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Estimating the distribution of 
reedbed in Britain demonstrates 
challenges of remotely sensing rare 
land cover types at large spatial 
scales
Jacob G. Davies1,2, Calvin Dytham1, Robert A. Robinson3 & Colin M. Beale1,4,5

Common Reed Phragmites australis, globally one of the mostly widely distributed wetland plants, is 
important for biodiversity and for humans. However, like most wetland plant communities, reedbed 
has rarely been mapped at large geographical scales, restricting the information available to study 
reed’s range dynamics or inform its management. Using Sentinel-2 data and machine learning, we 
aimed to produce the first published remotely-sensed reedbed map of Britain; however, accuracy as 
assessed by field validation was relatively low (AUC = 0.671), with many false positives (commission 
error of 93.4%). A similar workflow carried out in Google Earth Engine, using nearly an order of 
magnitude more images, gave a lower commission error but a disproportionately higher omission 
error. Using the known commission and omission error, we estimate that in 2015–2017 ~ 7800 ha of 
Britain was reedbed. Our study highlights the enduring barriers to accurate land cover classification 
at large spatial scales. Even with a ‘big data’ approach, reflectance error and ecological factors such as 
confusion land cover types and geographical variation in temporal reflectance function will probably 
continue to limit the size of area for which land cover can be classified accurately, therefore limiting the 
utility of remote sensing for ecologists.

Global wetland area is rapidly declining, with a net loss of 21% over the last three centuries1, causing declines 
in biodiversity and ecosystem services2. However, quantitative estimates of wetland area at national scales are 
scarce3, or are derived from incomplete inventories of individual wetlands4. To inform policy, for example the 
initiative to conserve or restore 30% of Earth’s ecosystems by 20305, there is a need for wetland inventories on a 
larger geographical scale6.

Common Reed Phragmites australis (hereafter ‘Reed’) is a perennial, wind-pollinated helophytic grass 
which produces annual shoots of up to 5.3 m in height7. Reed is one of the most widely distributed wetland 
plants globally, found on all continents except Antarctica7. Due to its highly competitive ability in specific 
environmental conditions, it commonly forms large dominant or monodominant patches (hereafter ‘reedbed’). 
Reed is globally important for biodiversity, ecosystem function, nutrient cycling, and as a resource for humans. 
Some species (e.g. Eurasian bittern Botauris stellaris, southern wainscot Mythimna straminea) are almost entirely 
restricted to reedbeds. Reed expedites ecological succession from open water to land, plays a complex role as 
a greenhouse gas source and sink8, and is widely used by humans9: for example, for water treatment, biofuel 
and thatch. In the last century, Reed has colonised large areas outside of its native range10, influencing invasion 
biology11. Due to its invasiveness and status as an agricultural weed, major efforts have been made to eradicate 
Reed outside of its native range12. Reed is not globally under threat13, but has a dynamic geographical range14, 
and so reedbed is often a conservation priority at national scales15–17. To understand its range dynamics and to 
target its conservation or management, it is important to map reedbed distribution at large spatial scales and 
develop tools to allow monitoring of reedbed distribution over time.
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Plant species vary in electromagnetically distinctive characteristics (e.g. concentration of photosynthetic 
pigments), which themselves vary through the year, and thus can often be distinguished remotely, through 
classification of spectral reflectances. Furthermore, the training of classification algorithms is aided by Reed’s 
frequent monodominance, easing its identification. Additionally, fieldwork for the mapping of wetland vegetation 
is expensive and time-consuming, and can be limited in extent by cost and by accessibility. Consequently, remote 
sensing has been an asset to the mapping of reedbed for several decades18. Reedbeds have typically been mapped 
at the scale of individual wetlands, typically achieving greatest accuracy by the use of LiDAR or optical imagery 
from unmanned aerial vehicles19,20. However, few remote sensing studies have mapped reedbed at larger scales; 
for example, one study mapped reedbed at a national scale in Hungary, but within known fishponds alone21. To 
our knowledge, no study has mapped this wetland type at the national scale across all habitat types.

