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A B S T R A C T

The presence of sufficient labelled data associated to various environmental conditions and
damage scenarios often represents a challenge for the applicability of supervised-learning
methods when dealing with structural health monitoring of real-scale infrastructures. To address
this problem, population-based structural health monitoring has been recently proposed as an
attractive solution, with the goal to collect information from similar structures and transfer
health-state labels across the population. This paper focusses on the use of a feature-based
transfer learning method. A machine-learning model is trained with source labelled data in a
transformed features space to afterwards classify the unlabelled target dataset of a different
bridge. More specifically, a domain adaptation-based methodology proposing two possible
strategies, a single-source or a multi-source approach, is described. Given the difficulties in
validating these techniques on real and varied datasets from multiple bridges, this paper
presents a physical benchmark for population-based structural health monitoring in civil-
engineering applications. The transfer between different configurations of a laboratory-scale
bridge model, subjected to multiple experimental tests under changing environmental conditions
and to the same pseudo-damage scenarios, is investigated. The results of the experimental
campaign demonstrate the possibility of effectively exchanging damage labels to perform
novelty detection and damage classification across the population via domain adaptation,
improve the identification of specific damage classes, as well as to increase model’s outcome
using a multi-source approach, thus overcoming the limitations of conventional machine
learning-based methods. Furthermore, this paper provides an open dataset with the physical
benchmark-related data, allowing other researchers to test their own algorithms and address
the various transfer learning challenges.

1. Introduction

As vital assets of modern society, bridges play a pivotal role in transportation networks for supporting economic growth and
contributing to people’s social lives. Therefore, a large portion of Structural Health Monitoring (SHM) applications are devoted
to ensure the safety and the effective scheduled maintenance activities of infrastructures [1,2]. The huge interest in this topic is
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demonstrated by the significant efforts carried out by the cooperation between bridge owners, public institutions and researchers.
As indicated in the official document provided by the Ministry of Infrastructure and Transport in Italy in 2021, a significant
amount, equal to 1.1 billion euros, is allocated for the financing of interventions aimed at improving conditions of existing
bridges and viaducts safety. In this context, given the challenges posed by ageing infrastructure, there is a pressing need for more
advanced and sophisticated monitoring solutions to overcome the limits of traditional visual inspections. Recent developments in
computer science and sensor technology contributed to enhancing the spread of vibration-based SHM systems, increasingly involving
Artificial Intelligence (AI)-based methods [3,4]. In particular, Machine Learning (ML) has emerged as a powerful tool, offering
novel approaches to data analysis, pattern recognition and predictive modelling via data-driven approaches, that can anticipate
potential degradation or critical failures and rapidly provide feedback [5,6]. In particular, higher levels of damage assessment
beyond anomaly detection can be achieved by employing supervised-learning methods, which require labelled datasets to train
the model. Looking at the research world panorama within this context, deep-learning has been widely used to detect cracks via
image classification, using Convolutional Neural Networks (CNN) [7]. Similarly, a deep learning model was built by Chen et al. [8]
to automatically extract the spatial and temporal domain features in the signals and identify the location of small bridge local
variations. In parallel, a wide portion of the literature involves the use of several techniques, such as Recurrent Neural Networks
(RNNs) or Support Vector Machines (SVMs) to predict damage classes with time-series SHM monitoring data [9–11]. However,
because of the difficulty to acquire bridge data under several health-state conditions, most of the applications in real-world scenarios
adopt unsupervised learning. In fact, although supervised methods can provide fairly accurate damage-assessment results, they need
a sufficient amount of labelled training data representative of both undamaged and damaged states, a requirement that cannot be
generally satisfied when monitoring civil infrastructure. Training data may be obtained from Finite Element Models (FEM), but
their use is not straightforward in engineering practice, because of high computational costs and modelling challenges. For these
reasons, the use of supervised ML for each bridge to be investigated within a transportation network becomes quite challenging.
To overcome the limited data availability, which often limits the practical application of SHM to move beyond anomaly detection,
the framework of Population-based Structural Health Monitoring (PBSHM) has been recently proposed as a holistic solution in the
SHM research community [12]. The goal is to firstly expand the original dataset by collecting data from a set (i.e. population) of
similar structures, and afterwards develop ML strategies for a knowledge transfer-based damage assessment. Sharing information
within a population would allow one to exploit valuable knowledge to infer diagnosis of a structure for which labels are missing,
contributing to building a solid basis towards multi-asset SHM. PBSHM is particularly advantageous for bridge networks, where
structures, despite their differences, share common features and similarities in terms of materials and static schemes.

However, it should be highlighted that typical ML classifiers fail to generalise when applied to the whole population, since
ML assumes that both training and testing data are required to belong to the same underlying distribution. This fact means that a
predictive model is expected to generalise to those future measurements collected from the same domain. Such an assumption implies
that each structure with an installed SHM system should be assessed independently using a case-specific supervised ML algorithm. As
a solution, Transfer Learning (TL) discusses how to adapt conventional ML to exploit information from a source structure to enhance
diagnosis on an unknown target structure. To have a more complete understanding of the underlying theory, Pan and Yang [13]
and Zhuang et al. [14] illustrated the theory of TL and reviewed the research progress in several fields. In the SHM framework,
many applications involved deep learning-based TL via fine-tuning, basically consisting in modifying a pre-trained model to predict
unknown instances of a different structure. Just to cite a few, these modified neural networks were employed by Pan et al. [15] for
transferring information between two real long-span bridges and by Azad et al. [16] for SHM of composite structures in limited-data
scenarios using experimental tests. Moreover, Bao et al. [17] integrated physics-based and data-driven methods by generating various
training data based on the calibrated FEM, pre-training a deep learning network and transferring its embedded knowledge to the
real testing domain, demonstrating the efficiency in the context of vibration-based structural assessment of steel frame structures
with bolted connection damage. Similarly, a method combining digital twins and TL was proposed by Teng et al. [18], using a pre-
trained CNN from the experimentally-tested structure to the real bridge structure. A different approach, belonging to the inductive
TL category, involves multi-task learning, where a collection of related tasks is jointly learned by extracting appropriate shared
information across the tasks. The idea is that jointly learning can lead to better generalisation performance than considering each
single task independently. Such a theory was adopted by Zhang et al. [19] for guided wave-based integrated health monitoring in an
aluminium plate and by Wan et al. [20] for SHM missing data reconstruction within a Gaussian process-based Bayesian approach,
potentially extending the applicability to the problems of sensor fault diagnosis, change-point detection, and structural condition
classification. Successes in a population-level analysis are also described by Bull et al. [21] via an interpretable hierarchical Bayesian
approach using operational fleet data.

