
This is a repository copy of Superstructure optimization with rigorous models via an exact 
reformulation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224073/

Version: Accepted Version

Article:

Gopinath, S. orcid.org/0009-0004-2872-2440 and Adjiman, C.S. orcid.org/0000-0002-
4573-7722 (2025) Superstructure optimization with rigorous models via an exact 
reformulation. Computers & Chemical Engineering, 194. 108972. ISSN 0098-1354 

https://doi.org/10.1016/j.compchemeng.2024.108972

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal 
article published in Computers & Chemical Engineering is made available via the 
University of Sheffield Research Publications and Copyright Policy under the terms of the 
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits 
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Superstructure optimization with rigorous models via

an exact reformulation

Smitha Gopinath1 and Claire S. Adjiman2

1School of Chemical, Materials and Biological Engineering, The University

of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom

2Imperial College London, Department of Chemical Engineering, Sargent

Centre for Process Systems Engineering and Institute for Molecular

Science and Engineering, London SW7 2AZ, United Kingdom

March 7, 2025

Abstract

The applicability of superstructure optimization to process synthesis is often lim-

ited to simple models and flowsheets. The state operator network (SON) (Smith, E.

and Pantelides, C. (1995). Comput. & Chem. Eng., 19:83) overcomes some limita-

tions via a mixer-splitter network, allowing the use of rigorous unit models. However,

setting flowrates to zero for non-selected units can result in numerical issues. Here,

the modified state operator network (MSON), a new exact reformulation with modi-

fied mixers and splitters, is introduced. When a unit is deselected, a fictitious, strictly

positive, mixer inlet flow ensures the unit model is easily solved. A corresponding fic-

titious splitter outlet counteracts this inlet, resulting in correct flowsheet behaviour.

When applied to a toy flowsheet, the MSON outperforms standard formulations.

When applied to the synthesis of a reactor-separator network and to a challenging
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counter-current column synthesis problem, the MSON offers a systematic and robust

approach to superstructure optimization.

1 Introduction

Process synthesis is an important step in computational flowsheet design (Cremaschi, 2015).

It is the activity of finding:

1. the process units (from a set of allowed process units),

2. the connectivity between the selected process units, and

3. the operating conditions of each of the selected process units,

that minimize the design objective and satisfy constraints. The main approaches to pro-

cess synthesis are i) decomposition-based approaches (Douglas, 1985) in which the list of

flowsheet alternatives to be considered is iteratively narrowed down by using heuristics

or ii) optimization-based approaches known as superstructure optimization (SO) in which

all flowsheet alternatives are first embedded in a superstructure and the superstructure is

then optimized. Approaches that combine heuristics and mathematical programming have

also been proposed (Tula et al., 2015). The focus of this paper is on approaches to process

synthesis based on superstructure optimization.

The representation of a superstructure is not unique (Demirel et al., 2019, Kondili et al.,

1993, Liñán et al., 2020, Mencarelli et al., 2020, Yeomans and Grossmann, 1999). In this pa-

per, using the nomenclature given in Yeomans and Grossmann (2000b) and Smith (1996),

we take as a starting point the State Operator Network (SON) (Smith, 1996, Smith and

Pantelides, 1995) representation of a superstructure. In the SON paradigm, each process

unit-operator (or process unit) is represented by its detailed, rigorous model. That is, each

process unit is described by its constitutive equations (including the mass balances, equilib-

rium relations, mole/mass fraction summations, and energy balances (MESH equations)),

detailed thermodynamic model(s) as well as sizing and costing correlations. A network
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of mixers and splitters allows complete connectivity between process units. The decision

variables include the discrete (binary) decisions corresponding to each conditional process

unit (whether it is selected or not in the optimal flowsheet); the continuous flowrates from

the outlets of process units to the inlets of process units; the (usually) continuous design

variables of all the process units selected to be in the flowsheet. These design variables are

the degrees of freedom for a given flowsheet topology.

The SON superstructure is appealing as the number of binary decision variables is

small (equal to the number of conditional process units). It does not suffer from combi-

natorial explosion when the number of components considered in the flowsheet increases,

unlike, say, the State Task Network (STN) representation (Kondili et al., 1993). The SON

does not require the modeller to make assumptions on the performance of process units,

e.g., that sharp splits are attainable in each distillation column, and is thus applicable to

rigorous models. Thus, the designs obtained by the use of the SON may be realizable

in practice when high-fidelity process unit models are used. A current limitation of the

SON formalism introduced in Smith and Pantelides (1995) is that it is only applicable to

isobaric flowsheets. This is because connections between two units at different pressures

would also require the addition of pressure-change equipment (e.g., pumps, compressors or

throttling valves) between these units. Additionally, as the SON necessitates models of all

units to be applicable to all components, the modelling of reactions can be more complex

in the SON than with other approaches. Finally, numerical solution of the SON can be

challenging as result of the use of rigorous models that are highly nonlinear and coupled.

Smith and Pantelides (1995) evaluated the optimal flowsheet in the SON superstructure

by enumeration of all discrete alternatives.

Rigorous models for each process unit may be implemented in a chemical process sim-

ulator (PS), or a general-purpose modelling and optimization (MO) environment, or a

hybrid framework in which a subset of constraints is implemented in the MO environ-

ment and the rest in the PS (Javaloyes-Antón et al., 2022). MO environments, such as

GAMS (GAMS Development Corporation, 2024), AMPL (Fourer et al., 1989) and PYOMO

(Bynum et al., 2021), are widely used across multiple application domains and offer in-
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terfaces to several optimization algorithms. Typically, simple, less-detailed process models

have been adopted in MO environments (Dowling, 2018). PS environments, such as As-

pen Plus (AspenTech, 2015) and gPROMS (Siemens, 2024), offer built-in process libraries,

initialization strategies, detailed thermodynamic models and a small choice of optimizers.

Furthermore, interfacing other optimization algorithms to PS environments is not only

cumbersome but also inefficient as the algebraic form of the model equations cannot be

accessed.

Rigorous models usually involve a large number of nonlinear equality constraints that

are highly coupled. Obtaining a point that is feasible with respect to all the constraints that

describe a single process unit is, in itself, challenging. To exacerbate the issue, in the SON,

the constraints of all process units are linked by the mixer-splitter network. Superstructure

optimization problems, like other non-convex mixed-integer nonlinear programs (MINLPs),

are prone to non-convergence in the absence of good initial guesses. In MO environments,

several authors have developed process-specific initialization strategies (Barttfeld et al.,

2003, Dowling and Biegler, 2015b). Global optimization of these problems is an immense

challenge (Burre et al., 2023, Jiang et al., 2019) that is outside the purview of this paper.

In this paper, we address an open challenge in the formulation and solution of super-

structure optimization problems. During the optimization of a superstructure, the mass

flows into any process unit that is not selected must be constrained to zero. However, the

equality constraints that describe a process unit are typically well-defined only at strictly

positive input flowrates. At zero flows, a number of numerical challenges arise due to ei-

ther non-differentiability of the constraints or singular Jacobian matrices (Navarro-Amorós

et al., 2014, Yeomans and Grossmann, 2000b). For example, the Jacobian of the mass-

balance constraints that describe a separator or mixer can become rank deficient (Dowling

and Biegler, 2015b). Additional issues are encountered for the many types of process units

that require the solution of phase equilibrium (e.g., a flash unit): the constraints for these

process units may be feasible and well-defined only when input flows and their intensive

properties allow solutions with the desired (implied) number of phases (Cavalcanti and

Barton, 2020, Gopinath et al., 2016, Skiborowski et al., 2015). Finally, mass and heat
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transfer correlations, as well as sizing and costing correlations, are often nonlinear func-

tions of flowrates (such as logarithms or powers with exponents less than one) that may be

non-differentiable at zero flowrates and lead to ill-conditioned Jacobians when the flowrate

approaches zero. Beyond flowrates, constraints on other design variables can cause sin-

gularities when the process unit is not selected. For instance, consider a process unit in

which the heating load is a design variable that is constrained to be zero when the process

unit is not selected. In such a case, zero-valued heating loads may cause singularities in

the utility-cost correlations.

To overcome the issue of singularities, several reformulations of the constraints of the

process unit have been proposed. To illustrate these reformulations, let us consider a

conditional toy process unit with associated binary variable z. It is described by the

following model equations,

c = α
√

f in (1)

f out = f in (2)

ǫz ≤ f in ≤ Mz (3)

where c is the cost of operating the unit, α, ǫ and M are constants, f in is the mass flowrate

into the toy unit and f out is the mass flowrate from the unit. Note that in the SON, f in

takes the value zero when z = 0. Constraint (3) also forces f in to be strictly positive when

z = 1. It is easy to see that the derivative of c with respect to f in is undefined at f in = 0

and becomes very large as f in approaches zero.

As the constraints of the process units that are not selected are redundant, the use of

“big-M” (Glover, 1975) reformulations to turn on/off process unit equality constraints is

customary. However, the application of the standard big-M reformulation to the equality

constraints of a process unit does not necessarily address the issue of numerical singularities.
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The oft-used big-M reformulation of Equation (1) of the toy process unit yields

−M(1− z) ≤ c− α
√

f in ≤ M(1− z) (4a)

−Mz ≤ c ≤ Mz. (4b)

It is easy to see that derivatives of the constraints (4a) with respect to f in are undefined

at f in = 0. In practice, the choice of modelling platform, optimization algorithm and

even initial guess can affect the success of optimization with the big-M formulation in

cases where the constraints of a deselected conditional unit are singular. To arrive at a

reformulation that is guaranteed to be differentiable and free of singularities, one may need

to perform additional reformulation steps. For instance, in the toy problem, one may set

f ′ = f in + ǫ(1− z), where ǫ is strictly positive, and substitute f ′ for f in in Equation (4a).

The use of big-M reformulation has a few other drawbacks: it entails the modification of

model constraints and its use is restricted to MO environments. Moreover, optimization

of big-M formulations can be numerically challenging for several reasons, e.g., due to the

the addition of large coefficients, the violation of constraint qualifications (Dowling and

Biegler, 2015a) and the difficulty in finding valid and tight big-M parameters for all equality

constraints (Trespalacios and Grossmann, 2015).

As an alternative to big-M, it is sometimes possible to use a nonlinear reformulation,

although this approach is seldom used. A nonlinear reformulation of Equation (1), studied

by (Burre et al., 2023)), is

c = zα
√

f in. (5)

The derivative of c with respect to to f in is mathematically undefined at f in = 0, even when

this nonlinear reformulation is used. In practice, when z = 0, singularities may occur during

the evaluation of derivatives. Thus, the success of SO with the nonlinear reformulation is

based on choice of solver and optimization platform. Further, the nonlinear reformulation

entails the examination and modification of a subset of model constraints.
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A systematic and robust alternative is to formulate the problem as a generalized dis-

junctive program (GDP) (Raman and Grossmann, 1994). The toy process unit may be

replaced by the following disjunction:


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
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Z
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(6)

where Z is a logical variable associated with the decision to use the toy process unit or

not.

Note that logic-based disjunction (6) may be cast as a set of mixed-integer constraints

by using either the big-M reformulation which yields (4a) or the convex hull reformulation

as given in Lee and Grossmann (2003). Alternatively, SO problems with nonlinear disjunc-

tive constraints, such as Equation (6), may be solved via logic-based outer-approximation

(LBOA) (Türkay and Grossmann, 1996) which averts numerical singularities. In the LBOA

algorithm, as used in the context of SO, the master problem is first initialized and there-

after primal problems (with process unit selection fixed) and master problems (the solution

of which is used to select process units) are solved alternately. Model constraints corre-

sponding to a given process unit are added to the primal problem only if that process unit

is selected, resulting in a reduced primal problem. For example, in the LBOA approach,

the toy process unit constraints are enforced only when the unit is selected (Z=true which

implies f in is strictly positive). The success of this approach has been demonstrated for

several problems in MO environments (Yeomans and Grossmann, 2000a,b). However, it

has been observed (Caballero, 2015, Caballero et al., 2005, Navarro-Amorós et al., 2014)

that simulation-based GDP may entail expensive initialization of the master problem when

all the conditional units are identical, e.g., in distillation column synthesis where the con-

ditional units are identical column trays. Further, the solution of each reduced primal

requires the generation of a PS flowsheet with only the units that are selected at that
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iteration and this requires considerable interfacing between a process simulator and the

LBOA algorithm (Navarro-Amorós et al., 2014).

