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Learning with Noisy Labels for Classifying Biological Echoes in

Polarimetric Weather Radar Observations using Artificial Neural

Networks.

John Atanbori, Christos A. Frantzidis, Mohammed Al-Khafajiy, Aliyu Aliyu,
Behnaz Sohani, Kofi Appiah, Harriet Moore, Catherine Sanders, Alastair I.
Ward

❼ We used depolarization ratio and citizen science data to label biological
echoes in polarimetric weather radar observation.

❼ We used a deep learning approach to correct noisy biological-scatterer
labels in polarimetric weather radar observations.

❼ We developed a novel approach that uses semi-supervised co-training
method based on bootstrap ensemble with a confidence threshold.

❼ We introduced ensembles comprising STNet and a modified FNet with
bootstrap sparse categorical cross-entropy loss.

❼ We tested our method on other similar multivariate numerical datasets
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Abstract

The identification of biological echoes in radar data has revolutionized re-
search into airborne migratory species. Deep learning applied to polarimetric
weather radar observations can reveal signature patterns of mass movement
by bio-scatterers such as birds, bats, and insects. However, due to the dif-
ficulties in labelling bio-scatterers in these data, threshold approaches have
been proposed in the literature. In this research, we used the depolarization
ratio (DR) based on differential reflectivity (zDR) and the cross-correlation
coefficient (pHV), along with citizen scientist-reported data, to label bio-
scatterers for deep learning. This method of labeling biological echoes in
radar signatures is prone to noise, which impacts the accuracy of any model
that relies on it. We introduce a novel semi-supervised co-training approach
that uses a bootstrap ensemble with a confidence threshold. Our ensem-
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ble consists of the newly proposed STNet and two modified FNet models,
which incorporate co-learning through bootstrap sampling for label correc-
tion. This innovative method significantly improves classification accuracy
across all three multivariate numerical datasets compared to baseline models
that lack co-learning with bootstrap-based label correction.

Keywords: Artificial Neural Networks (ANN), Ensemble Classifiers, Radar
Bio-Scatterer Classification, Semi-Supervised Co-training

1. Introduction

Monitoring population trends is a fundamental component of species con-
servation and management. It is of growing importance as human impacts
increase the necessity for conservation management of wild populations [1].
The UN Convention on the Conservation of Migratory Species of Wild Ani-
mals (also known as the Bonn Convention) recognises the importance of mi-
gratory species and hence their conservation (www.cms.int). However, some
migratory species are also known to facilitate the inter-continental spread of
infectious diseases that threaten human interests, such as avian influenza [2].
In addition to their epidemiological significance, migratory species play cru-
cial ecological roles, such as seed dispersal, pollination, and nutrient cycling.
Therefore, accurate monitoring methods are essential not only for conserva-
tion purposes but also for understanding the broader ecological impacts of
these species.

Monitoring species over a large spatial scale is daunting, but polarimet-
ric weather radar can simplify the process as they are geographically dis-
tributed across multiple regions worldwide. Weather radar systems, initially
developed for meteorological applications, have become invaluable tools in
ecological research. Their ability to provide continuous, large-scale observa-
tions without direct disturbance to wildlife offers a unique advantage over
traditional field survey methods. This advancement supports diverse appli-
cations, from migration tracking to the study of population dynamics.

Polarimetric weather radar measurements have been used to separate
meteorological and non-meteorological scatterers [3, 4]. They measure six
single- and dual-polarization variables. The single-polarization variables
consist of radar reflectivity factor (Z), velocity (V), and spectrum width
(SW), traditionally used in weather applications for removing non-weather
echoes. The introduction of dual-polarization variables: differential reflectiv-

2



ity (zDR), cross-correlation coefficient (rHV), and Differential Phase (PH)
have led to improved algorithms for meteorological and non-meteorological
applications[3–6]. In particular, the discrimination of Biological scatterers in
non-meteorological echoes [5–8], used in the detection of bird roosts [8], quan-
tifying species emerging from roosts [9], and classification of biological targets
[5]. Many applications using weather radar data classify scatterers into three
categories, namely precipitation, biology, and clutter. These applications
[5–7, 9] often rely on the distinctive properties of combined single- and dual-
polarization variables. As these radar systems are operational across most
developed nations, their data hold the potential to be a cost-effective global
solution for tracking species at risk and mitigating ecological threats.

Recently, machine and deep-learning approaches have been used with ap-
plications that use polarimetric weather radar measurements [5, 8, 10–12].
However, deep learning usually requires a large dataset of radar scans with
labels, but these data are usually difficult to annotate. Lin et al. [10] used
transfer learning from image classification models trained on the ImageNet
dataset [13] to overcome the problem, and classified radar echoes into bio-
logical and non-biological classes. Manually, labelling echoes in polarimetric
radar data could be very time-consuming and error-prone. Therefore, re-
search has used thresholding [4, 10] to speed up radar scatterers labelling.
The two most common thresholding approaches include the cross-correlation
coefficient used in [7] to identify biological scatterers and the depolariza-
tion ratio used in [4] to discriminate non-biology signatures from biology.
Approaches that use citizen science (CS) for species-specific labelling have
also been proposed [5, 14], but these are based on assumption of clear-
air (no precipitation) and minimal scatterer cross-contamination. However,
mixed-scatterer types in radar signature is common and some degree of cross-
contamination from non-focal scatterers are inevitable. Therefore, these ap-
proaches introduce noisy labels [5] that affect model training and introduce
errors into the prediction of bio-scatterers echoes. In this study, we focused
on noisy labels in general rather than those specifically introduced by cross-
contamination, as the issue is not only limited to this.

The noisy label problem is a rapidly emerging research theme in the
deep learning community. One approach to addressing the problem involves
selecting correctly labelled examples from noisy training datasets by elimi-
nating labels likely to be mislabelled in order to ensure robust learning [15].
This approach then combines the clean and noisy labels (as unlabelled data)
and uses semi-supervised learning to improve the model’s predictive accu-
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racy. Another approach relies on a loss correction strategy, which is used
to reduce the impact of noisy labels during the network training stage by
directly modifying (or adjusting) the losses through various methods [16]. In
contrast to conventional approaches, our method employs a semi-supervised
co-training strategy, utilizing a bootstrap ensemble with a confidence thresh-
old for annotating noisy labels. Additionally, we incorporate a bootstrap
sparse categorical cross-entropy loss to enhance the classification. The ad-
vantage of our approach lies in the collaborative training of ensemble models
with distinct data subsets, facilitating information sharing between them.
This synergistic approach enhances overall performance by harnessing the
predictive power inherent in ensemble learning, co-training and the boot-
strap sparse categorical cross-entropy loss. The contribution of this paper is
as follows:

❼ Label biological echoes in polarimetric weather radar observation using
depolarization ratio [4] and citizen science data.

