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1 Discussion on master problem initialization- PS and

MO environments

In the master problem initialization step of the LBOA algorithm, linearizations of nonlinear

conditional constraints across all disjunctions are added to the master problem. In the

context of SO, linearizations of constraints corresponding to all the process units considered

in the flowsheet are added to the master problem in the initialization step. To do this, one

or more primal problems are solved (and subsequently linearized) such that all units are

selected at least once. To contrast the initialization strategies in MO and PS formulations
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that have been proposed in the literature, we consider the example of distillation column

synthesis, in which the optimal number of stages in a column is determined, via state-of-

the-art MO (Yeomans and Grossmann, 2000) and hybrid PS-based GDP (Caballero, 2015)

formulations. Let N identical equilibrium stages (trays) be allowed in each of the rectifying

and stripping sections. In the MO formulation (Yeomans and Grossmann, 2000), 2N binary

variables are defined, each corresponding to a stage in the column. In the PS formulation

(Caballero, 2015), 2N binary variables are defined: N of these variables correspond to

rectifying column sections such that section i, i = 1, . . . , N has i stages. Similarly, the

next N variables denote N stripping column sections. To initialize the master problem

in MO, Yeomans and Grossmann (2000) solve only one primal problem in which all the

stages in the column are selected and derive a linearization around its solution. To initialize

the PS-based master problem (Caballero, 2015), at least N columns need to be optimized

such that each of the rectifying and stripping sections is chosen at least once. Thus, in

state-of-the-art PS-based GDP, the number of reduced primal problems to be solved during

initialization may grow with the number of discrete alternatives. Further, when only one

column section is to be optimized (for e.g., gas-liquid absorption columns), the initialization

step entails enumeration of all discrete alternatives. In practice, Caballero (2015) observed

that the solution obtained may be sensitive to the choice of primal problems around the

solutions of which linearizations are accumulated in the initialization step.

2 Full details of the Implementation of the SO-PS al-

gorithm

The optimization algorithm involves the solution of a continuous primal problem and a

mixed-integer master problem. The primal problem, a continuous nonlinear program

(NLP) derived by fixing the discrete variables in the MINLP Problem (MSON), is im-

plemented and solved in the modelling environment gPROMS 7.1 (Siemens, 2024). The

master problem is a mixed integer linear programming problem which is solved using

2



Gurobi 10.0.2 (Gurobi Optimization, Inc., 2024) via the C++ API.

The primal problem is solved in gPROMS using a sequential quadratic programming

(SQP) solver. In the primal problem, the values of the binary variables and all other

discrete variables are fixed a priori. The NLP solver takes a feasible path approach with

respect to a subset of the SO problem constraints, namely, those equality constraints

that are typically solved by the use of a variant of Newton’s method. We refer to these

constraints as simulator-only constraints and they are treated implicitly by the optimizer.

In our implementation the flowsheet-level equality constraints Equation (19b), the process

unit-level equality constraints (Equation(19d)), the mixer equality constraints (Equations

(19i), (19k)) and the splitter equality constraints (Equations (19j), (19m)) are solved as

simulator-only constraints. The remaining constraints in Problem (MSON) are referred to

as optimization-only constraints. The variables chosen as degrees of freedom are declared

as optimization variables w and the objective function and optimization-only constraints

are treated as functions of the optimization variables.

In this work, we treat conditional big-M optimization-only constraints (that are non-

linear in the optimization variables) of the following form:

−Mu(1− zu) ≤ lu(w) ≤ Mu(1− zu) ∀u ∈ T (S1)

as conditional (on/off) equality constraints, where lu is a vector of vu nonlinear conditional

constraints that are true when zu is one and Mu
i is an upper bound on the magnitude of

lui , i = 1 . . . vu. Examples of such constraints include Equation (16), in which the output

variables are implicit functions of the optimization variables. Such an on/off constraint is

implemented in the primal problem with the following complementarity constraint:

zul
u(w) = 0, ∀u ∈ T (S2)