While the reformulations considered until now (big-M, nonlinear reformulation and

GDP approaches) are exact, some authors have introduced small non-zero flows to units

that are not selected to avert singularities (Lee et al., 2016). However, these are neither

exact nor do they guarantee feasibility of the model constraints of the process units that

are not selected. In other approaches, continuous reformulations of the problem have

been solved (Dowling and Biegler, 2015b, Kossack et al., 2006). The use of surrogate

models has also been proposed by several authors (Bugosen et al., 2023, McBride and

Sundmacher, 2019), but such approaches seldom provide optimality guarantees (Vollmer

et al., 2021). There have been several other works that combine automated flowsheet

generation and optimization. This has included early work on the use of genetic algorithms

for the design of heat exchanger networks (Androulakis and Venkatasubramanian, 1991)

and more recent work using reinforcement learning (Göttl et al., 2022, Reynoso-Donzelli

and Ricardez-Sandoval, 2024). Hybrid methods for flowsheet generation that combine

data-driven techniques and domain knowledge have also been recently proposed (Mann

et al., 2024).

To address the challenges highlighted so far, we propose a new formulation of the

superstructure optimization problem. An initial version of this approach, restricted to

the case of optimization of pressure in counter-current columns, was briefly introduced in

the proceedings of the 2024 Conference on Foundations of Computer-Aided Process De-

sign (Gopinath and Adjiman, 2024). In the current work, a detailed presentation of the

proposed modelling framework is given for the case of general process systems and its per-

formance is assessed based on several examples. The approach is based on the introduction

of a modified state operator network, MSON, such that no numerical singularities occur

when a process unit is deselected. The MSON does not require the modification of process

unit constraints. Furthermore, it includes a mathematically well-defined solution to the

constraints of deselected units, unlike the Big-M and NL approaches. While the MSON

was developed to address shortcomings in existing PS-based and hybrid optimization ap-
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proaches, it may also be used in MO. A further advantage of the formulation is that it is

amenable to use with black-box/grey box models of process units. The formulation relies

on a simple modification of flowsheet mixers and splitters. A fictitious stream is introduced

into each mixer such that the input flowrates into process units that are not selected are

always strictly positive. In turn, splitters are modified so that the output flowrates that

arise from the fictitious input streams are not propagated to the rest of the flowsheet. Our

proposed approach provides a systematic framework to assign the states of the fictitious

mixer streams such that the feasibility of the equality constraints representing deselected

units is assured. The additional computational complexity arising from the MSON is small.

The MSON, in its current iteration, is applicable to isobaric flowsheets at fixed pressures.

In Section 2, we formally introduce the MSON and the mixer-splitter network, expand-

ing on the ideas Smith and Pantelides (1995) and defining the notation used to derive a

mathematical formulation of the MSON. In Section 3 we investigate the case of flowsheet

synthesis and present simple case studies to illustrate the approach, including a flowsheet

based on the toy process unit and a flowsheet from the literature. Next, we develop an

MSON superstructure for the synthesis of a counter-current column in Section 4 and show

the application of the formulation for the synthesis of an absorber for the separation of

carbon dioxide from a natural gas stream.

2 The Modified State Operator Network

We propose a new and exact reformulation of the superstructure optimization problem,

that does not exhibit any singularities due to a process unit not being selected. It is

based on a modified state operator network. Specifically, the MSON-based formulation

eliminates those singularities that are due to zero-valued mass flows into a deselected

process unit. The MSON approach also avoids numerical singularities that may arise from

other specifications in the model of a deselected unit, e.g, a heating load that is set to zero,

by eliminating the need for such specifications. The MSON-based problem may be solved

via either MINLP or GDP algorithms and the MSON framework is amenable to be used in
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Figure 1: An example SON superstructure shows 2 feeds, 2 products and 4
process units: U1, U2, U3 and U4. Each feed (product) is followed (pre-
ceded) by a source (sink). Key elements of the flowsheet are the set of units
U = {Source1, Source2, Sink1, Sink2,U1,U2,U3,U4}, the set of process units L =
{U1,U2,U3,U4}, the set of sources F = {Source1, Source2} and the set of sinks P =
{Sink1, Sink2}. A set of conceptual mixers (circles) and splitters (squares) connect the units
and allow various flowsheet topologies including recycles (e.g., see unit U4). Each splitter is
labelled by the corresponding outlet number. U1 and U4 each have one mass inlet and one
mass outlet. U2 has one mass inlet and two mass outlets, whereas U3 has 2 mass inlets and 2
mass outlets. INU1

= {1}, INU2
= {2}, INU3

= {3, 4}, INU4
= {5}, IN Sink1 = {6} and

IN Sink2 = {7}. OUT U1
= {10}, OUT U2

= {11, 12}, OUT U3
= {13, 14}, OUT U4

= {15},
OUT Source1 = {8} and OUT Source2 = {9}.
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Figure 2: Unit U3 from Figure 1 with detailed labelling of the streams leaving the splitters
and entering the mixers.

both MO and PS environments. The approach is general and easy to implement in that it

does not require examining or reformulating any of the equations representing the process

units, irrespective of the complexity of the process unit model.

The basic idea behind the MSON approach is simple. We introduce the possibility of

bypassing process units through modifications to the representation of mixers and splitters.

Process units that are deselected then benefit from fictitious, non-zero, inlet and outlet

flows, a feature that prevents numerical errors due to zero-flows. At the level of the

flowsheet and corresponding optimization problem, these flows have no impact on the

optimality or feasibility of the selected flowsheet structure, thanks to the modified mixer

and splitter models and this makes the formulation exact and robust.

In the remainder of this section, we introduce the key sets, variables and equations in

the formulation, illustrating this with the flowsheet shown in Figure 1.
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2.1 Description of the Modified State Operator Network

2.1.1 Superstructure flowsheet: units and streams

We begin by introducing the relevant notation. Let M = {1, . . . ,m} and define the index

set M′ ⊆ M. Consider a vector y ∈ R
m where yi, i ∈ M, denotes the ith component of

y. Let yM′ ∈ R
|M

′

| be a sub-vector of y defined as the vector of all the components yi of

y such that i ∈ M′

. For a given stream defined by a subscript i and (optional) superscript

j, let f j
i ∈ R+ denote its mass flowrate, qj

i ∈ [0, 1]K , where K is the number of species

in the flowsheet, the vector of mass fractions, T j
i its temperature and P its pressure (the

same for all streams in an isobaric flowsheet). Furthermore, let f̄ denote an upper bound

on all flowrates. Finally, let M denote an upper bound on the magnitude of any variable

(f̄ ≤ M).

Consider the set L of process units allowed in the flowsheet. We use the term “process

unit” to indicate both process equipment (such as an absorber or a condenser) as well

as any discrete subset of the process equipment (such as a stage in an absorber). Each

process unit u ∈ L is described by its rigorous model equations (MESH, sizing, costing).

In Figure 1, L = {U1,U2,U3,U4}. L is partitioned into the set of conditional (or optional)

units T and permanent units L\T .

The feeds to the flowsheet are all the raw materials and utilities that enter the flowsheet.

The products are all the streams, including wastes, that leave the flowsheet. Each feed

(product) is modelled as a permanent process unit, a source (sink), with one inlet and one

outlet. The sets of all sources and sinks are given by F and P , respectively. In Figure 1,

F = {Source1, Source2} and P = {Sink1, Sink2}. The set of all “flowsheet units” (including
process units, sources and sinks) is given by U = L ∪ F ∪ P .

Each flowsheet unit u ∈ U is assumed to have one or more mass inlets (from where

mass enters the unit) and each flowsheet unit u ∈ U is assumed to have one or more mass

outlets (from where mass leaves the unit). Each inlet (outlet) stream is assigned a unique

index, shown as a subscript. The set of all mass inlet indices in L ∪ P is given by I. The
set of all mass outlet indices in L ∪ F is given by O. In Figure 1, I = {1, 2, 3, 4, 5, 6, 7}
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and O = {8, 9, 10, 11, 12, 13, 14, 15, 16}, with corresponding flowrates thus denoted by f in
i ,

i ∈ I and f out
o , o ∈ O, respectively. The set of inlets corresponding to each unit u ∈ L∪P

is described by IN u, where IN u ⊂ I. Similarly, the set of outlets corresponding to each

unit u ∈ L ∪ F is described by OUT u, where OUT u ⊂ O. For example, process unit U3

in Figure 1 has inlet set INU3
= {3, 4} and outlet set OUT U3

= {13, 14}.
To enable the representation of alternative flowsheet topologies, a “conceptual mixer”

is placed before (at) each mass inlet i ∈ IN u, u ∈ L∪P . Similarly, a “conceptual splitter”

is located after (at) each outlet o ∈ OUT u, u ∈ L∪F . These mixers and splitters are not

necessarily physical process units and are not included in sets L and U , but they enable

different process units to be connected or not. When the mixers and splitters are completely

connected all possible flowsheet topologies involving the process units are represented by

the superstructure. A mixer associated with the inlet i of a permanent unit is known as a

standard mixer and labelled mi whereas a mixer associated with the inlet i′ of a conditional

unit is known as a modified mixer and labelled m̃i′ . Similarly, a splitter that is associated

with the outlet o of a permanent unit is known as standard splitter so whereas that at

outlet o′ of a conditional unit is known as modified splitter so′ . Streams that flow from

outlet o (via splitter so or splitter s̃o) to inlet i (via mixer via mixer mi or mixer m̃i)

are known as inter-unit streams. A stream that flows from an outlet o (via splitter so or

splitter s̃o) into an inlet i (via mixer mi or mixer m̃i) is labelled (o, i), with mass flowrate

fo,i ∈ R+, composition vector qo,i ∈ [0, 1]K , temperature To,i and pressure P. An example

of a inter-unit stream is stream f8,2 that connects splitter s8 to mixer m̃2 in Figure 1.

At each inlet i ∈ IN u to process unit u, the mixer (standard or modified) combines

|Mi| inter-unit streams, where Mi ⊆ O is a set of indices that denote all possible outlets

that may be connected (via splitters) to mixer mi. In addition to the inter-unit streams,

a modified mixer also has a fictitious inlet stream, shown with a dashed orange line in

Figure 1. The fictitious stream is associated with a set of variables, in a similar way to

all other streams, i.e., a mass flowrate fM
i , a constant mass fraction vector qA

i , constant

temperature TA
i and constant pressure P. The mixed stream that leaves mixer mi or m̃i is

described by the mass flowrate f in
i , mass fraction vector qin

i , temperature T in
i and pressure
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P, and enters process unit u.

Analogously, at each outlet o ∈ OUT u from process unit u, a stream whose state is

described by mass flowrate f out
o , mass fraction vector qout

o , temperature T out
o and pressure

P leaves unit u. This outlet stream enters the splitter so or s̃o at outlet o. A number

|So| of inter-unit streams (with identical temperatures, pressures and compositions), where

So ⊆ I is the set of indices that denote all the inlets to which splitter so may be connected

(via mixers). In addition to the inter-unit streams, a modified splitter also has a fictitious

outlet stream, shown with a dashed orange line in Figure 1. The fictitious stream is

associated with mass flowrate fS
o , mass fraction vector qS

o , temperature T S
o and pressure P.

For example, let us consider conditional process unit U3 in Figure 1 and Figure 2. The set

of outlets that may connect to mixer m̃3 is described by M3 = {8, 12} and those that may

connect to mixer m̃4 is given by M4 = {9}. The set of inlets that splitter s̃13 is connected
to is given by S13 = {7} and those that leave splitter s̃14 may be connected to inlets in

S14 = {6, 7}. The robustness of our formulation arises from the addition of a modified

mixer at the inlet of each conditional unit and a modified splitter at its outlet, with the

associated fictitious flows. Hence, a splitter can only be connected to the inlet of a process

unit indirectly, via a mixer (and correspondingly, a mixer can only be connected to the

outlet of a process unit indirectly, via a splitter).

Once either the setsMi, ∀i ∈ I, or the sets So, ∀o ∈ O, have been specified, the allowed

connectivity of the flowsheet is fully defined. Given that each i ∈ I is associated with one

flowsheet unit only (similarly for each o ∈ O), the stream (o, i) corresponds to a pair of

units (u, v), such that i ∈ IN v, v ∈ L ∪ P and o ∈ OUT u, u ∈ L ∪ F . Thus, units u and

v are connected, with directionality (u, v), if there is a strictly positive flowrate between a

splitter at an outlet of process unit u and a mixer at an inlet of unit v. In Figure 1, U1

is connected to U2, and feeds into it, if flowrate f10,2 is strictly positive. Similarly, U2 is

connected to U1, and feeds into it, if flowrate f11,1 is strictly positive.