The only estimate of the extent of reedbed in Britain (6,524 ha) stems from a field inventory of British reedbeds 
made in 199322,23. The Priority Habitats’ Inventory (England)17 added to this inventory, within England alone, 
from a range of other local and regional recording schemes. However, these inventories focus solely on recording 
already known reedbeds and so are not exhaustive; little attempt was made to seek out unknown reedbeds. Here, 
we aim to map the extent of reedbed in Britain completely with a ‘top-down’ approach4, using remotely-sensed 
data. In doing this, we aim to provide a method that can be easily implemented and repeated by ecologists in the 
future, in order to estimate the change in distribution of this important land cover over time.

Methods
Study area, scale and data
We aimed to map all reedbed in Britain, at 10  m × 10  m scale (hereafter ‘10 m scale’). We acquired Level-
1C imagery from the Multi-Spectral Instrument (MSI) of the Sentinel-2A satellite (at the time of analysis, the 
Sentinel-2B/2C sensors had not yet been integrated). Images for all 100 km × 100 km tiles overlapping any of the 
land surface of Britain and offshore islands except Rockall, captured during the period 1st October 2015–30th 
April 2017, with a given cloud cover of ≤ 5%, were downloaded. The long study period was selected to provide 
enough non-cloud coverage, over multiple seasons, for the whole study area. GDEM digital elevation model 
(DEM) data from the ASTER satellite (1 arc-second resolution; ~30 × 30 m at 55°N) were also downloaded for 
the study area.

Pre-processing
Atmospheric correction of satellite data was image-based, and achieved by means of dark-object subtraction, 
implemented in QGIS24 using the Semi-Automatic Classification Plugin25. More advanced data processing 
options were not used, in order to implement a workflow that is accessible to those not expert in the field of 
remote sensing. Reed does not occur subtidally in Britain, and so all tiles were masked to land above the low 
tide mark.

To identify cloud, a random forest (500 trees, three variables tried at each split) was trained (using all 13 
bands) on known cloud/non-cloud for one pass of one scene (30UYD on the military grid)26. Training areas 
of cloud and non-cloud for this pass were identified visually. This model had an out-of-bag error rate estimate 
of 1.1%. Cloud presence/absence was then predicted using this model across all scenes, and all predicted cloud 
pixels were masked out of all images.

Multi-temporal Sentinel-2A images can be mis-registered with respect to each other by up to three pixels 
at 10 m scale27, and need co-registering in order to compare by-pixel reflectances over time. Images were co-
registered using the coregisterImages function in the R package RStoolbox 0.1.1028. Although the mis-registration 
was typically eliminated, for some images the function only marginally reduced the mis-registration, or made 
no improvement at all. Thus it is probably inevitable that our reflectances are slightly spatially smoothed when 
summarised over time, and our map probably misses some true narrow reedbeds. The co-registration function 
often failed when the non-NA content of the secondary rasters was below 3%, and especially below 1% (e.g. if the 
tile was mostly sea or cloud). Thus, four scenes for which the non-NA content of the secondary tile never reached 
above 3% were removed from analysis.

Multi-temporal images
At any given time of the year, reedbed has broadly similar reflectance to other vegetation29. Much of the UK land 
area is dedicated to cultivation of grasses Poaceae for arable and animal agriculture (19% and 52% respectively in 
201930); these land cover types might have similar reflectance profiles to reedbed. However, reedbed’s reflectance 
and vegetation indices change distinctively through the seasons31, so by using data from more than one season 
classification uncertainty can be reduced32.

Ideally, we would have estimated reedbed’s temporal reflectance function for each band, and used that to 
predict reedbed presence/absence; however, two issues prevented this. Firstly, our cloud classification model 
could not identify cloud shadow, and so cloud shadows were removed by taking the median reflectance of several 
cloud-free images within seasons (thereby removing most temporal variation in reflectance from the dataset). 
Secondly, our study was carried out over 11 degrees of latitude; the temporal function of reedbed varies over 
relatively short distances20,31,33. Thus any true reedbed reflectance function is likely to vary across our study area, 
creating challenges for its estimation.