❼ Attempt noisy biological-scatterers label correction in polarimetric weather
radar using a deep learning approach.

❼ Introducing our novel Short-Time Fourier Transform network (STNet),
designed to compute the FFT of short overlapping segments of the
input while incorporating temporal information for our ensembles.

❼ Furthermore, we have integrated ensembles with a combination of boot-
strap sparse categorical cross-entropy and a co-training approach to
address noisy labelling. This innovative combination has proven effec-
tive in classifying biological-scatterer signatures in polarimetric weather
radar data, even in the presence of label noise.

The remainder of this paper is organised as follows. We review existing
deep learning literature that learns from noisy labels in Section 2. Section
3 describes our methods. Then we move on to Section 4 to describe the
datasets, experiments, and benchmarking. Finally, in Section 5, we present
and discuss the results, and in Section 6, we conclude.

2. Related Work

2.1. Discriminating Biological Echoes

To date, very little work exist on discriminating biological scatterers in
polarimetric weather radar using Deep learning approaches [10–12]. Usu-
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ally, massive amounts of labelled data are required to train these models,
which is time-consuming and expensive to obtain from weather radar ob-
servations. Convolutional neural networks were employed by [10–12] to dis-
criminate between biological and non-biological scatterers; however, these
methods necessitate extensive datasets for training. To avoid the cost and
time limitations, [10] used a transferred learning approach which is based on
the IMAGENET dataset [13] with only a few manually labelled radar data.
The weak labels were created using a cross-correlation threshold of 0.95, a
common practice among radar biologists to identify biological echoes in radar
data. However, [10] recommended that the use of Depolarisation Ration(DR)
[4] could be a better alternative to their approach for labelling the radar
data. Labelling biological echoes this way introduces cross-contamination
with non-focal scatterers. Gauthreaux et al. [5] opted not to label a signifi-
cant amount of radar data as they sought to discriminate among six different
types of biological scatterers using natural history and the Random Forest
(RF) approach. Nevertheless, the method remains susceptible to non-focal
scatterers, possibly due to the lack of independent validation for scatterer
types.

Research studies on roost detection using deep learning techniques, as
highlighted in the literature ([8, 17]), have demonstrated a reliance on a
larger volume of labe1led data compared to pixel-level approaches ([10–
12, 12]). This preference is attributed to the convenience of delineating
bounding boxes around distinctive ring-roost patterns. The characteristic
nature of these patterns is particularly evident in the emergence of tree
swallow roosts. Nonetheless, it is crucial to acknowledge that such patterns
may not be readily discernible for other species, emphasizing the need for
a non-species-specific approach when employing deep learning methods for
diverse roost detection scenarios. Our approach focuses on the mass migra-
tion of bird species, and it is not dependent on ring-roost pattern and aims
to find a solution that is not species-specific. While the conventional ap-
proaches emphasis on recognising characteristic roost patterns in this case,
our method shifts the paradigm to address the complexities of large-scale
migration events, which could broaden the understanding of roost detection
dynamics for varying species. However, this study only focused on large-scale
migration footprints.
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2.2. Noisy labels techniques

Polarimetric weather radar data typically has no or very little labelled
data, but supervised deep learning requires massive amounts of labelled data.
Although there are techniques to quickly annotate these data, they introduce
noisy labels since mixed scatterers are unavoidable and difficult to separate
manually. Supervised Learning models for classification using noisy data
will inevitably degrade during training [18]. In this section, we have followed
a similar categorisation approach as in [15, 16] to review the literature in
this area. However, because this is not a survey paper, we strongly advise
readers who want more information to read the articles by [15] and [16].
Furthermore, the effectiveness of similarity relationship hashing for unsuper-
vised cross-modal retrieval has been explored in recent research [19]. These
findings could potentially contribute to improving the noisy label classifica-
tion problem by leveraging cross-modal relationships to refine data labelling
strategies.

2.2.1. Loss correction methods

Some noisy label technique aims to correct the training loss [16, 20–22]
by building a regularization into the loss function to penalize low confident
predictions. Hendrycks et al. [21] and Patrini et al. [22] employed a noise
transition matrix, which signifies the transition relationship from clean labels
to noisy ones, to construct statistically consistent classifiers in label-noise
learning. This approach may lead to a poorly estimated transition matrix due
to the randomness of label noise, a problem addressed in [20] using two easy-
to-estimate transition matrices, known as a dual-T estimator. The commonly
used cross-entropy loss is not robust to noisy labels. Therefore, loss functions
such as information-theoretic loss [23] and normalization loss [24], which
mathematically lower the impact of noisy labels during backpropagation have
recently been proposed. Robust approaches could also include designing
specific loss layers [25], which can improve network learning by correcting
the noisy labels.

Another popular loss correction approach corrects labels using a label
propagation before training the models on the pseudo (corrected) labels since
the noisy labelled data have the same feature distribution as the clean data
[26]. Though [27] is based on pseudo labels, they treat corrected labels as an
independent parameter learned during training. However, incrementally cor-
recting the training data in each epoch and updating the model with pseudo
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labels could lead to the network memorizing the noisy labels, which [28] ad-
dress by adding a regularization on the loss function to lower the possibility
of incorrect predictions. Our approach is partially inspired by Liu et al.
[28], where we conduct the label propagation process to acquire pseudo la-
bels within a semi-supervised co-training network, leading to improved model
predictions. Additional details about this model are provided in Section 3.

2.2.2. Sample selection methods

Both loss correction and sample selection methods modify the loss by
reducing the harmful effects of noisy labels during training. However, the
latter divides the data into clean and noisy sets using a Gaussian mixture
model, or small loss criterion in the case of co-teaching models [29–31]. The
sample selection method uses clean data for training. Early sample selection
methods proposed in [29] train two deep neural networks simultaneously and
let them teach each other given every mini-batch. The approach feed-forward
all the training data and selects some data of possibly clean labels. The two
networks then jointly decide which mini-batch is used for subsequent train-
ing. Mandal et al. [30] and Wei et al. [31] proposed improvements to the
co-teaching approach. Mandal et al. [30] incorporated modifications such as
self-supervision and relabelling into the co-teaching framework. Conversely,
Wei et al. [31], following a strategy similar to that of Han et al. [29], chose
to select small-loss examples for simultaneously updating the parameters of
both networks. In alignment with the methodologies explored in this sec-
tion, our approach introduces an ensemble comprising a Short-Time Fourier
Transform network (STNet) and a Fast Fourier Transform network (FNet).
This ensemble employs a hybrid strategy, combining bootstrap sparse cat-
egorical cross-entropy and a co-training approach, to effectively tackle the
challenges posed by noisy labelling.