The sets introduced in this section are summarized in Table 1.
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Set Description
L Process units in superstructure
T Conditional process units in superstructure
F Sources in superstructure
P Sinks in superstructure
U L ∪ F ∪ P
I Mass inlet indices of all process units u ∈ L ∪ P
O Mass outlet indices of all process units u ∈ L ∪ F
IN u Mass inlet indices corresponding to a unit u, where u ∈ L ∪ P
OUT u Mass outlet indices corresponding to a unit u, where u ∈ L ∪ F
Mi Mass outlet indices that are connected to mixer mi or m̃i

So Mass inlet indices that are connected to splitter so or s̃o

Table 1: Summary of sets that define the superstructure flowsheet

2.1.2 Variable vectors and sets

A vector of binary variables z, of dimensionality |T | is defined to represent unit selection

/ deselection. The binary variable zu is thus associated with each conditional process unit

u ∈ T to indicate its presence in the process (zu = 1) or its absence from the process

(zu = 0). In addition, any further discrete design variables in the flowsheet (such as

feed-stage location for a distillation column) is included in a vector y ∈ {0, 1}r.
We define a vector of continuous process variables denoted by x, x ∈ R

n. Several

types of variables can be distinguished within x. The continuous variables that appear

in the model equations for a process unit u are referred to as process unit-level variables.

Within these we also define a (usually small) subset of “output variables” corresponding to

process unit u. These are the process unit-level variable that appear either in the objective

function or in at least one flowsheet-level constraint, i.e., the constraints that are used to

define flowsheet-wide performance metrics (e.g., the total annualized cost or total energy

demand). The flowsheet-level constraints are not unit-specific but a subset of these depend

on some variables (known as output variables) corresponding to one or more process units.

That is, the output variables are visible at the level of the flowsheet model. The value of

an output variable is usually obtained by solving the process unit-level constraints that

describe unit u. Examples of output variables include the cost cu of unit u (which is used

15



Set Description

N Indices of continuous variables, N = {1, . . . , n}
Y Indices of discrete design variables, Y = {1, . . . , r}
D ⊆ N Indices of continuous design (independent) variables

e.g., reboiler duty in a distillation column
e.g., inter-unit flowrate fo,i between splitter so and mixer mi

Au ⊆ D Indices of continuous design variables that correspond to unit u ∈ L only
e.g., reboiler duty of the distillation column u is indexed by Au

Yu ⊂ Y Indices of discrete design variables that correspond to unit u ∈ L only
Cu ⊆ N Indices of output variables that correspond to unit u ∈ L only
C ⊆ N Indices of output variables corresponding to all conditional units

C = ∪u∈T Cu
Table 2: Index sets of the variables in the MSON formulation

to compute a flowsheet-wide cost) and its cooling duty, Qu. In addition, vector x also

contains variables that only appear in equations at the flowsheet level, and not in models

of any process units. For example, this includes variables obtained from the outputs of

multiple units, such as a total capital cost, as well as inter-unit variables f(i,o). In addition,

we define an auxiliary vector xS ∈ R
n of modified continuous variables. Each component

of xS and x describes the same variable. However, when xi is an output variable of a

conditional unit u, xS
i and xi can take different values reflecting whether the unit u is

present or not in the flowsheet as described in 2.2.4.

Lastly, we define the sets that correspond to the variables in the MSON, including the

design variables and output variables, in Table 2. Furthermore, we note that Cu and Au

may have elements in common so that it is possible that Cu ∩ Au 6= 0.

2.2 MSON model equations

The following assumptions are made in deriving the MSON equations:

1. The process is assumed to be isobaric at a constant pressure P that is fixed a priori.

2. All flows are assumed to be frictionless and isenthalpic.
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3. Chemical reactions do not occur in mixers or splitters.

4. All units are at steady-state.

5. The standard and modified mixers and splitters introduced for the purpose dealing

with conditional units are isenthalpic (i.e., they are adiabatic and shaft work, e.g.,

work of mixing, is zero).

6. The total mass flow into each sink is strictly positive.

2.2.1 Flow positivity constraints

When a conditional unit u is not selected to be in the flowsheet, flow-validity constraints

ensure that all inter-unit flows directed to this unit are zero. The flow-validity constraints

fo,i ≤ f̄ zu ∀o ∈ Mi, ∀i ∈ IN u, ∀u ∈ T (7)

thus set the flow from splitter so or s̃o to mixer m̃i to zero (as fo,i can only take positive

values) if mixer m̃i is associated with a unit u that is deselected. In Figure 2, when U3 is

not selected, the flow-validity constraints drive flowrates f8,3, f12,3 and f9,4 to zero.

We also enforce that the inlet flowrates into all process units are strictly positive.

ǫ ≤ f in
i ∀i ∈ IN u, ∀u ∈ L (8)

It is evident that both a permanent unit and a selected conditional unit should have

strictly positive inlet mass flows. However, we go further by imposing the positivity of

inlet flowrates for all process units in the MSON, including those that are deselected. We

explain this choice further in the next subsection.

2.2.2 Mixers in the MSON

The constraints of both a standard mixer (Figure 3a) and the modified mixer that is

introduced in this work (Figure 3b) are shown in this section.
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Standard mixer For each standard mixer mi, i ∈ IN u, u ∈ (L \ T ) ∪ P , we have

f in
i =

∑

o∈Mi

fo,i (9a)

f in
i qini,c =

∑

o∈Mi

fo,iqo,i,c ∀c ∈ {1, . . . , K} (9b)

f in
i hen(T

in
i ,P, qin

i ) =
∑

o∈Mi

fo,ihen(To,i,P, qo,i) (9c)

where hen : R2+K
+ → R is the enthalpy (relative to a standard) per unit mass as a function of

temperature T , pressure P and composition on a mass basis q. Equations (9a)-(9c) describe

the overall mass, component-mass and energy balances. It is assumed that the constraints
∑K

c=1 qo,i,c = 1, ∀o ∈ Mi, are satisfied due to mass balance equations on other units or

input specifications from which it follows from Equations (9a) and (9b) that
∑K

c=1 q
in
i,c = 1.

Thanks to Equation (8), the flow at the outlet of the standard mixer is strictly positive,

irrespective of whether it is associated with a permanent process unit or a sink.

Modified mixer We now present the modified mixer at each inlet i, ∀i ∈ IN u, ∀u ∈ T .

When a unit u ∈ T is deselected, inter-unit flows into the unit are driven to zero by the

flow validity constraint (7). To avoid any issues with the solution of the process-unit level

equality constraints when unit u ∈ T is deselected, the flowrate of the fictitious stream

takes on a pre-defined, non-zero, value fA
i , and corresponding mass fraction vector qA

i ,

temperature TA
i and pressure P. When the unit is selected, the flowrate of the fictitious

stream is forced to zero by virtue of Equation (10d) and the fictitious stream has no impact

on the mixer.

The corresponding model equations for each modified mixer m̃i, ∀i ∈ IN u, ∀u ∈ T
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are:

f in
i =

∑

o∈Mi

fo,i + fM
i (10a)

f in
i qini,c =

∑

o∈Mi

fo,iqo,c + fM
i qAi,c, ∀c ∈ {1, . . . , K} (10b)

f in
i hen(T

in
i ,P, qin

i ) =
∑

o∈Mi

fo,ihen(To,i,P, qo,i) + fM
i hen(T

A
i ,P, q

A
i ) (10c)

fM
i = fA

i (1− zu) (10d)

In addition, we set the continuous and discrete design variables corresponding to unit

u, xAu
and yAu

, to the constant vectors xA
Au

and yA
Au

, respectively:

−Mzu ≤ xAu
− xA

Au
≤ Mzu (11a)

−Mzu ≤ yAu
− yA

Au
≤ Mzu (11b)

where fA
i , q

A
i , T

A
i , ∀i ∈ IN u, x

A
Au

and yA
Au

are user-defined constants. These can be

assigned any values that ensure that the equality constraints of unit u are feasible, that

the desired number of phases are obtained at the solution of the unit and that fA
i ≥ ǫ,

∀i ∈ IN u. Thus, the flows at the inlet of the unit are strictly positive and satisfy Equation

(8), even when the associated unit is deselected. If the states (flowrate, temperature and

composition) at any of the inlets of unit u are design variables (that is, indexed by set

Au), then the assignment of these constants must be self-consistent. The independent

variables of the deselected unit are assigned values in the MSON such that singularities

of the equations of the unit are guaranteed not to occur. Thus, when a process unit is

deselected, the feasibility of the unit model equations and the correctness of the phase

behaviour are guaranteed thanks to the introduction of the modified mixer.
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(a) Standard mixer (b) Modified Mixer

Figure 3: Schematic of (a) a standard mixer mi with its inlet and outlet streams and (b)
a modified mixer m̃i with its inlet and outlet streams. A fictitious stream fM

i denoted by
the dashed arrow (in orange) has been added to the modified mixer.

2.2.3 Splitters in the MSON

We next show the equations of a standard splitter (Figure 4a) as well those of the modified

splitters introduced in the MSON (Figure 4b).

Standard splitter For each standard splitter so, ∀o ∈ OUT u, ∀u ∈ (L\T )∪F we have

f out
o =

∑

i∈So

fo,i (12a)

T out
o = To,i ∀i ∈ So (12b)

qouto,c = qo,i,c ∀i ∈ So, ∀c ∈ {1, . . . , K}, (12c)

where qout
o,i ∈ [0, 1]K , ∀i ∈ So and qout

o ∈ [0, 1]K . The splitter equations set the composition,

temperature and pressure of each stream leaving the splitter equal to that at the inlet of

the splitter.

Modified splitter The modified mixer ensures that flowrates at the inlets of conditional

units are strictly non-zero but this results in non-zero values of the flowrates as well as

other output variables at the outlets of units that are not selected. In addition, due

to Equation (11a), all other unit-specific independent variables are assigned to non-zero

values. Without modifications to the splitter, this would result in an erroneous flowsheet

model. In order to correct for this, we make use of the fictitious stream that leaves the
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modified splitter.

For each modified splitter s̃o, ∀o ∈ OUT u, ∀u ∈ T we have

f out
o =

∑

i∈So

fo,i + fS
o (13a)

T out
o = To,i, ∀i ∈ So, (13b)

qouto,c = qo,i,c ∀i ∈ So. ∀c ∈ {1, . . . , K} (13c)

T out
o = T S

o (13d)

qouto,c = qSo,c ∀c ∈ {1, . . . , K} (13e)

We further ensure that fS
o = f out

o when zu = 0 as follows:

f out
o − fS

o ≤ f̄ zu (14)

However, when zu = 1, fS
o takes the value of zero:

0 ≤ fS
o ≤ f̄(1− zu) (15)

Hence, no mass flow is propagated from process unit u to other units when zu = 0. We also

note that the mass, composition and enthalpy balances are conserved for the process unit

both when the unit is selected and deselected. The indicator constraints (14)-(15) have been

given in big-M form here, via the use of the upper bound on flowrates, f̄ . We re-emphasize

that the big-M form is only used on the output flowrates and output variables of the

splitter and the constraints of the process unit itself are unchanged. Lastly, the constraints

(14)-(15) may be expressed by equivalent disjunctions, convex hull reformulations and so

on (see Appendix A).
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(a) Standard splitter (b) Modified Splitter

Figure 4: Schematic of (a) a standard splitter so with associated inlet and outlet streams
and (b) a modified splitter s̃o with associated inlet and outlet streams, including a fictitious
stream fS

o denoted by the dashed arrow (in orange).

2.2.4 Logical relations for continuous variables

In the MSON formulation, deselected units, with their fictitious inlet and outlet streams

and fixed design variables, can themselves be viewed as fictitious. The key requirement for

superstructure optimization is that such units should not impact on flowsheet-level metrics

and decisions. In this section we show the constraints that drive the contributions from

deselected units to zero in the MSON objective and flowsheet-level constraints. Specifically,

consider a conditional unit u, u ∈ T , that is characterized by output variables xi, i ∈ Cu.
We set the value of the corresponding modified output variables xS

i , i ∈ Cu, to a constant

vector cui
(typically of zeros) when unit u is deselected and to xi, i ∈ Cu, when it is selected.