We split the dataset into two ‘seasons’; too few cloud-free images were available for some scenes to allow a 
higher temporal resolution. These seasons were designed to capture periods when reedbed is generally ‘green’ 
(‘summer’, June – September) or ‘brown’ (‘winter’, November – April) across the study area. Reedbed’s ‘green’ 
season is shorter in the north of the study area33; and so we left a month between the seasons, to avoid periods 
when reedbed might not be universally ‘green’ or ‘brown’ across the study area. The median reflectance was taken 
for each pixel of each scene for each season respectively.
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Training, classification and prediction
173 training polygons (29 reedbed, 144 non-reedbed) with a total area of 2,798.4 ha (79.2 ha reedbed, 2719.2 ha 
non-reedbed) were identified from visual interpretation of Google Maps and Google Street View imagery 
(Google imagery 0–7 years old at the time) and from the authors’ personal knowledge. Non-reedbed polygons 
were selected from a range of different land cover types. Training polygons were added iteratively, until the 
predicted reedbed map within the training scenes changed little with each new polygon. These polygons were 
located on three different scenes (Fig. 1), selected so that they covered a wide geographical span (to allow for 
geographical variation in reedbed’s reflectance and phenology) and variety of non-reedbed land cover types, 
and so that they contained a reasonable extent of reedbed. Edges of training polygons were located away from 
reedbed/non-reedbed boundaries to avoid co-registration errors. Training the classification model using free 
online imagery avoids one of the two field data collection campaigns associated with remote sensing land cover 
classification, and the associated financial and time costs.

The 1993 reedbed inventory22 and subsequent update in England17 are not exhaustive (e.g. omitting some 
English reedbeds known to the authors), and some reedbeds therein may not exist anymore. Records of Reed 
held by the Botanical Society of Britain and Ireland consist of point locations, but contiguous polygons of 

Fig. 1. Map of scenes contributing to combined dataset, training scenes (blue) and validation scenes (red). 
Map created using R version 4.2.138 (https://www.r-project.org/); coastline map from GADM (https://gadm.
org/license.html).
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reedbed are needed for training data. Therefore we considered that online imagery provided a more appropriate 
dataset than these inventories for training and validation.

A random forest (500 trees, three variables tried at each split) was trained on known reedbed/non-reedbed. 
Random forest was chosen over other classification algorithms (such as deep learning) to maximise ease of 
implementing our workflow by a wide range of users. The model was trained at points sampled at random 
from within the polygons: 100 points from each polygon; points in the same pixel as another point were then 
discarded (median points remaining per polygon: reedbed, 71; non-reedbed, 91). Using band ratios or indices, 
rather than raw bands, can avoid noise from natural absolute variation in irradiance over multiple dates34, 
potentially improving classification methods. No single index has proved useful in mapping reedbed across 
previous studies31,35, so our combined dataset consisted of seven indices, band ratios and standardised bands 
(Supplementary Table S1) for each season, and the difference in SAVI and NDWI between seasons.

Two studies32,36 found that incorporating texture information improved reedbed classification accuracy. 
However, these studies used much finer resolution data (2.4 m × 2.4 m pixels) to map large reedbeds. We sought 
to map reedbeds down to the size of one Sentinel 2-A pixel (10 m × 10 m) – sometimes the full extent of a 
reedbed. Classification using texture information could therefore only have been performed for a subset of larger 
reedbeds, which was not the aim of our study, and we did not pursue this approach.

Using the trained classification model, reedbed presence probability was predicted across Britain for each 
scene using the combined dataset. The probability threshold which maximised Cohen’s kappa was calculated for 
the model: predicted reedbed presence (p) was ‘0’ or ‘1’ if respectively above or below this threshold. Iterative 
training and re-prediction to improve visual accuracy was carried out until the model could not be improved. 
As reedbed polygons were added, the rate of decline in the ‘reedbed’ out-of-bag commission error rate slowed 
while the rate of increase in the ‘non-reedbed’ commission error rate stayed the same (Figure S1). This suggests 
that although we only used 29 training polygons for reedbed, adding more reedbed polygons to the training data 
would not have improved overall accuracy.