3. Methods

Our goal is to employ a method that minimizes the cross-contamination
of labelled scatterers in polarimetric radar data and utilizes a deep learning
approach to reduce the propagation of noisy labels throughout the network.
The methods employed to achieve this are detailed in this section.

3.1. Depolarisation Ratio

Since we do not have a large labelled dataset of polarimetric observa-
tions, we used one of the popular approaches, Depolarisation Ratio to first
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separate radar signatures into metrological and non-metrological. We then
used citizen data and existing sightings of species to separate species specific
data from the non-metrological data to produce a comprehensive dataset for
training our models. While it is a common practice among radar biologists
to use a threshold of pHV ≤ 0.95, as employed in prior work for weakly
labelling data in deep learning [10], we opted for the Depolarization Ratio as
recommended in [10]. This choice is anticipated to yield better results, and
the computation is performed using Equation 1.

DR = 10 log10(
zDR + 1− 2(pHV )

√
zDR

zDR + 1 + 2(pHV )
√
zDR

) (1)

Where zDR and pHV are the differential reflectivity and cross-correlation
products respectively in linear scale. The unit of measurement for Differen-
tial Reflectivity (zDR) is decibels (dB). It measures the ratio of horizon-
tally polarised reflectivity to vertically polarised reflectivity, with a typical
value range of −7dB to +7, dB. Meanwhile, the Cross-Correlation Coefficient
(pHV ) is dimensionless (unitless). It represents a normalised measure of the
similarity or correlation between horizontally and vertically polarised radar
returns, with values ranging from 0(not correlated) to 1(perfect correlation).
Our computation of DR has been converted into decibels (dB) but usually its
values range from 0 to 1. The DR of meteorological targets is small, but hail
and melting graupel could have values of DR as high as non-meteorological
targets, but have reflectivity (Z) never observed in biological echoes [4]. We,
therefore, used DR <= −12 and Z <= 40 similar to those proposed in [4, 32]
to label biological echoes.

3.2. Semi-Supervised Co-Training With Bootstrap Ensemble

Figure 1 demonstrates our semi-supervised co-training method, incorpo-
rating a bootstrap ensemble and a confidence threshold. We annotate our
unlabe1led training data (Dunlabelled) by leveraging the best models obtained
through iterative ensemble training. The application of a confidence thresh-
old (θ) ensures that only predictions (x) surpassing this value contribute to
the annotations. We then update the complete training dataset with these
confident predictions, forming a refreshed dataset (see Dtrain in Equation 2)
for use in the next co-training iteration.
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Figure 1: The semi-supervised co-training approach introduces a novel bootstrap ensem-
ble that aggregates results from multiple models - FNet, STNet, and BasicFNet - each
contributing unique modelling strategies for improved prediction performance. FNet is
designed to capture feature-based dependencies, while STNet leverages spatiotemporal
information, and BasicFNet serves as a baseline with a simpler architecture. A key in-
novation is the use of a confidence threshold, which selectively incorporates only reliable
predictions for labelling, preventing the influence of noisy or uncertain data. The training
iterates until further labelling no longer improves performance, ensuring efficient use of
labelling only when it benefits the model’s refinement.

Dtrain ← Dtrain ∪ {(x,Label(Mi, x)) | x ∈ Dunlabe1led,Confidence(Mi, x) > θ}
(2)

This iterative cycle continues as the ensemble training process recom-
mences, utilizing the updated training data. The iterative refinement con-
tributes to the continual improvement of the models’ accuracy. The iterative
process persists until the best ensemble models’ predictive accuracy plateaus,
and they can’t predict any more unlabe1led data with the required confidence
threshold, signifying a convergence of the ensemble models (see Equation 3).

Confidence(Mbest, x) < θ, ∀x ∈ Dunlabe1led (3)

Following convergence, we undertake a final training using the updated
dataset (see Equation 4), which focuses on STNet, our novel architecture (see
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1). However, the final model could also be the FNet or BasicFNet models,
but we selected STNet as it provides better accuracy overall.

Final Model = Train(Dtrain, STNet) (4)

3.3. The Architectures for Bootstrap Ensemble Learning

We employed three ensembles, namely FNet, STNet, and BasicFNet, in
the context of semi-supervised Co-Training. FNet serves as an attention-free
alternative to conventional Transformer architectures, as discussed in [33].
Our objective is to utilize models with reduced computational complexity
to shorten training time while still delivering superior performance. This is
achieved by replacing the self-attention mechanism with a more efficient com-
ponent. The FNet architecture we employ, shown in Figure 2a, is based on
the implementation in [33] but introduces a key modification in the Fourier
sublayer. Unlike [33], which uses a 2D FFT, our approach implements a 1D
FFT, specifically designed to better handle the characteristics of the multi-
variate datasets in this study. Additionally, we used the real components of
the FFT, following the recommendations demonstrated in [33].
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Figure 2: Architecture of the Bootstrap Ensembles: The FNet architecture (left)
is based on the design proposed in [33], with a modification where the FFT layer is 1D
instead of 2D. The sequence of layers from the FFT layer to the second Add & Normalised
block is repeated multiple times before passing through the Dense and output layers. The
STNet architecture (middle) follows a similar structure to FNet but replaces the FFT
layer with an STFT layer, followed by Dense and Reshape layers. Finally, the BasicFNet
architecture is a simplified version of FNet, omitting the initial Add & Normalised layer.

The FNet architecture comprises two major sublayers: the Fourier Mixing
Sublayer and the Feed-Forward Sublayer. The Fourier Mixing Sublayer is
responsible for capturing dependencies in the input sequence by transforming
it into its frequency domain. Given our specific use case with short input
sequences, we padded the input to a total length of 256. Meanwhile, the
Feed-Forward Sublayer is a standard feed-forward neural network sublayer
designed to process the outputs of the FFT.

Fourier Mixing Sublayer: This sublayer uses a mathematical tool
called the Fourier Transform, which is a method for analyzing signals (or
sequences of data) by breaking them down into their frequency components.
Think of it like taking a piece of music and identifying the individual notes
and harmonies that make up the song. Similarly, in the Fourier Mixing
Sublayer, the input sequence (a series of numbers representing text, speech, or
other data) is transformed into its frequency domain. This allows the model
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to uncover patterns or relationships in the data that may not be obvious in
its original form, such as recurring structures or long-range dependencies. To
make this work efficiently, the model ensures that all input sequences are of
the same length, which in this case is 256. If the input is shorter than this, it
is ”padded” by adding extra values to reach the desired length. This padding
doesn’t add new information but ensures consistency for the transformation
and subsequent steps.