Despite good performances, some problems inevitably arise when handling real bridge-monitoring situations because of the
difficulty to generate even a small quantity of target labels to train the model. To overcome these constraints, transductive TL
may be more feasible since it does not require labels from the target domain. Specifically, recent works have been carried out by
focussing on a specific sub-category, known as feature-based TL, which mainly refers to Domain Adaptation (DA) [22] in the context
of PBSHM. Such a strategy was adopted by Omori et al. [23] to mitigate the data discrepancies for the same bridge before and after
retrofit, allowing one to reuse previously existing knowledge in a long-term damage detection process and by Figueiredo et al. [24]
to enhance damage-detection performance using FEMs. DA was also applied to detect damage via unsupervised learning across the
Z24 bridge and the KW51 bridge [25], and the same structures were further investigated using a Statistic Alignment (SA)-based DA
procedure described by Poole et al. [26]. Beyond that, in order to classify damages on an unknown target structure, the two-step
DA methodology presented in Giglioni et al. [27] was validated between the Z24 and the S101 benchmark bridges and between the
corresponding FEMs. Furthermore, Li et al. [28] proposed a Domain-Adversarial Neural Network (DANN)-based damage detection
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method, in which the displacement response of the numerical and the experimental simply-supported beam were used as the input
of the DANN model, yielding high accuracy in identifying and localising damage via label transfer.

Within this context, it is worth highlighting that the development of PBSHM technologies is impeded by the lack of suitable
datasets to validate TL methods and by the difficulty to create real and varied datasets from multiple similar structures that
have data for the same damage-scenarios. While numerous experiments can be found in the literature in the PBSHM sphere, they
typically focus on mechanical-engineering structures [29,30]. To gain insights on the applicability of TL on civil infrastructures,
the present paper presents a systematic laboratory investigation which aims to create a population of experimental model bridges.
This novel experimental benchmark presents four bridge configurations that are characterised by shifted positions of the piers,
different span lengths and different surface layers on the deck. The aim is to conduct experimental tests to build up a first-of-its-
kind comprehensive dataset with labelled data under changing environment and different health-state conditions. Precisely, with
respect to the aforementioned DA application on bridge data, the strengths of the monitoring campaign rely on the simulation
of temperature fluctuations and, above all, in the introduction of the same damage scenarios into each bridge configurations. This
benchmark therefore provides a basis for testing transfer learning methods for PBSHM; specifically, methods that attempt to leverage
information related to changing temperatures and/or damage labels. The dataset can be used to show transfer between two bridges,
as previously presented in Giglioni et al. [27], or in a multi-source method, as presented for the first time in this paper, allowing
one to enlarge the field applicability. The features are first statistically aligned in each domain of interest and afterwards fed into
kernel-based DA methods. The advantage of proposing such a strategy, which is useful when the available labelled data can be
extracted from several bridges, is underlined by the improvement of knowledge transfer performance when training the classifier
with data from multiple structures rather than using one single source domain.

As the complexity of bridges continues to increase and the demand for sustainable infrastructure grows, TL will play an
increasingly critical role in shaping the future of bridge monitoring and maintenance practices. By harnessing the power of TL,
engineers can unlock new insights, optimise resource allocation, and enhance the performance and longevity of critical transportation
assets. This paper provides promising results from the proposed approach, demonstrating the potential of transfer learning for bridge
monitoring, and underlying at the same time as well the main challenges and open questions that need to be deepen.

The rest of the paper is organised as follows: Section 2 illustrates the main steps of the DA theory and the corresponding
methodology; Section 3 describes the laboratory model for PBSHM application; Section 4 presents the results of damage detection
and classification after DA and a brief discussion of the related limitations and challenges; Section 5 summarises the conclusions of
this work.

2. Transfer learning for population-based SHM

The need to gather a large quantity of labelled data to train a robust classifier that generalises well across different structures is
the most evident shortcoming for a wide applicability of ML algorithms and still remains a challenge. Following the PBHSM theory,
the flow of information throughout a population would allow one to leverage valuable knowledge to evaluate a monitored bridge
(i.e., target domain), for which labels are not available, bringing advancements towards multi-asset SHM. The motivation is that
specific labelled data, e.g., data associated to damage cases, may only be available for a single member or a restricted number of
them, or be generated by an archetypal physical or numerical model. For this reason, the key point is to investigate if the knowledge
obtained from a group of structures can be exploited for the whole population.

To handle the differences in data distributions across the population, TL aims to improve generalisation of ML models, so that
they can learn health-state information from a source labelled structure and afterwards diagnose the same damage on an unknown
target structure. To better understand what TL represents, a domain  is defined by a feature space  and a marginal probability
distribution 𝑝(𝑋), where 𝑋 = {𝑥𝑖}𝑁𝑖=1 is a finite sample from  , while the associated task  is identified by a label space  and

a predictive function 𝑓 (⋅). Given that, a source and a target domain can be expressed, respectively, as 𝑠 = {𝑥𝑠,𝑖, 𝑦𝑠,𝑖}
𝑁𝑠

𝑖=1
and

𝑡 = {𝑥𝑡,𝑖, 𝑦𝑡,𝑖}
𝑁𝑡

𝑖=1
, being 𝑥𝑠,𝑖 ∈ 𝑠, 𝑦𝑠,𝑖 ∈ 𝑠 and 𝑥𝑡,𝑖 ∈ 𝑡, 𝑦𝑡,𝑖 ∈ 𝑡. Therefore, TL aims at improving the target predictive function

𝑓𝑡(⋅) in 𝑡 via the knowledge extracted from 𝑠 and 𝑠, assuming 𝑠 ≠ 𝑡 and/or 𝑠 ≠ 𝑡. The first assumption results in 𝑠 ≠ 𝑡

and/or 𝑝(𝑋𝑠) ≠ 𝑝(𝑋𝑡), while the second one translates into 𝑠 ≠ 𝑡 and/or 𝑝(𝑌𝑠|𝑋𝑠) ≠ 𝑝(𝑌𝑡|𝑋𝑡). Conversely, a classic ML problem
implies that the two domains and their related tasks are the same, i.e., 𝑠 = 𝑡 and 𝑠 = 𝑡.

TL methods can be categorised according to several criteria. From a label-setting point of view, three subsettings can be
mentioned, namely transductive, inductive, and unsupervised TL. The complete definitions are extensively presented in Refs. [13,14].
This paper focusses on transductive TL, assuming the availability of labelled data only from a single source domain, a situation that
may reproduce real SHM scenarios. Precisely, a feature-based TL approach is addressed, whose goal is to reduce the gap between
feature spaces of source and target domains in terms of proper statistical distances. This idea translates into the application of DA,
a branch of TL that aims at minimising the existing gap between marginal distributions 𝑝(𝑋𝑠) ≠ 𝑝(𝑋𝑡), or conditional distributions
𝑝(𝑌𝑠|𝑋𝑠) ≠ 𝑝(𝑌𝑡|𝑋𝑡), or both, but assuming that 𝑠 = 𝑡 and 𝑠 = 𝑡.

2.1. The DA-based methodology

In the realm of DA, the flowchart of Fig. 1 represents the adopted methodology for knowledge transfer within a population of
bridges, which integrates previous approaches [26,27,30] by providing the possibility to carry out single or multi-source DA, thereby
including the case in which labelled data stem from one or multiple structures.
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Fig. 1. Flowchart of the adopted methodology for knowledge transfer across B bridges: a single-source or a multi-source DA approach can be carried out
depending on the availability of labelled domains.