After validation (see below), predicted reedbed maps were aggregated to hectare (100 m × 100 m) scale, 
before being re-projected to WGS 84 UTM zone 30 and mosaicked together. Ground slope was calculated from 
the digital elevation model (DEM), and the slope map and DEM were re-projected to the same datum and scale 
as the predicted reed map. Any cells with a slope of more than 10° or an altitude of more than 470 m (maximum 
recorded altitude of Reed in Britain7) were assigned p = 0.

Workflow in Google Earth Engine
Google Earth Engine (‘GEE’37) has become widely used in recent years. GEE uses cloud services to massively 
scale up computational capability for geospatial analysis, presenting two key advantages over our workflow 
carried out on a local machine and high-performance computing cluster (hereafter ‘HPC workflow’): much 
greater data storage capacity and much greater processing speed.

The proportion of Sentinel-2 data that could be incorporated in our HPC workflow was limited by storage 
capacity. Therefore certain scenes only had a small number of cloud-free passes for a given season, and so the 
temporal resolution of the data on which the random forest could be trained was limited. We therefore repeated 
the entire HPC workflow with GEE: to attempt to generate a more accurate reedbed map, and to assess the extent 
to which relaxing data constraints improves the accuracy of geospatial analysis.

In the GEE workflow we used all Sentinel-2 data (S-2A & B), from the initiation of the Sentinel-2 program 
(28th June 2015) until the date of analysis (27th July 2019). Temporal resolution was increased from two periods 
to four: February-March; June-July; August-September; November-December. The combined dataset comprised 
NDWI, EVI, SAVI, RG, GB, NDVI and SB4 (inter-seasonal differences in SAVI and NDWI were not used, 
because there were more seasons). GEE imposes user memory limits for tasks, so there was a trade-off between: 
maximising the number of variables; further increasing the number of images (by increasing the maximum 
acceptable cloud cover to ≤ 25%); or further increasing the temporal resolution (to eight periods: February, 
March, June, July, August, September, November and December). One classification model was run for each 
of these data maximisation approaches, and the accuracy of the resulting map assessed (see validation process 
below).

The GEE workflow was kept as similar as possible to the HPC workflow. However, some aspects were 
unavoidably different. Pixels were sampled within polygons (rather than points within polygons), and so it was 
not possible to balance sampling between categories. It was not straightforward to buffer a raster land mask 
in GEE, so we used the British shoreline rather than the shoreline plus 100 m buffer: therefore some coastal 
reedbeds may be missed. The GEE facility to predict probabilities with random forest was not available at the 
time of analysis, and so presence/absence was predicted. Steep/high altitude terrain was removed from the data 
stack before training and prediction. We used GEE’s cloud and cirrus removal tools. Because we varied the 
number of variables between the three data maximisation approaches, we set the random forest to the default 
setting of number of variables per split: the square root of the number of variables.

Validation
Covering 11 degrees of latitude (~ 1,200  km), it was unfeasible with available resources to validate the map 
across the entire study area; instead the map was validated across four scenes in northern England (Fig. 1). The 
validation area was selected according to the following criteria: to maximise geographical distance from the 
training polygons, for independence therefrom; to contain a wide range of the habitats present in Britain while 
being central within the study area and spanning > 100 km between the most distant validation locations, so 
validation statistics would be as representative as possible; to cover several scenes, to account for variation in 
validation statistics between scenes due to reflectance error.
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Reedbed is a rare land cover type nationally, and thus sampling a random selection of pixels would find too 
few cells with non-zero probability of reedbed occurrence to estimate either commission error or omission 
error accurately. Fieldwork was therefore targeted disproportionately towards cells with non-zero probability of 
reedbed presence. To estimate commission error, 40 hectares were selected from each scene, with 10 randomly 
selected from within each of the following ranges of predicted proportion (p) of reedbed cover from the 
predicted map: p = 0; 0 < p ≤ 0.33; 0.33 < p ≤ 0.66; 0.66 < p ≤ 1. To minimise travel costs, these were selected from 
the quarter of the scene with the highest non-zero probability of reedbed occurrence.