Feed-Forward Sublayer: Once the data has been processed in the
Fourier Mixing Sublayer, the resulting frequency information is passed to
the Feed-Forward Sublayer. This part is a type of standard neural network

layer. It takes the transformed data and applies a series of computations
designed to extract meaningful features and patterns. Essentially, this layer
helps the model make sense of the frequency-domain data and prepares it for
the final stages of processing, such as making predictions or classifications.

We introduce STNet, a novel adaptation of the FNet architecture, which
incorporates the Short-Time Fourier Transform (STFT) for enhanced time-
frequency localization. This key innovation allows STNet to effectively cap-
ture variations in the input signal across both time and frequency domains.
Unlike the FFT sublayer in FNet, STNet features a unique STFT sublayer,
followed by dense and reshape layers (see Figure 2b). To accommodate this
architecture, we implemented an STFT operation with a frame length of
256 and a step of 2, producing an output shape that required reshaping for
compatibility with the network’s structure. This was achieved using a dense
layer with 256 units, ensuring seamless integration within STNet.

We introduce BasicFNet, a novel simplified version of the FNet architec-
ture (see Figure 2c). In this variant, we omit the Add and Normalized layers
that typically follow the FFT sublayer in the original FNet design. This
deliberate modification creates diversity in the ensemble’s predicted outputs,
which is crucial for enhancing the co-training process. By intentionally in-
troducing variation among the ensemble members, BasicFNet improves the
overall robustness and effectiveness of the co-training mechanism.

3.3.1. Architecture Implementation Details

The three architectures - FNet, BasicFNet, and STNet - are closely
related. Each model applies a transformation (FFT for FNet and Ba-

sicFNet, STFT for STNet) to the input, followed by layer normalization
with epsilon = 1e − 6 to stabilise the learning process. A feed-forward
network, consisting of a dense layer with 256 neurons and Gaussian Error
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Linear Unit (GELU) activation, refines the features in all architectures. Skip
connections are used to add the output of the feed-forward layer back to
the transformed input, followed by another layer normalisation. The final
output layer in each architecture uses softmax activation to produce class
probabilities. All three models are compiled with the Adam optimizer and a
custom sparse categorical loss function based on bootstrapping (see Section
3.4).

❼ FNet: The architecture repeats the FNetLayer, where each layer ap-
plies FFT to the input (cast to float32), followed by the components
mentioned above.

❼ BasicFNet:The BasicFNetLayer applies FFT to the input, followed
by a similar sequence of transformations and refinements as the FNet,
except that there is no skip connection immediately after the FFT
operation.

❼ STNet: The STNetLayer applies a Short-Time Fourier Transform
(STFT) to the input with frame length = 256, frame step = 2,
and fft length = 256. The rest of the architecture, including feed-
forward refinement, skip connections, and final softmax output, follows
the same structure as FNet and BasicFNet.

These codes are available open-source at the GitHub Repository https://

github.com/Amotica/RadMLProofvFinal

3.4. The Bootstrap Sparse Categorical Cross Entropy Loss

Bootstrapping loss is a technique that leverages the inherent uncertainty
in the model’s predictions to mitigate the impact of noisy labels [34]. In sim-
pler terms, it adjusts how much importance is given to each training sample
based on how confident the model is in its predictions, reducing the negative
effect of incorrect labels. We implemented a variant of sparse categorical
cross-entropy known as Bootstrap Sparse Categorical Cross-Entropy, which
assigns different weights to the training samples based on their prediction
confidence. This means that samples the model is less confident about con-
tribute less to the loss calculation, helping the model focus on cleaner, more
reliable data.

This loss function introduces a novel approach by incorporating the Boot-
strap Sparse Categorical Cross-Entropy Loss, which multiplies the Sparse
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Categorical Cross-Entropy loss by the weight of the true class labels (Wi ·yi).
The key innovation here lies in the application of these weights, which ef-
fectively modulate the learning process by placing greater emphasis on more
reliable labels while down-weighting those that are noisy or uncertain. These
weights essentially act as a dynamic filter, guiding the model to focus on
trustworthy data and reducing the influence of questionable labels. Each
of the three models in the ensemble employs this loss function, which not
only mitigates the impact of noisy labels but also strengthens the model’s
overall robustness. The Bootstrap Sparse Categorical Cross-Entropy Loss is
formally defined in Equation 5.

−
∑

i

Wi · yi · log
(

ezȳi
∑

j e
ȳj

)

(5)

Where:

i represents index of the classes.

Wi denotes the weight assigned to each sample for class i.

yi is the true label for class i.

z is score for the true class.

ȳi is the predicted probability for class i.

The weights (Wi) in this loss function normalizes each sample’s contribu-
tion based on batch size and bootstrap samples, ensuring a balanced impact
proportional to positive labels. This normalization step ensures that no in-
dividual class or sample disproportionately influences the learning process.
The Bootstrap Sparse Categorical Cross-Entropy Loss uses these weights in
computing the loss for each batch sample, considering log-likelihood with
respect to true labels, and is calculated as in Equation 6.

W =

∑

i yi

b× n
(6)
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Where:

∑

i

yi is the sum of true labels across all classes.

b is the batch size.

n is the number of bootstrap samples.

In summary, the Bootstrap Sparse Categorical Cross-Entropy Loss dy-
namically adjusts how much weight each sample has on training, based on
prediction confidence and label quality. This makes it a powerful tool for
training robust models, especially in datasets where label noise is a concern.

3.5. The Confidence Threshold

A key novel contribution of this work is the introduction of a confidence
threshold within the context of co-training. This threshold establishes a pre-
defined level of certainty or confidence, acting as a filter for predictions gen-
erated by the models during the co-training process. It plays a crucial role
in determining which predictions are considered reliable and subsequently
used to update the training dataset. Only predictions that surpass the con-
fidence threshold are incorporated into the training set, actively enhancing
the iterative refinement of the models throughout the co-training procedure.

In our case, the confidence threshold, denoted as (C) and illustrated in
Equation 7, introduces a mechanism for customizing the level of confidence
through the integration of a user-defined parameter called the confidence
delta (δ). The confidence δ is a user-defined parameter that adjusts the
confidence threshold, allowing flexibility in controlling how confident a pre-
diction must be to be included in the training process. The confidence delta is
a flexible parameter that users can adjust to fine-tune the confidence thresh-
old according to specific requirements. This enables tailoring the confidence
level to meet diverse scenarios or align with different characteristics datasets,
enhancing the practicality and effectiveness of the co-training approach.