In detail, data are firstly acquired from 𝐵 bridges via long-term continuous monitoring and natural frequencies are extracted as

damage-sensitive features. Such a population inevitably presents differences in data distribution; therefore, DA is applied to reduce

the domain gaps by transforming the features into a common latent space. Two TL situations are described in the methodology,

depending on the number of available sources. On the one hand, single-source DA includes the application of SA to firstly align

target data with the single pre-defined source domain, assuming the availability of health-state labels. Kernel-based DA, such as

Joint Domain Adaptation (JDA), is then applied to further improve the mapping without requiring any target label from damage

conditions. On the other hand, when dealing with the transfer across several bridges, the features of each domain of interest are

separately standardised as a first step in the multi-source DA approach. The number of sources and target domains is then selected

and the corresponding features are therefore fed into JDA, representing in this second case the only step of DA.

In detail, once the two domains in the single-source DA are defined, the alignment is carried out with a two-step procedure. SA

is firstly employed to match the first-and-second-order statistics and project the features into a physically-interpretable space. It is
demonstrated to be useful in SHM applications, being able to face class imbalance (especially with the scarcity of damage data) and

partial DA states [26]. Specifically, Normal Condition Alignment (NCA), introduced by Poole et al. [26], is here adopted to firstly
align a limited amount of data generated during normal conditions. This is a typical assumption that could be done in practice,

given that the data gathered at the beginning of the monitoring campaign are conceivably associated to the undamaged state. The

source domain is transformed via,

𝑥
(𝑖)
𝑠

=
𝑥
(𝑖)
𝑠 − 𝜇𝑠

𝜎𝑠
(1)

with the mean and standard deviation of the feature indicated as 𝜇𝑠 and 𝜎𝑠, respectively. After computing such quantities during

normal conditions, i.e., 𝜇𝑠,𝑛, 𝜇𝑡,𝑛 and 𝜎𝑠,𝑛, 𝜎𝑡,𝑛, the new target features are obtained via Eq. (2), that aligns the normal conditions of

the target with those of the source,

𝑥
(𝑖)
𝑡

=
(𝑥(𝑖)

𝑡
− 𝜇𝑡,𝑛

𝜎𝑡,𝑛

)
𝜎𝑠,𝑛 + 𝜇𝑠,𝑛 (2)

To refine the transfer, the second step is carried out by implementing JDA, whose input is represented by 𝑋𝑠 and 𝑋𝑡, where
𝑋𝑠 = {𝑥(𝑖)

𝑠
}
𝑁𝑠

𝑖=1
and 𝑋𝑡 = {𝑥(𝑖)

𝑡
}
𝑁𝑡

𝑖=1
. The aim is to find a non-linear transformation 𝜙 ∶  →  that minimises the distance between

the joint distributions 𝑝(𝑌 𝑠, 𝑋𝑠) and 𝑝(𝑌 𝑡, 𝑋𝑡). Since the joint probability distribution is defined as the product of the marginal and

conditional distributions, the problem translates into 𝑝(𝜙(𝑋𝑠)) ≈ 𝑝(𝜙(𝑋𝑡)) and 𝑝(𝑌 𝑠|𝜙(𝑋𝑠)) ≈ 𝑝(𝑌 𝑡|𝜙(𝑋𝑡)). However, given that the

conditional distributions are challenging to compute because of the missing target labels, JDA uses class-conditional distributions

with a pseudo-labelling approach, which provides the estimates of the labels after training a classifier on the source data. With these

assumptions, JDA matches the conditional distributions for each class 𝑝(𝜙(𝑋𝑠)|𝑌 𝑠 = 𝑐) and 𝑝(𝜙(𝑋𝑡)|𝑌 𝑡 = 𝑐), where 𝑐 ∈ {1,… , 𝐶} is in
the label set. The class-conditional distributions are therefore determined by optimising the mapping function until the convergence

of the target pseudo-labels.
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The Maximum Mean Discrepancy (MMD) distance is adopted as a cost function introducing a kernel 𝑘(𝒙𝑖,𝒙𝑗 ) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗 ). Using

the low-rank empirical kernel embedding �̃� = 𝐾 𝑊 𝑊 𝑇𝐾, where 𝐾 = 𝑘(𝑋 , 𝑋) ∈ R
(𝑁𝑠+𝑁𝑡)×(𝑁𝑠+𝑁𝑡), given 𝑋 = 𝑋𝑠 ∪ 𝑋𝑡 ∈ R

(𝑁𝑠+𝑁𝑡)×𝑑

and 𝑑 is the dimension of the features, such a distance can be expressed in terms of a set of weights 𝑊 ∈ R
(𝑁𝑠+𝑁𝑡)×𝑘, yielding:

Dist (𝑝(𝜙(𝑋𝑠)), 𝑝(𝜙(𝑋𝑡))) + Dist (𝑝(𝜙(𝑋𝑠)|𝑌 𝑠), 𝑝(𝜙(𝑋𝑡)|𝑌 𝑡)) ≈ t r (𝑊 𝑇𝐾 𝑀𝑐𝐾 𝑊 ) (3)

where 𝑀𝑐 is the MMD matrix including class labels. The summation in Eq. (3) should be minimised to find the optimal latent
mapping, thereby formulating the problem in an optimisation framework, subjected to regularisation, where 𝜇 indicates the level
of regularisation and kernel PCA removes the trivial solution 𝑊 = 0,

min
𝑊 𝑇𝐾 𝐻 𝐾 𝑊 =𝐼

=

𝐶∑

𝑐=0

t r (𝑊 𝑇𝐾 𝑀𝑐𝐾 𝑊 ) + 𝜇t r (𝑊 𝑇𝑊 ) (4)

where 𝐻 = 𝐼 − 1∕(𝑁𝑠 +𝑁𝑡)𝟏 is the centring matrix with the identity matrix 𝐼 and a matrix of ones 𝟏. The Lagrangian approach is
then utilised to work with an eigenvalue problem, where the optimal weights 𝑊 are obtained from the eigenvectors corresponding
to the k smallest eigenvalues from,

(
𝐾

𝐶∑

𝑐=0

𝑀𝑐𝐾 + 𝜇 𝐼
)
𝑊 = 𝐾 𝐻 𝐾 𝑊 𝜙 (5)

At the end of the process, the 𝑘-dimensional transformed feature space is obtained by 𝑍 = 𝐾 𝑊 ∈ R
(𝑁𝑠+𝑁𝑡)×𝑘 and a general classifier

can be trained and tested in the new latent space containing both source and target data. A detailed description of the method can
be found in Refs. [22,31].