Each of these hectares was visited and both reedbed (total area of contiguous Reed) and Reed cover (total 
area of any Reed patches) of the hectare were visually estimated to the nearest 10%. Then, in each hectare, 
six randomly selected 10 m cells (three predicted reedbed and three predicted non-reedbed) were visited and 
reedbed (defined as ≥ 1 m2 contiguous Reed) and Reed presence were recorded (in practice these were the same). 
Commission error was quantified in two ways. At the ha scale, predicted and observed reedbed cover were 
regressed, and the coefficient of determination (R2) was computed. At the 10 m scale, predicted and observed 
presences were compared, to give an area under the curve (AUC) of the receiver operating characteristic for 
reedbed cover. Validation fieldwork was carried out from 6th October 2017 to 2nd November 2017.

For the HPC workflow, visual inspection of candidate random forests showed that balanced and unbalanced 
random forests, and random forests with slightly different training areas, had similar areas of true positives and 
slightly different areas of false positives. Thus, in order to reduce the area of false positives, two different random 
forests (‘RF1’ and ‘RF2’) were used for the final model, and the final map was created using the minimum 
predicted reedbed probability of the two random forests, for each pixel.

The validation fieldwork had already taken place before the GEE workflow was carried out. The validation 
data were used to assess the accuracy of the GEE reedbed map. The GEE reedbed maps and the validation data 
are both at 10 m × 10 m resolution, but they have slightly different origins and projections. To assess accuracy 
at the ha scale, the GEE reedbed map was projected onto the validation map, and predicted reedbed cover was 
regressed against observed reedbed cover. To assess accuracy at the 10 m scale, the centre points of the 10 m 
validation cells were re-projected onto the GEE reedbed map, and the predicted and observed presences were 
compared. As presence/absence (rather than probability) was predicted, AUC could not be calculated for the 
GEE reedbed map.

All data availability queries, download, classification, raster manipulation and random selection were carried 
out in R 4.2.138; pre-processing was carried out in R and QGIS v2.18.

Results
HPC workflow—structure of random forests
Winter reedbed spectral characteristics (red-green ratio, RG; normalised difference water index, NDWI; green-
blue ratio, GB) constituted two or three of the most informative variables in RF1 and RF2 respectively (Fig. 2). In 
RF2 the three most informative variables were considerably more informative than the others, but in RF1 there 
was less separation between these and the remainder. Kappa was maximised at a probability of 0.585 – this was 
used as the threshold for classifying 10 m pixels.

Accuracy of HPC reedbed map
Files from 541 passes were acceptable for use after pre-processing (mean 10.82 passes/scene, range 3–22). Each 
scene had at least one winter and one summer pass. The random forests were predicted over indices derived 
from these data.

When tested against the training data, the classification model had near-perfect discrimination: the two 
random forests used respectively had AUC values of 0.9997 (RF1) and 0.9983 (RF2) against the final map 
(Fig. 3). Only 154 validation hectares were visited in total, for two reasons: for one validation scene, only eight 
hectares had a predicted probability of 0.66 < p ≤ 1; two validation hectares from other scenes were not safely 
accessible. When tested against the validation data, the classification model had much lower discrimination: 
the combined model had an AUC of 0.671 (Fig. 3, blue line). The overall accuracy of the map at the 10 m scale 
was 65.1%, but the commission error for reedbed was very high: the majority of predicted reedbed was not true 
reedbed (Table 1a).