This is expressed as:

−M(1− zu) ≤ xi − xS
i ≤ M(1− zu) ∀i ∈ Cu, ∀u ∈ T , (16)

−Mzu ≤ xS
i − cui

≤ Mzu ∀i ∈ Cu, ∀u ∈ T . (17)

As previously, alternatives to the big-M formulation can be used instead of Equations (16)

and (17) (see Appendix A).

For all other components of variable vector x that do not represent an output variable

linked to a conditional unit, i.e., xi, i ∈ N \ C, the values of xS and x are set equal:

xS
i = xi, ∀i ∈ N\C. (18)

22



Constraint class Description

Flow positivity Ensures zero inter-unit flows into deselected units Equation (7)
Ensures flows into all units are strictly positive Equation (8)

Mixer / splitter Equations for conceptual mixers and splitters (9a)-(15)

Process unit-level equalities MESH equations and sizing and costing equations
for unit u Imposed for each unit u ∈ U

Process unit-level inequalities Impose requirements on the performance of u
for unit u Imposed for each unit u ∈ U

Flowsheet-level equalities Equations to define flowsheet-wide metrics
Usually depend on multiple process units and/or
flowsheet-wide quantities, e.g., constraints to compute
the total annualized cost

Flowsheet-level inequalities Impose requirements on flowsheet-wide metrics
e.g., a constraint on the energy demand of the flowsheet

Unit-selection Logical relationships related to selection of process units
e.g., at least one reactor must be selected

Bounds Lower and upper bounds on x

Table 3: Constraint classes used in the MSON formulation

The constraints (18) are shown for ease of exposition only. In practice, we use identity

elimination to remove variables xS
N\C from the problem formulation and thus do not un-

necessarily increase problem dimensionality.

Finally, the objective function F and the flowsheet-level equality and inequality con-

straints (see Table 3), hp and gp respectively, are all expressed in terms of the modified

continuous variables xS, rather than in terms of the variables x.
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2.3 MSON formulation

The MSON framework is used to address the following problem: Given the sets of process

units L and T , feeds F and products P , inlets I, outlets O and either set Mi, ∀i ∈ I or

set So, ∀o ∈ O that allows connectivity between flowsheet units U , determine: i) the set

of conditional units, T ∗ ⊆ T , to be present in the flowsheet, ii) the value of the flowrates

fo,i, ∀o ∈ Mi, ∀i ∈ I and iii) the values of all other design variables, so that the process

is feasible and the flowsheet objective is minimized.

The problem formulation includes constraints of different types as summarized in Ta-

ble 3. The corresponding MSON formulation is summarized in Problem (MSON) defined
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by Equations (19a)-(19v):

min
x,xS,y,z

F (xS) (19a)

s.t. hp(x
S) = 0 (19b)

gp(x
S) ≤ 0 (19c)

hu(x,y) = 0 ∀u ∈ U (19d)

gu(x,y) ≤ 0 ∀u ∈ U\T (19e)

gu(x,y) ≤ M(1− zu) ∀u ∈ T (19f)

ǫ ≤ f in
i ∀i ∈ IN u, u ∈ L\T (19g)

fo,i ≤ f̄ zu ∀o ∈ Mi, ∀i ∈ IN u, ∀u ∈ T (19h)

Standard Mixer Eqs (9) ∀i ∈ IN u, ∀u ∈ (L \ T ) ∪ P (19i)

Standard Splitter Eqs (12) ∀i ∈ OUT u, ∀u ∈ (L \ T ) ∪ F (19j)

Modified Mixer Eqs (10a)− (10c) ∀i ∈ IN u, ∀u ∈ T (19k)

Modified Mixer Conditional Eqs (10d), (11) ∀i ∈ IN u, ∀u ∈ T (19l)

Modified Splitter Eqs (13) ∀i ∈ OUT u, ∀u ∈ T (19m)

Modified Splitter Conditional Eqs (14), (15) ∀i ∈ OUT u, ∀u ∈ T (19n)

xS Assignment Eqs (16), (17) ∀k ∈ T (19o)

xS Assignment Eqs (18) ∀i ∈ N \ C (19p)

Qyy +Qzz ≤ d (19q)

x ∈ X ⊆ R
n,xS ∈ X ⊆ R

n (19r)

y ∈ {0, 1}|Y|, z ∈ {0, 1}|T | (19s)

fM
i ∈ R+ ∀i ∈ IN u, ∀u ∈ T (19t)

fS
i ∈ R+ ∀i ∈ OUT u, ∀u ∈ T (19u)

fo,i ∈ R+ ∀o ∈ Mi, ∀i ∈ I (19v)

where F : Rn → R denotes a flowsheet-level objective to be minimized, hp(x
S) represents
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flowsheet-level equality constraints (e.g., a total capital cost), gp(x
S) represents flowsheet-

level inequality constraints ( e.g., a constraint on the maximum allowable total heat duty

of a flowsheet), hu(x,y) and gu(x,y) denote the process unit-level equality and inequality

constraints for unit u, respectively. Equation (19f) enforces the process-unit level inequality

constraints only when the unit is selected.

Equation (19g) constrains the flows at the inlets of both permanent and conditional

process units to be strictly positive (given the constant ǫ > 0). Equation (19h) drives the

mass flows into deselected units to be zero. The problem solution must also respect the flow-

validity constraints and equality constraints of the mixer-splitter network as represented

by Equations (19i)-(19n). The behavior of the modified vector of continuous variables xS

is governed by Equations (19o) and (19p). Equation (19q) denotes linear relationships

between the discrete variables and can be used to enforce unit-selection constraints, with

Qy and Qz as constant matrices and d a real vector. These constraints include Big-M type

inequalities that are used to enforce disjunctive logic related to the selection of units, e.g.,

a logic expression such as “if process unit U1 is selected, then process units U2 and U3

cannot be selected”. Note that the equality constraints that describe each process unit are

not modified in this reformulation.

To illustrate the effect of the MSON on a process unit and flows to and from the unit,

we consider example unit U3 in Figure 2. Figures 5(a) and 5(b) show the constraints

on the flowrates, input variables and output variables when zS1 = 1 and when zS1 = 0,

respectively. In Figure 5(a), at any feasible solution to the MSON, flows fM
3 and fM

4 are

zero. Similarly, the fictitious flows leaving the splitters, fS
13 and fS

14, are zero. The variables

xS
CU3

are set equal to the output variables xCU3
computed for the unit. In Figure 5(b), at

any feasible solution to the MSON, flows fM
3 and fM

4 are strictly positive and equal to fA
3

and fA
4 , respectively. The variables xAU3

are set equal to xA
AU3

so that the model equations

for unit U3 are satisfied and no singularities are encountered. The fictitious flows leaving

the splitters, fS
13 and fS

14, are strictly positive. No mass is propagated to other units since

flows f13,7, f14,6 and f14,7 are all equal to zero. The variables xS
CU3

are set to cU3
.
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(a)

(b)

Figure 5: (a) Unit U3 and associated variables when zU3
= 1; (b) Unit U3 and associated

variables when zU3
= 0. In this case, the flowrates f out

13 and f out
14 are guaranteed to be

strictly positive, thanks to the values assigned to the fictitious inlet streams and the unit-
specific design variables.

It is important to note that the MSON framework only addresses issues related to

zero-valued input flows that arise when a process unit is deselected. However, in process

simulation and optimization, flows of streams within units (e.g., the vapour flowrate from a
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stage) can sometimes take zero value for some assignments of the design variables, usually

due to a failure of the phase-equilibrium assumptions (Raghunathan and Biegler, 2003).

Numerical singularities that arise in these situations are not mitigated by the use of the

MSON.

The partitioning of process units in the MSON superstructure into conditional or per-

manent is based on problem-specific considerations. For example, when a reaction in a

plug flow reactor is to be followed by a downstream separation whose structure is to be

determined, the reactor is a permanent unit and the separators (each of which may utilize

different separation technologies) are conditional.

In summary, to use the MSON, a modeller needs to have knowledge of the inputs

and outputs of each conditional process unit. That is, for each conditional process unit

u ∈ T , the modeller needs to know i) the sets IN u, OUT u that define the mass inlets

and outlets; ii) the sets Au and Yu that index the continuous and discrete design variables,

respectively, for each process unit; iii) the set Cu that indexes the output variables from each

process unit; and iv) an assignment of the design variables, denoted by constant vectors

xA
Au

and yA
Yu
, and of the states at the inlets, denoted by fA

i , qA
i , TA

i ∀i ∈ IN u. This

assignment must be feasible with respect to the equality constraints of the process unit, it

must meet any user-specified lower bound on flowrates, and it must result in the expected

phase behaviour. This latter requirement should be easy to satisfy and is important for

the robustness and computational efficiency of the MSON-based problem solution. The

flowsheet-wide constraints and the objective function need to be expressed in terms of

the auxiliary variables xS that are introduced in the MSON. In contrast to the MSON,

units in the SON are connected by standard mixers and splitters only and the flowrates to

deselected units are zero in the latter.

2.4 Implementation: The SO-PS Algorithm

The behaviour of the MSON reformulation, Problem (MSON), is investigated via an in-

house C++ implementation of a logic-based variant of the outer-approximation with equal-

28



ity relaxation and augmented penalty (OA-ER-AP) algorithm (Kocis and Grossmann,

1987, Viswanathan and Grossmann, 1990), the SO-PS algorithm, derived by modifying

the algorithm described in Gopinath et al. (2016). The use of an in-house implementation

provides maximum flexibility to explore different formulations and initialization strategies.

The optimization algorithm involves the solution of a continuous primal problem and

a mixed-integer master problem. The primal problem, a continuous nonlinear program

(NLP) derived by fixing the discrete variables in the MINLP Problem (MSON), is imple-

mented and solved in the modelling environment gPROMS 7.1 (Siemens, 2024). The master

problem is a mixed integer linear programming problem which is solved using Gurobi 10.0.2

(Gurobi Optimization, Inc., 2024) via the C++ API.

The primal problem is solved in gPROMS using a sequential quadratic programming

(SQP) solver. In the primal problem, the values of the binary variables and all other dis-

crete variables are fixed a priori. The NLP solver takes a feasible path approach with re-

spect to a subset of the SO problem constraints, namely, those equality constraints that are

typically solved by the use of a variant of Newton’s method. We refer to these constraints

as simulator-only constraints and they are treated implicitly by the optimizer. In our

implementation the flowsheet-level equality constraints (19b), the process unit-level equal-

ity constraints (Equation(19d)), the mixer equality constraints (Equations (19i), (19k))

and the splitter equality constraints (Equations (19j), (19m)) are solved as simulator-only

constraints. The remaining constraints in Problem (MSON) are referred to as optimization-

only constraints. The variables chosen as degrees of freedom are declared as optimization

variables w and the objective function and optimization-only constraints are treated as

functions of the optimization variables. First-order analytical derivatives of the objective

function and optimization-only constraints with respect to the optimization degrees of

freedom are computed by gPROMS using symbolic manipulations. These are used in the

solution of the primal problem as well as to construct the master problem, which includes

linearizations of the objective function and optimization-only constraints.

We also note that the simulator model (or flowsheet) remains unchanged at each itera-

tion of the algorithm, except for a change in the vector z(k) which is passed to gPROMS via
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the gO:RUN functionality. We also modify the heuristic stopping criteria of the LB-OA-

ER-AP algorithm, akin to Bowskill et al. (2020). The algorithm converges to a solution

when whichever of the following occurs: i) in three of the iterations the primal problem is

feasible and its objective function is greater than the upper bound; ii) the master prob-

lem is infeasible and iii) the total number of iterations exceeds 100. Full details of our

implementation may be found in the Supporting information.

3 Flowsheet synthesis

Two flowsheet synthesis problems are considered. A synthesis problem featuring the toy

unit presented in the introduction of the paper is first studied. The simplicity of the

problem enables benchmarking of several problem formulation and solution approaches.

We next study a flowsheet synthesis problem from the literature.

3.1 Case study 1: Toy problem

To illustrate the MSON concept and solution, we first consider a flowsheet synthesis prob-

lem featuring the toy unit that was presented in the introduction of the paper. The problem

is stated as follows:

Given a feed with mass flowrate F and two identical toy units, labelled 1 and 2 and

described by Equation (1), select either one or both units (the units may be connected

in series or parallel or completely connected), so that the sum of the costs of both units

is minimized. Further, if a toy unit is selected, the mass flowrate into the unit must be

greater than a positive constant ǫ.