Regarding the multi-source DA approach, the methodology suggests to firstly standardise each domain, where centring and
scaling are applied independently on each feature by computing the relevant statistics on the samples in the training set, that is
collected during undamaged conditions. The transformed features of the 𝑏th domain are calculated via Eq. (6), where the means
and standard deviations of normal measurements (e.g. undamaged) are stored to be used for the standardisation of the whole
domain-referred dataset

𝑧
(𝑖)

𝑏
=

𝑥
(𝑖)

𝑏
− 𝜇𝑏,𝑛

𝜎𝑏,𝑛
(6)

The processed features from Eq. (6), extracted from those bridges for which data are labelled, are therefore assigned to the source
domain, while the features associated to the unlabelled dataset describe the target domain. After defining each domain of interest,
JDA is applied to align the distribution of the target features given a multi-source distribution. Such an approach may become useful
when the information extracted from a single source domain is not sufficient for ensuring good TL performance.

Since DA poses the basis to adapt ML algorithms to generalise across a population, a classifier can be implemented to discriminate
health-state classes in the target bridge by training the model just using source transformed data. Given that DA should minimise the
distance between domains, generating well-concentrated clusters with relatively-close data points, the K-Nearest Neighbours (KNN)
algorithm [32] is here adopted for validation, since it is based on the concept of proximity. If DA successfully aligns the feature
distributions of source and target domains, the data should be close in the Euclidean space and thus the use of a distance metric
becomes meaningful. Known that KNN predictions are based on the distance existing between instances, this algorithm is adopted
for the purpose of validating the DA results. In fact, the method assigns to a certain data point the most frequent label among the
identified K nearest neighbours, where K is generally recommended to be low (in this paper, a K value equal to 1 or 2 is considered
for damage-identification purposes). Note also that when the domains’ shift is minimised, KNN’s tendency to favour the majority
class is mitigated. Moreover, since the focus here is on DA, KNN could be considered as an indicator of the alignment performance.
However, it should be underlined that this is not necessarily the classifier to be used in practice. Any ML technique can be selected
after DA, given that real scenarios may require the application of more sophisticated algorithms.

3. Description of the laboratory setup

The experimental model bridge is located inside the structural dynamics Laboratory for Verification and Validation (LVV) of the
University of Sheffield. The structure is aluminium and is placed on a 3 m × 2 m shaker table to reproduce random input vibrations
with a frequency range of 5–110 Hz (Fig. 2). The main deck, with a global length of 2990 mm, a thickness of 2 mm and a width
of 270 mm, is made of four continuous ‘‘I’’ beams (Fig. 2 e), that are bonded to a horizontal top plate with Scotch-Weld Acrylic
Adhesive DP8425NS. The piers, characterised by Bosch-Rexroth sections, are clamped to the MAST surface with two steel plates,
which are attached together with Belleville washers to allow for variable connection stiffness between the MAST surface and the
pier.

Regarding the modelling of the joints deck/piers, flanged deep-groove ball bearings are utilised to restrict lateral movements.
The use of such modular bearings, clamped to the ‘‘I’’-beam section, allows either pinned conditions (i.e. allowing rotation only,
no axial or vertical motion) or rolling-pinned conditions (i.e. allowing rotation and axial movement, but no vertical movement).
Precisely, while the longitudinal movement is prevented in just one of the end piers, that is pier 4 (Fig. 4 a), the intermediate ones
and un-fixed end are free to roll axially to allow for thermal expansion and motion resulting from any induced vibration (Fig. 4 b).
The connection system permits to move the piers anywhere along the axial length of the bridge deck, translating into the possibility
to reproduce any required span length.
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Fig. 2. General view of the mockup bridge (a), scheme of the bridge deck, including the position of the uni-axial accelerometers and the additional masses (b),
detailed views of the bridge structure (c), sensors location at the pier (d), deck section (e).

The global weight of the deck is ∼10 kg; however, given the high spans stiffnesses, additional masses are homogeneously
distributed along the deck with the aim to increase the weight to ∼ 30 kg and thus reduce the natural frequencies. The positions
of these masses is visible in the scheme of Fig. 2 (a), which also shows the location of the accelerometers, named from A1 to A22,
that acquire measurements along the vertical direction. Their coordinates and sensitivity values are listed in Table 1. Note that the
adopted reference system has the 𝑍-axis pointing downwards and, moreover, most of sensors, i.e., A1–A20, are situated on the deck,
while the remaining A21 and A22 sensors are placed along pier 3, as depicted in Fig. 2 (d). Specifically, data acquisition consists
in collecting consecutive ∼ 20 second-long repeats at a sampling frequency of 256 Hz.

The monitoring system is integrated with a thermocouple on the deck to measure temperature during the experimental tests.
In particular, to simulate various operational and environmental conditions, a wide range of temperature is generated within the
environmental chamber, from −15 ◦C to 30 ◦C. Four different bridge configurations, named here as B1, B2, B3 and B4, are built with
variation introduced by changing the number and the position of the piers and the surface layer on the deck. Table 2 describes the
corresponding geometries. B1 is a three-span bridge where the main span measures 1.29 m and the deck is covered by transparent
adhesive tape. B2 and B4 configurations present the same number of piers, with the main spans equal to 1.37 m and 1.55 m,
respectively, and they are both characterised by an additional woven cotton sheet on the top of the deck and lubricant on the
bearings. This new layer, attached using a heat fusible adhesive, is introduced to create a freezable water layer during the lowering
of the temperature. The removal of the Pier 2 from the previous B2 configuration yields a two-span bridge, indicated as B3, with a
main span of 2.045 m. A summary of the differences among the population’s members is presented in Table 3.

3.1. Simulations of health-state scenarios

Each configuration is subjected to several damage scenarios and environmental conditions, with the aim to build a comprehensive
dataset and study the structural response in terms of modal properties variation. Damage classes can be broadly divided into two
macro-categories, the former describing a pseudo-stiffness reduction caused by the maximum bending moment, while the latter
involves the seizing of the bearings. Each category includes different typologies of damage data that are continuously acquired at
ambient temperature. By applying a 64 g mass, M1 and M2 scenarios simulate decays in natural frequencies that can be considered
as equivalent to those caused by a stiffness reduction on the side and centre line, respectively, at 𝐿𝑙 𝑎𝑡∕2, where 𝐿𝑙 𝑎𝑡 is the length

Mechanical Systems and Signal Processing 224 (2025) 112151 

6 



V. Giglioni et al.

Table 1
Location of the accelerometers and sensitivity values.

Sensor Sensor location (X,Y,Z) [m] Sensitivity [mV/g]

A1 (0.145,0.025,0) 98.8
A2 (0.445,0.025,0) 98.7
A3 (0.745,0.025,0) 98.7
A4 (1.045,0.025,0) 100.6
A5 (1.345,0.025,0) 101
A6 (1.645,0.025,0) 97.3
A7 (1.945,0.025,0) 101.6
A8 (2.245,0.025,0) 100.7
A9 (2.545,0.025,0) 98.4
A10 (2.845,0.025,0) 98.2
A11 (0.145,0.245,0) 97.1
A12 (0.445,0.245,0) 96.4
A13 (0.745,0.245,0) 99.7
A14 (1.045,0.245,0) 99.2
A15 (1.345,0.245,0) 100.1
A16 (1.645,0.245,0) 100.9
A17 (1.945,0.245,0) 91.6
A18 (2.245,0.245,0) 100
A19 (2.545,0.245,0) 98.1
A20 (2.845,0.245,0) 98.4
A21 (2.135,0.045,−0.095) 100
A22 (2.135,0.055,−0.355) 100

Table 2
Position of the piers for the four bridge configurations.