The commission error for reedbed remained very high at the ha scale (Table 1b), although slightly lower 
than at the 10 m scale. The class frequency of predicted reedbed is deliberately over-represented in our sample 
(see Materials and Methods), and so overall accuracy and omission error are not presented for the ha scale map, 
because they would be respectively over- and under-estimated. The estimated proportion of reedbed in the 
landscape was much greater (0.344 at 10 m scale; 0.740 at ha scale) than the true proportion (0.042 at 10 m scale; 
0.090 at ha scale).

There was no relationship between predicted and observed reedbed cover at the ha scale (Fig.  4a). False 
positives were non-randomly spread among land cover types (Chi-square test, Χ2 (1, N = 8) = 32.0, p < 0.0001; 
Supplementary Table S2). Arable and other open land cover types comprised 61.7% of the sample squares but 
73.8% of the false positives.

HPC workflow—distribution and extent of reedbed
The total area predicted to be covered by reedbed, including known error, is 54,273  ha. Assuming 93.4% 
commission error and 46.1% omission error, we estimate that 7,765 ha of Britain is covered by reedbed.

Subsequent masking of sloping or high-altitude cells removed a median of 50.8% (range 9.5 − 87.2%) of 
predicted reedbed for each scene. The distribution of reedbed in Britain estimated using the HPC workflow is 
presented in Fig. 5a. An example subset of the map at the Humber estuary, England, is presented in Fig. 6a (PHI 
reedbed polygons for comparison in Fig. 6c).
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GEE workflow
It was not possible to balance sampling between categories in the GEE workflow. Therefore only one, unbalanced, 
random forest was run for each set of criteria. Of the three data-maximisation approaches carried out (maximising 
number of variables, number of images or temporal resolution), maximising the number of variables gave both 
the lowest commission error and the lowest omission error: this approach was used. 5,184 images were used, 9.6 
times as many as used in the HPC workflow.

The distribution of reedbed in Britain estimated using the GEE workflow is presented in Fig. 5b. An example 
subset of the GEE reedbed map at the Humber estuary, England, is presented in Fig. 6b (PHI reedbed polygons 
for comparison in Fig. 6c). At the 10 m scale, the best reedbed map produced by the GEE workflow had an 
overall accuracy of 93.8%. This is higher than the overall accuracy of the HPC workflow 10 m scale reedbed 
map, but is almost identical to the overall accuracy of a map classifying all the validation points as non-reedbed 
(94.1%). At the 10 m scale the estimated proportion of reedbed (0.029) in the landscape was lower than the true 
proportion (0.042), but at the ha scale the estimated and true proportions of reedbed were very similar (0.104 
and 0.090 respectively). The commission error (63.0%) was still high (Table 1a), but considerably lower than that 
of the HPC workflow reedbed map. However, the GEE omission error was higher than that of the HPC workflow 
reedbed map: nearly three-quarters of observed reedbed was predicted not to be reedbed (Table 1a). The increase 
in omission error relative to that of the HPC workflow map is proportionately larger than the reduction in 
commission error.

At the ha scale, the best reedbed map produced by the GEE workflow had a similar accuracy to the 10 m 
scale map (Table 1b, Fig. 5b). There was a weak positive correlation (r = + 0.57) between predicted and observed 
reedbed cover (Fig. 4b), although this is again likely to be due to the largely correct identification of non-reedbed, 
and the high true class frequency of non-reedbed.

Discussion
Remote sensing studies refined to individual wetlands or groups of wetlands have typically had very high accuracy 
in identifying reedbed (e.g. 92%21, 94.7%19, 97%29, 98.7%35), potentially because of their small geographical scale. 
By contrast, field validation revealed high commission and omission error in our reedbed map. Surprisingly, 
repeating our workflow in Google Earth Engine using almost an order of magnitude more data from both 
Sentinel-2 sensors (only data from S-2A were available for the original workflow), and using more sophisticated 
pre-processing methods, did not resolve the accuracy issues. Although the quantity disagreement was reduced 
in the GEE workflow map, the allocation disagreement was increased. We argue that this lower accuracy in our 

Fig. 2. Importance of variables in the two final random forests contributing to the final map (filled 
circles = RF1; open circles = RF2), HPC workflow. A higher decrease in Gini denotes a greater variable 
importance.
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map stems from the relatively large geographical area covered by our study, resulting in a greater number of 
confusion land cover types and greater spatial variation in temporal reflectance function, and encompassing a 
geographical scale at which absolute reflectance error between satellite swaths and scenes is relevant.