C =
1

N
+ δ (7)
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Where:

C is the confidence threshold,

N is the number of classes,

δ is the confidence delta

1

N
is the maximum winning probability

The value of δ directly impacts the model’s performance. A higher δ

results in a stricter threshold, making the model more conservative by only
accepting highly confident predictions. This reduces the risk of errors but
may slow down learning. When the confidence delta (δ) is increased, the
required level of certainty for predictions to be included in the training set is
raised. This means only highly confident predictions (those with a probability
exceeding the threshold) are added to the training set. While this helps
reduce the likelihood of incorrect or uncertain predictions being incorporated
into the training data, it also limits the number of predictions available for
training. As a result, the model has fewer opportunities to refine itself, which
slows down the learning process. Because of this, δ should be obtained via
grid search or manual continuous experimentation to find a good value that
works for your specific dataset. In all conducted experiments, we consistently
used a confidence delta value of 0.4, determined through experimentation
with our datasets. However, it is crucial to highlight that the selection of
this value must comply with the constraint that it falls within the range of
zero to one minus the maximum winning probability (0 ≤ δ ≤ 1− 1

N
).

4. Datasets and Experiments

4.1. Datasets

Our primary emphasis during experimentation centered around the uti-
lization of the Polarimetric weather Radar Dataset. However, to ensure the
robustness and versatility of our algorithm, we validated its performance
using two supplementary datasets: the DryBeanDataset [35] and the Skin-
SegmentationRGB [36] datasets. The rationale behind incorporating these
additional datasets lies in their shared characteristics as multivariate numer-
ical datasets, closely aligning with the nature of the Polarimetric Weather
Radar Dataset. This deliberate choice enables an evaluation of our algorithm
across diverse datasets with similar inherent complexities.
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4.1.1. Polarimetric Radar Dataset

The dataset used in the study incorporates NEXRAD Level 2 data ob-
tained from the US Radar network. This data is sourced from the Weather
Surveillance Radar-1988 Doppler network operated by the US National Weather
Service, comprising approximately 160 radars. These radars conduct volume
scans at intervals of around 5 minutes, performing 360-degree sweeps to cap-
ture their data. The dataset has six distinct data products: three legacy
products (Z, V, and SW) and three dual polarization products (zDR, DP,
and pHV). Dual polarization enhances the radar’s capability to discriminate
between different types of objects based on shape and uniformity within a
pulse volume. In Figure 3, we present histograms depicting the distribution
of six radar variables across the three types of scatterers. Each histogram
provides insight into the distribution of each product within the specified
classes.
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Figure 3: illustrates sample histograms for the six radar variables related to the three
biological scatterers, showcasing significant overlap in these variables. A subtle, yet dis-
cernible difference in characteristics is apparent for the new products (zDR, pHV, and
DP). Reflectivity values typically range from -32.0 to 94.5, radar velocity values range
from -95.0 to 95.0, spectral width varies between -63.5 and 63.0, differential reflectivity
spans from -7.875 to 7.9375, and cross-correlation values are between 0.0 and 1.0. Differ-
ential phase values range from 0.0 to 360.0. The provided plots are constrained to these
specified ranges.

In each scan, we initially distinguished between biological and weather
echoes using the DR ratio, as outlined in Kilambi et al. [4]. Subsequently,
we leveraged information gathered from citizen science, as documented in
various literature sources [5, 37–41], to further categorize biological entities
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into three primary classes: birds, insects, and bats. Any biological entities
not falling into these specified classes were classified as ”other biology,” a
category encompassing debris, clutter, and similar echoes that do not conform
to the criteria for weather based on the DR ratio.

Table 1: Shows the Radar Dataset splits for all six classes used in our experiments by
radars, sweeps, and Resolution volumes. We have selected resolution volumes such that
this is balanced throughout the classes.

Radars Sweeps Selected RV

Classes Train Test Train Test Train Test

Bats 5 5 36 19 100,000 25,000
Birds 14 10 37 20 100,000 25,000
Insects 14 9 28 15 100,000 25,000
Other Biology (OBio) 10 8 24 12 100,000 25,000
Weather (WHTR) 9 7 17 9 100,000 25,000
Background (BG) 42 31 118 63 100,000 25,000

Table 1 displays the scatterer types in the Radar dataset for training
and testing. The original dataset had millions of Resolution Volumes (RV)
for some classes. However, we implemented a random selection process for
resolution volumes to construct the radar dataset. This process aimed to
guarantee a fair representation of radars and sweeps, especially resolution
volumes. The goal was to ensure a balanced dataset, preventing biased mod-
els that might learn specific patterns of the majority class, thus hindering
generalization.

4.1.2. Other Datasets

To ensure the robustness and versatility of our algorithm, we validated its
performance using two supplementary datasets. We selected these datasets
due to their multivariate and numerical characteristics, aligning with the
nature of the weather radar data under examination. The inclusion of the
Dry Bean dataset [35] and the Skin Segmentation dataset [36] ensures a fair
validation of the algorithms.

The Dry Bean Dataset [35] comprises 13,611 grain images characterized
by 16 extracted features, including 12 dimensions and four distinct shape
forms. Meanwhile, the Skin Segmentation dataset [36] consists of 245,057
samples obtained by randomly sampling RGB values from facial images.
These images represent diverse demographics and encompass both skin and
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non-skin samples, with 50,859 samples corresponding to skin and 194,198
representing non-skin entities.

4.2. The Experiments

In our evaluation, we employed three datasets, as elaborated in Section
4.1, to conduct a series of experiments. The experiments encompassed the
following three sets:

1. Baseline Experiment: We initiated the evaluation with a baseline
experiment utilizing the STNet architecture, devoid of co-training. This
experiment specifically utilized the 20% of correctly labe1led and veri-
fied datasets.

2. Semi-supervised Co-training Experiment: The second set of ex-
periments involved a semi-supervised co-training approach, employing
a bootstrap ensemble with a confidence threshold. This method uti-
lized the 20% correctly labe1led and verified datasets in conjunction
with the unlabe1led data.

3. Final Experiment: The third and final experiment utilized our ul-
timate models constructed with STNet, FNet, and BasicFNet. The
training was performed on the upgraded data resulting from the semi-
supervised co-training method based on a bootstrap ensemble with a
confidence threshold.

Following this, we performed a comparative analysis between the re-
sults obtained from the baseline experiment and those derived from the final
model. This comparative assessment aimed to evaluate the effectiveness of
the semi-supervised co-training method, which relies on a bootstrap ensemble
with a confidence threshold.

4.2.1. Set-up

The semi-supervised co-training method, based on a bootstrap ensemble
with a confidence threshold, encompasses several parameters. Some of these
parameter values were determined through experimentation with the datasets
and may vary depending on the dataset under consideration. We set the
confidence delta (δ) value to 0.4 and configured the co-training and bootstrap
iterations to 5. The co-training loop is terminated when there is no further
improvement in the labelling of the datasets.