Bridge name Deck length [m] Pier 1 [m] Pier 2 [m] Pier 3 [m] Pier 4 [m]

B1 2.99 0.14 0.855 2.145 2.86
B2 2.99 0.14 0.815 2.185 2.86
B3 2.99 0.14 – 2.185 2.86
B4 2.99 0.14 0.725 2.275 2.86

Table 3
Differences between bridge configurations.

Bridge name ≠ Pier number ≠ Spans length ≠ Surface layer

B1 – ✓ ✓

B2 – ✓ –
B3 ✓ ✓ –
B4 – ✓ –

of the lateral span. The same mass is placed on the side and centre line at 𝐿𝑚𝑎𝑖𝑛∕2, where 𝐿𝑚𝑎𝑖𝑛 is the length of the main span,
to generate M3 and M4 classes, respectively. It is important to note that using added masses, instead of cuts or physical damage,
to induce changes in the dynamic behaviour of the mockup allowed for complete reversibility of the different scenarios, thereby
preventing damage accumulation. A scheme with the selected damage locations is depicted in Fig. 3 (b), while illustrative pictures
of M3 and M1 damage conditions are visible in Fig. 3 (a) and (c).

Low-severity versions of the scenarios M1–M4 are reproduced by using a mass of 21.6 g, yielding M5–M8 damage labels.

Moving to the second damage macro-category, SB1 and SB2 denote the situation in which the bearing of Pier 1 is seized by
preventing respectively longitudinal movements and both longitudinal and rotational movements (Fig. 4 c).

In addition, the longitudinal direction along the axial length of the deck is locked for Pier 2 (SB3) and for both Pier 1 and Pier 2
(SB4). A brief description of the simulated scenarios is listed in Table 4. It should be underlined that all the induced structural states
are independently applied and are not affected by the previous experiments. As reported in Table 5, the single configurations are
characterised by a variable number of health-state classes, and each class includes a different number of data points. Note that the
undamaged-state data labelled with ‘‘N’’ collected from each structure represent the most-populated category, especially for B2 and
B4. In fact, while B1 and B3 contain vibration measurements at ambient temperature, healthy accelerations of B2 and B4 are gained
under changing environmental conditions. Specifically, the environmental chamber is set to reproduce temperatures in a large range,
equal to −5 ◦C–15 ◦C and −15 ◦C–15 ◦C during the acquisition of B2 and B4, respectively. The same range of temperatures is then
adopted to collect data for the waterlogged scenario (W), in which the woven cotton sheet over the deck surface is sprayed with
water to simulate freezing effects. Therefore, the dynamic behaviour of B2 and B4 is affected by a significant temperature variation
over the whole monitoring campaign.
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Fig. 3. Illustrative pictures of damage scenarios M3 (a) and M1 (c). The scheme of the selected damage locations is shown in (b).

Fig. 4. Longitudinal movement is locked at pier 4 (a) and allowed for piers 1, 2 and 3 (b). Seizing of the bearings at pier 1: SB1 and SB2 damage scenarios (c).

3.2. Feature extraction

After signal pre-processing, automated system identification is carried out for each bridge configuration to extract modal
parameters via the covariance-based Stochastic Subspace Identification (SSI) technique within the MOSS environment [33]. To
handle consistent feature spaces for DA, the four mode shapes illustrated in Fig. 5 are selected, showing different values of natural
frequencies but similar characteristics.

The first, second and third bending modes are indicated as Mode 1, Mode 3 and Mode 4, while Mode 2 represents the torsional
mode, where the torsion largely affects the main span. A comparison between them is made in terms of Cross Modal Assurance
Criterion (CMAC) values, computed by analysing each pair of configurations (Table 6). While a good correlation, especially for the
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Table 4
A brief description of the simulated scenarios.

Label Description

N Undamaged conditions
W Waterlogged deck
M1 Mass of 64 g - lateral span (on the side)
M2 Mass of 64 g - lateral span (in the middle)
M3 Mass of 64 g - main span (on the side)
M4 Mass of 64 g - main span (in the middle)
M5 Mass of 21.6 g - lateral span (on the side)
M6 Mass of 21.6 g - lateral span (in the middle)
M7 Mass of 21.6 g - main span (on the side)
M8 Mass of 21.6 g - main span (in the middle)
SB1 Seizing of the bearing at pier 1 (locked longitudinal movement)
SB2 Seizing of the bearing at pier 1 (locked longitudinal and rotational movements)
SB3 Seizing of the bearing at pier 2 (locked longitudinal movements)
SB4 Seizing of the bearing at pier 1 and pier 2 (locked longitudinal movements)

Table 5
Number of data points for each health-state class varying the bridge configuration.

Bridge N W M1 M2 M3 M4 M5 M6 M7 M8 SB1 SB2 SB3 SB4

B1 36 – 10 10 10 10 5 5 5 5 – – – –
B2 125 73 10 10 10 10 10 5 5 5 10 10 10 –
B3 20 – 10 10 10 10 – – – – – – – –
B4 200 121 10 10 10 10 10 10 10 10 10 – 10 10

Table 6
CMAC values for each pair of configurations.

Mode B1-B2 B2-B3 B1-B3 B2-B4 B3-B4 B1-B4

Mode 1 0.99 0.33 0.39 0.96 0.46 0.99
Mode 2 0.99 0.54 0.57 0.98 0.64 0.99
Mode 3 0.93 0.07 0.04 0.5 0.01 0.59
Mode 4 0.47 0.13 0.17 0.63 0.36 0.78

Table 7
Reference natural frequencies of each bridge configuration.

Bridge name F1 [Hz] F2 [Hz] F3 [Hz] F4 [Hz]

B1 37.67 58.70 85.37 92.41
B2 41.31 62.82 80.65 85.79
B3 14.78 41.33 47.53 81.77
B4 33.26 54.73 88.43 103.01

first modes, can be found between B1, B2 and B4 configurations, which hold similarities in terms of number of spans, the comparison
of such configurations with B3, that has one less span, reasonably yields relatively-low CMAC values. If the interest is to extract
mode-shapes-based damage sensitive features, which is not the case of this work, a comparison by isolating the damaged span is
thus recommended. A study on the relation between CMAC and transfer outcomes is investigated in Poole et al. [34].

The reference frequencies corresponding to each mode, i.e., F1, F2, F3 and F4, listed in Table 7, are obtained from a single
acquisition during undamaged conditions and are afterwards adopted for automated frequency tracking over the whole monitoring
period.

The details on signal processing and frequency tracking are omitted for the sake of brevity, given that they are not the focus of
this paper.