Our study area, spanning 11 degrees of latitude, covers a wide range of semi-natural and man-made land 
cover types including grasses other than reed. These constitute a much larger set of land cover types with similar 
reflectance profiles to reedbed (as evidenced in the high commission error in these land cover types) than is 
present in a single wetland, making reedbed relatively less distinctive and elevating commission error accordingly. 
Similarly, reedbed’s relative rarity means that even with a low commission error rate the total area of incorrect 
commissions would dwarf the total area of correct commissions. This problem is likely to apply generally when 
classifying other rare and localised land cover types, which are often of disproportionate conservation value.

Reed can vary dramatically in phenology over very small spatial scales20, and there is spatial variation in 
reedbed’s temporal reflectance function across our study area7. This potentially makes reedbed’s temporal 
reflectance function so variable as to overlap with that of other land cover types, preventing a classification 

Fig. 3. Receiver operating characteristic curve for 10 m pixels, HPC workflow: black, map against RF1 training 
data; red, map against RF2 training data; blue, map against validation data. Sensitivity = proportion of true 
positives that are correctly classified; specificity = proportion of true negatives that are correctly classified.
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algorithm from discriminating between them. This seems to be a key barrier to correctly classifying reedbed at 
large geographical scales, because increasing the temporal resolution of the data (using GEE) did not improve 
the accuracy of the map. This issue may also apply generally to vegetation types whose temporal reflectance 
functions are easily distinguished from those of other vegetation cover over small spatial areas, but which are 
variable over large geographical areas. This issue could theoretically be resolved by additionally incorporating 
hyperspectral or non-optical data, or by using texture information if the aim was classification of large (relative to 
the pixel size) reedbeds alone. However, including SAR data from the Sentinel-1 satellite in preliminary analyses 
did not improve the GEE map, and no freely available hyperspectral or LiDAR products exist for the whole of 
Britain. Future analyses could include latitude as a covariate in a temporal reflectance function.

Reflectance error (e.g. due to instrument error, variation in solar radiation, or cloud removal error) 
compromises geospatial analysis when the study area is large enough to include multiple scenes. This was 
evidenced in our study by the visible presence of swath and scene boundaries in the reedbed map (Fig. 5a). This 
was not resolved by massively increasing the number of passes in the dataset with GEE, in order to bring the 
estimated median reflectance or reflectance-derived measure closer to the true median (Fig. 5b). Reflectance 
error therefore limits the possibility for predicting outside the swath or scene in which a classification model has 
been trained.

Fig. 4. Predicted and observed ha scale reedbed cover: (a) HPC workflow, (b) GEE workflow.

 

a) 10 m scale

Predicted

Reedbed
Not 
reedbed

Omission 
error (%)

HPC GEE HPC GEE HPC GEE

Observed Reedbed 21 10 18 29 46.1 74.4

Not reedbed 297 17 588 868 33.5 1.9

Commission error (%) 93.4 63.0 3.0 3.2

b) Hectare scale

Predicted

Reedbed
Not 
reedbed

HPC GEE HPC GEE

Observed Reedbed 11 6 2 7

Not reedbed 103 10 38 131

Commission error (%) 90.3 62.5 5.0 5.1

Table 1. Confusion matrix for reedbed map at: (a) 10 m scale; (b) ha scale (proportional reedbed cover 

converted to binary presence/absence).
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Beyond a certain training dataset size, adding more training data typically has diminishing positive effects 
on classifier performance39. In our study, the classification error issues could not be resolved by adding more 
reedbed training polygons: doing so had a diminishing negative effect on reedbed commission error rate, which 
did not compensate for increases in non-reedbed commission error rate. It could be that adding new reedbed 
training data introduced noise in the form of ecological and observation-error-induced variation in reedbed’s 