Given that a significant portion of the dataset will be unlabelled, we
introduced a parameter named ”ratio noisy.” We experimented with values
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of 0.8, 0.7, 0.6, and 0.5 for the proportion of noisy (unlabe1led) data. The
fraction of data used as a subset for the ensemble bootstrapping was set at
0.5, determined through experimentation with three datasets. However, this
fraction may vary based on the size of the data under consideration, with
larger datasets having a smaller fraction.

For all experiments, we standardized the number of epochs to 250 and the
batch size to 1024. The objective function for training the network involved
a bootstrap sparse categorical cross-entropy loss, and an Adam Optimizer
was employed with an initial learning rate of 0.001. The learning rate was
then reduced by a factor of ten whenever training plateaued for more than
ten epochs.

The CNNmodels underwent training on aWindows 10 computer equipped
with 64 GB of RAM and a 3.6 GHz processor, featuring a GeForce GTX TI-
TAN X GPU with 12 GB of memory. Implementation of all models was
carried out using Python 3.6 and Keras 2.3.1 with a TensorFlow backend.

5. Results and Discussions

We present the results and discussion in this section. An overarching
summary of the outcomes is incorporated within the bar charts illustrated
in Figure 4, with specific attention directed towards the Radar Dataset, rec-
ognizing its crucial role as the central nucleus of this research.

Based on the Polarimetric Radar Dataset: Table 2 shows the re-
sults of experiments performed using the Polarimetric Radar Dataset. Based
on the Baseline experiments, FNet appeared to be the model with the highest
accuracy, 85% whereas BasicFNet had the lowest accuracy. This is due to
the removal of Add and Normalise layers immediately after the FFT layer,
which, although reducing network size, appears to make the model less effec-
tive at handling the smaller subset of the dataset obtained via bootstrapping.
The collaborative learning approach enhances the precision of all models,
highlighting the significant advantages of co-learning in improving model
performance on the Radar Dataset. Utilizing ensembles of networks and
implementing bootstrap categorical cross-entropy loss enhances the models’
resilience to noisy labels, a crucial factor in accurately labelling the remain-
ing datasets for the final model. It reaffirms assertions in the literature
[15, 16, 18, 20] that employing fewer labe1led data or highly noisy labels in
supervised learning can lead to overfitting. Our proposed network, STNet,
which achieved a classification accuracy of 90%, outperformed other models
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Figure 4: Summary of the results based on experiments performed using the Radar
dataset (left), Dry Beans dataset (top right) and Skin Dataset (bottom right).

on this dataset, though it exhibited a lower accuracy (81%) compared with
the FNet networks on the baseline experiment. The STNet model was supe-
rior because it incorporates temporal and frequency information throughout
the learning phase. The inclusion of temporal and frequency layers enhances
the model’s capability to handle time-dependent and frequency-specific pat-
terns in data, as it gives it the ability to extract relevant features from data
that exhibit temporal dependencies or frequency-specific characteristics.
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Table 2: The results of experiments conducted on the polarimetric radar dataset using
the STNet, FNet, and BasicFNet models are presented. The best-performing model is
bolded and highlighted in yellow, while the top-performing baseline is italicized and also
highlighted in yellow.

Model Accuracy Precision Recall F1

Baseline 0.81 0.82 0.81 0.81
Co-learning 0.90 0.90 0.90 0.89STNet

Final Model 0.90 0.90 0.90 0.90

Baseline 0.85 0.86 0.86 0.86

Co-learning 0.89 0.89 0.89 0.89FNet

Final Model 0.89 0.90 0.89 0.89
Baseline 0.19 0.22 0.19 0.09
Co-learning 0.89 0.88 0.88 0.88BasicFNet

Final Model 0.89 0.89 0.89 0.89

Analyses using Confusion Matrix: We present the confusion matrix
corresponding to the optimal classifier (STNet) in Table 3 to further analysis
the methods fit for classifying echoes in the polarimetric radar dataset. In the
context of the examined biological echoes, the STNet classifier demonstrated
notable accuracy, correctly classifying 93% of insect echoes. However, a sig-
nificant portion of misclassifications occurred, with the majority erroneously
categorized as bat echoes. The classifier achieved an 85% accuracy in identi-
fying bat echoes and a 74% accuracy in discerning bird echoes. Notably, 12%
of bird echoes were misclassified as bats, while only 7% of bat echoes were
misclassified as birds. The observed similarities between bird and bat echoes,
as documented in the literature [32, 37], align with our findings. This inher-
ent resemblance contributes to the misclassification patterns encountered in
our study.

22



Table 3: The STNet Confusion Matrix based on the final model. BG=Background,
WHTR=Weather, OBio=Other Biology

BG WHTR OBio Bats Birds Insects

BG 0.99 0.01 0.00 0.00 0.00 0.00
WHTR 0.00 0.97 0.01 0.00 0.02 0.00
OBio 0.00 0.01 0.91 0.02 0.01 0.05
Bats 0.00 0.00 0.01 0.85 0.07 0.07
Birds 0.00 0.01 0.05 0.12 0.74 0.08
Insects 0.00 0.00 0.01 0.04 0.02 0.93

Weather echoes exhibited minimal misclassification than the biological,
with only 2% being mislabelled as birds. We attribute this discrepancy to
potential noise in the data labels as a results of automatic labelling using
the Depolarization Ratio. The dual polar radar’s supplementary products
(cross-correlation, differential reflectivity, and differential phase), extensively
discussed in existing literature [4, 5, 10, 14], aid in effectively segregating
weather echoes. Notably, the non-bird echoes were predominantly classified
correctly, highlighting the effectiveness of the proposed approach in handling
noisy labels within radar data for such machine learning tasks.

Our suggested approach demonstrated advancements in addressing noisy
labels; however, the results indicate opportunities for improving the employed
network architecture in the future for biological echoes classification. Sugges-
tions for enhancement include the incorporation of additional labelled data to
better differentiate biological echoes or the implementation of post-processing
algorithms, such as a despeckling algorithm, which aims to eliminate false
alarms in the nearest neighbourhood by assessing whether the label of centre
pixel differs from the majority of itself and its eight immediate neighbours
[4] an approach that will effectively minimise some misclassification. Nev-
ertheless, the encouraging outcomes achieved thus far indicate the viability
of species-level classification using our approach with dual-polarization radar
data.

Based on the Dry Beans Dataset: Table 4 shows the results of exper-
iments performed using the Dry Beans dataset, which is the smallest in size
among the other datasets. Consequently, the baseline experiment conducted
on this dataset tends to exhibit significant overfitting, leading to test set re-
sults that are primarily random guessing, albeit with FNet showing a slight
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improvement, 25%. The introduction of additional labe1led data through the
co-learning process once again enhanced the accuracy of these models. More-
over, the Final Models not only maintained the accuracy achieved through
co-learning but also demonstrated a marginal improvement. This observa-
tion highlights the robust performance of the models, as a majority of the
previously unlabelled data, affected by noise, has now been appropriately
labelled.