While the SO problem considered here is trivial, we study it to illustrate the MSON

formulation relative to other approaches. We test the numerical performance of different

approaches to solving the toy problem, using a range of solvers in both MO and PS envi-

ronments. We also note that, coincidentally, a similar problem has been recently studied

in Burre et al. (2023) in the context of global optimization.
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(a)

(b)

Figure 6: (a) Unit selection problem for case study 1 – SON representation; (b) Unit
selection problem for case study 1 – MSON representation.
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3.1.1 MSON formulation of the toy problem

We construct the MSON formulation of the toy problem to yield Problem (MSON-toy),

which is represented in Figure 6b. To do so, we define M1 = {2, 3}, M2 = {1, 3} and

M3 = {1, 2} for the mixers and S1 = {2, 3} S2 = {1, 3} and S3 = {1, 2} for the splitters.

We note that C1 = {1} (corresponding to variable c1) and C2 = {2} (corresponding to

variable c2). We introduce new flowsheet-level variables cSu, u ∈ {1, 2} that correspond to

variables indexed by C. Only one of the two Big-M inequalities in Equation (16) is used

here to arrive at Equation (32). Combining Equation (32) with the objective function is

equivalent to including both the inequalities in (16). Thanks to the objective function,

Equation(33) is also redundant, however, we include the equation here for illustration
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purposes. Problem (MSON-toy) is thus given by:

min cS1 + cS2 (20)

cu = α
√

f in
u ∀u ∈ {1, 2} (21)

f out
u = f in

u ∀u ∈ {1, 2} (22)

F = f3,1 + f3,2 (23)

f in
1 = f3,1 + f2,1 + fM

1 (24)

f in
2 = f3,2 + f1,2 + fM

2 (25)

fM
u = fA

u (1− zu) ∀u ∈ {1, 2} (26)

f in
3 = f1,3 + f2,3 (27)

f out
1 = f1,2 + f1,3 + fS

1 (28)

f out
2 = f2,1 + f2,3 + fS

2 (29)

f out
i − fS

u ≤ f̄ zu ∀u ∈ {1, 2} (30)

fS
u ≤ f̄(1− zu) ∀u ∈ {1, 2} (31)

cu − cSu ≤ c̄(1− zu) ∀u ∈ {1, 2} (32)

cSu ≤ c̄zu ∀u ∈ {1, 2} (33)

ǫ ≤ f in
u ∀u ∈ {1, 2} (34)

f2,1 ≤ f̄ z1 (35)

f3,1 ≤ f̄ z1 (36)

f1,2 ≤ f̄ z2 (37)

f3,2 ≤ f̄ z2 (38)

z1 + z2 ≥ 1 (39)

zu ∈ {0, 1} ∀u ∈ {1, 2} (40)

cu, c
S
u ∈ [0, c̄] ∀u ∈ {1, 2} (41)

f in
u , f out

u , fS
u ∈ [0, F ] ∀u ∈ {1, 2} (42)

f1,2, f2,1, f1,3, f2,3, f3,1, f3,2 ∈ [0, f̄ ] (43)
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where c̄ is an upper bound on cost and f̄ is an upper bound on flowrate. These upper

bounds are set to reasonable values (not necessarily the tightest values) based on the input

feed flowrate. We make sure that these bounds do not cut off the optimal solution.

3.1.2 Standard formulations of the toy problem

We consider three standard formulations, discussed in the introduction 1:

• Problem (SON-toy): the SON formulation of the toy problem

• Problem (Big-M toy): the Big-M reformulation of the toy problem

• Problem (NL-toy): the nonlinear reformulation of the toy problem

The SON superstructure is shown in Figure 6a. The standard formulations of the toy

problem are given in full in Appendix B.

3.1.3 Numerical experiments on case study 1

We investigate numerical performance of Problems (SON-toy), (BigM-toy), (NL-toy) and

(MSON-toy) in the gPROMS PS environment and the GAMS MO environment. The

values of the constants used in these formulations are given in Table 4. To implement

these problem formulations in gPROMS, variables are partitioned into model variables

and optimization variables as mentioned in 2.4. f3,1, f1,2, f2,1, z1 and z2 are optimization

variables in all formulations. For the BigM-toy formulation, the additional optimization

variables are c1 and c2. For the MSON formulation, the additional optimization variables

are f1,3, f2,3, f
M
1 , fM

2 , cS1 and cS2. In GAMS we use default initial guesses for all variables,

but in gPROMS these need to be specified. We test the following two sets of intuitive

initial guesses:

• IG-1: Both binary variables are 1 and all other degrees of freedom are set at the

midpoints of their intervals.
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Table 4: Values of constants in the toy problem

Constant Value
ǫ 0.1
c̄ 1
f̄ 1
fA
1 0.5
fA
2 0.5
F 1

• IG-2: All variables are assigned their respective values at the globally optimal solution

of the SO problem. The optimal solution, in which only one of the binary variables

takes the value 1, is easy to arrive at.

Several MINLP algorithms (such as outer approximation and generalized Benders de-

composition) entail the solution of primal problems in which the discrete variables are

fixed to yield nonlinear programming (NLP) problems. NLPs with partially fixed binary

variables are also solved in branch and bound-based MINLP algorithms. To illustrate the

numerical issues that may arise due to singularities when a process unit is deselected, we

first study the numerical performance of the NLP primal problems that arise in the solution

of the toy problem. We consider two primal problems: i) Primal-11 in which both units

are selected (z1 = 1 and z2 = 1) and ii) Primal-10 in which only unit A is selected (z1 = 1

and z2 = 0). (Primal-01 in which only unit B is selected is symmetric to Primal-10 as the

two units are identical).

We implement and solve Primal-11 and Primal-10 that arise in the solution of problems

(SON-toy), (MSON-toy), (BigM-toy) and (NL-toy) as follows:

1. formulate the NLPs in GAMS and solve them with all available local NLP solvers,

namely CONOPT (ARKI Consulting & Development A/S, 2024a), SNOPT (Gill

et al., 2005), IPOPT (Wächter and Biegler, 2005), KNITRO (Byrd et al., 2006),

MINOS (Murtagh et al., 2002) and XPRESS (FICO, 2024). All solver parameters

and initial guesses are set to default values.

2. formulate the NLPs in gPROMS and solve them using the NLPSQP solver. As
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NLPSQP requires initial guesses to be supplied, we initialize the continuous variables

in these problems with their respective values in sets IG-1 and IG-2.

We implement and solve MINLP Problems (SON-toy), (MSON-toy), (BigM-toy) and

(NL-toy) as follows:

1. formulate the MINLP in GAMS and solve it with all available local MINLP solvers,

namely ALPHAECP (denoted here as αECP) (Lastusilta et al., 2009), DICOPT

(Kocis and Grossmann, 1989), KNITRO (Byrd et al., 2006), sBB (ARKI Consulting

& Development A/S, 2024b), SHOT (Kronqvist et al., 2015), and XPRESS (FICO,

2024). All solver parameters and initial guesses are set to default values.

2. formulate the MINLP in gPROMS and solve it using the native OA/ER/AP (Viswanathan

and Grossmann, 1990) algorithm in gPROMS with initial guesses IG1 and IG2.

3.1.4 Results for the toy problem

In Table 5 we show the convergence status of Primal-11 and Primal-10 derived from Prob-

lems (MSON-toy), (SON-toy), (BigM-toy) and (NL-toy) in GAMS and gPROMS. We test

the performance of each formulation with 6 solvers in GAMS and 2 initial guesses in

gPROMS resulting in a total of 8 tests for each primal problem arising from each problem

formulation. We find that for Primal-11, convergence to a solution is achieved for all prob-

lem formulations for all solvers in GAMS and in gPROMS when the initial guess is IG-1.

With gPROMS and initial guess IG-2, convergence to a solution is only achieved for the

formulation that corresponds to the MSON. We also note that the solver IPOPT converges

to a solution for the toy flowsheet despite Jacobian evaluation errors at the solver-generated

initial point for Problems (SON), (BigM-toy) and (NL-toy).

For Primal-10, on the other hand, the solvers fail to converge to a solution in 28% of the

32 tests, illustrating the numerical issues that can arise when process units are deselected

even in simple flowsheet synthesis problems. Function or derivative evaluation errors are

reported by the solvers in 34% of the total 32 tests in which unit B is deselected as shown
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in Table 5. Problem (SON-toy) is the worst-performing formulation because the solution

of Primal-10 results in a failure to converge in 5 out of the 8 tests. Similarly, the solution

of Primal-10 that corresponds to Problem (BigM-toy) results in a convergence failure in

50% of the tests. Primal-10 problems derived from Problems (MSON-toy) and (NL-toy)

are solved successfully across all of the 8 tests, indicating that both these formulations are

promising. We note that in gPROMS with initial guess IG-2, the solver fails to converge

to a solution of Primal-10 as derived from Problem (NL-toy) when the binary variable

post-multiplies the cost function due to an undefined derivative. In contrast, in GAMS

with default initial guesses, convergence across the tested solvers is not related to the

order of multiplication of the binary variable and the cost function, demonstrating that

the successful performance of the nonlinear reformulation may depend on the modelling

platform, and specifically the routine used to evaluate derivatives. The results also indicate

that a flowsheet in which only one unit is selected is optimal.

In Table 6 we show the results of solving MINLP Problems (MSON-toy), (SON-toy),

(BigM-toy) and (NL-toy) in GAMS and gPROMS. We again test the performance of each

formulation with 6 solvers in GAMS and 2 initial guesses in gPROMS resulting in a total

of 8 tests for each problem formulation. Problem (BigM-toy) is the worst-performing

formulation as it fails to converge to a solution in 4 out of the 8 tests. For Problem

(SON-toy), failure to converge to a solution at all is seen in 1 out of the 8 tests. For

both Problems (MSON-toy) and (NL-toy), convergence to a solution is obtained across

all 8 tests. However, for Problem (NL-toy), convergence to a solution is not achieved in

gPROMS when the binary variable post multiplies the cost function and the initial guess

is at the problem solution, due to a failure to evaluate derivatives. This indicates that

the use of the nonlinear formulation does not guarantee removal of numerical singularities.

Function or derivative evaluation errors are reported in a total of 5 of the total 32 tests.

In our tests some MINLP solvers, for example, XPRESS in Table 6, converge to a solution

even when function or derivative evaluation errors are reported.

In this study, we use only local optimization techniques that are not guaranteed to

converge to the global minimum of the problem. As solving Problems (BigM-toy), (SON-
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Table 5: Results of the primal problems for case study 1 with different fixed values of the binary variables (zA = zB = 1
for Primal-11 and zA = 1. zB = 0 for Primal-10. The MINLP formulation from which the primal problem is derived is
indicated in column MINLP. Each subsequent column corresponds to a different solver (for GAMS) or initial point (for
gPROMS). The symbols indicate the following: ✓: Converges to a locally optimal solution; ✕: Does not converge to a
locally optimal solution; †: Function/derivative evaluation errors reported; ‡: Fails to converges due to function/derivative
evaluation error when the binary variable post multiplies the cost function, i.e., when c = α

√
fz, but succeeds when

c = zα
√
f

Primal MINLP GAMS solver gPROMS initial point
problem formulation CONOPT SNOPT IPOPT KNITRO MINOS XPRESS IG-1 IG-2

Primal-11

(MSON-toy) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(SON-toy) ✓ ✓ ✓
†

✓ ✓ ✓ ✓ ✕
†

(BigM-toy) ✓ ✓ ✓
†

✓ ✓ ✓ ✓ ✕
†

(NL-toy) ✓ ✓ ✓
†

✓ ✓ ✓ ✓ ✕
†

Primal-10

(MSON-toy) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(SON-toy) ✓ ✓ ✕
†

✕
†

✕
†

✓ ✕
†

✕
†

(BigM-toy) ✓ ✓ ✓
†

✕
†

✕
†

✓ ✕
†

✕
†

(NL-toy) ✓ ✓ ✓
†

✓ ✓ ✓ ✓ ✓
‡
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GAMS gPROMS
αECP DICOPT KNITRO SBB SHOT XPRESS OA-1 OA-2

MSON-toy ✓ ✓ ✓ ✓ ✓ ✓ ✓
+

✓

SON-toy ✓
∗

✓ ✓ ✓
∗

✓ ✓
†

✓
∗

✕
†

BigM-toy ✓
∗

✕ ✓ ✕ ✓ ✓ ✕
†

✕
†

NL-toy ✓
∗

✓ ✓
∗

✓ ✓ ✓
†

✓ ✓
‡

Table 6: Results of Toy problem MINLP
✓: Converges to a locally optimal and/or feasible solution
✕: Does not converge to a solution
†: Function/derivative evaluation errors reported
∗: Identifies sub-optimal solution in which both binaries are equal to 1
‡: Fails to converges due to function/derivative evaluation error when the binary variable
post-multiplies the cost function in Equation (92), i.e. when c = α

√
fz.