By looking at feature (i.e., the selected natural frequencies) distributions, the influence of environmental variations on those
configurations subjected to a wide range of temperatures are clear. Such an effect is appreciable in Fig. 6 (c), where the first
frequency of B2 is plotted against temperature, which is decreased from 15 ◦C to −5 ◦C and afterwards brought back to the starting
value. Despite the shift between normal (N) and waterlogged (W) clusters, the trend of F1 is the same in both cases, exhibiting
a reasonable growth with low temperatures to reflect a higher stiffness. The same conclusion comes from Fig. 6 (d), showing the
tracking of F1 under the aforementioned range of simulated temperatures. Note that the clear peaks at the top of the two bell curves
indicate the stiffness increase in correspondence to the minimum temperature value registered during normal (N) and waterlogged
(W) scenarios, respectively, where the waterlogged natural frequencies are smaller because of the effect of the added mass of the
water.

Regarding the damage effects on the selected features, it is possible to highlight different frequency variations that are consistent
with the type of damage. As an example, Figs. 6 (a) and (b) show that the use of F2 and F3 is discriminative for damage classification
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Fig. 5. Identified mode shapes for each bridge configuration extracted from the post-processing of a single sample during healthy conditions.

in B1. The second frequency significantly contributes to visualising the effect induced at the main span by the mass on one side (M3)
and the midline of the deck (M4). In fact, F2 represents the mode mainly affecting the same span on which the mass is located. In
particular, being a torsional mode, more evident decays are associated with damage M3 (Fig. 6 a). Conversely, the opposite situation
occurs when looking at Fig. 6 (b), as F3, the frequency of the mode involving the lateral spans, is more discriminative for M1 and
M2 (the mass is on the lateral span).

An example of damage classification on B2 using the KNN is provided in Fig. 7. Although the confusion matrix demonstrates
a good performance, it is worth pointing out that some classes cannot be perfectly identified and that each class is populated by
a restricted number of instances, translating into a lack of a sufficiently-large dataset. Such an issue may negatively affect the
generalisation process and the robustness of the supervised classifier on the single bridge configuration. As a possible solution, the
collection of more labelled data from other similar configurations would allow one to train the model with transformed data of a
given labelled structure and afterwards test the performance to classify health-state classes of a different bridge.

4. DA results within the population of experimental model bridges

In order to investigate domain adaptation, various tasks are addressed, trying to simulate a number of scenarios depending on
the labels that are assumed available for the configuration of interest. It is specified that the symbols ‘‘◦’’ and ‘‘×’’ are adopted to
represent source and target data, respectively, and that healthy data are indicated in the plots with ‘‘H’’. Starting with the single-
source approach, the previously-extracted natural frequencies are transformed via NCA and JDA, leading to a common latent space
in which the two selected domains can be represented. Here, the KNN is trained on one source domain and tested on a different
target domain. The transfer of each single damage class across each pair of configurations is firstly evaluated in terms of F1 score
computed with macro average. Such a quantity, combining the True Positive rate (TPr) with the precision, takes into account the
relation of the correctly-classified positive samples with both false negatives and false positives and is more reflective of performance
when there is class imbalance. Better performance is described by F1 score values equal to 1. The aim to evaluate whether DA can
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Fig. 6. System identification results of B1 varying health-state scenarios: (a) the relationship between F1 and F2 in B1; (b) the relationship between F1 and F3
in B1. The effect of temperature in B2: the trend of F1 vs temperature (c) and frequency tracking (d) during normal (N) and waterlogged (W) conditions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Confusion matrix after the use of KNN for supervised damage classification in B2. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

improve generalisation of a model across bridges where only the deck length is changing, and material and general construction
is controlled. The results are reported in Table 8, showing that damage detection performance clearly changes when varying the
type of damage scenario to be transferred. It is specified that, given a generic pair X ⟷ Y, each value within the table is a mean
between X ⟶ Y and Y ⟶ X. More detailed information is provided in , where all the possible combinations are investigated, since
the selection of a certain domain as source or target affects the final outcome, and then evaluated by computing F1 score, TPr and
the False Positive rate (FPr). Overall, the DA-based damage detection approach can effectively transfer label information across the
population, providing a global F1 score, mediated over all possible cases, equal to 0.8. To avoid misleading observations, a more
detailed interpretation is however required. Hence, to better explain the dependence of DA results on damage class (which has a
common pattern for all the analyses shown in Tables 8), Fig. 8 represents the three adopted performance metrics associated with
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Table 8
F1 score after DA for each pair of configurations.

d B1 ⟷ B2 B1 ⟷ B3 B2 ⟷ B4 B3 ⟷ B4 B1 ⟷ B4 B2 ⟷ B3

M1 0.73 0.92 0.49 0.56 0.46 0.77
M2 0.84 0.68 0.57 0.83 0.58 0.87
M3 0.88 1 0.99 0.91 0.9 0.96
M4 0.93 1 0.8 0.82 0.9 0.9
M5 0.65 – 0.87 – 0.7 –
M6 0.61 – 0.93 – 0.64 –
M7 0.86 – 0.94 – 0.88 –
M8 0.7 – 1 – 0.84 –
SB1 – – 0.54 – – –
SB3 – – 0.91 – – –

Fig. 8. DA results, in terms of F1 score, TPr and FPr, for each single damage class by considering all the combinations across the population. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the transfer of each single damage class. The rate of false positives keeps a constant and low value throughout the scenarios. On the
other hand, note that the capability to correctly recognise damage labels across two different configurations is higher if looking at
the damage induced in the main span, i.e., M3 or M4, producing a F1 score and a TPr over 0.9. A reasonable performance decay is
visible considering a lower damage severity (M7 or M8). Damage caused by the mass on the lateral span has a lower impact on the
selected features and, consequently, might be more difficult to be transferred. This fact reflects the need to correlate TL outcomes
with the selection of the most suitable features for the specific kind of damage. An important initial step is in fact to ensure features
satisfy the assumption made by DA, i.e., that their response to damage is relate.

Some DA applications on this data set are presented hereafter. Fig. 9 (a) and (b) show the capability to align damage M4 from
B2 to B3 and M3 from B4 to B3, respectively. A KNN is trained using labelled data of the source configuration and afterwards tested
to identify such a damage in B3, with the F1 score equal to 0.96 and 0.95, respectively. On the other hand, as mentioned before,
the classification of the damage simulated in the short span may be quite challenging because of the risk of masking effects. In fact,
as inferred from the third row of the confusion matrix of Fig. 7, M1 is not well recognised in the B2 configuration. In this specific
case, an additional reason for the poor detection could be the significant lack of labelled data points for training the algorithm,
which prevents a robust judgement. An improvement is provided by applying DA and exploiting source labels from B3 (Fig. 9 c),
yielding a perfect TPr.