Table 4: The results of experiments conducted on the dry beans dataset using the STNet,
FNet, and BasicFNet models are presented. The best-performing model is bolded and
highlighted in yellow, while the top-performing baseline is italicized and also highlighted
in yellow.

Model Accuracy Precision Recall F1

Baseline 0.15 0.02 0.14 0.04
Co-learning 0.92 0.94 0.93 0.93STNet

Final Model 0.93 0.94 0.94 0.94

Baseline 0.25 0.04 0.14 0.06

Co-learning 0.92 0.94 0.93 0.93FNet

Final Model 0.92 0.94 0.93 0.94
Baseline 0.11 0.14 0.15 0.04
Co-learning 0.92 0.93 0.93 0.93BasicFNet

Final Model 0.92 0.94 0.93 0.94

Based on the Skin Segmentation Dataset: Table 5 shows the re-
sults of experiments performed using the Skin Segmentation dataset. Once
again, the Baseline showed indications of overfitting on all three ensemble
networks, primarily due to the relatively small labelled data. In this context,
FNet demonstrated superior overall accuracies of 76%, followed by STNet and
BasicFNet. This suggests that BasicFNet faces more challenges in precisely
capturing and distinguishing the intricate features of the dataset, attributed
to its smaller number of layers compared to FNet. The incorporation of
co-learning strategies effectively mitigates overfitting in the baseline and en-
hances accuracy across all models. This highlights the significant efficacy
of collaborative learning in addressing the initial challenges posed by noisy
labelled data. The Final models achieve perfect accuracy through the co-
learning process. This indicates that the co-learning approach effectively
generalizes to an exceptional level of accuracy on the Skin Segmentation
Dataset, particularly when more noisy data is labelled.
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Table 5: The results of experiments conducted on the skin segmentation dataset using
the STNet, FNet, and BasicFNet models are presented. The best-performing model is
bolded and highlighted in yellow, while the top-performing baseline is italicized and also
highlighted in yellow.

Model Accuracy Precision Recall F1

Baseline 0.50 0.63 0.65 0.45
Co-learning 0.99 0.99 0.99 1.00STNet

Final Model 1.00 1.00 1.00 1.00

Baseline 0.76 0.39 0.49 0.43

Co-learning 0.99 0.99 1.00 0.99FNet

Final Model 1.00 1.00 1.00 1.00
Baseline 0.29 0.61 0.55 0.27
Co-learning 0.99 0.99 0.99 0.99BasicFNet

Final Model 1.00 1.00 1.00 1.00

In this study, only 20% of the data was correctly labelled initially, meaning
a relatively small portion of each dataset (especially the dry beans dataset)
had accurate labels. This limitation affected the Baseline model’s ability to
generalize effectively, resulting in lower initial accuracy. However, as more
data was labelled during the co-learning process, accuracy improved, demon-
strating the intended effectiveness of our models.

5.1. Detecting Bird Ring Roosts and Segmenting Skin Regions in Pascal

Faces

We applied the STNet radar model to segment Purple Martin ring roosts,
visible on the radar as doughnut-shaped structures due to dense bird aggrega-
tions, typically observed in late summer and early fall. Data from NEXRAD
stations KHTX, KMHX, and KLVX were used and selected for their proxim-
ity to known bird activities. Radar products including reflectivity, differential
reflectivity, and correlation coefficient were used to support visualisation of
predicted radar echoes, which are classified as weather (blue), other biol-
ogy (purple), bats (brown), birds (yellow), and insects (green). The last
column of Figure 5 (highlighted in red) shows pixel-wise predictions for six
radar elements, with examples of these products demonstrating the model’s
effectiveness. The STNet model detected the ring roosts as yellow dough-
nut shapes in the prediction masks, aligning with previously observed bird
aggregation patterns. However, some misclassification were observed, with
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birds occasionally identified as other biological echoes, and weather signals
containing bird-like signatures. These errors are reflected in the confusion
matrix, which shows a small percentage of birds being misclassified as weather
and vice versa. Despite these misclassification, the model’s performance is
promising, and could benefit from improvements that differentiates between
bird and weather signals for more accurate detection in future radar-based
studies.

26



K
H
T
X
2
0
1
5
0
7
2
7
_
1
1
2
3
3
8

K
M
H
X
2
0
1
5
0
7
2
7
_
1
0
1
8
4
6

K
L
V
X
2
0
1
5
0
7
2
7
_
1
0
5
3
0
2

K
H
T
X
2
0
1
5
0
8
0
4
_
1
1
1
5
2
0

Figure 5: The STNet radar model’s pixel-wise predictions are shown in the last column,
highlighted in red. To the left, samples from radar products—reflectivity, differential
reflectivity, and correlation coefficient—depict radar echoes. White indicates areas without
data, while echoes are classified as blue for weather, purple for other biology, brown for
bats, yellow for birds, and green for insects. The yellow doughnut-shaped regions in the
prediction mask represent successfully detected bird ring roosts. The labels to the left
show the filename, which includes the radar name, date, and time of the scan.

We applied the STNet model, which demonstrated the best performance
on the skin segmentation dataset, to segment images from the PASCAL
FACE dataset introduced by Yan et al. [42]. This dataset, designed for face
detection and recognition, is a subset of the PASCAL VOC dataset. The
STNet model was trained using RGB pixel values, so it relies heavily on
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color information for segmentation. The results show strong performance in
accurately segmenting skin pixels based on color. However, a key limitation is
that the model sometimes misidentifies pixels with colors similar to human
skin tones, belonging to non-skin objects. This is evident in the image in
the last column, the second row of Figure 6, where a wooden post in the
background is incorrectly labelled as skin. These errors highlight a challenge
in using RGB-based models for segmentation when the background contains
colors that resemble skin tones. To reduce such misclassification, further
refinements - such as incorporating additional features like texture or depth
information - could improve segmentation accuracy.

Figure 6: Example results of skin segmentation using the STNet model on sample images
from the PASCAL FACE dataset [42]. The original images are displayed above their
corresponding predicted segmentation masks. Skin pixels are shown in white, while the
background is displayed in black. The segmented faces are highlighted with a red box.