+: A primal problem in which both binary variables are fixed to zero does not converge
to a solution. This fixing of binary variables is infeasible w.r.t. (39), nevertheless this is
generated by the OA/ER/AP solver in gPROMS due to the use of slack variables in the
constraints of the master problem.

toy) and (NL-toy) results in local (not global) solutions in which both units are selected

in 6 out of the 24 tests, some problem failures due to the numerical singularities that arise

from deselection of a toy unit may have been averted. In all 8 tests, only one unit is

selected at the solution of Problem (MSON-toy), illustrating that numerical singularities

are eliminated by the use of the formulation. Lastly, we test Problem (MSON-toy) using

the SO-PS algorithm. The results obtained from the SO-PS algorithm, the OA/ER/AP

algorithm in gPROMS and the GAMS solvers are all identical.

The results in Tables 5 and 6 indicate that the formulation, solver choice and initial

guess all impact the convergence of SO. The results illustrate that commonly used literature

formulations such as Big-M and SON can be prone to non-convergence even on simple

flowsheets. The results also indicate that for both the full process synthesis MINLP and

the primal NLPs, the reformulation offered into the MSON is robust and removes numerical

singularities due to process unit deselection. Additionally, in the MSON formulation, unlike

Problem (NL-toy), simulator-only constraints do not have to be modified. This is especially

advantageous as the number of such constraints tends to be large.

39



Figure 7: SON representation of the flowsheet synthesis problem in case study 2

3.2 Case study 2: Reactor-separator network

To illustrate the MSON approach on a more challenging problem, we present its application

to a reactor-separator network synthesis case study taken from Trespalacios and Grossmann

(2014). The GDP formulation of the flowsheet synthesis problem as well as the Big-M and

convex hull MINLP formulations of the problem are given in Trespalacios and Grossmann

(2014), whereas the nonlinear MINLP formulation is given in Burre et al. (2023).

3.2.1 Problem statement

Consider a mixture with molar flowrate fF, that may flow into up to three reactors: R1, R2

and R3. When reactor R3 is chosen, one of the two separators S1 and S2 must be selected.

All streams that exit the units R1, R2, S1 and S2 are combined (via a mixer) to yield the

product stream with molar flowrate fP. The flowsheet superstructure is shown in Figure 7.

Each unit u ∈ T , where T = {R1,R2,R3, S1, S2}, is modelled by the following equations.

f out
u = ξuf

in
u , (44)

cu =











µuf
in
u

νu if u is a reactor

µu otherwise

(45)
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Table 7: Constants ξu, µu and νu for case study 2

Unit u ξu µu νu
R1 0.7 0.9 0.5
R2 0.8 0.8 0.3
R3 0.9 0.7 0.6
S1 0.9 0.2 -
S2 0.8 0.1 -

where f in
u and f out

u are the molar flowrates of the feed and the product at the inlet and

outlet of unit u, respectively; cu is the cost of unit u; and ξu, µu and νu < 1 are strictly

positive constants. The values of the constants ξ, µ and ν for each of the process units are

given in Table 7.

The objective to be minimized is the net cost which is given by C2fF+
∑

u∈T cu−C1fP,

where C1 and C2 are suitable constants. Note that constraints (45) are not differentiable

for the reactors R1, R2 and R3 when the reactor feed has a zero flowrate.

The superstructure optimization problem is given as: Select between one and three

reactors and a separator, if required, such that the net cost is minimized and the problem

constraints are satisfied, given the models that describe the process units.

3.2.2 MSON representation of the superstructure

The superstructure as represented using the MSON framework is shown in Figure 8. The

feed to the flowsheet is modelled via a source unit followed by a standard splitter. Similarly,

the product from the flowsheet is modelled as a sink unit that is preceded by a standard

mixer. We define F = {Source}, P = {Sink} and U = T ∪ F ∪ P . Each conditional

process unit u ∈ T , has an associated binary variable zu. Since exactly one separator

is selected if and only if reactor R3 is chosen and no separator is selected otherwise, we

introduce the logical constraint:

zR3
= zS1 + zS2 (46)

Each process unit in T has one inlet and one outlet. At each of these inlets and
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Figure 8: MSON representation of the flowsheet synthesis problem in case study 2

Table 8: Values of constants in Problem (MSON) for case study 2

Constant Value
ǫ 0.1
f̄ 5

fA
u , u ∈ T 0.5
c̄, u ∈ T 5

fF 1

outlets we replace the standard mixer and the standard splitter with a modified mixer

and a modified splitter, respectively. For each process unit u ∈ T , the set Cu indexes the

cost cu and the set Au is empty. We introduce new variables cSu, u ∈ T and constraints

such that cSu = cu, ∀u ∈ T if and only if zu = 1. We rewrite the objective function as

C2fF+
∑

u∈T cSu −C1fP. Note that the process unit constraints themselves are unchanged.

The values of the constants in Problem (MSON) for case study 2, including reasonable

values for the variable bounds, are shown in Table 8.

3.2.3 Results of case study 2

The reactor-separator network synthesis problem is implemented using the SO-PS algo-

rithm shown in Section 2.4. The progress of the SO-PS algorithm is shown in Table 9.

Note that due to the inherent non-convexity of the problem the solution of the master

problem, which is a lower bound on the MINLP solution when its continuous relaxation is
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Table 9: Progress of the SO-PS algorithm for the reactor-separator network of case study
2. k is the iteration number, zu is the value of the binary variable that corresponds to unit
u ∈ T during iteration k. F (k) is the optimal value of the objective function at the solution
of the kth primal problem. BUB is the best upper bound, i.e., the lowest primal objective
function value up to iteration k. MPS(k) is the master problem solution (objective function
value) at iteration k. The penalty factor in the objective function of the master problem
of the SO-PS algorithm is set to 5.

k zR1
zR2

zR3
zS1 zS2 F (k) BUB MPS(k)

1 1 1 1 1 0 1.3 1.3 -1e6
2 1 1 1 0 1 1.2 1.2 1.3
3 0 1 1 1 0 0.9 0.9 1.8
4 1 0 0 0 0 0.5 0.5 2.7
5 1 1 0 0 0 0.6 0.5 2.8
6 1 0 1 0 1 1.0 0.5 3.4
7 0 1 0 0 0 0.3 0.3 3.9
8 1 0 1 1 0 0.8 0.3 4.5

convex, is found to be larger than the upper bound in most iterations.

In the initialization phase of the SO-PS algorithm, two primal problems are solved:

iteration 1 in which all units except S2 are selected and iteration 2 in which all units

except S1 are selected. Across the two initialization iterations, all units u ∈ T are selected

at least once. The two iterations are thus sufficient to initialize the master problem while

satisfying constraint (46). A total of 11 flowsheet configurations are feasible with respect

to Equation (46) in this reactor-separator network. The optimal flowsheet in which only

unit R2 is selected is identified in the seventh iteration of the SO-PS algorithm. The

algorithm takes a total of 8 primal problems to terminate as per the stopping criteria

in Section 2.4: condition i) of the stopping criteria is active at algorithm termination.

The optimal flowsheet in which only reactor R2 is selected has a 77% lower cost than the

initial flowsheet tested in iteration 1. The deselection of units S1 and S2 does not result

in singularities. Thus, in this case, the modified mixers and splitters associated with the

inlets and outlets of the two separators may be replaced by standard mixers and splitters.
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4 Case study 3 – Column synthesis

The third case study is concerned with the design of a counter-current gas-liquid absorption

column to separate a binary mixture. It can be stated as follows:

Given a binary mixture of carbon dioxide and methane with flowrate fF and mass

fraction vector qF at pressure P and temperature TF , and a solvent, find the number of

stages N and solvent flowrate that minimize the total annualized cost of separation such

that the column has at most N̄ equilibrium-stages; the vapour (product) flowrate at the top

of the column is at least fp; the mass fraction of methane in the product is at least q̄p;

and the area of the column is less than āc. We assume that the pressure P is constant

throughout the column. We also assume that the column is perfectly insulated.

4.1 An MSON superstructure for a counter column

Here we propose a superstructure representation of a column section that may also be

applied to the synthesis of extraction columns and extended to the synthesis of distillation

columns (Barttfeld et al., 2003, Ma et al., 2023, Sargent and Gaminibandara, 1976). The

superstructure has the following permanent process units: a vapour source FV, a liquid

source FL, a vapour sink PV and a liquid sink PL.

The selection of stages in the column is represented by an R-graph (Farkas et al., 2008).

The column is divided into |R| subsections where |R| = ceil(log2(N̄ + 1)) and ceil(x)

returns the smallest integer greater than or equal to x ∈ R. Each subsection u ∈ R, where

R = {1, . . . , |R|}, is a conditional unit in our column superstructure, with 2u−1 equilibrium

stages in which the liquid and vapour streams are contacted in a counter-current fashion.

For example, in Figure 9, the column has at most N̄ = 15 stages. It may be represented

by 4 conditional units R1, R2, R3 and R4 which have 1, 2 and 4 and 8 stages, respectively.

A binary variable zu is used to denote the existence of conditional unit / section u.
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To ensure that at least one subsection is selected, we impose the constraint:

∑

u∈R

zu ≥ 1. (47)

The optimal number of stages N =
∑

r∈R 2r−1zr and N ∈ {1, . . . , N̄}. Constraint (48)
ensures that at most N̄ stages are selected:

∑

r∈R

2r−1zr ≤ N̄ . (48)

The total set of units (including the permanent units and conditional units) is given by

U = R ∪ {FL,FV,PL,PV}. Mixers and splitters connect the units in U . Inlet and outlet

streams and connectivity constraints are defined such that vapour and liquid streams are

contacted in a counter-current fashion. As can be seen in Figure 9, source FL has one liquid

outlet βL
0 and one liquid inlet αL

0 , wherein solvent enters the column superstructure. FL

is located at the top of the column superstructure alongside the vapour sink PV. PV has

one vapour inlet αV
0 and one vapour outlet βV

0 . Similarly, FV has one vapour outlet βV
|R|+1

and one vapour inlet αV
|R|+1 and is located at the bottom of the column superstructure

alongside the liquid sink PL. PL has one liquid inlet αL
|R|+1 and one liquid outlet βL

|R|+1.

Further, as shown in Figure 9, we arrange column subsections u ∈ R top-down with

subsection R1 placed directly below PV and FL and units arranged in ascending order from

top to bottom. Each subsection u ∈ R has one liquid inlet at the top of the subsection αL
u,

one vapour inlet αV
u at the bottom of the subsection, one liquid outlet βL

u at the bottom

of the subsection and one vapour outlet βV
u at the top of the subsection.

Let set J = {0} ∪ R and K = R ∪ {|R| + 1}. Either a mixer mV
i or a modified

mixer m̃V
i is placed at each vapour inlet αV

i , ∀i ∈ J . Either a mixer mL
i or a modified

mixer m̃L
i is placed at each liquid inlet, αL

i , ∀i ∈ K. A modified mixer is used when the

inlet is associated with a conditional subsection and a standard mixer is used otherwise.

