

control group, amuted innate immune response or disease tolerance

mechanism plays a role in enabling children to harbor malaria

parasites in high malaria transmission areas without developing

uncomplicated malaria [47]. The findings are relevant for guiding

the development of malaria vaccines, as it is challenging to develop

vaccines that build long lasting immunity, especially in the context of

pathophysiologic complexity and mechanisms of immune

acquisition through different cell types.
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