5.2. Evaluation with State-of-the-art

In this section, we qualitatively evaluate our method in comparison to
other state-of-the-art approaches, focusing on several key aspects critical to
the performance of noise-handling methods.
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5.2.1. Noise Handling and Robustness to Noise

State-of-the-art noise-handling techniques address challenges in label cor-
rection, noise types, and noise rate tolerance. Label correction methods ([18],
[20]) use label noise modelling or transition matrices for precision in class-
dependent scenarios. Noise-aware loss functions ([23], [30]) robustly manage
instance-independent and asymmetric noise, while adaptive strategies ( [28],
[43]) excel in real-world asymmetric and instance-dependent noise. While
most prior methods addressed label flip noise ([18]), symmetric noise ([27],
[24]), or complex instance-dependent noise ([43]), they primarily focused on
moderate noise levels ([22]), but advanced techniques ([28], [43]) handled ex-
treme noise rates of up to 80% well. Our semi-supervised co-training method
combines bootstrap categorical cross-entropy loss and ensemble models to
achieve robustness with moderate-noise rates of 50% for domain-specific bio-
logical scatterer contexts. Most methods with direct applications to weather
radar have typically adopted CNN methods. To effectively distinguish migra-
tion signals from background noise, [44] employed a semi-supervised learning
approach, while [45] enhanced noise robustness by distinguishing biological
echoes from meteorological noise using a superpixel-based method. [46] fil-
ters out ground clutter and precipitation noise using a 2.4➦ elevation angle
and manual annotation, leveraging a random forest classifier for robustness.
In comparison, our approach considers a broader range of scattered types in
weather radar data than [44–46], while directly using radar data in its nat-
ural format without conversion to images. We only perform the conversion
for result visualisation.

5.2.2. Scalability Across Dataset Sizes and Complexities

Scalability across dataset sizes and complexities is crucial for noise-handling
methods. Early approaches like [18] scale well to small and large benchmarks,
while [22] and [23] show robustness on diverse, real-world datasets but strug-
gle with complex domains. Enhancements by [27] and [25] improved perfor-
mance across synthetic and real-world data. For large-scale datasets, [24] and
[28] excel, while [30] and [43] improve performance on small- and large-scale
datasets, with [43] achieving competitive results on challenging benchmark
datasets. Our method extends scalability to domain-specific applications,
effectively handling radar datasets labe1led with citizen-science data. This
addresses domain-specific challenges where earlier methods did not attempt
to address. Compared to other radar data methods, [44] labelled and pro-
cessed large volumes of CINRAD weather radar data, generating additional
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images for three classes: birds, insects and precipitation. [45] compiled a
large-scale dataset from 108 weather radar stations over two years, totalling
750,000 historical scans. [46] processed 4,142 radar images, extracting 10 mil-
lion insects and 6 million bird signatures. While most of these approaches
relied on large labelled CINRAD datasets, our method, based on NEXRAD
data, used only a few data points and focused on non-image data, signifi-
cantly reducing storage and memory requirements.

5.2.3. Learning Paradigms and Adaptability in Noise-Handling Techniques

Noise-handling techniques vary in adaptability and robustness. Early su-
pervised methods like [18] and [22] use noise adaptation and loss correction
but struggle with complex noise. [23] simplifies this with direct loss ad-
justments, while [20] improves accuracy via transition matrices. Dynamic
methods such as [27] update labels during training, removing the need for
clean data. Advanced strategies, like [24] and [30], combine supervised losses
with selective learning for better generalization. Semi-supervised approaches
([28], [25]) enhance adaptability by distinguishing clean from noisy data,
while [43] uses adaptive label smoothing to dynamically adjust to noise. Our
method builds on these by integrating semi-supervised co-training with a
bootstrap ensemble, addressing domain-specific radar data challenges. While
early methods establish foundational techniques, hybrid and semi-supervised
approaches, including ours, offer superior robustness for real-world noisy
datasets. In comparison, methods using radar data [44–46] employed a semi-
supervised learning approach [44, 45], utilizing both labelled and unlabeled
data to improve adaptability in noise handling. Additionally, [46] used a
supervised random forest classifier to mitigate overfitting caused by labelling
noise. Among these, [44] placed a stronger emphasis on noise reduction, while
the other closely related studies focused less on noise reduction compared to
methods using different datasets.

5.2.4. Computational Efficiency and Model Complexity

Methods for handling noisy data vary in computational efficiency and
complexity, with many emphasizing minimal overhead and robust perfor-
mance. Lightweight approaches like [18], [27], and [20] use noise adapta-
tion, matrix factorization, and simple adjustments, making them ideal for
resource-limited scenarios. [23] and [30] focus on efficiency through lightweight
loss functions, while [24] and [28] maintain low complexity, with [28] using
semi-supervised learning, and [43] further employing adaptive label smooth-
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ing. Our method balances efficiency and performance by employing low-
complexity ensembles and co-training, optimised for iterative refinement in
domain-specific tasks like radar data. Methods like [22] and [25] avoid struc-
tural network changes, relying on loss function optimisation, but approaches
such as ours and [28] achieve a better trade-off with simple yet effective
architectural adaptations. While earlier techniques excel in efficiency, our
approach combines minimal complexity with domain-specific optimisations,
excelling on medium-sized datasets. Compared to other methods using radar
data, our approach is more computationally efficient as it avoids the high
processing costs associated with CNNs. [44] employed CNN-based semi-
supervised learning, converting radar products into six-channel RGB images,
which significantly increased storage and computational complexity. In con-
trast, [45] used superpixel segmentation instead of CNNs, making it more
efficient than [44]. However, our method further reduces computational de-
mands by directly processing radar data without the need for image conver-
sion.

6. Conclusion

In summary, our approach consistently demonstrated superior accuracy
improvements across three datasets, affirming its efficacy in refining classi-
fication accuracy and rectifying noisy labels. Significantly, the STNet net-
work ensemble consistently demonstrated superior performance, consistently
achieving the highest accuracy in all conducted experiments. This consistent
performance suggests the robustness of STNet in effectively addressing the
challenges associated with noisy labels.

Our observations suggest that the overall accuracy improvement can be
attributed to the bootstrapping ensemble co-training approach and the uti-
lization of bootstrap sparse categorical cross-entropy loss. However, the dis-
tinctive performance of STNet is specifically attributed to the incorporation
of temporal and frequency layers within its architecture. These layers sig-
nificantly enhance the model’s capacity to comprehend time-dependent and
frequency-specific patterns in the data, enabling it to extract relevant fea-
tures from the datasets.

Although the results obtained are promising, our study recognizes that
there may be a potential for further improving the biological-level species
echo classification. To address this, we suggest investigating the despeckling
algorithm to mitigate certain misclassifications observed in our experiments,
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but this exploration falls beyond the scope of the current work. The despeck-
ling algorithm, as successfully implemented in previous studies such as [4],
holds promise for significantly improving the precision and reliability of our
classification model.

In light of these findings, our results not only establish a strong foun-
dation for the classification of biological species-level echoes using citizen
science data but also indicate areas for future exploration and improvement.
Our noise reduction approach sets the stage for ongoing studies aimed at ad-
vancing the methodology, thereby contributing to the evolving landscape of
accurate and reliable classification techniques in machine learning for noisy
label learning.
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