A splitter, which may be either standard or modified, sVo or s̃Vo , is introduced after each

vapour outlet βV
o , ∀o ∈ K and a splitter, which is either standard or modified, sLo or s̃Lo , at
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Figure 9: Elements of the absorption column superstructure that include the inlets and
outlets of the sources FV,FL, sinks PV,PL, and column sections R1,R2,R3,R4. Each dashed
line in the column section indicates a stage. R1,R2,R3, and R4 have 1, 2, 4 and 8 stages,
respectively. The mixers and splitters are not shown due to lack of space.
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(a) (b) (c)

Figure 10: Examples of subsections associated with different units in case study 3. (a)
Schematic of subsection around FV. The vapour splitter allows the vapour feed to flow
into units R1, R2, R3 and R4. (b) Schematic of subsection around PV. The vapour mixer
allows the vapour streams that leave units R1, R2, R3 and R4 to flow into the vapour sink.
(c) Schematic of subsection around R3. The modified vapour mixer allows mass flows into
R3 from units R4 and FV. The modified vapour splitter allows the vapour stream that
leaves R3 to flow into units R1, R2 and PV. The modified liquid mixer allows flow into R3

from R1, R2 and FL. The modified liquid splitter allows the liquid stream that leaves R3

to flow into R4 and PL.
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each liquid outlet, βL
o , ∀o ∈ J . As before, modified splitters are placed at the outlets of

the conditional subsections and standard splitters are used at the outlets of the permanent

units. Figure 10 shows the mixers and splitters associated with example units FV, PV and

R3.

The vapour mixer, which may be either standard or modified, mV
i or m̃V

i , i ∈ J
allows the mixing of vapour streams that flow from outlets βV

o , ∀o ∈ MV
i , where MV

i =

{i+ 1, . . . , |R|+ 1}, i.e., the vapour mixer mV
i or m̃V

i , allows mixing of vapour streams

that exit units located below unit i in the column superstructure. For example, for the

column shown in Figure 9 and Figure 10, the modified mixer m̃V
3 that corresponds to unit

R3 is fed by streams that connect outlets βV
o , ∀o ∈ MV

1 = {4, 5} with m̃V
3 . Thus, m̃

V
3 allows

the mixing of the vapour streams that exit R4 and FV via splitters s̃V4 and sV5 , respectively.

The vapour stream flowing into the mixer at vapour inlet αV
i , i ∈ J , from the splitter at

vapour outlet βV
o ∈ MV

i , has flowrate, temperature and composition denoted by fV
o,i, T

V
o,i

and qV
o,i, respectively.

The liquid streams are treated in a similar fashion. Liquid inlet stream αL
i , i ∈ K is

the output of mixer mL
i (or modified mixer m̃L

i ), which allows mixing of streams that flow

from splitters at outlets βo, ∀o ∈ ML
i = {0, . . . , i− 1}. That is, each liquid inlet may be

connected via mixers and splitters to the liquid outlets of the units that are located above

it in the column. For example, for the column shown in Figure 9 and Figure 10, the mixer

m̃L
3 that corresponds to unit R3 is fed by streams that connect βL

o , ∀o ∈ ML
3 = {0, 1, 2} to

the mixer. Thus the modified mixer m̃L
3 allows the mixing of the liquid streams that exit

FL, R1, and R2. The liquid stream flowing into liquid mixer at inlet αL
i , i ∈ K from the

splitter at outlet βL
o ∈ ML

i , has flowrate, temperature and composition denoted by fL
o,i,

T L
o,i and qL

o,i, respectively.

For convenience of notation, we also define sets SL
o and SV

o . Each splitter at liquid

outlet βL
o in J is allowed to be connected to the mixer at inlet αL

i , i ∈ SL
o , where SL

o =

{o+ 1, . . . , |R|+ 1}. Each splitter at vapour outlet βV
o , o ∈ K, may be connected to the

set of vapour inlets SV
o (via mixers), where SV

o = {0, . . . , o− 1}.
The sets introduced in this section are summarized in Table 10.
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Set Description

R Column subsections
J {0} ∪ R
K R ∪ {|R|+ 1}
MV

i Indices of vapour outlets that are connected to vapour mixer mV
i or m̃V

i

ML
i Indices of liquid outlets that are connected to liquid mixer mL

i or m̃L
i

SV
o Indices of vapour inlets that are connected to vapour splitter sVo or s̃Vi

SL
o Indices of liquid inlets that are connected to liquid splitter sLo or s̃Li

Table 10: Sets defining the superstructure of a counter-current column are shown.

4.1.1 Flow-validity constraints

We reiterate that when i ∈ R, the modified mixers and splitters (m̃V
i ,m̃

L
i ,s̃

V
i ,s̃

L
i ) all corre-

spond to conditional column subsection i.

The usual flow validity constraints (7) are added to prevent flows to deselected condi-

tional subsections. Additional flow-validity constraints are needed for this case study as

we disallow both partial and total bypassing of stages (and column subsections) as well as

side streams. Thus, the vapour streams in this simple column flow upwards. To enforce

this, constraint (49) imposes that the vapour stream that leaves a unit o is allowed to enter

the unit i, i+1 < o, only if all the intermediate subsections k ∈ {o− 1, . . . , i+1} have the

associated binary variable zk = 0. Define KV
o,i = {k|k ∈ MV

i ∧ k < o}, i.e., KV
o,i is the set

of conditional subsections between unit o and unit i. Then,

fV
o,i ≤ f̄(1− zk), ∀k ∈ KV

o,i, ∀o ∈ MV
i , ∀i ∈ R (49)

To illustrate the use of constraint (49), let use consider unit R1 in Figure 9. Any splitter

at outlet βV
o where o ∈ MV

1 = {2, 3, 4, 5} may be connected to αV
1 . When o = 2, KV

2,1 = ∅
and thus no constraint is added. When o = 3, KV

3,1 = {2} yielding

fV
3,1 ≤ f̄(1− z2). (50)
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When o = 4, KV
4,1 = {2, 3} yielding

fV
4,1 ≤ f̄(1− z2) (51)

fV
4,1 ≤ f̄(1− z3). (52)

When o = 5, KV
5,1 = {2, 3, 4} yielding

fV
5,1 ≤ f̄(1− z2) (53)

fV
5,1 ≤ f̄(1− z3) (54)

fV
5,1 ≤ f̄(1− z4). (55)

Analogously, the liquid stream must flow downwards through all selected units. To

ensure this, we impose that a liquid that leaves a splitter at outlet βL
o can enter a mixer

at inlet αL
i , where i > o + 1 only if all intermediate units k are deselected, that is, where

zk = 0, ∀k ∈ {o + 1, . . . , i− 1}. We define KL
o,i = {k|k ∈ ML

i ∧ k > o}, i.e., KL
o,i is the set

of intermediate conditional subsections between unit o and unit i.

fL
o,i ≤ f̄(1− zk) ∀k ∈ KL

o,i, ∀o ∈ ML
i , ∀i ∈ R. (56)

To illustrate the use of constraint (56), let us consider unit R3 in Figure 9 for which

ML
3 = {0, 1, 2}. We obtain the following system of inequalities:

fL
0,3 ≤ f̄(1− z1) (57)

fL
0,3 ≤ f̄(1− z2) (58)

fL
1,3 ≤ f̄(1− z2) (59)

4.1.2 Process unit-level constraints for each subsection

Each stage in each subsection is modelled as an equilibrium stage via MESH equations.

The SAFT-γ Mie (Papaioannou et al., 2014) equation of state is used to calculate all the
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required thermodynamic properties using the parameters reported in (Burger et al., 2015).

We note that more detailed models that account for mass and heat transfer resistances

may also be used without changing the superstructure.

For each subsection u ∈ R, we compute total values for the liquid mass density, the

vapour mass density and the volumetric vapour flowrate over all stages in the subsection.

These are denoted by ρ̃Lu, ρ̃
V
u , and ṽVu , respectively and are given by

ρ̃Lu =
2u−1

∑

j=1

ρLu,j (60)

ρ̃Vu =
2u−1

∑

j=1

ρVu,j (61)

ṽVu =
2u−1

∑

j=1

vVu,j (62)

where ρLu,j is the mass density of the liquid leaving stage j in section u (in kg/m3), ρVu,j

is the mass density of the vapour leaving stage j in section u (in kg/m3) and vVu,j is the

volumetric flowrate of the vapour leaving stage j in section u (in m3/s). The total quantities

are referred to as output variables and are indexed by set Cu. In the flowsheet-level column

sizing constraints new variables ρ̃L
S

u ,ρ̃V
S

u and ṽV
S

u are introduced that are related to ρ̃Lu, ρ̃
V
u

and ṽVu , respectively by Equations (16) and (17).

4.1.3 Flowsheet-level constraints

The flooding velocity uflood (in m/s) and the diameter D (in m) and height H (in m) of

the column are computed using correlations in Sinnott and Towler (2020a) and depend on

i) ρ̂L and ρ̂V, the average of the liquid densities and of the vapour densities, respectively,

across all the stages that are selected to be in the column and ii) v̂V, the average of the

vapour volumes across all selected stages. These quantities are functions of the modified

51



output variables ρ̃L
S

u ,ρ̃V
S

u and ṽV
S

u and are computed using

N =
∑

u∈R

2u−1zu (63)

ρ̂L =

∑

u∈R ρ̃L
S

u

N
(64)

ρ̂V =

∑

u∈R ρ̃V
S

u

N
(65)

v̂V =

∑

u∈R ṽV
S

u

N
(66)

uflood = (−0.171lt2 + 0.27lt− 0.047)

√

ρ̂L − ρ̂V

ρ̂V
(67)

D =

√

4v̂V

πuflood
(68)

H = 1.15
lt

E
N (69)

where lt is the tray spacing (in m) and E the stage efficiency factor.

We assume that the solvent is fully recovered by an ideal regeneration step whose cost

is not considered in this study. We use the costing correlations given in Pereira et al. (2011)

to compute the total capital investment TCI and the annual column operating expenses

TOC of the absorption column. Lastly, the objective function is taken to be the total

annualized cost of the absorber, TAC and is computed as

TAC = TOC + ηTCI (70)

where η is the annual capital charge ratio.

Other flowsheet-level constraints include minimum requirements imposed on the purity,

the flowrate of the product stream that exits the vapour sink and the area of the column.
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Table 11: Values of constants used in case study 3

Constant Value

ǫ 0.1

f̄ 100

M 100

fA,L (kmol/s) 0.76199

fA,V (kmol/s) 1.13802

TA,L (K) 300

TA,V (K) 300

qA,L
CH

4

0.20329

qA,L
CO

2

0.00599

qA,L
solvent 1-qA,L

CH
4

-qA,L
CO

2

qA,V
CH

4

0.99548

qA,V
CO

2

0.00439

qA,V
solvent 1-qA,V

CH
4

-qA,V
CO

2

4.2 Implementation and Initialization

The hybrid framework given in Section 2.4 is used to solve the problem. As before, we

implement all constraints in the PS environment and the SO-PS algorithm is used to

solve the problem. To initialize the master problem we simply set the binary variables

corresponding to all column subsections to one. We set both the initial step length and the

maximum step length parameters of the SRQPD solver in gPROMS to 0.1. The penalty

factor in the objective function of the master problem of the SO-PS algorithm is set to 5.

Initialization of the highly-coupled counter column model can often be a challenge in PS

and MO environments. Full details of our initialization procedure is given in the Supporting

Information. The properties of the fictitious streams along with other constants used in

the formulation of this case study are shown in Table 11.
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Table 12: Results for case study 3, column synthesis for CO2 removal from methane.
The number of stages, N , solvent flowrate f , total annualized cost TAC, total capital
investment TCI and operating expenses OPEX are reported. The first row shows the
best solution returned by the SO-PS algorithm. The second row shows the design when
the number of stages is fixed to 15 and the third row when it is fixed to 5.

Case N f (kmol/s) TAC(106 USD) TCI(106 USD) OPEX(106 USD)
Best found 6 0.64 0.59 1.37 0.32
Fixed-15 15 0.60 1.04 3.01 0.44
Fixed-5 5 0.65 0.53 1.17 0.30

4.3 Results

We show results for the separation of carbon-dioxide and methane for a feed flowrate of 1

kmol/s at 7.5 MPa, 298 K and 20% CO2. The pure solvent tetra(oxymethylene)dimethylether

(CH3O(CH2O)4CH3) which has been identified to be a promising solvent for the separa-

tion of this mixture in other studies (Burger et al., 2015, Gopinath et al., 2016), enters the

column at 7.5 MPa and 298 K and flowrate f . We find the optimal number of stages N

and solvent flowrate f that minimize the total annualized cost TAC when N̄ is 15, fp is

0.66, xp is 0.97, ac is 300 m2 E is 0.8, lt is 0.6 m and η is 0.199, corresponding to a 15%

cost of capital and plant life of 10 years (Sinnott and Towler, 2020b).