We reiterate that the value of zu is fixed during the solution of the primal problem, and

hence no additional non-linearity is introduced into the primal problem. Based on the
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procedure given in Kocis and Grossmann (1987), we derive equivalent conditional inequality

constraints that are added to the master problem,

δui
(k)(lui (w

(k)) +∇wl
u
i (w

(k))[w −w(k)]T) ≤ Mu
i (1− zu) i ∈ {1, . . . , vu}, u ∈ T

(S3)

where w(k) is the value of the optimization variables at the solution of the primal problem

k; the value of δui
(k) depends on the sign of λu

i
(k), the Lagrange multiplier (in accordance

with the sign convention used in Kocis and Grossmann (1987)) associated with constraint

zul
u
i (w) = 0 (Equation(S2)) at the solution of primal problem k; δui

(k) = −1 when λu
i
(k)

is strictly negative, δui
(k) when λu

i
(k) is strictly positive and zero otherwise; and M is a

suitable upper bound on the magnitude of l(w). Treating the Big-M constraints (S1) in

the form (S2) can avoid convergence issues in the primal problem that may otherwise arise

due to the use of these linearly-dependent constraints (as the binary variables are fixed)

(Dowling and Biegler, 2015). Further, the approach also avoids linearizing both sides of

the nonlinear Big-M inequalities (S1) while constructing the master problem, which would

result in an invalid outer-approximation of the feasible region of the constraint (see Kocis

and Grossmann (1987) for more details).

As we enforce and linearize conditional constraints only when the associated binary

variable is true, similar to the LBOA algorithm, the construction of the master problem in

this work is also in accordance with LBOA. In the initialization phase, one or more primal

problems are solved such that, across all of the initialization iterations, each process unit

is selected at least once. We note that the allowable combinations of selected units are

governed by the unit-selection constraints (Equation (19q)) and this in turns determines

the the required number of initialization iterations nI , 1 ≤ nI ≤ |T |. The initialization

phase is followed by the solution phase in which the primal and master problems are solved

alternately and the values of the discrete variables for each primal problem z(k) are fixed

to the solution of the previous master problem.

At the start of the LB-OA-ER-AP algorithm (logic-based OA-ER-AP), all the opti-
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mization constraints that are linear in the degrees of freedom are added to the master

problem. After each solution of the primal problem, irrespective of whether the algorithm

is in the initialization or solution phase, the following constraints are added to the master

problem: i) if the primal problem is feasible, linearizations of the objective function and

of the nonlinear optimization constraints and ii) an integer cut to prevent repetition of

previously-tested binary values. Due to the inherent non-convexity of Problem (MSON),

a slack variable that allows violation of the linearizations is added to each of these and a

penalty term is introduced in the objective function of the master problem to minimize

these violations (Kocis and Grossmann, 1987). For all constraints we use the same value

of the penalty term and set it greater than the magnitude of the largest Lagrange multi-

plier of all optimization-only constraints across the initialization iterations. The gPROMS

gO:RUN functionality is used to solve the primal problem and access the value of the solu-

tion, optimization-only constraints and their first derivatives whereas the gPROMS Foreign

Object facility is used to pass the assignment of the binary variables z(k) to the primal

problem. Unlike several other simulation-based superstructure optimization studies, we do

not estimate any first-order derivatives (used to construct the linearizations in the master

problem) via finite differences in this work but instead use the derivatives computed by

the simulator. We also note that the simulator model (or flowsheet) remains unchanged

at each iteration of the algorithm, except for a change in the vector z(k).

We also modify the heuristic stopping criteria of the LB-OA-ER-AP algorithm, akin

to Bowskill et al. (2020). The algorithm converges to a solution when whichever of the

following occurs: i) in three of the iterations the primal problem is feasible and its objective

function is greater than the best known upper bound; ii) the master problem is infeasible

and iii) the total number of iterations exceeds 100.