Focussing on the second category of simulated damage, i.e., the seizing of the bearings, Table 8 and the histograms in Fig. 8
show that SB3 labels are successfully transferred between B2 and B4 (being the only two configurations in which this damage is
applied). The new shared domain is represented in Fig. 9 (d). Since the healthy measurements related to B2 and B4 are extracted
under a changing environment, the distribution of the post-alignment features at different temperature ranges, i.e., T < 3 ◦C, 3 ◦C
< T ≤ 20 ◦C, T > 20 ◦C, is represented in Fig. 9 (e). In this case, M3 is considered as an example of damage class. Considering the
missing overlapping of data from different temperatures in the original feature space, the successful alignment brought by DA is
demonstrated by the fact that source and target instances labelled with ‘‘H’’ belong to the same cluster, despite the wide variability
in temperature values. However, it is also possible to notice that, as T[◦C] increases, the risk of masking damage is higher. Such
a situation can be better visualised by looking at Fig. 10 (a), where the SB1 cluster completely overlaps healthy data, yielding a
null TPr. Here, a damage classification problem is addressed, trying to align three different clusters, two of which are describing
damage conditions. Although the corresponding labels are correctly recognised, note that certain damages (SB1 in this case) can be
difficult to detect; the main reasons include the severity level, the type of feature (and its damage sensitivity) and the temperature
fluctuations in B2 and B4, producing a significant impact on data distributions, as shown in Fig. 9 (e). This fact confirm that, prior
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Fig. 9. Damage detection results after DA. The alignment and the transfer of the health-state classes (H)-(M4) and (H)-(M3) between B2-B3 and between B4-B3
is shown in (a) and (b), respectively, where the cluster (H) includes all the data acquired during normal and waterlogged conditions, when simulated. DA is also
applied to transfer damage labels associated to M1 (c) and SB3 (d) classes across B3-B2 and B2-B4, respectively. The distribution of the post-alignment features
from B2 to B4, belonging to ‘‘H’’ class, is represented in (d) at different temperature ranges. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

to the TL performance evaluation, proper considerations about the possibility to remove environmental effects and to study the
relation between the damage to be detected and the most sensitive feature should be made.

Additional damage classification results are depicted in Fig. 10. An interesting application is learning how to correctly classify
across the source and target domains, those damages affecting two different spans. The goal is therefore to discriminate between
M1/M2 and M3/M4 within the source domain and then exploit this information to identify the same patterns in the target
configuration. Figs. 10 (b), (c) and (d) represent DA results aimed at simultaneously transferring label information obtained from
the main and lateral spans, yielding F1 scores equal to 0.98, 0.86 and 0.77, respectively. In the last case, although the TPr is 1 for
each damage class, a slight increase of the false positives causes a global lower performance.

Despite these good results, it is worth underlining that damage classification is a challenging task, which strictly depends upon
the percentage of success in detecting a single damage class in each domain of interest. Therefore, based on those scenarios that are
effectively transferred according to , DA can be applied using more than two health-state classes. The analyses are not reported here
for the seek of brevity, but some considerations and limitations should be highlighted. While the simultaneous transfer of M1/M2
with M3/M4 generally leads to positive outcomes (see Fig. 10), TL performance is not sufficient (less than a random analysis) when
the aim is to transfer low severity damages (M5/M6 with M7/M8) or to recognise across domains the damage simulated at the
middle line, e.g. M1, from the one simulated at the side of the span, e.g. M2. It means that there is a huge number of possible tasks,
related on case-dependent SHM purposes and depending on single-damage TL behaviour.

Fig. 11 illustrates a similar but slightly different situation with respect to the previous one in Fig. 10 (a), in which a certain
damage, M4 in this case, is masked just in one configuration, that is B4. The alignment is therefore negatively affected, resulting
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Fig. 10. Damage classification is performed via DA. Health-state classes are well-aligned between B2 and B4, but SB1 damage is totally masked in both
configurations (a). The classification of the damage simulated in the main span (M3,M4) from the damage simulated in the lateral span (M1,M2) is carried out
across different domains (b, c, d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Multi-source DA results: the information extracted from B1, B2 and B3 is used to classify damage M4 in B4, providing an improvement in the TPr in
the new transformed space. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

thus in a low percentage of TPr, i.e., 0.1, when training the ML classifier using B2 data. For this reason, a multi-source DA approach
is proposed as a possible help by checking if the use of multiple sources, namely B1, B2 and B3, might improve TL results in terms
of false detection errors from B4 label predictions. Plotting all data distributions in the original feature space, it can be noticed that
health-state clusters are quite scattered, hampering the effectiveness of a classifier. The necessity to reduce the discrepancy across
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Table 9
Multi-source DA-based damage detection results.

Task Target Source F1 score

Single Multi Single-source DA Multi-source DA

M8 B1 B2 B2, B4 0.64 0.86
M3 B2 B3 B1, B4, B2 0.91 1
M4 B4 B2 B1, B2, B3 0.64 0.94
M7 B4 B1 B1, B2 0.76 0.93

domains distributions is therefore clear. Such a solution brings important improvements in better discriminating between damage
and undamaged conditions. By analysing the KNN outcomes, it is clear that the presence of more sources presenting M4 labels
provides an increase in the TPr, rising from 10% to 80%. To better highlight the related advantages, the multi-source method is
tested on additional situations characterised by a poor damage detection performance. Examples are summarised in Table 9. The
capability to identify the M8 and M4 classes in B1 and B4, respectively, given the knowledge extracted from B2, led to a F1 score
equal to 0.64. The introduction of a multi-source domain provides in both cases a substantial improvement, demonstrated by 0.86
and 0.94 F1 score values. Slightly lower yet noticeable benefits are observed during the detection of M3 in B2 and M7 in B4, where
the improvement in the performance metric is attributed to a reduction in false-positive rates.

The presented results are quite promising since they demonstrate the real possibility to leverage information between bridges
that present same materials, same static scheme, same deck cross-sections and same length and width, but differ in the number and
length of the spans. In the context of bridge similarity, several aspects deserve a deeper investigation. The information regarding
the damage class of interest could be useful to define a similarity criterion together with the geometry, static scheme, materials and
boundary conditions. In general, prior analyses on the correlations between the type of damage to be transferred, the type of feature
and the type of structures to investigate are necessary to develop a broader and clearer view on the inner relationship underlying
the transfer. Feature selection, which is not the focus of this study, represents a fundamental step prior to DA and, although the
natural frequencies are clearly suitable for the paper’s purpose, they may not be sensitive to localised damage. It may be therefore
recommended to firstly define which is the damage of interest, then select the most discriminative features (e.g. natural frequencies,
mode shapes, raw vibration measurements and more) to ensure the possibility to get a good transfer and, as a last step, choose the
most suitable TL method. To avoid diverting attention from the focus of this paper, i.e., transfer learning, natural frequencies were
used as features, but future work could identify better features for damage identification.