Fig. 6. Predicted and documented reedbed in the upper Humber estuary, NE England: predicted reedbed map 
(colour = predicted probability of reedbed presence at 10 m scale; white = NA) for (a) HPC workflow and (b) 
GEE workflow; (c) PHI reedbed polygons17 (base map data from OpenStreetMap https://www.openstreetmap.
org/copyright). Contains modified Copernicus Sentinel data (2015–2019). Sentinel-2 data were processed 
using R version 4.2.138 (https://www.r-project.org/), QGIS version 2.1824,25 (https://qgis.org/), and Google 
Earth Engine37 (https://earthengine.google.com/).

 

Fig. 5. Predicted reedbed map (colour = maximum predicted per-ha cover at 1 km2 scale; grey = 0; 
white = NA) of Britain: (a) HPC workflow; (b) GEE workflow. Steep/high altitude terrain has been masked 
out. Coastline map from GADM (https://gadm.org/license.html). Contains modified Copernicus Sentinel data 
(2015–2019). Sentinel-2 data were processed using R version 4.2.138 (https://www.r-project.org/), QGIS version 
2.1824,25 (https://qgis.org/), and Google Earth Engine37 (https://earthengine.google.com/).
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reflectance. This could then have limited the model’s ability to improve at identifying reedbed with new data, 
while simultaneously incorrectly suggesting new apparent ‘reedbed’ reflectance patterns in truly non-reedbed 
areas. This trade-off is likely to be a challenge when choosing training dataset size for the classification of other 
geographically-dispersed rare habitat types.

Our reedbed map, which had better-than-random accuracy (as assessed using AUC) at predicting the 
presence of a wetland land cover type, hundreds of kilometres from the training areas, is the first of Britain and 
the first to our knowledge at such a large spatial scale. However, due to the high classification error, it is more 
appropriate to use our map (in conjunction with estimated commission and omission error) for a first overall 
estimate of the total extent of reedbed in Britain, rather than for describing the location of individual reedbeds. 
Our estimate (7,765 ha) is the first comprehensive estimate of reedbed extent in Britain, and is of a similar order 
of magnitude (6,524 ha) to the only other estimate of reedbed extent in Britain (from 1993)22. It is not clear 
whether the 19.0% increase between the two estimates is due to: a real increase in reedbed in Britain since 1993; 
the limitation of the previous estimate22 to known reedbeds; or error in our classification process.

The utility of our map for identifying the fine-scale location of reedbed could be improved by masking 
confusion land cover types such as arable out with agricultural maps. Repeating our analysis in the future could 
allow assessment of national change in reedbed extent for natural capital accounting. However, although we 
sought to make our validation statistics as representative as possible by our selection of the validation area, our 
estimate of the extent of reedbed in Britain (and thus future estimates calculated by the same method) is highly 
contingent on our estimates of commission and omission error and must therefore be used with caution.

Low classification accuracy continues to limit the utility of some large geographical scale land cover maps40. 
Although repeating our workflow in Google Earth Engine did not resolve such classification accuracy issues, it 
brought the total analysis time down from several weeks to less than a day, and eliminated the need for large 
data storage capacity. Classification accuracy for a workflow like ours may improve considerably in the future 
as satellite reflectance error is reduced, and may improve slightly if other classifiers such as deep learning are 
used rather than random forest41. However, some sources of error remain which are clearly not easily resolved 
by advances in data quality or analytical techniques: ecological factors such as the number of confusion land 
cover types and systematic variation in temporal vegetation reflectance functions probably place upper limits 
on the size of a geographical area that can be classified accurately with such a workflow. Ultimately, this may 
fundamentally limit the capacity for remote sensing to aid and inform ecological resource management.

Data availability
This study used Sentinel-2 data which are publicly available at the Copernicus Open Access Hub (scihub.co-
pernicus.com) or through Google Earth Engine (earthengine.google.com). Field data used in validation are 
available at https://github.com/btojacobdavies/GB_reedbed_map.
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