We note that Problem (MSON) can also be formulated directly in gPROMS and solved

using the built-in implementation of the OA-ER-AP algorithm and it can be also be for-

mulated in other environments (e.g., GAMS (GAMS Development Corporation, 2024) or

PYOMO (Bynum et al., 2021)) and solved using any of the MINLP/GDP algorithms

supported.
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2.1 Initialization of the simulator-only constraints with MSON

The MSON formulation as implemented with the PS-SO algorithm can be exploited to

facilitate the initialization of the simulator-only constraints in the synthesis of complex

flowsheets. As mentioned in the implementation section, the mixer-splitter unconditional

constraints as well as the constitutive equations of all the process units are all implemented

in the simulator. The feasibility of these simulator-only constraints at the initial point is

essential as the primal problem is solved via a feasible path approach. However, due to

the mixers and splitters which allow flow between units, the equality constraints of all the

process units are coupled, and this may make initialization of the simulator-only constraints

challenging. To ease initialization of the simulator-only constraints arising from Problem

(MSON), here we create Problem (MSON-i), a copy of Problem (MSON) in which the

following alterations are introduced to the mixer-splitter network:

• Each mixer associated with unit u ∈ U\T is replaced by a modified mixer. Suitable

values for fA
i , q

A
i and TA

i , i ∈ IN u, u ∈ U\T are identified.

• Each splitter associated with unit u ∈ U\T is replaced by a modified splitter.

The degrees of freedom of the simulator-only constraints arising from Problem (MSON-

i), which also include the flowrates between units, are next initialized in the following

manner:

1. fo,i := 0 if o is a splitter associated with any unit u ∈ F∪L and i is a mixer associated

with any unit v ∈ L ∪ P .

2. fM
i := fA

i for all units u ∈ L ∪ P .

3. xAu
:= xA

Au

and yAu
:= yA

Au

for all units u ∈ L.

With the proposed initial setting of all the flowrates between units to zero, the feeds into

the superstructure bypass the process units and flow out directly via the artificial outlet

streams in the modified splitters associated with the source units. This assignment of the
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flowrates between units thus decouples all the units, that is, no mass flows from any unit

u ∈ F ∪ L into any other unit u ∈ L ∪ P . Additionally, for each unit u ∈ L, the MESH

equations are solved without difficulty due to the artificial mass flows from the modified

mixers that are associated with the unit, as well as a consistent assignment of the degrees

of freedom that correspond to the unit only. The modified mixers and splitters enable the

decoupling of process units and thus result in the solution of the simulator-only constraints

corresponding to Problem (MSON-i) at the initial point given above.

Further, Problem (MSON-i) is fully equivalent to Problem (MSON) when the following

optimization-only constraints are added to its formulation:

• fM
i = 0 if i is a mixer associated with any unit u ∈ P ∪ L \ T .

• fS
o = 0 if o is a splitter associated with any unit u ∈ F ∪ L \ T .

The above constraints enforce that the modified mixers and splitters that are associated

with permanent units behave like standard mixers and splitters as the flowrates of the

ficitious streams are set to zero. This equivalent formulation of Problem (MSON) enables

the systematic and robust initialization of superstructure optimization problems.

3 Initialization of the counter-current column in PS

environments

We find that the modified mixers and splitters provide a simple route to initialization of

the process unit-level constraints that are implemented in the process simulator. We first

decouple column subsections by using the initialization procedure in section 2.1. For each

of the fictitious streams in the modified liquid and vapour mixers, we set the flowrates,

fA,L and fA,V, and compositions, qA,L and qA,V and temperatures, TA,L and TA,V, equal to

that of a liquid and a vapour that are in equilibrium with each other, inspired by a counter-

current column initialization procedure given in Keskes (2007). It follows that in this case,

the liquid (vapour) streams at the outlet of each stage and each column subsection are
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identical to the streams at the inlets. Thus, a feasible solution to the MESH equations

of each equilibrium stage as well as each column subsection in the column superstructure

may easily be determined. The generated solution is then be used to initialize a simple

counter-current column with strictly positive flows between the process units.
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