Beyond that, an important challenge to face is how to handle those situations in which two domains experience completely
different health-state classes. This is not the aim of this paper, because the hypothesis at the base of DA (i.e., the same number
and type of scenarios between the source and the target), do not allow to take into account all the real possible SHM situations.
Regarding the damage simulation process, it should be underlined that the main advantage of introducing reversible and easily
repeatable scenarios is the possibility to study and validate DA effectiveness for each damage of interest, which is the focus
of this work. However, real-world situations are characterised by different degrees of complexity, where damage accumulation
and several additional physical phenomena such a nonlinearity, represent challenging situations to deal with. This topic deserves
further investigations, with the aim to extend the knowledge on TL to those cases in which more than one damage could occur
and accumulate over time. In these cases, DA may not be recommended. Being a feature-based TL method, there is a strict
dependence with the adopted features, and such features could behave differently towards multiple damages of different typologies
that simultaneously occur, thus negatively affecting the transfer performance.

Handling and removing environmental effects still represents a challenge in the field of TL. Although this work aims to assess the
effectiveness of domain alignment under changing environmental conditions, it is necessary to underline that temperature variations
can hide the presence of damage, providing a negative impact on anomaly detection results. Therefore, it becomes imperative to
understand and investigate the benefits brought by the application of DA in conjunction with the removal of external factors. In
this framework, this dataset also provides a way to test methods that use transfer learning/multitask learning for data normalisation
and to explore the removal of temperature effects across the population. Particular attention should be directed to the fact that each
domain of interest may be subjected to different data cleansing and data normalisation techniques, resulting in possible alterations
in the residual distributions.

5. Conclusions

The concept of PBSHM via TL is starting to be applied to bridge SHM, overcoming a significant limitation of traditional data-
based SHM approaches, where inferences are limited to novelty detection in the absence of labelled training data. The available
dataset can thus be enriched by collecting more information about health-state labels from a population of similar bridges, sharing
common features in terms of materials and structural schemes. Dealing with civil infrastructures, DA, belonging to transductive TL
methods, is a suitable choice since it does not require target labels. In this light, a DA-based methodology is presented in such a
way that two possible strategies could be implemented, namely a single-source or a multi-source approach, based on the number of
bridges with a completely labelled dataset. However, the application of such techniques is quite challenging given the difficulties to
collect real datasets from multiple similar structures with different health-states. To fill this gap, as well as to validate and discuss
TL performance, this paper proposes an innovative physical benchmark for PBSHM in the context of civil-engineering applications,
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aimed at building a population of experimental model bridges where multiple bridge configurations are introduced by varying
structural properties in terms of deck materials, number of piers and span lengths. An experimental campaign is carried out to build
up a comprehensive dataset by simulating a variable number of damage scenarios and environmental conditions, since the mockup is
located in an environmental chamber where a wide range of temperatures is reproduced. Such an experiment, representing a novelty
in the literature, allows one to explore the applicability of PBSHM and underline the main advantage and possible drawbacks and
specifically enables the use of DA, given that each bridge configuration is subjected to the same damage scenarios. To enable other
researchers to test their own algorithms and address the various challenges associated with TL, this paper includes an open dataset
containing all data related to the physical benchmark (https://doi.org/10.15131/shef.data.27732792). The results obtained after
feature transformation show that different kinds of damages can be effectively identified across the population of bridges under
environmental fluctuations, enabling discrimination between undamaged and damaged conditions. In some cases, the use of more
labelled data from a different structure can also be useful to improve the identification of low-severity damage and, beyond that,
the novel DA-based multi-source approach is demonstrated to yield a significant improvement on model’s outcome.

However, additional insights should be made prior to DA. Specific studies on the influence of data-normalisation techniques (to
remove environmental effects) on TL outcomes should be carried out, as well as on the relation between the bridge similarity and
the type of damage (and thus the related features) to be transferred. Future work may also explore the possibility to investigate
other TL strategies in order to address a wider portion of real-world scenarios in which DA assumptions can be broken. It could be
interesting in the future to reproduce the transferability of health-state labels within real network-scale bridge monitoring, by taking
into account the characteristics and the challenges of a population of post-tensioned continuous concrete bridges or continuous steel–
concrete bridges. The validation on such structures will surely bring significant advances toward field applications and provide a real
support to the traditional bridge maintenance. Finally, using archetypal numerical or physical models to generate extensive labelled
data for various damage and degradation conditions offers a promising approach to identify critical conditions across multiple similar
target bridges.
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Appendix. Summary of damage detection results via DA

See Table A.10.

Table A.10
Summary of damage detection results via DA for each pair of configurations.

d
B2-B1 B1-B2 B3-B1 B1-B3

TPr FPr F1 TPr FPr F1 TPr FPr F1 TPr FPr F1

M1 1 0.03 0.97 0 0.02 0.49 1 0.09 0.93 0.75 0 0.9
M2 0.8 0.03 0.9 0.83 0.04 0.78 0.9 0.03 0.94 0 0.05 0.42
M3 1 0 1 1 0.08 0.76 1 0 1 1 0 1
M4 1 0 1 0 0.05 0.86 1 0 1 1 0 1
M5 0 0 0.47 1 0.06 0.83 – – – – – –
M6 0 0 0.47 1 0.06 0.75 – – – – – –
M7 0.6 0 0.86 1 0.03 0.85 – – – – – –
M8 0.2 0 0.64 1 0.06 0.75 – – – – – –

(continued on next page)
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Table A.10 (continued).

d
B4-B2 B2-B4 B4-B1 B1-B4

TPr FPr F1 TPr FPr F1 TPr FPr F1 TPr FPr F1

M1 0 0.007 0.49 0 0.005 0.49 0 0 0.44 0 0.04 0.47
M2 0.17 0 0.64 0 0.03 0.49 0 0 0.43 1 0.07 0.72
M3 1 0 1 0.9 0 0.97 1 0 1 1 0.06 0.8
M4 1 0.007 0.97 0.2 0.005 0.64 1 0 1 1 0.06 0.8
M5 1 0.01 0.95 0.5 0.009 0.78 0 0 0.46 1 0.01 0.92
M6 1 0 1 0.86 0.005 0.86 0 0 0.46 1 0.03 0.81
M7 1 0 1 0.75 0.005 0.87 1 0 1 1 0.03 0.76
M8 1 0 1 1 0 1 0.6 0 0.86 1 0.04 0.81
SB1 0 0 0.48 0.2 0.02 0.6 – – – – – –
SB3 0.57 0 0.86 0.9 0.004 0.95 – – – – – –

d
B4-B3 B3-B4 B3-B2 B2-B3

TPr FPr F1 TPr FPr F1 TPr FPr F1 TPr FPr F1

M1 0 0 0.41 1 0.1 0.71 1 0.1 0.67 0.75 0.05 0.86
M2 0.8 0 0.93 1 0.06 0.72 1 0.08 0.74 1 0 1
M3 0.88 0 0.95 1 0.03 0.86 1 0.02 0.91 1 0 1
M4 0.6 0 0.83 1 0.06 0.8 1 0.06 0.83 0.9 0 0.96

Data availability

As mentioned at the end of the manuscript, the data supporting the findings of this study will be openly available in a specific
repository folder.
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