The SO-PS algorithm takes a total of 8 iterations to satisfy stopping criterion i) given

in Section 2.4. The optimal column design found by the algorithm corresponds to a column

with six stages out of the possible 15 stages as shown in Table 12. Across the 8 iterations,

The SO-PS algorithm identifies 5 feasible columns. The primal problem has a total of 976

variables, excluding the internal variables involved in computing thermodynamic properties

with the SAFT-γ Mie equation of state. The MSON formulation of the problem has only

12 modified output variables (|C|=12), which represents less than 1.3% of the total number

of variables, highlighting the ease of using this formulation. Each primal problem has 871

simulator-only constraints and 116 optimization-only constraints of which 29 are equality

constraints. The primal problems, on average, take 75 s of wall-clock time to run with a

standard deviation of 37 s on a desktop with an Intel(R) Xeon(R) Gold 6130 CPU and a

Windows 10 Enterprise operating system. The solution of each master problem takes less
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than a second.

We also obtain the minimum TAC for a column in which the number of stages is fixed

at 15, which is 76% higher than the 6-stage column column (see Table 12). The TCI of

the 15-stage column is 120% higher than the best column identified by SO-PS, highlighting

the large effect of column synthesis on the capital costs of separation columns. The solvent

usage in the best-found column is almost the same as the fixed column. In both columns

the constraint that the product flowrate is at least fp is active. Note that to mitigate the

effects of non-convexity, we used a linear constraint on product flowrate here instead of the

bilinear constraint on product recovery that is commonly used in the literature.

Due to the inherent nonconvexity of the problem, the SO-PS algorithm is not guaran-

teed to yield a global minimum. To validate our results, we enumerate all integer choices

the number of stages in the column and solve the resulting NLPs. We find that a column

with 5 stages has the smallest TAC, as shown in Table 12. The fixed-5 column has a TAC

that is 10% less than best solution identified by SO-PS. We also find that all columns with

fewer than 5 stages are infeasible. In contrast to full enumeration, the SO-PS algorithm

evaluates only 53% of the search space to arrive at a solution. While the SO-PS algo-

rithm converges to a local minimum, it returns a high-quality solution which is the nearest

alternative to what appears to be the globally-optimal column.

5 Conclusion

The optimization of a given superstructure may be cast as an MINLP using several alter-

native and mathematically-equivalent problem formulations (Trespalacios and Grossmann,

2014). However, the choice of MINLP formulation affects the performance of MINLP op-

timization in practice (Trespalacios and Grossmann, 2014). A novel problem formulation

with favourable numerical properties, the modified state-operator network (MSON), has

been presented in this study. It is based on based on an exact reformulation of mixers and

splitters and the introduction of fictitious streams.

The MSON is a general framework that may be used to solve a wide range of flowsheet
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design problems and is suitable for use with rigorous process models. The MSON formula-

tion requires the introduction of mixers, splitters and streams, as well as new variables, but

does not entail any modifications of models used for process units. It has been presented

within the context of a big-M formulation, although other approaches can be followed.

We have illustrated the methodology with the synthesis of a toy flowsheet to highlight the

challenges that can arise in superstructure optimization. The numerical performance of

the MSON as well as other standard problem formulations were benchmarked for the toy

problem across a range of optimization solvers and two platforms: gPROMS and GAMS.

The MSON was found to be robust and to avoid any singularities, outperforming all other

problem formulations even on a simple problem.

The MSON formalism was further tested on a reactor-separator superstructure from

the literature and on a novel superstructure for the synthesis of a counter-current separa-

tion column, a challenging problem in superstructure optimization. The use of the MSON

for these problems has been found to have several practical implications. Numerical sin-

gularities due to zero flows are completely averted. The column synthesis, in particular,

has been carried out on the basis of high-fidelity rigorous models with detailed thermody-

namics, that is, an advanced equation of state. As a by-product, the MSON also offers a

systematic framework for initialization of a counter-current column model thus, averting

labour-intensive process initialization by trial and error as described in the Supporting

Information. Similarly, the MSON also offers a systematic framework for the initialization

of complex flowsheets and trains of separation columns (see Supporting Information).

As high-dimensional MINLPs are prone to non-convergence, the robust framework pre-

sented here for superstructure optimization is appealing. Across case studies with varying

degrees of complexity the modifications to the flowsheet-level constraints was limited and

process unit-level constraints remained unaltered. The MSON is a promising approach

for the synthesis of complex flowsheets. The performance of the MSON on more complex

flowsheets is yet to be examined. The MSON, like all other SO approaches, relies on the

solution of highly nonlinear optimization problems which may be difficult to initialize and

often converge to poor local optima. However, the removal of the singularities arising from
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zero-flows is expected to increase the likelihood of convergence to a feasible solution. The

extension of the MSON to flowsheets in which the pressure is variable will be studied next.

Data Availability Statement

The GAMS and gPROMS models are available at https://zenodo.org/records/12571977

under CC-BY licence.

Acknowledgements

The authors thank Terrence Crombie, Senior Computing Officer, Imperial College London,

for his valuable inputs on interfacing gPROMS with C++. The authors thank Dr. Litao

Zhu for reproducing numerical experiments and proofreading this manuscript. S.G. is

grateful to Imperial College London for a PhD scholarship. We thank the anonymous

reviewers for their careful review which improved this paper.

References

Androulakis, I. and Venkatasubramanian, V. (1991). A genetic algorithmic framework for

process design and optimization. Computers & Chemical Engineering, 15(4):217–228.

ARKI Consulting & Development A/S (2024a). CONOPT.

http://www.gams.com/solvers/solvers.htm.

ARKI Consulting & Development A/S (2024b). SBB.

http://www.gams.com/solvers/solvers.htm.

AspenTech (2015). Aspen Plus. http://www.aspentech.com/products/aspen-plus/.

Barttfeld, M., Aguirre, P. A., and Grossmann, I. E. (2003). Alternative representations

57



and formulations for the economic optimization of multicomponent distillation columns.

Computers & Chemical Engineering, 27:363–383.

Bowskill, D. H., Tropp, U. E., Gopinath, S., Jackson, G., Galindo, A., and Adjiman, C. S.

(2020). Beyond a heuristic analysis: integration of process and working-fluid design for

organic rankine cycles. Molecular Systems Design & Engineering, 5:493–510.

Bugosen, S., Laird, C., and Parker, R. (2023). Chemical process flowsheet opti-

mization with full space, surrogate, and implicit formulations of a Gibbs reactor.

https://arxiv.org/abs/2310.09307.

Burger, J., Papaioannou, V., Gopinath, S., Jackson, G., Galindo, A., and Adjiman, C. S.

(2015). A hierarchical method to integrated solvent and process design of physical CO2

absorption using the SAFT-γ Mie approach. AIChE Journal, 61:3249–3269.

Burre, J., Bongartz, D., and Mitsos, A. (2023). Comparison of MINLP formulations for

global superstructure optimization. Optimization & Engineering, 24:801–830.

Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D.,

Watson, J.-P., and Woodruff, D. L. (2021). Pyomo Overview, pages 25–36. Springer

International Publishing, Cham.

Byrd, R. H., Nocedal, J., and Waltz, R. A. (2006). Knitro: An Integrated Package for

Nonlinear Optimization, pages 35–59. Springer US, Boston, MA.

Caballero, J. A. (2015). Logic hybrid simulation-optimization algorithm for distillation

design. Computers & Chemical Engineering, 72:284 – 299.

Caballero, J. A., Milán-Yañez, D., and Grossmann, I. E. (2005). Optimal synthesis of

distillation columns: Integration of process simulators in a disjunctive programming

environment. Computer Aided Chemical Engineering, 20:715 – 720.

58



Cavalcanti, S. M. and Barton, P. I. (2020). Multiple steady states and nonsmooth bifur-

cations in dry and vaporless distillation columns. Industrial & Engineering Chemistry

Research, 59(40):18000–18018.

Cremaschi, S. (2015). A perspective on process synthesis: Challenges and prospects.

81:130–137. Special Issue: Selected papers from the 8th International Symposium on

the Foundations of Computer-Aided Process Design (FOCAPD 2014), July 13-17, 2014,

Cle Elum, Washington, USA.

Demirel, S. E., Li, J., and Hasan, M. M. F. (2019). A general framework for process

synthesis, integration, and intensification. Industrial & Engineering Chemistry Research,

58(15):5950–5967.

Douglas, J. M. (1985). A hierarchical decision procedure for process synthesis. AIChE

Journal, 31(3):353–362.

Dowling, A. W. (2018). An Equation-based Framework for Large-Scale Flowsheet Optimiza-

tion and Applications for Oxycombustion Power System Design. PhD thesis, Carnegie

Mellon University.

Dowling, A. W. and Biegler, L. T. (2015a). Degeneracy hunter: An algorithm for deter-

mining irreducible sets of degenerate constraints in mathematical programs. In Gernaey,

K. V., Huusom, J. K., and Gani, R., editors, 12th International Symposium on Process

Systems Engineering and 25th European Symposium on Computer Aided Process Engi-

neering, volume 37 of Computer Aided Chemical Engineering, pages 809–814. Elsevier.

Dowling, A. W. and Biegler, L. T. (2015b). A framework for efficient large scale equation-

oriented flowsheet optimization. Computers & Chemical Engineering, 72:3 – 20.

Farkas, T., Czuczai, B., Rev, E., and Lelkes, Z. (2008). New MINLP model and modified

outer approximation algorithm for distillation column synthesis. Industrial & Engineer-

ing Chemistry Research, 47(9):3088–3103.

59



FICO (2024). Xpress optimization. https://www.fico.com/en/products/fico-xpress-

optimization.

Fourer, R., Gay, D. M., and Kernighan, B. W. (1989). AMPL: A mathematical programing

language. In Wallace, S. W., editor, Algorithms and Model Formulations in Mathematical

Programming, pages 150–151, Berlin, Heidelberg. Springer Berlin Heidelberg.

GAMS Development Corporation (2024). General Algebraic Modeling System (GAMS)

release 36.1.0, Fairfax, VA, USA, 2021. https://www.gams.com/download/.

Gill, P. E., Murray, W., and Saunders, M. A. (2005). SNOPT: An SQP algorithm for

large-scale constrained optimization. SIAM Review, 47(1):99–131.

Glover, F. (1975). Improved linear integer programming formulations of nonlinear integer

problems. Management Science, 22(4):455–460.

Gopinath, S. and Adjiman, C. S. (2024). Advances in process synthesis: New robust

formulations. Systems and Control Transactions, 3:145–152.

Gopinath, S., Jackson, G., Galindo, A., and Adjiman, C. S. (2016). Outer approximation

algorithm with physical domain reduction for computer-aided molecular and separation

process design. AIChE Journal, 62(9):3484–3504.
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A Conditional constraints in the MSON as a disjunc-

tion

The conditional constraints in the MSON (Equations (10d), (14),(15), (16), (17), (7), (19f))

have been given in the Big-M form. These equations may be alternatively represented as

the following disjunction:
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B Standard formulations of toy problem in full

The SON superstructure is shown in Figure 6a. Flow positivity constraints are only en-

forced for permanent units and conditional units that are selected.

min c1 + c2 (72)

cu = α
√

f in
u ∀u ∈ {1, 2} (73)

f out
u = f in

u ∀u ∈ {1, 2} (74)

F = f3,1 + f3,2 (75)

f in
1 = f3,1 + f2,1 (76)

f in
2 = f3,2 + f1,2 (77)

f in
3 = f1,3 + f2,3 (78)

f out
1 = f1,2 + f1,3 (79)

f out
2 = f2,1 + f2,3 (80)

ǫzu ≤ f in
u ∀u ∈ {1, 2} (81)

f2,1 ≤ f̄ z1 (82)

f3,1 ≤ f̄ z1 (83)

f1,2 ≤ f̄ z2 (84)

f3,2 ≤ f̄ z2 (85)

z1 + z2 ≥ 1 (86)

zu ∈ {0, 1} ∀u ∈ {1, 2} (87)

cu ∈ [0, c̄] ∀u ∈ {1, 2} (88)

f in
u , f out

u ∈ [0, F ] ∀u ∈ {1, 2} (89)

f1,2, f2,1, f1,3, f2,3, f3,1, f3,2 ∈ [0, f̄ ] (90)
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We replace Equation (73) with Equation (91) to obtain Problem (BigM-toy):

cu ≥ α
√

f in
u ∀u ∈ {1, 2} (91)

We replace Equation (73) with Equation (92) to obtain Problem (NL-toy):

cu = zuα
√

f in
u ∀u ∈ {1, 2} (92)
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